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Abstract—As Augmented Reality (AR) devices become more preva-
lent and commercially viable, the need for quick, efficient, and secure
schemes for pairing these devices has become more pressing. Current
methods to securely exchange holograms require users to send this
information through large data centers, creating security and privacy
concerns. Existing techniques to pair these devices on a local network
and share information fall short in terms of usability and scalability.
These techniques either require hardware not available on AR devices,
intricate physical gestures, removal of the device from the head, do not
scale to multiple pairing partners, or rely on methods with low entropy to
create encryption keys. To that end, we propose a novel pairing system,
called GazePair, that improves on all existing local pairing techniques by
creating an efficient, effective, and intuitive pairing protocol. GazePair
uses eye gaze tracking and a spoken key sequence cue (KSC) to
generate identical, independently generated symmetric encryption keys
with 64 bits of entropy. GazePair also achieves improvements in pairing
success rates and times over current methods. Additionally, we show
that GazePair can extend to multiple users. Finally, we assert that
GazePair can be used on any Mixed Reality (MR) device equipped with
eye gaze tracking.

Index Terms—efficient pairing, secure pairing, eye gaze tracking, aug-
mented reality

1 INTRODUCTION

According to recent market research, the global Augmented
Reality (AR) market in 2021 was estimated at $14.7 Billion,
with an expected value of $88.4 Billion by 2026 [1]. As
companies and users begin to explore the possibilities of
the Metaverse and the future of human interaction [2], [3],
AR is rapidly expanding past its current hardware limi-
tations to even more ubiquitous use. These uses, such as
in the windshields of automobiles [4], use by the military
for soldier augmentation [5], performing remote surgery
and training healthcare workers [6], educating children in
the classroom [7], and visualizing logistics bottlenecks [8],
portend a future where AR devices are used as a part
of our normal, every-day lives. With the advent of the
Metaverse, even the governments of large cities are turning
to AR to ensure that their citizens have access to essential
services through this emerging and potentially pervasive
technology [9].
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As these AR devices grow in utility, use, and impact on
daily lives, schemes to pair two or more of such devices will
become even more important. The pairing of AR devices
and sharing of experiences is at the core of the value
of AR devices, allowing users to not only experience a
synthetic augmentation of the physical world but to share
these objects, normally known as holograms, with others.
On the other hand, AR devices present unique challenges
and opportunities for pairing. AR devices, especially head-
mounted displays (HMDs), allow the user to interact with
her physical environment while the headset places synthetic
objects such as holograms into the user’s perception of
the physical world. HMDs also allow for integrated eye
tracking, a feature deemed one of the most transformative
to the technology [10]. These features allow for unique ways
to generate the entropy required for secure pairing of AR
devices, noted as 60+ bits of entropy in [11]. This is in
contrast to other mobile devices, such as smartphones, that
have limited ways for users to interact for device pairing.

1.1 The Importance of Local Pairing of AR Devices

The importance of efficient pairing of AR devices is made
evident in previous works. As originally described in the
earliest work on AR-specific local pairing, Looks Good To
Me (LGTM) [12], local sharing is a problem that deserves to
be studied separately. Local sharing allows users to commu-
nicate without using large-scale data backbones, for-profit
cloud services, or cellular connections. It also gives users
the freedom to decide to keep their data local and within
a more closed sphere of control. Currently, for two users to
pair their AR devices and securely share information such as
holograms, the best working solution involves exchanging
an alphanumeric authentication string or using centralized
systems such as Microsoft Azure [13]. If focusing on local,
bootstrapping methods of pairing, the alphanumeric string
method is the only known, implemented method. These
strings are error-prone and time-consuming to use [14]. To
alleviate this problem, recent research has created systems
to use AR’s spatial awareness capability, combined with the
AR user’s ability to interact with the physical environment,
to efficiently pair two AR devices. LGTM, HoloPair [15],
and Tap-Pair [16] are all current research works that focus
on using AR-specific technologies to pair such devices.
Each of these works presents a novel way to use wireless
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localization or holograms to authenticate a shared secret
and secure communication paths without using Public Key
Infrastructure (PKI) to create keys. However, none of these
works implement or test methods of pairing more than two
devices, and none of them explore a new and powerful
technology, eye gaze tracking, for AR device pairing. Addi-
tionally, their proposed pairing techniques are specific to
AR. AR-specific gestures or technologies require that each
of these solutions be deployed to AR devices only, greatly
limiting the deployability and scope of the solutions (e.g.,
not applicable to Virtual Reality (VR) devices). In light of
this, it remains highly challenging to achieve a high level of
entropy required for AR device pairing, while simultaneously
creating a scalable, usable, and widely deployable solution.

1.2 GazePair

We propose to use eye gaze tracking to create the entropy required
for secure pairing, and the usability and scalability desired by
users. We adopt eye gaze tracking in our design for the
following reasons. First, harnessing eye gaze simply requires
the user to direct their eyes, or look, at a target. It requires lit-
tle explanation. Second, eye gaze tracking is a relatively new
method of user interaction with digital systems, and has
been identified by some of the largest companies producing
Mixed Reality (MR) devices (including AR and VR) as one
of the technologies driving the future of this industry [10],
[17], [18]. Third, an AR user’s eye gaze is nearly invisible
to an outside observer. Most AR devices have a partially
opaque visor concealing the user’s eyes. This prevents easy,
direct observation of the target of the user’s gaze.

Using eye gaze to generate the symmetric encryption
keys required to pair devices, however, introduces unique
challenges. First, eye gaze detection and logging involves
inherent error [19], even if small. As a result, the dis-
cretization of this data can be challenging. Eye saccades,
the natural movement of the eye from point to point, eye
fatigue, and even user inattentiveness make this and other
techniques difficult to implement and discretize. Second,
the transition of eye gaze data to a symmetric encryption
key is non-trivial. The system must not only be robust but
also scalable (i.e., able to simultaneously pair more than
two devices). Third, eye gaze and iris/retinal data can be
uniquely identifying and are a potential privacy risk if
leaked accidentally. Such a system must protect user identity
and unique biometric data. Fourth, this system must use
the created entropy to generate symmetric keys without
requiring key authentication systems that limit scalability.
We judge that minimum entropy must be 60+ bits in keeping
with [11].

To address these challenges, we propose a novel pairing
solution, GazePair, which uses eye gaze tracking to produce
the 60+ bits of entropy required to pair devices securely.
GazePair is a proven advancement in terms of usability and
scalability over existing solutions and is also deployable on
the breadth of emerging MR devices that use eye gaze track-
ing. GazePair uses a set of numerically-labeled holograms,
randomly generated in 3D space, and a spoken key sequence
cue (KSC), to pair AR devices and mitigate the threat of
Man in the Middle (MITM) attacks. GazePair also does not
need to publicly exchange discretization or error correction

parameters and does not require recording or sharing gaze
data that can jeopardize user privacy. To prototype GazePair,
we use the Microsoft HoloLens 2 AR HMDs to prove the
hypothesis that efficient and secure local pairing is possible
using eye gaze tracking as the primary entropy source for
symmetric keys. Currently, the Microsoft HoloLens 2 is the
most advanced AR HMD on the market [20]. It incorporates
spatial awareness, eye gaze tracking, a relatively large field
of view, and is completely wireless. While our prototype
implementation requires Microsoft’s Mixed Reality Toolkit
(MRTK), we expect that the GazePair design is applicable to
any MR device that supports eye gaze tracking.

