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Abstract
We analyze the properties of Padé and conformal map approximants for func-
tions with branch points, in the situation where the expansion coefficients are
only known with finite precision or are subject to noise. We prove that there is
a universal scaling relation between the strength of the noise and the expansion
order at which Padé or the conformal map breaks down. We illustrate this
behavior with some physically relevant model test functions and with two non-
trivial physical examples where the relevant Riemann surface has complicated
structure.
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1. Introduction

In physical and mathematical applications one frequently confronts the situation in which only
a finite number of terms of an expansion of the function of interest are attainable, and also these
coefficients may only be known to some finite precision. Padé approximants and conformal
map approximants are well known tools for the first of these problems, as they provide analytic
extrapolation of finite-order expansions of functions beyond their radius of convergence [1, 2].
They are powerful in applications, easy to use, and have an elegant physical and mathematical
interpretation in terms of electrostatics [3–9]. In practice, however, their accuracy is affected
not only by the number of original input coefficients, but also by the precisionwith which these
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coefficients are known. Here we ask the question: how does noisy input for a finite-order series
affect the accuracy of Padé and conformal map approximants, for functions having a dominant
branch point (or points)? This question has been studied previously for simple functions having
a pole or poles [10–14], but in applications we are frequently interested in functions having
branch points, and possibly quite complicated Riemann surface structure. In this case the effect
of noise is much richer. We find that the approximation accuracy is determined by a universal
relation between the strength of the noise and number of input terms, when the underlying
function has branch points. We consider two different kinds of noise: (a) truncation of the
coefficients at a fixed number of digits; (b) addition to the coefficients of uniform random noise
of a chosen magnitude. The numerical results are consistent, and our mathematical analysis
explains this observed universality.

We are motivated by two primary applications:

(a) Padé approximation of a finite-order approximation of a convergent series, in order to
probe near the dominant singularity(ies), to determine the location and nature of the branch
point(s) (e.g. the phase transition point, the associated critical exponent and Stokes con-
stant). This is a canonical problem, for example, in quantum field theory and statistical
physics [15]. In a realistic physical application only finitely many expansion coefficients
are available and their precision is typically limited.

(b) Analytic extrapolation of a formal asymptotic expansion of a function, for which only a
finite number of terms are known, and for which the coefficients are known imprecisely.
This problem is regularized by a Borel transform, in which case it reduces to the first prob-
lem, in the Borel plane3. A more precise analytic continuation of the Borel transform leads
to a more precise analytic continuation of the physical function (the inverse Borel trans-
form) away from the region in which the original asymptotic expansion was generated.

Section 4 is devoted to the mathematical theory of noise sensitivity of Padé and conformal
map methods, for which we prove rigorous results for a general class of functions. However,
we also stress that there are simple practical applications of the underlying ideas in physical
problems where little may be known in advance about the analytic properties of the function.
This is particularly relevant for physical applications as it is frequently the case that the beha-
vior of the function under study is dominated by a small number of singularities (either in
the physical variable or in the Borel plane). Moreover, these singularities are typically point
singularities of the form

f(p)∼ (ω−ω0)
αA(ω)+B(ω), ω→ ω0 (1)

where A(ω) and B(ω) are analytic at ω0. If this is in the physical plane, then we are most
interested in extracting information about ω0, α and A(ω0), which tell us the critical point,
the critical exponent and the strength of the singularity. If this is the Borel transform, then
ω0 determines the strength of the leading non-perturbative effect, α determines the leading
power-law correction, and A(ω) encodes the fluctuations about this leading non-perturbative
contribution. For these cases, when the input coefficients are exactly known there is a precise
relation between the accuracy of the analytic continuation and the number of input coefficients
[16]. Here we extend these ideas to the situation where noise is included.

Our approach is guided by the electrostatic interpretation of Padé and its natural connection
with conformal maps [3–9], a brief summary of which is given below in section 3. Think of

3 In this situation, in the absence of noise it can be shown that it is generically much more accurate to apply Padé to
the Borel transform than to the original asymptotic expansion (recall that Padé is nonlinear so it does not commute
with the transforms) [16].
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the Padé poles as electrical charges in two dimensions, and consider the series expansion to be
generated at ω =∞. Then, for a function with branch points, Padé arranges the charges so that
(in the limit of an infinite number of input terms) they form a skeleton-like electrical conductor
with end points at the branch points, and with flexible lines of charges (wires in the limit) that
deform their shape and their intersection points such that the electrical (logarithmic) capacity
is minimized. Roughly speaking, it is a one-dimensional analogue of the soap bubble problem.
This perspective leads to several deep and useful results, which we use here to quantify the
accuracy of a Padé approximation in the presence of noise.

The paper is organized as follows. In section 2we present numerical evidence for the scaling
laws governing the effects of noise on Padé and conformal map methods. Mostly based on
existing results in the literature, section 3 makes the connection between Padé and conformal
map approximants. Section 4 is devoted to the mathematical theory of noise sensitivity of
Padé and conformal map methods, for which we prove rigorous results for a general class of
functions. Section 5 discusses further physical and mathematical applications of our analysis.
Our conclusions are summarized in section 6.

2. Numerical experiments of Padé ‘breakdown’

Before coming to the general results in section 4, we provide somemotivation based on numer-
ical experiments which illustrate some of the key phenomena. Recall first that Padé approxim-
ants do not converge pointwise, but only in capacity [3–8] (see sections 3 and 4). This means
that care is required in defining what we mean by ‘breakdown’ of the Padé approximation,
and how we relate it to the number of input terms and the strength of the noise. Intuitively we
certainly expect that if the coefficients become too noisy then the approximation will break
down. In this paper we quantify this relationship.

At one level, the breakdown of Padé may be characterized by the appearance of spurious
Padé poles which are not related to the actual singularities of the approximated function. For
the case of rational functions, in the limit that the Padé order N→∞ these spurious poles
appear on the unit circle with probability one [13, 14]4. For functions with branch points there
is a richer structure of spurious poles [3, 17]. Here we introduce the concept of the breakdown
order, and show that it is directly proportional to the logarithm of the noise strength.

2.1. Appearance of spurious Padé poles due to noise

We motivate our analysis with the following simple numerical experiment. The breakdown of
Padé can be seen as a qualitative change in the distribution of Padé poles at a certain Padé order,
in a way that is correlated with the strength of the noise. The noise causes the appearance of
arcs of poles which form a natural boundary emanating from a genuine singularity. Consider
mimicking the appearance of noise by truncating the input coefficients at a certain number of
digits, and plot the Padé poles in the complex plane. See for example, figures 1 and 2, where we
show the [n,n] Padé poles, obtained for a chosen truncation precision of the input coefficients,
for the functions (1+ω)−1/9 and (1+ω2)−1/9, respectively. We choose these representative
functions recalling that the function (1+ω)α characterizes the leading local behavior near an
isolated branch point, here normalized to be at ω =−1, and it is also the Borel transform of
the function with an asymptotic expansion F(x)∼ 1

Γ(−α)
∑∞

m=0(−1)mΓ(m−α)/xm+1, which
exhibits the generic Bender-Wu-Lipatov leading large order factorial growth typical of many

4 This has an interesting application to filtering noisy time-series [11, 12].
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Figure 1. Padé poles for different orders, for the function (1+ω)−1/9, with coefficients
truncated at 40 digit precision. Note that Log10

(

42×33)
≈ 40. Spurious noise poles begin

to appear at order 33, and in the limit they form as arcs originating atωinf =+1, the point
of best approximation of Padé in the absence of noise. See figure 3.

Figure 2. Padé poles for different orders, for the function (1+ω2)−1/9, with coeffi-
cients truncated at 40 digit precision. Note that Log10

(

22×66)
≈ 40. Spurious noise

poles begin to appear at order 66, and in the limit they form as arcs originating at
ωinf =±1, the points of best approximation of Padé in the absence of noise. See figure 4.

Figure 3. Padé poles for different orders, for the function (1+ω)−1/9, as in figure 1, but
for larger orders, well beyond the order at which the Padé approximation breaks down.
Observe that arcs of spurious noise poles are beginning to fill out near the unit circle,
beginning with ω ≈+1. This pattern formation is explained in section 4: see note 4.6.

applications in physics [18]. Similarly, the function (1+ω2)α has two symmetric branch
points, at ω =±i. In both cases, we have rescaled the variable ω to place the singularity(ies)
at distance 1 from the origin, thereby normalizing the radius of convergence to be 1.
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Figure 4. Padé poles for different orders, for the function (1+ω2)−1/9, as in figure 2,
but for larger orders, well beyond the order at which the Padé approximation breaks
down. Observe that arcs of spurious noise poles are beginning to fill out near the unit
circle, beginning with ω ≈±1. This pattern formation is explained in section 4: see note
4.6.

As is well known, with the exact rational coefficients, Padé approximates the function
(1+ω)−1/9 with a line of poles along the negative real axis, accumulating to the branch point
at ω =−1, while for (1+ω2)−1/9 we find two lines of poles along the imaginary axis, coming
in from±i∞ and accumulating to the branch points at ω =±i. These lines of poles are Padé’s
way of representing branch cuts for these functions5. However, when the input coefficients
are truncated to a chosen number of digits, one finds that as we increase the number of input
coefficients, at a certain order Padé begins to produce spurious ‘noise poles’, which form arcs
in the complex plane. From this numerical experiment we make two important observations:

(a) The Padé order at which these noise poles begin to appear is correlatedwith the chosen digit
truncation order of the input coefficients. See figures 1 and 2. With the chosen digit trunca-
tion order of 40, the Padé order at which the noise poles begin to appear is approximately
given by Nc = 33≈ 40/(2log10(4)) for (1+ω)−1/9, and by Nc = 66≈ 40/(2log10(2))
for (1+ω2)−1/9. The factor of 2 difference between Nc for these two cases is a first hint
towards a more general result, as it corresponds to the difference in the logarithmic capa-
cities for the Riemann surfaces of these two functions. For an explanation of the origin of
these logarithmic estimates, see section 3.2 below.

(b) The formation of spurious noise poles for more general functions is explained in section 4.
There we also explain the structure of the arcs of noise poles, in the large N limit. As
the truncation errors become larger, the noise poles form arcs, expanding from special
points ωinf on the circle of convergence in Ω (recall we have normalized this to be the
unit circle ω ∈ S1). Roughly speaking, these special points ωinf are the points on the circle
of convergence most distant from the actual singularities. These are also the points on
S1 where, without noise, the Padé extrapolation is the most accurate. For example, for
the function (1+ω)−1/9, we have ωinf =+1, while for function (1+ω2)−1/9, we have
ωinf =±1. Compare with figures 1 and 2. These ωinf points are define precisely below in
theorem 4.4: they are the point(s) at which Padé (without noise) is most accurate. In the
large N limit these noise poles form a circle of poles representing the natural boundary of
the noise function.