We summarize the contributions of this paper as follows:
• To the best of our knowledge, this is the first work to
show that eye gaze data generated in AR devices can
be used to produce the 60+ bits of entropy required for
efficient and secure pairing.

• We design a novel system, GazePair, to locally pair
AR devices using eye gaze tracking and a spoken KSC.
GazePair improves on existing techniques in terms of us-
ability, scalability, and security. Additionally, the design
of GazePair is applicable to any MR device with eye gaze
tracking.

• We implement a prototype system of GazePair using
Microsoft HoloLens 2 AR HMDs. The prototype achieves
a 98.3% success rate and an average of 9.02 seconds to com-
plete a one-to-one pairing over 120 tests. With three users,
a one-to-two pairing takes an average of 12.58 seconds and
has a 96.6% success rate over 120 tests. No existing work
is proven to locally pair more than two AR devices or
could claim to be deployable across the breadth of MR
devices incorporating eye gaze tracking.
We organize the rest of this paper as follows. We first

review research work related to AR device pairing in Sec-
tion 2. Then, we address the design and prototype imple-
mentation of GazePair in Sections 3 and 4, respectively. In
Section 5, we present the experimental results of our user
testing-based evaluation. Finally, we discuss the limitations
of GazePair and future work in Section 6 and make conclud-
ing remarks in Section 7.

2 RELATED WORK

We review the expanse of current work related to the topic
of efficient AR device authentication and pairing and divide
the body of work into five subtopics. These topics are: secure
pairing of mobile devices (Section 2.1), pairing of AR devices
(Section 2.2), eye gaze in security applications (Section 2.3),
and a final comparison of all applicable AR pairing solutions
(Section 2.4).

2.1 Secure Pairing of Mobile Devices
Numerous studies have been completed on how to in-
tuitively and efficiently pair mobile devices. Works such
as [21] explain that the primary challenge to pairing these
devices is authentication, or the ability to verify who the
pairing partner is and what the user expects it to be. One
method proposed and used widely is out-of-band (OOB)
communication to verify the intended pairing partner. Such
a method allows users to independently verify that the
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exchanged cryptographic material (e.g., the keys) has not
been intercepted or manipulated by a malicious third party
through MITM attacks. Various OOB channels, such as hu-
man physiology [22], [23], ambient signals and energy [24],
[25], simultaneous tapping to attenuate the received signal
strength [26], and device acceleration [27], all attempt to
solve the MITM problem. While novel, none of these pro-
tocols incorporate the unique and powerful capabilities of
current AR devices or are otherwise inapplicable to AR uses.
These protocols either focus on pairing multiple devices
worn or used by a single user or simply are inefficient in
terms of user interaction and success rate. To further expand
on this point, imagine trying to “shake” two AR headsets
together to synchronize accelerometer data as in [27]. This
would require users to remove their AR devices, if worn,
something not desirable in constant, immersive AR envi-
ronments. Other techniques, such as Apple’s AirDrop [28]
or Wi-Fi direct [29], are difficult to scale and are designed
for one-to-one connections. None of these techniques are
particularly well-suited to the pairing of AR devices, but
they are useful to understand as we seek to create an
intuitive AR-friendly pairing protocol.

2.2 Pairing of AR Devices

The topic of efficient pairing of AR devices is most relevant
to GazePair. While the body of work on this specific topic
is still relatively small, three known techniques exist. First,
Looks Good to Me (LGTM) [12] is the first research done into
using the inherent functionality of AR devices, such as the
ability to physically see other users in an augmented space
while wearing a device, to assist in secure pairing. LGTM
uses facial recognition and wireless localization to authen-
ticate shared keys and to pair AR devices. The wireless
localization hardware has never been deployed to any ac-
tual AR devices and LGTM cannot be effectively evaluated
against any proposed pairing solution, including GazePair.
LGTM also relies on facial recognition, tested using sam-
ple faces from the Yalefaces dataset without obstruction.
Modern AR devices, such as the Microsoft HoloLens series
of devices [20], partially obscure the human face, greatly
frustrating this assumption. Even so, LGTM integrates AR-
friendly technologies such as facial recognition and certainly
breaks ground on efficient methods to pair AR devices.

HoloPair [15] proposes a system that generates a secret
locally on one device, creates a public key, transmits the
key to a pairing partner, and authenticates this partner’s
key through a system of OOB physical interaction. HoloPair
requires two users to trace the outline of a hologram created
from the shared keys for key validation, and wave as a
way to prevent MITM attacks during the transmission of
the keys. Additionally, as identified in follow-up works by
the authors [16], HoloPair allows users to simply accept
the hologram verification, regardless of accuracy, potentially
compromising the security of the protocol. This would
potentially be done as a way to “speed up” the pairing by
users. Additionally, HoloPair makes no claims that its proto-
col is feasible for use in larger than one-to-one simultaneous
pairing scenarios. Finally, given the tracing requirement,
HoloPair is an AR-only system, as users must see each other.
However, HoloPair’s reported pairing times, on average, are

between 8-9 seconds. This is certainly an efficiency goal that
pairing solutions should aspire to meet or exceed.

The most current work, Tap-Pair [16], improves on
HoloPair by removing some of the elaborate requirements
for user interaction. Tap-Pair also requires two co-located
users, both wearing AR devices, to “tap” on the same
physical location using a head direction to select a location.
The original HoloLens used as the basis for Tap-Pair did not
have true eye gaze tracking, but only the ability to sense
the direction of the user’s head. This “tap” requires users
to direct their head at the desired point. This action gives
a potential eavesdropping attacker insight into the shared
secret. For this reason, the authors do not assume that an
attacker can be located with legitimate users. Additionally,
Tap-Pair does not allow for windows to be used as the
physical location, limiting use cases. Unlike HoloPair, Tap-
Pair claims that it is scalable to multiple users. However, the
authors did not attempt to either implement or test such a
solution, leaving its feasibility purely theoretical. Tap-Pair is
also AR-specific, and users must see the physical environ-
ment. Still, Tap-Pair remains the most feasible and practical
method for locally pairing two AR devices, specifically two
(1st generation) HoloLens devices.

2.3 Eye Gaze in Security Applications
While we know of no work using eye gaze to pair two or
more MR devices, there are numerous works that address
using eye gaze to authenticate a single user. Systems such
as [30] ensure authentication by asking a VR user to ma-
nipulate a 3D cube, similar to a Rubik’s cube, and enter a
password based on number and color using the hand-held
controllers and the user’s gaze. Other examples such as [31]
use a combination of eye gaze and user touchpad input for
authentication. Regardless of the system, implementations
such as these commonly cite two things: that eye gaze can
be more secure, but also suffers from increased input times
and error rates over more standard input methods. As an
example, [32] shows that eye gaze input methods can be
nearly 25-fold more time intensive than manually inputting
a standard PIN on a keypad with failure rates of nearly
24%. These cautionary tales guide us toward a solution that
maximizes the security qualities of eye gaze, but in a system
that does not use intricate eye gestures and can tolerate
minor miscalibration of an eye gaze sensor.