2.2. Capacity in the presence of noise

In the electrostatic formulation of Padé approximation (in the absence of noise), the logar-
ithmic capacity is an important quantity in determining the accuracy, especially close to the

5 In fact, interlaced with Padé zeros. Recall that since Padé produces a rational function, it only has poles and zeros.
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Figure 5. Plots of the convergence of 1/dN( f), defined in (2), to the capacity, for the
functions f(ω) = (1+ω)−1/9 (left) and f(ω) = (1+ω2)−1/9 (right), showing conver-
gence to the exact values (in green) 1/4 and 1/2, respectively. The blue dots are 1/dN( f),
and the orange dots show a second order Richardson acceleration.

point of expansion [3–5]. In this section we explore the connection between capacity and noise
sensitivity. The capacity can be estimated from the Padé poles as follows. Let {ωi}Ni=0 be the
set of poles of the diagonal [N,N] Padé approximant of the function f(ω). In the large N limit,
the ωi accumulate along a set C of branch cuts such that f is single-valued in C \ C (clearly,
rational approximants such as Padé can only converge in domains of single-valuedness of f ).
Construct the following quantity

dN( f) :=





∏

1⩽ j<i⩽N

|ωi−ωj|





2
N(N−1)

. (2)

In the N→∞ limit, dN( f) approximates the reciprocal of the logarithmic capacity of C, [4]:

lim
N→∞

dN( f) =
1
c
. (3)

The logarithmic capacity is also known as the ‘transfinite diameter’ and the ‘Chebyshev con-
stant’, and can be computed in a variety of relatively simple ways [4, 19–21] and, in symmetric
cases, based on continued fraction representations of Padé, [22]. Figure 5 shows the conver-
gence of dN( f) to the known capacity values of 1

4 and 1
2 , respectively, for the one-cut and

two-cut functions (1+ω)−1/9 and (1+ω2)−1/9 discussed in the previous section. An import-
ant result of Stahl [3] is that in the family of all possible cuts C such that f is single-valued
in C \ C, the logarithmic capacity c of the set C is minimal. It is shown in [3] that this min-
imal c equals ψ ′(0), where ψ(ω) is the conformal map from C \ C to D, normalized so that
ψ ′(0)> 0. By domain monotonicity, c< 1, see [23].

Now let us introduce noise to the coefficients, by adding to the original truncated series a
series with random coefficients:

f(ω) :=
m
∑

k=0

fkω
k→ fϵ(ω) := f(ω)+Nϵ(ω); Nϵ(ω) := ϵ

m
∑

k=0

rkω
k. (4)

Here rk are independent random variables distributed uniformly in [−1,1], and 0< ϵ < 1 is
a constant that characterizes the strength of the noise. Such a noise function, Nϵ(ω), would
model settings in which the Maclaurin coefficients f k are available in floating point arith-
metic with a fixed number of digits. We now apply a Padé approximant to the noisy truncated
expansion fϵ(ω) and analyze the distribution of the resulting poles. We average over many
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Figure 6. Plots of the deviation in the capacity due to noise, ∆N( fϵ), defined in (5), for
the one-cut and two-cut functions (1+ω)−1/9 and (1+ω2)−1/9. The different colored
dots correspond to five different realizations of the random noise in (4), all with a chosen
noise strength ϵ= 10−20. We see a clear breakdown once a certain truncation order N
is reached, and we observe that this truncation order is twice as large for the two-cut
function.

realizations of the random noise. The presence of the noise function eventually introduces
new singularities in the perturbed function, which has the effect of augmenting the capacitor C
and increasing the corresponding capacity c. With this introduction of noise, one finds that the
convergence to the true capacity of the function, shown in figure 5, breaks down at a certain
order that is correlated with C in a way that is calculated in section 4.

This can be seen by considering the deviation from the noise-free case6

∆N( fϵ) :=
∣

∣dN( fϵ)
−1− dN( fϵ ′)−1

∣

∣ . (5)

Plotting this deviation ∆N( f) as a function of the truncation order parameter N, we observe a
clear kink-like transition occurring at a certain order. See figure 6. One can therefore estimate
the breakdown point of Padé as the location of this sudden kink transition. In practice, we fix
a value for the noise strength ϵ, and calculate the smallest N such that ∆N( fϵ)> δ, with δ a
chosen acceptable precision threshold. In our analysis here we have chosen the error threshold
δ = 10−3.

We can adopt the order at which this kink transition occurs (averaged over multiple realiz-
ations of the noise ϵ) as a definition of the critical order Nc at which Padé breaks down. With
this definition, we can analyze the dependence of Nc on the noise strength ϵ in (4). This is
shown in figure 7 for the one-cut function (1+ω)−1/9 and the two-cut function (1+ω2)−1/9.
We see a definite linear behavior in this log plot, and note that the slope in the two cases dif-
fers by a factor of 2. This matches the factor of 2 observed in the numerical experiments in
section 2.1 and in figure 6. These numerical experiments, also repeated with other functions
having different capacities, suggest a scaling relation of the form

Nc = (constant)× log10(ϵ)
log10(c)

(6)

where ϵ is the noise strength and c is the capacity (recall that c< 1). The overall constant factor
appears to be universal, with an approximate value of 0.4. In order to explain why this is the

6 Here ϵ ′ = ϵ10−100 is a noise level small enough to have negligible impact but still to improve the computation time.

7



J. Phys. A: Math. Theor. 55 (2022) 464007 O Costin et al

Figure 7. Plots of the Padé breakdown order Nc, as defined in the text, for the model
functions (1+ω)−1/9 (left, blue dots) and (1+ω2)−1/9 (right, red dots). Note that Nc

is linear in the log of the noise strength ϵ, as in (6). The faint shadow lines indicate the
plot for the other function, to emphasize that the slope differs by a factor of 2 in the two
cases. The slope scales with the log of the capacity, as in (6).

case, and to prove general results, we turn now to a more detailed discussion of the relation of
Padé to conformal maps, which provides a more analytic approach to this problem.

3. Padé and conformal maps

The relation between Padé approximants and conformal maps follows from the remarkable
and intuitively useful physical interpretation of Padé in terms of two-dimensional electrostat-
ics, known as logarithmic potential theory [3–6]. Two dimensional electrostatic potentials are
harmonic functions, for which conformal maps are of course a natural tool [24]. We briefly
review the relevant ideas and results. For excellent reviews see [4–6].

The convergence of near-diagonal Padé approximants to functions with branch points is
a rich subject, elucidated in the fundamental paper of Stahl [3]. It is interesting to note that
convergence in capacity is established at this time only for functions analytic on Ω(C \E),
for sets E of zero logarithmic capacity or in domains in C bounded by piecewise analytic arcs
under a stringent symmetry condition [3]. The first class of functions is the relevant one here.
For further developments and refinements, see [7, 8].

3.1. Potential theory and physical interpretation of Padé approximants

Given a function f(ω) with branch points in C, let D ′ be any domain of single-valuedness of
f, and let E ′ = ∂D ′ be its boundary. If the function f has finitely many singularities, ∂D ′ is a
set of piecewise analytic arcs joining branch points of f, and some accessory points (similar to
those of the Schwarz–Christoffel formula) associated with junctions of these analytic arcs. So
E′ is the union of the chosen set of branch cuts for f.

Now think of E′ as an electrical conductor on which we place a unit charge. The electro-
static potential on a conductor is constant, and we normalize so that the potential vanishes
on E′: V(E ′) = 0. Therefore the electrostatic capacitance of E′ is cap(E ′) = 1/V(∞). In two

8
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dimensions the potential energy per particle of a system of charges placed at the locations
E= {ωi}1⩽i⩽N is:

EN(E) =−
∑

1⩽i<j⩽N

log |ωi−ωj|=:−N(N− 1)
2

logdN(E). (7)

The minimal potential energy is attained with the charges at the equilibrium positions, known
as Fekete points [4]. In the limit N→∞, dN(E) gives the harmonic capacity, the exponential
of the usual capacity with respect to infinity. Compare with (2). The key relations to Padé are
as follows:

(a) The electrostatic minimization process results in the minimal capacitor, and asymptotic-
ally it coincides with the pole locus of Padé (where the Padé is constructed from an expan-
sion about infinity rather than about zero, in order to match the electrostatic interpretation).
In other words, in the N→∞ limit the Padé poles are placed along an electrical conductor
E, which is essentially the set of branch cuts chosen by Padé, and the complement D of E
is the domain of convergence of Padé [3].

(b) For ω ∈ D, the Green’s function is related to the potential as |GD(ω)|= e−V(ω). In fact, if
D is simply connected, |GD(ω)|= ψD,∞(ω), where ψD,∞ is the conformal map from D
to the unit disk D, seen from infinity with ψD,∞(∞) = 0 ([3]). This conformal map can
be recovered, in the limit N→∞, from the harmonic function |GD|, see proposition 3.1
below. Summarizing for diagonal Padé from theorem 1 by Stahl [3],
1. For any ϵ> 0 and any compact set V⊂D \{∞} we have

lim
N→∞

cap{ω ∈ V|( f− [N,N]f)(ω)> (GD(ω)+ ϵ)2N}= 0 (8)

2. If f has branch points, which occurs ifGD ̸= 0, then for any compact set V⊂D \{∞}
and any 0< ϵ⩽ infω∈VGD(ω) we have

lim
N→∞

cap{ω ∈ V|( f− [N,N]f)(ω)< (GD(ω)− ϵ)2N}= 0. (9)

(c) In this sense, Padé effectively ‘creates its own conformal map’ and its own domainD. Geo-
metrically, join all the branch points of f by a perfectly conducting, connected, infinitely
flexible wireW in such a way that the function f is single-valued in the complement ofW.
The wire generically has further junction nodes besides the branch points. Deform the wire
until the capacitance of the final, extremal, wire E with respect to infinity is minimized.

(d) The equilibrium measure µ on E is the equilibrium density of charges on E. As N→∞,
the poles of the near diagonal Padé approximants place themselves (except for a set of zero
capacity) close to E, and Dirac masses placed at these poles converge in measure to µ [3].

(e) The numerators and denominators of Padé approximants are orthogonal polynomials, in
a generalized sense, along arcs in the complex domain, but therefore without a bona-fide
Hilbert space structure. According to [3], this is the ultimate source of capacity-only con-
vergence, and of the appearance of spurious poles. Spurious poles can be eliminated, see
[3], p 145, (8), after which convergence is uniform.

Proposition 3.1. Assume that spurious poles have been eliminated and convergence is uniform
[3] in a simply connected domain D. Let f be analytic in the unit disk and have branch points
in C. Then, for large N and ω ∈ D,

| f(ω)− [N,N] f(ω)|1/2N = |ψ(ω)|(1+ o(1)) (10)

9
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where ψ is the conformal map from the domain of analyticity of the Padé approximants to D.
In fact, with an appropriate choice of branch,

e−iλ ( f(ω)− [N,N] f(ω))
1/2N

= ψ(ω)(1+ o(1)) (11)

for some phase e−iλ.

Proof. Choose a disk D⊊D around the origin. Since ψ is conformal and ψ(0) = 0, we have
ψ(z) ̸= 0 on ∂D. Let κ=max∂D |ψ|(min∂D |ψ|)−1. Note also that, inside D we have |ψ|< 1.
Choose a δ > 0 small enough so that on ∂Dwe have |ψ|(1+ δ)< 1. Let ϵ= κδ. Fixing a radius
R, combining (8) and (9) we get for that for large N (10) holds on ∂D. By the maximum
principle, the inequality holds in D. For the second part, we note that |ψ| is harmonic, and
| f− [N,N] f|= |ψ|2N(1+ o(1)), while ( f(ω)− [N,N] f(ω)) is analytic7.