2.4 Comparison with State-of-the-Art Research
In each of the discussed AR pairing solutions, users are
required to be wearing an AR device (and only an AR de-
vice). Additionally, no solution has been proven to be usable
to pair more than two devices. All three existing systems
require users to see each other or interact with the physical
environment, limiting the system to AR applications. Also,
other methods in the field of authentication exist, such
as [33]. Like Tap-Pair, these systems leverage the device
user’s understanding of the physical and digital world
in order to create or validate some secret. However, this
technique is shown to have low entropy (about 12 bits) and
high failure rates similar to Tap-Pair. Like two of the three
existing solutions, GazePair also requires an OOB communi-
cation channel for pairing. However, GazePair only requires



4

Method Interaction Technique Success Rate Pairing Time Scalability Security Device
LGTM [12] No out-of-band communi-

cation
58.4% Not reported Unproven Relies on wireless

localization, entropy
not reported

AR only

HoloPair [15] Tracing & waving 98% 10-11 seconds Unproven Vulnerable to inatten-
tiveness, 53 bits of en-
tropy

AR only

Tap-Pair [16] Head direction and tapping 90% Not reported Unproven 9-11 bits of entropy AR only
GazePair
(this work)

Spoken key sequence cue &
eye gaze

98.3% 9.02 seconds 2+ user pair-
ing proven

64 bits of entropy MR with eye
gaze tracking

TABLE 1: A comparison of GazePair with state-of-the-art AR device pairing solutions.

that the pairing initiator speak a key sequence cue of an
arbitrary length, something that requires much less motion
than the tracing/waving or walking/pointing required from
HoloPair and Tap-Pair respectively. We improve on these
solutions by designing, implementing, and testing GazePair,
a novel pairing system that is user-friendly and scalable.
GazePair extends to more than two users and uses eye gaze
for entropy generation, a technique that simply requires
users to direct their eyes at a holographic target. Eye gaze
requires very little movement from the users, is partially
obscured from bystanders due to the opaque visor on most
AR devices, and is shown during evaluations to be easy to
learn and understand. Table 1 presents a comparison of our
proposed GazePair system with these existing AR pairing
solutions.

3 GAZEPAIR DESIGN

In this section, we propose a novel pairing system, GazePair,
which leverages eye gaze tracking, a new and powerful AR
technology. GazePair improves on the shortcomings of exist-
ing pairing strategies discussed in Section 2.2. In GazePair,
we assume that users are wearing AR HMDs with gaze-
tracking sensors. These AR HMDs have access to a local
network, but may or may not have access to the larger
internet through this connection. We also assume that the
users must not be required to remove these AR HMDs to
conduct any of the required tasks for pairing their devices.
Additionally, we assume that the users are co-located, in
such proximity that a spoken word can be easily heard by
all legitimate clients. In the following, we first introduce
the threat model in Section 3.1, present the design goals in
Section 3.2, discuss the key challenges of using eye gaze
tracking for pairing in Section 3.3, and elaborate on the
design of GazePair in Section 3.4.

3.1 Threat Model
For GazePair, we assume a threat model that is similar to
those proposed in the most recent research on AR device
pairing [12], [15], [16]. We assume that this threat has
access to the local network that the legitimate users are
using to conduct the pairing, and may monitor, intercept,
and duplicate packets arbitrarily. The threat may also be
physically located with the users, something additional to
current research on the topic. However, we assume that the
attacker cannot do both simultaneously, such as intercepting
packets on the local network while also being within earshot
of the legitimate users. The threat may also have access to
an AR device (e.g., a HoloLens 2), but does not need it to

intercept the initially shared holograms. We believe that this
is realistic. One bit of logic behind this assumption is that
it is either similar to those used in existing pairing tech-
niques [12] or more advanced. Other techniques consider
only that the attacker can be physically present [15] or that
they can have access to network traffic [16], but do not
consider these scenarios in the development of the same
technique. Finally, we do not consider Denial of Service
(DoS) attacks in this research. Such DoS attacks include
limiting access to the local network, physically interrupting
the attempted pairing, and destroying traffic for the sole
purpose of disrupting pairing. Attack strategies are depicted
in Fig. 1.

3.2 Design Goals

In order of priority, we design GazePair with five principles
in mind.

• Usability. The GazePair user interface and required
operations must be intuitive to novice AR device users.
GazePair must not require the use of any advanced
interaction techniques to navigate the user interface.
The completion of a GazePair pairing must not take an
excessive amount of the user’s time.

• Success rate. GazePair must be effective, meaning that
user pairing success rate must be 95% or higher.

• Scalability. GazePair must allow more than a one-to-
one pairing and must be able to complete these pair-
ings without excessive additional time requirements.
Since keys generated from this pairing are symmetric,
GazePair must be able to efficiently generate multiple
matching keys.

• Security. GazePair must produce an acceptable level of
security through the level of entropy from the shared
secret created by harnessing eye gaze. We believe this
level to be more than 60 bits of entropy [11]. GazePair
must also be resistant to MITM attacks.

• Device requirement. GazePair should operate across
the breadth of MR devices that incorporate eye gaze
tracking, and allow hardware-independent, efficient
pairing for each. GazePair must be deployable on any
such MR device quickly and with no software package
conflicts, by simply changing the intended deployment
platform in Unity.

We propose that eye gaze tracking can be harnessed to
achieve each of the design goals above while improving
on the shortcomings of current works noted in Section 2.2.
However, there are unique challenges with using eye gaze
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Fig. 1: If the attacker has access to the local network, as illustrated in (a), the attacker has the ability to intercept traffic at
will and can understand the location of any holograms presented to each user. The attacker cannot, however, overhear or
eavesdrop on any activity in the physical proximity of the users. If the attacker has access to the physical location of the
pairing, as illustrated in (b), the attacker has access to the vocal communication between the pairing partners, but not the
network traffic being passed amongst the pairing partners. Here, the attacker may have knowledge of what is said or done
among the pairing partners, but does not have a way to use the passing network traffic to exploit this information.

for this purpose. They are outlined in Section 3.3 and are
addressed in our GazePair design.

3.3 Key Challenges
As mentioned in Section 1, using eye gaze tracking for both
user input and entropy generation involves inherent error.
The underlying mechanisms to harness this gaze data once
collected are non-trivial. Additionally, the user’s uniquely
identifying eye and gaze-tracking data must be protected.
In the following, we discuss these key challenges in detail.

Challenge 1: Eye gaze tracking error. Eye gaze tracking
has inherent error. Both research works and Microsoft’s
eye tracking documentation note a roughly 1.5 to 3-degree
variance in expected gaze location compared to the recorded
gaze location [19], [34]. This error only increases when the
user moves and dictates the minimum size of eye gaze
targets with the user stationary or in motion.

Challenge 2: The requirement for OOB communica-
tion. The ability of an attacker to intercept and exploit the
location of a shared hologram led us to believe that OOB
communication was necessary, similar to the authors of
HoloPair [15] and Tap-Pair [16]. Additionally, direct com-
munication with intended pairing partners also provides
built-in authentication, similar to existing works as well.

Challenge 3: Eye gaze for symmetric key generation.
While gaze data has been heavily studied for the purposes
of authentication in MR devices [35]–[40], it has yet to be
studied for the pairing of AR devices in order to exchange
information securely. To this point, gaze data has been
identified as a rapidly increasing research area for securing
Human-Computer Interaction (HCI) [41], but to our knowl-
edge, mechanisms to create symmetric keys from eye gaze
data do not yet exist. A system must be created that can
take a user’s eye gaze, discretize as required, and use this
secret information to create a symmetric encryption key.

This system must be robust enough to ensure a reasonable
amount of security without creating a burden to the user.

Challenge 4: Data privacy. Eye gaze data can uniquely
identify a user and has the potential to harm users if the
collected data is misused. As such, techniques have been
developed to remove the uniquely identifying traits from
gaze data, if and when it needs to be transmitted in insecure
environments [42]. A system using eye gaze tracking must
ensure that the uniquely identifying biometric data is not
leaked or transmitted in such a way as to jeopardize the
user’s privacy.

GazePair overcomes these challenges and creates a us-
able, scalable, and efficient pairing system using eye gaze.
GazePair mitigates inherent eye tracking data by construct-
ing holograms to meet the design specifications in [19] and
creates a discretization mechanism to compensate for gaze
tracking error. Additionally, GazePair implements a method
to transform the gaze data into a shared secret and creates a
symmetric encryption key to be used to protect further user
communication across a local network. A spoken sequence
cue is used to direct the users to the correct numbered
holographic keys and is used as the OOB channel. The
design of GazePair and the underlying pairing protocol are
detailed in Section 3.4.

3.4 Pairing Process of GazePair
In order to create the symmetric encryption key required to
complete the pairing of the AR devices, GazePair operates
in three main steps as shown in Fig. 2. We explain these
steps as follows:

Step 1: Host/Client Establishment. GazePair creates a
host/client relationship on a local network, e.g., through a
User Datagram Protocol (UDP) connection. This is necessary
to ensure that information (i.e., numerically-labeled holo-
grams) are accurately shared between two or more users.
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Fig. 2: An illustration of GazePair’s three main steps to key generation and device pairing.

Step 2: Gaze and Entropy Extraction. The host randomly
places ten numerically-labeled holograms (denoting digits
from 0 to 9) within a certain visibility threshold. The size
of the keys is determined by the eye gaze tracking error in
Challenge 1, based on pilot testing. Specifically, this size is a
compromise between large keys limiting generated entropy
and small keys limiting the accuracy of eye gaze. The host
then speaks1 a key sequence cue (KSC) to each client. This
process addresses the OOB communication challenge noted
in Challenge 2. Each client selects the required numbers in
sequence, dictated by the KSC, one at a time using eye gaze.
The shared secret becomes the concatenated, discretized
values of the 3D location of the user’s gaze when the user
selects each numerically-labeled hologram. This process
harnesses the user’s eye gaze to obtain the entropy needed
for creating symmetric encryption keys, while not requiring
storage of any data that can compromise user privacy, which
addresses Challenges 3 and 4.

Step 3: Key Generation. Key generation uses the shared
secret to create a symmetric encryption key, e.g., an Ad-
vanced Encryption Standard (AES) key. This key is a func-
tion of the shared secret created by the gaze tracking data.
Hence, the entropy of this shared secret must be as large as
possible to create strong keys.

Next, we describe the pairing protocol. As shown in
Fig. 3, a GazePair session begins with the host selecting their
role in the initial GazePair connection scene (Step 1). This al-
lows a client or clients to initiate the protocol appropriately,
and establish an unencrypted UDP connection to the host
(Step 2). With this connection established, the host randomly
generates ten numerically-labeled holograms, numbered 0-9
(Step 3). These numerically-labeled holograms are randomly
placed in the augmented 3D space, with limits. These limits
are designed to ensure that the holograms are within a given
visibility threshold. These holograms are placed relative to
the position of each pairing participant and are not anchored
to any one physical location. The client then receives these
locations and reproduces the set of numerically-labeled
holograms on the client’s HMD. Then, the host observes
the randomly generated KSC (Step 4) and speaks the KSC
to the client. Each participant uses gaze input to select
numerically-labeled holograms in sequence based on the
KSC (Step 5).

1. The KSC can also be written if users have significant obstacles to
speaking and/or hearing the KSC.

If the gaze ray impact point is inside the discretization
range of any hologram, that hologram turns red to indicate
to the user the key has been successfully entered. The
discretized values of the gaze position are then concatenated
to generate the shared secret string independently on each
HMD. Consider the example in Fig. 2. Suppose the KSC is
“213”. For the first numerically-labeled hologram selected
(i.e., digit “2”, the first digit of the KSC), a gaze location
of (−2.2, 1.8, 1.1) is captured and might be corrected to the
string “-221” based on discretization parameters, and this
becomes the first three digits of the shared secret. This con-
tinues until the required KSC length is met, and the protocol
waits for each participant to complete this process. After
completing the entry, each HMD independently creates a
symmetric encryption key (Step 6) and encrypts a message
using this key. The pairing protocol succeeds if and only if
the host can decrypt each client’s ciphertext (Step 7).

Remark 1. GazePair uses a KSC similar to a padlock combination
or a keypad on a door. On the face of the fact, this sounds similar
to a traditional passcode-based pairing instance and may seem
insecure or trivial. However, the KSC is of no value to any attacker
without detailed knowledge of the location of the numerically-
labeled holograms in 3D space.

Remark 2. It may seem that the use of gaze tracking to select
the numerically-labeled holograms is extraneous. It is certainly
possible to modify GazePair to use other standard AR (or generally
MR) gestures and inputs. For instance, using the “hand ray”
gesture, creating a simple ray from a user’s extended hand, can be
used to select the numerically-labeled holograms in sequence based
on the KSC. While it is possible to do this, we lose the benefit
of the obscuration of the user’s eyes. With the HoloLens 2, the
user’s eye direction is greatly obscured by the plastic visor upon
which the holograms are projected. Without this, an attacker could
more easily understand the location that the user is intending
to select, aiding in deciding on the location and sequence of the
numerically-labeled holograms being detected. This vulnerability
has been well-documented in works such as [43], where researchers
use channel state information to conduct side-channel key logging
attacks against VR users with hand held controllers. To prevent
this, GazePair uses the ”air tap” gesture which does not require
the gesture to be oriented toward the intended target in any way,
unlike the ”hand ray” gesture [44], [45]. We elaborate on the air
tap gesture’s utility in Remark 3.
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Alice
(Host)

Bob
(Client)

1.Alice seeks to pair an AR device and 
initiates protocol session as a host. UDP connection on local 

network 2. Bob, in client mode, creates 
unencrypted UDP connection with 
intended host

3. Alice generates ten randomly-placed 
holograms, numbered 0-9

Distributing and synchronizing 
shared hologram

5. Bob uses gaze input to select 
numerically-labeled holograms based 
on the KSC

Publishing ciphertext created using 
symmetric encryption keys

5. Alice uses gaze input to select 
numerically-labeled holograms based 
on the KSC

6. Bob creates a symmetric encryption 
key using  entropy created from location 
of numerically-labeled holograms and 
KSC

7. Alice confirms success by attempting 
to decrypt each cipher text using her 
symmetric key.  Pairing fails if any 
decryption fails, implying the ciphertext 
was encrypted with a different key.

Speaking KSC

4. Alice observes the KSC randomly 
generated by GazePair

6. Alice creates symmetric encryption 
key using  entropy created from location 
of numerically-labeled holograms and 
KSC

Confirmation of pairing success

Fig. 3: A depiction of the pairing protocol, using the classic Alice and Bob analogy. While there is only a single client (Bob)
in this illustration, we show that GazePair is scalable to multiple clients easily.

4 PROTOTYPE IMPLEMENTATION

Using the GazePair design described above, we then seek
to create a usable prototype to prove our hypothesis. Using
the Unity development environment, Microsoft’s Mixed Re-
ality Toolkit (MRTK), and multiple HoloLens 2 AR HMDs,
we create a working prototype of GazePair that advances
the state-of-the-art with proven usability and scalability.
GazePair creates 64 bits of total entropy in the shared secret
while not exposing the user’s uniquely identifying eye data
to potential misuse. Additionally, GazePair is deployable
on any MR device capable of eye gaze tracking. In the
following, we first briefly introduce the Microsoft’s MRTK
(Section 4.1), and then describe the detailed implementation
of GazePair prototype in three main steps: Host/Client
Establishment (Section 4.2), Gaze and Entropy Extraction
(Section 4.3), and Key Generation (Section 4.4).