3.2. Padé and conformal maps in the presence of noise: two simple examples

An important consequence of these results connecting Padé with logarithmic potential theory
and conformal map methods is that we can now understand how and why noise affects a Padé
approximant: in the large N limit the noisy input coefficients effectively propagate through
the Padé algorithm by composition of the conformal map with the original (noisy) series.
Therefore the problem can be re-cast as the analysis of the effect of a conformal map on a noisy
series, and this can be quantified precisely, providing us with a sharp quantitative estimate of
the relation between the noise and the number of terms before Padé breaks down.

It is instructive to show how this works for the generic case of a function with one dominant
branch point, which we can normalize to be at ω =−1. Then in the large N limit the effect
of noise on the Padé approximant is given by composition of the truncated noisy series fϵ(ω)
in (4) with the one-cut conformal map:

ω =
4z

(1− z)2 =: φ(z) ←→ z=

√
1+ω− 1√
1+ω+ 1

=: ψ(ω) (12)

which maps the cut ω plane to the interior of the unit disk in the conformal z plane. This maps
the branch point ω =−1 to z=−1, the origin ω= 0 to z= 0, and the upper (lower) edge of
the cut ω ∈ (−∞,−1] is mapped to the upper (lower) half of the unit circle |z|= 1. Therefore

(

4z
(1− z)2

)m

= 4m
∞
∑

k=0

zm+k
(

k+ 2m− 1
k

)

(13)

and so the composition yields:

( fϵ ◦φ)(z) =
∞
∑

m=0

4m
∞
∑

k=0

(am+ ϵrm)

(

4z
(1− z)2

)m

=
∞
∑

m=0

zm
m
∑

k=0

(ak+ ϵrk)4
k

(

m+ k− 1
m− k

)

. (14)

The variance of [zm] ( fϵ ◦φ)(z), the coefficient of zm, is

σ2(m) = ⟨([zm] ( fϵ ◦φ)(z)−⟨[zm] ( fϵ ◦φ)(z)⟩)2⟩. (15)

7 Our results extend to near-diagonal Padé approximants which, together with the diagonal ones, are the most relevant
in applications.
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Figure 8. A log plot of σ2(m) in (16) (blue dots) compared with the Euler–Maclaurin
leading large m approximation in (17). For this comparison plot we have suppressed the
unimportant common overall ϵ2

3 factor in (16) and (17).

Because the random noise averages to zero, ⟨rm⟩= 0, the variance reduces to

σ2(m) = ϵ2
〈

(

m
∑

k=0

rk4
k

(

m+ k− 1
m− k

)

)2
〉

=
ϵ2

3

m
∑

k=0

42k
(

m+ k− 1
m− k

)2

. (16)

At large m, the summand is strongly peaked around k≈ m√
2
, and so the sum can be evaluated

by a straightforward Euler–Maclaurin analysis. We find the large m estimate

σ2(m)≈ ϵ2

3

(√
2+ 1

)4m

21/4
√
2πm

(

1+ o

(

1
m

))

(17)

which is in excellent agreement with the variance in (16) even at modest values of m: see
figure 8.

To connect back to the Padé approximant, recall that for a diagonal [N,N] Padé approximant,
the original series is expanded to orderm= 2N, and the optimal truncation of the re-expansion
after the conformal map is to truncate the z expansion also at this order [23]. Therefore, in
the variance we identify m= 2N. We arrive at a sharp estimate for the slope in the empirical
identification (6),

Nc ≈
− log10(ϵ)

4 log10
(

1+
√
2
) . (18)

The corresponding conformalmapwithM symmetrically placed radial cuts emanating to infin-
ity from branch points at ωM =−1 is [23, 25] (with the natural branch choices):

ω =
22/M z

(1− zM)2/M =: φM(z) ←→ z= M

√√
1+ωM− 1√
1+ωM+ 1

=: ψM(ω). (19)
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The analysis is therefore identical, with ω replaced by ωM and z replaced by zM , so the only
real difference is the scaling of the highest term in the expansion. We therefore find

Nc ≈
−M log10(ϵ)

4 log10
(

1+
√
2
) . (20)

This agrees with the scaling factor of 2 difference between the one-cut and two-cut cases found
in sections 2.1 and 2.2.

Recalling that for this symmetric configuration of M radial cuts, the capacity is cM =
ψ ′
M(0) = 4−1/M [9, 23], we can re-express (20) in a more suggestive form:

Nc(M) =
log10(

√
2)

log10(1+
√
2)

log10(ϵ)
log10(cM)

≈ (0.3932...)
log10(ϵ)
log10(cM)

(21)

This agrees very well with the numerical fit of ≈ 0.4 of the slope in (6), for the data in the
numerical experiments shown in figure 7, and it incorporates the correct scaling with the
capacity.

4. General mathematical theory of the effect of noise on Padé and conformal
maps

In this section we summarize a number of precise mathematical results showing universality
in the breakdown of conformal map methods and of Padé approximations. The relevant proofs
will be the subject of a separate technical paper. These results explain the observations arising
from the numerical experiments in section 2.1, and also explain and generalize the quantitative
results in section 3.

Padé and conformal maps are related due to the key result of Stahl [3], described above
in (8)–(9). This has the remarkable consequence that at large order, the leading error of Padé
is expressed solely in terms of the conformal map ψ(ω) and its inverse φ(z), not in terms of
the function f(ω). As in the case of conformal map methods, this dramatically simplifies the
problem, as we can decouple the analysis from the (unknown) function f and concentrate on a
conformal map common to functions with the same singularity structure. The introduction of
noise reduces the accuracy of Padé and conformal map methods, by various natural measures
of accuracy listed in the definition 4.1 below. The general mathematical theory for estimating
the accuracy is naturally phrased in terms of the relevant conformal maps.

4.1. Notation and mathematical framework

Let D be a simply connected domain, more generally a Riemann surface Ω, in which the
function of interest, f : Ω→ C, is analytic. We denote by ψ = ψ(ω) the conformal map, or
more generally the uniformization map, from Ω to D, and φ= φ(z) its inverse. We normalize
such that the leading singularity of f is at ω0 = 1, and so f is analytic in the unit disk D and on
Ω, and we write

f(ω) =
∞
∑

j=0

fjω
j. (22)

We denote by [N,N]f the diagonal Padé approximant PN/QN of f. Here PN,QN are defined as
usual to be the unique pair of polynomials of degree N normalized so that the coefficient of ωN

in PN is 1, and such that the Maclaurin coefficients of order up to and including 2N of [N,N]f

12
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agree with those of f [1, 2]. For a function g we denote by g[m] its Maclaurin polynomial of
order m.

We write the expansion of the inverse map φ(z) as a Taylor series,

φ(z) =
∞
∑

k=1

bkz
k (23)

to emphasize the composition with the conformal map. Noting that φ(D) = Ω, and that f is
analytic in Ω, it follows that the composition f ◦φ is analytic in D. Hence the series of f ◦φ,

( f ◦φ)(z) =
∞
∑

j=0

fjφ
j(z) :=

∞
∑

k=0

ck z
k (24)

converges in the unit disk D. Let ri be independent random variables as in section 2.2, let Ω⊃
D ̸= C be a simply connected domain in C or more generally a Riemann surface containing
the unit disk D on its first Riemann sheet. We assume that only finitely many singular points,
B = {ω1, . . . ,ωM}, lie on the unit circle and the boundary ∂Ω of the Riemann surface.

Let ψ : Ω→ D be the conformal or uniformization map of Ω to D and φ= ψ−1. Let b
be the image of the circle S1 in Ω through ψ, b := {z : |φ(z)|= 1}= ψ(S1). It is a piece-
wise analytic curve whose nonanalytic points are ψ(ωi), i= 1, . . . ,M. Let zinf ∈ b be such that
|zinf|=minz∈b |z|. It is a simple result in conformal representations that |zinf|< 1.

The effect of noise on Padé reduces to the effect of noise on composition with a conformal
map as discussed in the following.

Definition 4.1. In reconstructing f from its truncated expansion f[m] by using a conformal
map or relatedly, by Padé, both using f≈ ( f ◦φ)[k] ◦ψ, k⩾ n, the noise-induced breakdown of
approximation can be defined in a number of ways:

(a) The first value of k for which the coefficient ck in (24) becomes inaccurate (by some chosen
measure of accuracy).

(b) The first value of k for which there is a z ∈ D for which the approximation ( f ◦φ)(z)≈
( f ◦φ)[k](z) becomes inaccurate.

(c) For a fixed z ∈ D, the first value of k for which the approximation ( f ◦φ)(z)≈ ( f ◦φ)[k](z)
becomes inaccurate.

As we will see, (a) and (b) above are roughly equivalent, while (c) provides more local
information.

We quantify the loss of accuracy in corollary 4.3 and, much more sharply, in theorem 4.4
below. These are generalizations of the results derived in section 3.2 for the simple represent-
ative conformal maps for functions with one branch cut, or a symmetric set of radial branch
cuts. This analysis shows that in general the important mathematical object is the conformal
map, either the explicit one being used, or the one that Padé effectively constructs (recall the
discussion of the electrostatic interpretation of Padé in section 3.1).

Note 4.2.

(a) Since [N,N]f has the same Maclaurin coefficients as f up to and including order 2N, for
anyφ, the composition maps ( f ◦φ) and ([N,N]f ◦φ) have the sameMaclaurin coefficients
up to and including the 2Nth order.

13
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(b) Assume that spurious poles have been eliminated from the Padé approximant [3]. In [23]
it is shown that the accuracy of approximation of [N,N]f is lower than, and of the same
order of magnitude as, that of ( f ◦φ)[2N].

(c) The approximation provided by Padé is that of ( f ◦φ)[2N] +
∑

k⩾2N+1 ak z
k, where the ak are

generally different from the Maclaurin coefficients of ( f ◦φ) and make Padé less accurate
than ( f ◦φ)[2N]. By any sensible measure of accuracy, Padé breaks down earlier than the
associated conformal map, albeit not significantly earlier.

The following result characterizes the behavior of Pade approximants when noise becomes
dominant and explains the observed appearance of a circle of poles surrounding the point of
expansion. See section 4.1 for the concepts and notations used.

Proposition 4.3. Let Nϵ be the noise function introduced in (4), and let n(z) be the large m
limit of the composition of this noise function with φ:

n(z) := (Nϵ ◦φ)(z) =
∞
∑

k=0

nkz
k. (25)

Then

(a) The unit circle S1 in Ω is a natural boundary ofNϵ, and b is a natural boundary ofNϵ ◦φ.
(b) For each realization of the noise variables ri we have, with probability one,

limsup
k
|nk|

1
k = |zinf|−1 where |zinf|= |ψ(ωinf)| := inf

ω∈S1
|ψ(ω)| (26)

See Note 4.6 below for an intuitive explanation and further comments.

There is in fact the following sharper result. We write zinf = ψ(ωinf), for one or more ωinf,
and we write ωinf as a phase: ωinf = eiθinf . For the result we assume the generic condition α=
(

ψ ′ ′

ψ −
(

ψ ′

ψ

)2
)

(θinf) ̸= 0. (Note that, by conformality, ψ ′ ̸= 0.).

Theorem 4.4. For large k, nk is a random variable of zero average and standard deviation

σ(nk) = Aϵk−
1
4 |zinf|−k(1+ o(1)) (27)

where

A= 3−
1
2 (2π)

3
4 |ψ′(ωinf)| [ℜα(ωinf)]

− 1
4 .