4.1 Microsoft’s Mixed Reality Toolkit

Created and maintained by Microsoft, the Mixed Reality
Toolkit (MRTK), is an attempt to standardize the develop-
ment of MR applications [46]. MRTK is at the core of the
HoloLens, and its successor, the HoloLens 2. Additionally,
it is used to design applications for Meta’s Oculus series
of MR devices, as well as HTC’s Vive, and other Windows
Mixed Reality headsets. Most importantly to this research, it
also contains the APIs used to access the HoloLens 2’s pow-
erful eye-tracking technology. As we begin to explore the
possibility of using eye gaze to pair multiple MR devices,
the deployability of this prototype on MR devices depends

on the use of MRTK for eye tracking, but the design itself is
usable on any MR device incorporating eye gaze tracking.
At this moment, only the HoloLens 2 incorporates eye track-
ing using MRTK, but as this expands, so does any pairing
solution created with MRTK’s eye-tracking APIs, including
any and all MR devices using this specific capability.

4.2 Host/Client Establishment
4.2.1 Mid-level API (MLAPI)
In order to distribute these numerically-labeled holograms,
a networking suite must be used to create and synchro-
nize these holograms. For GazePair, we choose a Unity-
developed API called Mid-level API (MLAPI) to create this
functionality. MLAPI is open source and simply seeks to
abstract transport layer functionality to ease the integration
of networking functionality into Unity-created applications.
MLAPI allows the user to easily declare their intent to
initiate a session as a host or a client, and function ac-
cordingly. While MLAPI communicates to clients without
encryption, the information we share publicly (i.e., the lo-
cation of numerically-labeled holograms) is not sufficient
to breach the security of GazePair. After confirmation of
matching symmetric Advanced Encryption Standard (AES)
256-bit keys, users can use these keys to encrypt any com-
munication desired.

4.2.2 Host/Client Identification
GazePair creates a host/client relationship between two or
more HMDs. For testing, we hard-code the IP address of the
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(a) Host/Client identification (b) Host’s view of the pairing (c) Client’s view of the pairing

Fig. 4: An illustration of Steps 1 and 2 of GazePair. (a) shows the first scene where the host and client select their applicable
roles and the pairing protocol establishes their relationships. (b) and (c) show the view of the pairing scene from both the
host’s and client’s points of view, respectively.

User

Host/Client Establishment

User Gaze Ray

User Gaze Impact Point 
(x,y,z) = 

(-1.77, 2.398, 1.678)

Bin 1

Bin 2

Bin 3

Fig. 5: An example of the eye gaze discretization technique
used in GazePair. After a KSC is spoken to each client
from the host, each user finds the required numerically-
labeled hologram, gazes at it, signals the protocol to take
a snapshot of the gaze location, and moves on to the next
required hologram. Each gaze sampling is discretized and
becomes a part of the shared secret. In this example, the
first gaze sampling is taken when the user gazes at the
hologram labeled “6”. The raw gaze value is (-1.770, 2.398,
1.678), which is then discretized to “-222”, based on the
discretization parameters, and added to the shared secret.
The length of this value will increase as the user takes more
gaze samplings directed by the KSC.

host on all HoloLens 2 HMDs, and make a single HoloLens 2
HMD the dedicated device for initiating the pairing pro-
cedure, to ensure mistyped IP addresses do not alter the
testing data. In future implementations, either method can
be used. Fig. 4a shows the view of the host and the client in
this stage.

The host, and the host only, is able to monitor the
number of clients registered by MLAPI as present in the
pairing lobby. This serves to ensure that the host has made a
connection with the number of clients they expect, and also
serves to ensure that, if clients additional to the number
expected join the pairing instance, the host is informed.
This will not stop a surreptitious MITM-style attack but will
mitigate the risk of a client accidentally joining the incorrect
pairing instance by allowing the host visibility of how many
clients are connected to their pairing session.

4.3 Gaze and Entropy Extraction

After the creation of the host/client relationship between
two or more HoloLens 2 devices, the host randomly dis-
tributes 10 numerically-labeled holograms (denoting digits
from 0 to 9) within a given visibility threshold. These
numerically-labeled holograms are placed no closer to each
other than twice the distance of a given error threshold
in any direction. Attention is paid to ensuring that these
numerically-labeled holograms are created in user-friendly
locations, and not on top of users, behind users, or too far
from users. An example of this from the host’s and the
client’s viewpoint is shown in Figs. 4b and 4c, respectively.
The host then speaks a randomly-generated KSC of a given
length. Each user, independently, selects the numbers speci-
fied by the KSC, one at a time using eye gaze. The selection
is done using MRTK’s GazeProvider APIs [46], [47], to
access a gaze ray, from the user’s eyes to the hologram,
striking at a given point. Once the user’s gaze is placed
on the intended hologram, the user takes a snapshot of the
current gaze location by using the “air tap” gesture [44].

Remark 3. The “air tap” gesture is used jointly with the user’s
gaze location to harness gaze data. This gesture requires a user to
“pinch” in the air to signal the device to select an eye gaze target
for action. This gesture does not require the user to direct this
“tap” at any given hologram, only that the gesture is visible to
the HoloLens 2’s Articulated Hand Tracking (AHAT) short-throw
camera [48], which has a field of vision several feet outside what
the user can see through the HoloLens 2’s visor.

As part of the prototype testing, we also implemented
a gesture-less method of gaze collection. This method asks
a user to simply keep their gaze on an intended hologram,
and after an elapsed period (e.g., two seconds), GazePair
records the gaze position and discretizes this portion of the
shared secret. This method is also effective, but vulnerable to
novice AR users staring too long at a given hologram while
they are learning the GazePair system. We have chosen the
“air tap” as it is a way to ensure an extremely low error rate
in gaze collection, improving the pairing success rate.

The user’s gaze location is then discretized shown in
Fig. 5 to allow for effective shared secret generation and
error correction. Given an error threshold, GazePair creates
a grid of 3D spaces covering all possible hologram locations.
Since the host generates the shared holograms at specific
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locations at the center of these “error cubes”, and given the
error threshold, it is not possible for a user to select a given
hologram and produce the discretized location of another.
This allows GazePair to ensure discretization within a given
threshold without having to publicly exchange discretiza-
tion parameters as in Tap-Pair [16]. Each discretized value
becomes a part of the shared secret, and each value is con-
catenated to become the final string used as the input to the
Password-Based Key Derivation Function v2 (PBKDF2) for
symmetric key generation. If the users enter an incorrect key,
the shared secrets and symmetric keys will not match, and
the pairing will fail. This shared secret, once successfully
generated, is kept local to each device and will never be
shared across the local network.

Remark 4. During the pairing process, users are allowed and
encouraged to move freely around the room. There is no require-
ment in GazePair to sit, stand, or remain stationary. In fact, some
users find it more entertaining to alter the way they view the
numerically-labeled holograms, while some prefer to sit. Either is
acceptable and did not alter GazePair’s efficiency or effectiveness
during evaluation.

4.4 Key Generation
After the establishment of the shared secret, each instance of
GazePair creates a 256-bit AES key using the shared secret as
an entropy source. A well-known and well-established tech-
nique to generate symmetric keys from passwords or other
shared secrets is Password-based Key Derivation Function
v2.1 (PBKDF2), as identified in IETF RFC 8018 [49]. While
known vulnerabilities exist in this method of key gener-
ation, including vulnerability to rainbow table attacks us-
ing advanced Graphics Processing Units (GPUs), GazePair
requires potential pairing partners to commit to a single
symmetric key during the pairing process, using unique and
random initialization vectors and salt values, mitigating the
problem of offline rainbow table attacks.

4.4.1 PBKDF2
Accepted by the IETF in 2000 and updated in 2017, PBKDF2
seeks to protect a relatively low-entropy secret used to create
keys, namely a password or other shared secret [49]. To
do this, PBKDF2 hashes a password input with an initial-
ization vector and adds artificial computational work to
make the specter of a rainbow table or dictionary attack
more difficult. This computational work, similar to Bitcoin’s
Proof of Work concept for validating blockchains [50], is
intended to increase the computational cost of hashing
all possible passwords a user might input. If the attacker
knows the initialization vector, they must then begin the
computationally expensive process of generating all possi-
ble values of the password and wait the time required for
the artificial computational work defined by the number
of iterations. As recently as 2021, PBKDF2 has been pro-
posed for sensitive systems, such as cyber-physical systems,
with modifications to increase the computational resources
required to generate password digests [51]. For GazePair,
we choose to use the SHA256 hashing function for PBKDF2
due to its collision resistance and high security, and a total
of 50,000 iterations. We choose 50,000 iterations as it is a
number that creates no noticeable performance degradation

on the HoloLens 2, while larger values create noticeable and
unacceptable degradation.

Both a salt and initialization vector are required for
PBKDF2 key generation and AES encryption and decryp-
tion. Using the Microsoft .NET pseudo-random number
generator [52], the host generates a 64-bit random number
used as the salt and initialization vector. These values are
published to all clients, ensuring that the salt and initializa-
tion vector are both random and known to all.

4.4.2 Analysis of Generated Entropy

Using the accepted method of calculating password entropy,
denoted by E, from the total number of shared secret
possibilities, denoted by S, specifically we calculate entropy
as follows:

E = log2 S. (1)

Assume a total number of K numerically-labeled holo-
grams. Each hologram has an (x, y, z) value on the 3D
Cartesian plane, and these values are limited to the value
pool, i.e., the total possible values of each axis, denoted by
Xt, Yt, and Zt. Each (x, y, z) value is non-repeating for each
combination to prevent two numerically-labeled holograms
from spawning in the same location. We use the permu-
tation below to solve for the total number of possible key
arrangements of the total K numerically-labeled holograms,
denoted by NK :

NK =

(
Xt · Yt · Zt

K

)
·K! =

(Xt · Yt · Zt)!

(Xt · Yt · Zt −K)!
. (2)

The numerically-labeled holograms selected are dictated
by the order and value of the KSC, which is generated
by GazePair and spoken by the host. The number of
numerically-labeled holograms selected is the length of the
KSC, denoted by P . Since the KSC has non-repeating digits
(to aid in input and error detection), the total number of
KSCs, denoted by NP , can be calculated as follows:

NP =

(
K

P

)
· P ! =

K!

(K − P )!
. (3)

Hence, the total number of shared secret possibilities is S =
NK ·NP . Plugging it into Eq. (1), we calculate entropy E as
follows:

E = log2 S = log2 (NK ·NP ). (4)

Specific to GazePair, we calculate entropy slightly differ-
ently, as all the numerically-labeled holograms are on the
same Z-axis to ensure visibility, and thus, there are fewer
permutations. We also use a KSC length of 3 digits, further
explained in Section 6. Additionally, we do not spawn
numerically-labeled holograms at (0,0) on the (x, y) planes,
so as to not obscure the host’s view of the KSC prompt. In
GazePair, we use Xt = 7, Yt = 6, and Zt = 5. We also have
a total of 10 numerically-labeled holograms, 0-9, so K = 10.
We have P = 3, as the KSC has 3 digits, which are non-
repeating. Hence, we can calculate the following:
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NK =

(
Xt · Yt − 1

K

)
· Zt ·K! =

(Xt · Yt − 1)!

(Xt · Yt − 1−K)!
·

Zt =
(7 · 6− 1)!

(7 · 6− 1− 10)!
· 5 = 2.034× 1016,

NP =
K!

(K − P )!
=

10!

(10− 3)!
= 720 (9 bits of entropy),

E = log2(NK ·NP )≈ 64 bits of entropy.
(5)

5 EXPERIMENTAL EVALUATION

One-to-one pairing tests take an average of 9.02 seconds,
with a 98.3% pairing success rate. One-to-two pairing tests
take an average of 12.58 seconds, with a 96.6% success rate.
This is accomplished using a prototype that is deployable
on the breadth of AR devices that use eye gaze tracking and
MRTK, and with a design that is deployable on the breadth
of MR devices using any form of gaze tracking.

5.1 Software and Hardware Setup

We built the GazePair prototype in Unity 2020.3.16f1, using
MRTK version 2.7.2 and MLAPI version 0.1.0. GazePair was
deployed on Microsoft HoloLens 2 HMDs running Win-
dows Holographic for Business Build 20348.1438. Blender
version 3.0.1 was used to create the custom numerically-
labeled holograms, and all source code was completed in
C#. Our prototype is posted as open source [53].

5.2 Evaluation Design

The GazePair prototype was tested by 20 participants with
varying ages, vision capabilities, and technical backgrounds.
The entirety of the evaluation was approved by the Uni-
versity’s IRB. Participants were recruited using the Uni-
versity’s graduate student email distribution list, or from
the local, non-student population. Upon arrival at the test
site, each participant signed a consent form and completed
a basic demographic questionnaire. Each user was then
given a brief (ten minutes) tutorial on the basic operation
of the HoloLens 2, including adjustment of the fit of the
HoloLens 2 HMD, accessing the main menu, AR gestures,
and operating GazePair. Additionally, we asked each user to
complete an eye calibration, as suggested by Microsoft, for
each user before every set of tests. The participants were al-
lowed to remain stationary during the tests, or move freely,
as they felt comfortable. For each group of participants, a
host was randomly selected and given the HoloLens 2 with
the hard-coded IP for the host, while the other participants
served as the client. All tests were conducted over a Netgear
AC1750 router without an internet gateway, to ensure that
all tests were over a local network. Additionally, at the end
of the testing session, the participants completed a usability
survey, with responses on a 5-point Likert scale ranging
from “Strongly Disagree” to “Strongly Agree” [54].

Below are the metrics measured for each test iteration.
• Total time required to complete pairing. The GazePair

logging script [55] begins a timer at the moment that
the host is satisfied with the number of participants in

the pairing lobby and begins the pairing protocol. From
that moment, the elapsed time is measured until the
completion of the KSC entry of the final participant to
finish the sequence.

• Success rate. GazePair records the boolean value that
corresponds to the host’s ability to decrypt messages
from all clients in the pairing protocol. If any message
cannot be decrypted by the host, the pairing protocol is
considered a failure, and the host is notified.

• Number of pairing partners. The logging script
records, for each test, how many participants were
present for the pairing session.