Corollary 4.5. For a given error threshold δ,

(a) The breakdown condition on the coefficient nk is

Aϵk−1/4|zinf|−k(1+ o(1))⪆ δ. (28)

(b) The condition of breakdown of approximation at ω = φ(z), |ω|> 1, is

Aϵk−1/4

∣

∣

∣

∣

z
zinf

∣

∣

∣

∣

k ∣
∣

∣

∣

1
1− zinf/z

∣

∣

∣

∣

⪆ δ (29)

(where |ω|> 1 implies |z|> |zinf|).
In the limiting case |z|= 1, (b) reduces, up to a constant, to the condition in (a).
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Note 4.6.

(a) Since it is a function with O(1) random coefficients,Nϵ is analytic in D⊂ Ω, and the unit
circle S1 ⊂ Ω is, with probability one, a natural boundary [26] ofNϵ. The circle of singular-
ities begins making its mark on the series extrapolation when the noise in the coefficients
becomes significant. Intuitively, extrapolation quality relies on cancellation of coefficients,
and hence the points of best extrapolation accuracy are also those which are most sensitive
to noise. That is where the effects of the noise first appear. Thereafter, noise poles spread
out on a circle in the ‘order’ of approximation quality. Hence the circle of noise poles starts
at the ‘best’ point on S1, and grows from there until it covers the whole of S1.

(b) This result explains the pattern of spurious poles in figures 1 and 2. The spurious poles
form arcs near the points ωinf, which in figure 1 is the point ωinf =+1, and in figure 2 are
the two points ωinf =±1. Figures 3 and 4 show the arcs of noise poles well beyond the
breakdown order, where we see the noisy circular arcs forming, beginning at the relevant
value(s) of ωinf.

Note 4.7.

(a) Padé provides an efficient method to estimate the key quantity zinf in proposition 4.3,
even with only a limited number of input coefficients: one simply computes the differ-
ence [N,N]f(ω)− [N− 1,N− 1]f(ω), for ω ∈ ∂D and looks for the smallest value.

(b) For Padé, one could also estimate zinf empirically, with high accuracy, as follows. One
constructs a known function g with branch points at the tips ofD and analytic inD, calcu-
lates Padé approximants of sufficient order for g, and measures the error of approximation
along the unit disk in ω. Then zinf follows from (10) above.

(c) It follows from the same analysis that the region where conformal map or Padé approxim-
ants are guaranteed to be insensitive to noise is the unit disk inΩ, the same as the domain of
convergence of the original series. Any extrapolation beyond this domain of convergence
is eventually affected by noise.

(d) For diagonal [N,N] Padé we identifym= 2N and we therefore have a general mathematical
characterization of breakdown, expressed in a form analogous to (6) and (21):

Ninf
c =

log10(ϵ)
2log10(zinf)

. (30)

Thus, the proportionality factor is most naturally identified with zinf, which is a property
of the conformal map associated with Padé. Importantly, it does not depend on know-
ing the function f, but just the locations of its singularities. In practical applications, even
approximate information about the leading singularities of f can be used to obtain good
approximations to Ninf

c , as shown in several examples in the next section.
(e) Note that for the configurations of M symmetric branch points, discussed in section 3.2,

which are often relevant in physical applications, this general breakdown condition agrees
with (21), because for the map (19) we have

zinfM := inf
θ∈[0,2π)

[

ψM(e
iθ)
]

= ψM(1) =
1

(
√
2+ 1)2/M

. (31)
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Therefore

Ninf
c (M) =

−M log10(ϵ)

4log10(
√
2+ 1)

(32)

in agreement with (20).

5. Physical applications

In nontrivial applications we typically do not know the full Riemann surface structure of the
function being approximated. However, in many physical and mathematical applications the
function’s behavior is dominated by finitely many singularities, often just one or two. In such
situations, even approximate information about these dominant singularities can be used to
construct accurate approximations to the function that are significantly more precise than the
original series expansion.

But now we ask what happens in the presence of noise. Our main result is that the key
quantity in relating the number of terms at which Padé breaks down to the strength of the noise
is the conformal map produced by Padé in the large N limit. Importantly for applications, this
map only depends on the locations of the singularities, so the relation betweenNc and the noise
strength can be estimated using even approximate information about the singularity locations.

To illustrate the generality of this result, we now study the numerical analysis of two non-
trivial examples coming from physical and mathematical applications, where we do not know
the exact conformal map, but we can construct an approximate map based on the leading sin-
gularities. These are applications in which it is possible to generate terms of an asymptotic
expansion, with exact rational coefficients, and the divergent formal series can be used to
explore the singularity structure of the corresponding Borel plane using combinations of Padé
approximants and conformal and uniformizing maps. But in both cases, the Borel plane has
an intricate multi-sheeted Riemann surface structure, so the underlying functions are much
more complicated than the simple one-cut and two-cut functions used in the numerical exper-
iments in sections 2.1 and 2.2. Nevertheless, we show that estimates based on their leading
singularities match very closely the actual behavior of Padé in the presence of noise.