5.2.1 Demographics
Our testing consists of 6 self-described women and 14
self-described men, only four of which self-profess any
experience with AR devices. The ages of the participants
range from 20 to 72. Users have a wide variety of vision
capabilities, ranging from perfect vision without glasses or
contacts to impaired with vision correction. Users come
from backgrounds that vary from computer science grad-
uate students, military service members, to retirees.

5.2.2 Evaluation Metrics
Additionally, we chose to evaluate the ability of GazePair
to satisfy its design objectives with a series of tests and
evaluations. Specifically, we evaluate the GazePair design
using the following experiments.

• Success Rate. We evaluate GazePair’s effectiveness by
analyzing the number of successful tests against the total
tests, and the reasons for each failed test. This is done for
both one-to-one and one-to-two pairing attempts.

• Usability. We evaluate the time required to complete
a pairing iteration in order to establish evidence of its
efficiency. We discriminate between one-to-one and one-
to-two pairing attempts.

• The usability over time. As a hypothesis, we expect us-
ability to increase as users increase their familiarization
with the system. We present pairing times, compared
against the number of pairing attempts completed, as
a way to analyze this.

• GazePair vs. existing solutions. We evaluate GazePair
qualitatively and quantitatively against all known AR
pairing solutions.

5.3 Pairing Performance
With 240 tests, 97.5% of pairings complete successfully. The six
tests that failed were due to misselected numerically-labeled
holograms, either selected in the incorrect order or due to
misunderstanding the KSC. For one-to-one pairing attempts,
118 of 120 (98.3%) are successful, while 96.6% of the 120 one-to-
two pairing attempts succeed. The one-to-one pairing performance
is an 8% improvement on the most current and advanced AR
device pairing technique, while the 96.6% pairing success rate of
the one-to-two tests shows GazePair’s scalability.

Additionally, we compare the times to complete a one-
to-one pairing with the length of the KSC. Fig. 7 shows
both the average time to complete a pairing attempt at each
possible KSC and also the resulting entropy. This shows that
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Fig. 6: A boxplot of the total pairing time, by the number of
pairing partners. The median time is shown with the solid,
horizontal, orange line. For one-to-one pairing, the median
time is 8.7 seconds; for one-to-two pairing, the median time
is 11.83 seconds. The average time for each is represented
by the dashed, horizontal, green line. The average time for
one-to-one pairings is 9.02 seconds; for one-to-two pairings,
the average time is 12.58 seconds.
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Fig. 7: An illustration of the tradeoff between the length
of the KSC, the time required to complete one-to-one pair-
ings, and the generated entropy. Note the generally linear
increase in pairing times relative to the KSC length.

the pairing time generally increases as the length of the KSC
increases. We also note that as the KSC began to increase,
participants were no longer able to speak the KSC in a single
phrase and began to divide the KSC up into parts.

5.4 Usability
Fig. 6 presents a box plot of all the pairing tests conducted,
by the number of pairing partners. The average time to com-
plete one-to-one pairings is 9.02 seconds, from the host initiating
the pairing protocol to the host’s successful decryption of
each client’s ciphertext using the host’s AES key. For one-
to-two pairings, the average pairing time increases to 12.58
seconds. We believe that this shows the efficiency of the
GazePair system, as measured by user time requirements.
GazePair matches or improves on the pairing time of the
three known local AR pairing solutions. As noted in Re-
mark 3, we also implemented a gesture-less version of
GazePair using gaze dwell as the trigger to collect the gaze
data. This technique is potentially even more user-friendly,
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Fig. 8: The effect of multiple repetitions on the pairing
time shown by average time and a linear regression of the
time required for sequential tests. (a) shows the results of
participants in one-to-one pairing. (b) shows the results of
participants in one-to-two pairings. The generally down-
ward trend in the pairing time indicates that as users begin
to become familiar with the system and AR gestures, the
system becomes more usable.

but the likelihood of novice AR users accidentally select-
ing the incorrect holograms while learning AR gestures
increases. While this would be lessened with experience,
we choose to use the “air tap” due to the much lower
occurrence of mis-selected numerically-labeled holograms
by novice AR users.

Additionally, we evaluate the usability of the system
based on the feedback from participants at the end of the
testing based on the 5-point Likert scale. Of the 20 partici-
pants, 95% stated that they “Strongly Agreed” or “Agreed”
the system was easy to use, and that they believed most
users would learn the system “quickly”; 90% responded
that they “Strongly Disagreed” or “Disagreed” the system
was cumbersome. We believe that this user feedback further
reinforces the usability of the GazePair design.

5.5 The Usability Over Time

Fig. 8 presents the time required to complete a test, re-
gardless of pairing success, over multiple pairing iterations.
The generally downward trend of the pairing time, as the
familiarity with the system increases, shows the effect of
experience with the system. As the participants spend more
time with GazePair, their familiarity with AR increases, and
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they are able to more easily complete pairing attempts.
Specifically, the average pairing time for the first attempt at
a one-to-one pairing is 9.47 seconds, falling to 8.52 seconds
by the tenth. Similarly, the average first attempt with three
participants in a one-to-two pairing is 13.9 seconds, falling
to 11.09 seconds by the last attempt. Given the relative
inexperience using AR of the participants, this appears to
be expected. Additionally, we believe this speaks to the
usefulness of eye gaze. Users, regardless of AR experience,
intuitively understand how to gaze at an object. No testing
participant expressed confusion over the use of eye gaze.

5.6 GazePair vs. State-of-the-Art Solutions
Table 1 gives a comparison of GazePair to the state-of-the-
art research into AR pairing. LGTM is useful as a baseline
solution, but it is not usable on any known AR device given
its requirement for wireless localization, a requirement that
also contributed to its low success rates. Additionally, its
facial recognition will be frustrated by AR devices with
visors obscuring the user’s face. HoloPair’s success rates
and time requirements are on par with GazePair’s, but
HoloPair is hampered by its requirement for tracing and
waving between two users and the ability of these users to
simply “skip” the pairing attempt. Additionally, HoloPair’s
generated entropy is about 26 bits in its most complex
variation, something the authors claim is “not large”. For
usability, GazePair and Tap-Pair are roughly equivalent.
Both require user gestures. TapPair requires a user to direct
their head toward a place designated by the pairing initia-
tor, designated by a finger or post-it, and “tap”. GazePair
requires vocal communication as well as using the “air
tap” gesture. Also, similar to Tap-Pair, the authentication
system in [33] leverages the same insight as our system -
AR users have their unique knowledge of the virtual objects
in the scene, but also produces low entropy and high failure
rates in evaluation scenarios. Compared with Tap-Pair and
similar authentication systems, GazePair increases the success
rate of pairing attempts by 8%, and quantifiably proves its
scalability with more than two users, something only hypothesized
in Tap-Pair. GazePair also improves on the 9-11 bits of total
entropy generated by Tap-Pair, by adding randomness in
the location of holograms and in the choice of the KSC. In
addition, the work in [33] uses physical controllers, which
allows attackers to observe the input behaviors and guess
the password (in 12.5% to 18.5% of attempts). Differently,
we use eye gaze, which is invisible to attackers, so we can
provide better defense against an attacker with the ability to
observe the pairing. Finally, GazePair’s design is applicable
to the breadth of MR devices that use eye gaze tracking, and
the prototype itself is deployable on any device harnessing
eye gaze using Microsoft’s MRTK, something no other solu-
tion claims.

6 DISCUSSION

6.1 Availability of Gaze Tracking Sensor
The gaze tracking sensor is essential for supporting
GazePair. Through a survey of documentation related to
current or upcoming AR HMDs, we find that most of the
popular MR headsets already (or will) support gaze track-
ing. For example, the AR headsets of Magic Leap, Magic

Leap 1, support gaze tracking in their current model, and
this feature will continue to be available in their upcoming
new models [56]. In addition, Meta (formerly Facebook)
earlier stated that they would include sensors for both face
and eye tracking on their Oculus Quest Pro [57]. This shows
that the gaze tracking sensor has already been and will
continue to be essential hardware on future MR headsets,
indicating that GazePair can be easily implemented on
future MR devices without introducing any extra overhead.

6.2 Length of the KSC
In the GazePair evaluation, we used a KSC length of 3 digits.
This was a compromise between the time required to input
the KSC and the additional entropy provided by longer KSC
lengths. For example, at a KSC length of 10 digits, GazePair
can provide 76 bits of entropy. We chose 3 digits, as this
is the smallest KSC that provides entropy deemed to be
“strong” [11] while remaining usable in terms of pairing
time compared to existing solutions.

6.3 Applicability to the Metaverse
As discussed in Section 1, the advent of the Metaverse is a
motivational factor behind the expansion of AR. Large cor-
porations, such as Meta, envision this digital collaboration
space as the future of work and entertainment [58]. Cer-
tainly, the Metaverse could affect our daily lives in the near
future. However, these large environments are envisioned
to be hosted and implemented on centralized servers, likely
under the control of large corporations such as Meta. Data
collected can include visual and audio recordings of the
user, iris data, body type, and movement style. What if a
small organization, such as a social group, does not wish
to have data like this transferred across these large servers
in far-away places? Such small groups could use ad-hoc,
local, secure pairing techniques such as GazePair to transfer
spatial data, visual and audio data, and the like while not
having to worry about corporate data collection or misuse.

6.4 GazePair’s Performance Under Threat
To clarify GazePair’s performance under attack, we discuss
the ability of an attacker to compromise the security offered
by GazePair in each of the proposed threat conditions. If
the attacker has access to GazePair’s network traffic, they
can use this information to deduce the location of each
numerically-labeled hologram and the IV/Salt values. This
is the most advantageous attack vector as the only barrier
to compromise of the symmetric encryption keys is the
knowledge of the KSC. Given a KSC length of 3, the attacker
has a 0.1% chance to correctly guess the KSC, or a total of
9 bits of overall entropy as outlined in Section 4.4.2. This
chance is as low as 0.00003% with a KSC length of 10.

In the second threat condition, where the attacker is
co-located with the pairing participants but does not have
access to GazePair’s network traffic, the challenge for the
attacker increases. As outlined in Section 4.4.2, GazePair
randomly generates all 10 numerically-labeled holograms
in three dimensions. First, GazePair chooses a randomly se-
lected z value (i.e., depth) from 5 possible choices. Then, all
10 numerically-labeled holograms are randomly generated
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on a 7 × 6 grid at this depth. Assuming a KSC length of
3, the attacker would need to guess from 344,400 possible
combinations of holograms. Even assuming this correct
guess, the attacker does not know the IV/Salt values shared
between devices, making the knowledge of the shared secret
irrelevant.

As mentioned in Section 3.1, we assume that the attacker
cannot simultaneously have knowledge of the KSC, the loca-
tion of the numerically-labeled holograms, and the IV/Salt
values. If this were not the case, GazePair’s security could
potentially be compromised.

6.5 Limitations of GazePair

We have shown that GazePair is an efficient, effective,
and safe AR device pairing technique. Even so, there are
certainly areas for improvement. We summarize GazePair’s
limitations as follows.

• KSC entropy. With the 3-digit KSC used during testing,
the entropy of the KSC itself is only 9 bits. Even with
PBKDF2 creating artificial work and increased computa-
tional time requirements to hash all KSC combinations,
an attacker could potentially use the knowledge of the
salt and initialization vector to test all possible key com-
binations against the known hologram locations if users
do not use the generated symmetric encryption keys to
transmit another stronger key. As shown in Section 5.4,
with an increased KSC length, while the entropy level
improves, the pairing time also increases.

• Out-of-band communication. GazePair requires a spo-
ken KSC between the host and the clients. As mentioned
in Section 6.4, even hearing the KSC without knowl-
edge of the Salt/IV or placement of the numerically-
labeled holographic cubes does not give the attacker
an advantage in this design. However, not all users
may understand these technical details, and the act of
speaking the KSC could indeed generate a perception
of an insecure system, especially when the KSC is ex-
changed in public places. We believe that the potential
misunderstanding about the safety of the system in the
presence of other people/listeners could be alleviated
with additional information about the high-level techni-
cal details. For example, if the users understand that the
KSC cannot be used to compromise their pairing session
unless the person overhearing their spoken communica-
tion can also intercept the Salt/IV and location of the
individual holograms in 3D space, they may be much
less concerned about this technique.

• Expansion of paired group. GazePair has no way to
add participants to an established sharing group without
completely re-attempting the GazePair protocol. Keys
are symmetric and generated uniquely per pairing at-
tempt. If a user were to wish to participate in a given
pairing group and was not present for the initial proto-
col, a new protocol instance would need to be initiated
with current and new pairing partners.

6.6 Future Work

As noted above, GazePair’s design still has areas for im-
provement. One potential area to improve on the entropy

and out-of-band communication limitations is with spatial
anchors [13]. Spatial anchors can allow multiple devices to
not only see shared holograms but to see them in nearly the
exact same location in the physical world, something not
required by GazePair. Even so, transferring spatial anchors
involves significant overhead as mentioned in Section 1.
Spatial anchors can be very large, and transferring them
locally can be difficult. However, these anchors can allow
users to interact with shared holograms at absolute lo-
cations, creating an opportunity to use this for new and
more intuitive methods to pair devices without using a
KSC. Specifically, these anchors can potentially allow users
to physically locate the intended pairing partners in a
room, but without the wireless localization requirement of
HoloPair. This enables new ways to authenticate users by
verifying their physical location. However, optimizing the
transfer of spatial anchors across a local network should be
a subject of future research to make this technique more
viable and efficient.

7 CONCLUSION

In this paper, we designed a novel AR device pairing sys-
tem, GazePair, which leverages eye gaze tracking, a new and
powerful AR technology. GazePair achieves efficient, secure,
and scalable local AR device pairing with minimal user in-
teraction while protecting user gaze data. This requirement
has become increasingly self-evident as the prevalence of
AR devices increases, and the need to share holographic
information locally becomes more pressing. Using Microsoft
HoloLens 2 HMDs, we implemented a prototype system
of GazePair that allows two or more users, without an
internet connection, to locally pair AR devices quickly and
intuitively. Through experimental evaluation, we showed
that pairing two or more AR devices using entropy cre-
ated from gaze tracking can be efficient. Remarkably, users
with minimal AR experience were able to efficiently and
effectively use GazePair to pair two or more AR devices,
achieving both a high success rate and a low pairing time
that are an improvement on all existing solutions for AR
device pairing. Furthermore, all of these can also be done
without using techniques that limit the deployability of
GazePair to a small subset of MR devices or jeopardizing
user biometric data.

With the advent of the Metaverse and future potential
applications, such as in the military, healthcare, education,
entertainment, and automotive manufacturing, the ubiquity
of MR devices is only likely to increase. Techniques like
GazePair are the building blocks to enable easy and effi-
cient adoption of these MR devices by the broadest range
of potential users in the broadest range of emerging MR
applications.
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