5.1. Renormalization in quantum field theory

Perturbation theory in quantum mechanics and quantum field theory (QFT) is generically
divergent, with factorially growing coefficients [18]. In QFT it is generally difficult to gen-
erate many terms of a perturbative expansion, and frequently such an expansion has coeffi-
cients that are only approximate. In this section we choose a particular computation of the
anomalous dimension γ(a) in an asymptotically free conformal theory, scalar φ3 theory in 6
dimensional spacetime. This is a well-studied theory [27–31], and one for which high orders
of perturbation theory are accessible using the Kreimer–Connes Hopf algebraic approach to
renormalization [32]. Broadhurst and Kreimer showed that in this approach the perturbative
expansion of the anomalous dimension γ(a) is characterized by a quartically nonlinear third
order ordinary differential equation (ODE) for γ(a) [33]. The resurgent trans-series structure
of this function has recently been analyzed in detail in [34, 35], revealing an intricate Borel
Riemann surface structure. On the first sheet there is a single dominant Borel branch point
singularity with exponent 1

12 , in addition to two further resonant collinear Borel singularities,
and all three of these singularities are repeated in integer multiples. Here we show that if noise
is introduced to this computation, the result is dominated by the leading Borel singularity, so
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Figure 9. This plot shows the critical truncation order Nc at which Padé breaks down
in the presence of noise, as a function of the logarithm of the noise strength, for the
Borel transform (33) of the anomalous dimension in the Hopf algebraic analysis of the
φ3 scalar quantum field theory in 6 dimensions [33, 34]. The blue dots show the average
of multiple realizations of the random noise, and the blue line shows the general one-cut
scaling relation in (18). Contrast this with the faint red line which shows the slope for
the two-cut case.

the slope relating the breakdown order Nc to the logarithm of the noise strength, as in (30), can
be well approximated by the one-cut situation.

The function under consideration is the Borel transform (see equation (29) in [34])

G(ω) = 6
∞
∑

n=0

(−1)n An
12n

ωn

n!
(33)

where the coefficients An appear as A051862 in the Online Encyclopedia of Integer Sequences.
Truncating this expansion at a given order, we can apply Padé to analytically continue the
Borel transform, in order to obtain a resummation of the divergent perturbative expansion of
the anomalous dimension. If we then introduce noise to the expansion coefficients, as in (4),
then we observe that the Padé approximation to Gϵ(ω) breaks down at a truncation order Nc

that depends on the strength of the noise. Figure 9 plots this critical truncation order Nc as a
function of the logarithm of the noise. It is quite remarkable that such a drastic approximation
of only considering the effect of the location of a single dominant branch point singularity
captures the general trend quite accurately.

5.2. Tritronquée solution to Painlevé I

The Painlevé equations generate solutions known as the ‘nonlinear special functions’, with a
wide range of applications in physics and in mathematics [36]. Asymptotic expansions of these
functions can be described in terms of resurgent trans series [37], and their Borel transforms
have a rich Riemann surface structure, with infinitely many sheets [23]. As a concrete example
we consider the Borel transform of the perturbative expansion of the tritronquée solution to
Painlevé I, which arises in physical applications in matrix models of 2d gravity [38]. This spe-
cial solution F(x) undergoes nonlinear Stokes transitions in the physical domain when Arg(x)
is an integer multiple of 2π

5 . In the Borel plane the tritronquée Borel transform function f(ω)
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Figure 10. This plot shows (red dots) the critical truncation order Nc at which Padé
breaks down in the presence of noise, as a function of the logarithm of the noise strength,
for the Borel transform (34) of the tritronquée solution of the Painlevé I equation [39].
The red dots show the average of multiple realizations of the random noise, and the red
line shows the general two-cut scaling relation in (20) with M= 2. The faint blue line
shows the slope for the one-cut scaling relation, for contrast.

has two infinite towers of collinear Borel singularities, at all integer multiples of a ± pair.
The analysis of [39] shows that this solution can be accurately analytically continued into the
complex x plane, starting from an asymptotic expansion generated for x→+∞, even crossing
into the Dubrovin pole region 4π

5 < Arg(x)< 6π
5 [40, 41].

The Borel transform can be defined as [39]

B(ω) =
∞
∑

n=1

an
(2n− 1)!

ω2n−1. (34)

The expansion coefficients an are rational numbers, generated from the recursion relation

an =−4(n− 1)2an−1−
1
2

n−2
∑

m=2

am an−m , n⩾ 3

a1 =
4
25

, a2 =−
392
625

. (35)

In the absence of noise, finite-order truncations of this Borel transform encode non-trivial
information about the global analytic properties of the tritronquée solution [39]. When we
introduce noise, as in (4), Padé approximation to Bϵ(ω) breaks down at a truncation order Nc

that depends on the strength of the noise. Figure 10 plots this critical truncation order Nc as a
function of the logarithm of the noise. Once again we see that consideration of the effect of the
dominant pair of branch point Borel singularities is sufficiently accurate to describe the effect
of noise on this expansion.

6. Conclusions

We have analyzed the effect of noise on Padé approximants, for functions with general branch
point singularities of the form that arise in a broad class of physical applications. With noisy
input coefficients, the Padé approximant breaks down at a certain Padé order, Nc, which is
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proportional to the log of the noise strength. Furthermore, the proportionality constant can be
expressed in terms of the conformal map that Padé generates in its large order limit. We have
presented two natural ways to characterize the breakdown of Padé: one based on a sudden
change in the distribution of the Padé poles, and another based on a change in the relative
precision of the Padé approximant. Our main results are theorem 4.4 and corollary 4.5, which
characterize the breakdown condition both globally and locally. For a given level of noise there
is an order beyond which Padé will begin to introduce spurious poles that do not represent the
true singularity structure of the function being approximated. Correspondingly, the extrapol-
ation accuracy of Padé will degrade beyond this threshold breakdown order. Theorem 4.4 and
corollary 4.5 furthermore identify the locations at which spurious poles form. The propor-
tionality constant relating the breakdown order to the logarithm of the noise strength can be
expressed in terms of the conformal map that Padé generates at large order. Therefore this slope
can be estimated just based on the locations of the singularities, not requiring full information
about the function itself. Furthermore, we have shown that in some non-trivial problems the
slope can be accurately estimated based solely on the effect of the dominant singularities, not
even requiring knowledge of the exact conformal map. We anticipate that this result can have
implications in a wide range of physical applications. An important open question is to determ-
ine optimal strategies for extrapolation in the presence of noisy coefficients, generalizing the
results of [23] for the noise-free case.
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