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Abstract: We analyze non-perturbatively the one-dimensional Schrodinger equation
describing the emission of electrons from a model metal surface by a classical oscillating
electric field. Placing the metal in the half-space x < 0, the Schrédinger equation of
the system is id;y = —%831& +Ox)(U — Excoswt)y,t > 0, x € R, where ®(x)
is the Heaviside function and U > 0 is the effective confining potential (we choose
units so that m = ¢ = i = 1). The amplitude E of the external electric field and the
frequency w are arbitrary. We prove existence and uniqueness of classical solutions of
the Schrodinger equation for general initial conditions ¥ (x, 0) = f(x), x € R. When
the initial condition is in L? the evolution is unitary and the wave function goes to zero
at any fixed x as t — oo. To show this we prove a RAGE type theorem and show that
the discrete spectrum of the quasienergy operator is empty. To obtain positive electron
current we consider non-L? initial conditions containing an incoming beam from the left.
The beam is partially reflected and partially transmitted for all ¢ > 0. For these initial
conditions we show that the solution approaches in the large ¢ limit a periodic state
that satisfies an infinite set of equations formally derived, under the assumption that the
solution is periodic by Faisal et al. (Phys Rev A 72:023412, 2005). Due to a number of
pathological features of the Hamiltonian (among which unboundedness in the physical
as well as the spatial Fourier domain) the existing methods to prove such results do not
apply, and we introduce new, more general ones. The actual solution exhibits a very
complex behavior, as seen both analytically and numerically. It shows a steep increase
in the current as the frequency passes a threshold value w = w,, with @, depending on
the strength of the electric field. For small E, w. represents the threshold in the classical
photoelectric effect, as described by Einstein’s theory.
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1. Introduction

1.1. Physical setting. The emission of electrons from a metal surface induced by the ap-
plication of an external electric field is a problem of continuing theoretical and practical
interest [1-26]. It was first fully analyzed for constant electric field using the “new me-
chanics” by Fowler and Nordheim (FN) in 1928 [27]. They considered the Sommerfeld
model of quasi-free electrons confined to a metal occupying the entire half-space x < 0
by an effective step potential U. The metal is filled with electrons up to a Fermi level
Er, neglecting the small number of thermal electrons at room temperatures. This gives
the work function W := U — £, i.e. W is the minimum amount of energy necessary to
take an electron out of the metal.

Applying a constant external electric field E for x > 0, see Fig. 1, an electron in the
Fermi sea moving in the positive x-direction, described by a plane wave ¢/**, k > 0,
can then tunnel out of the metal (we use units in whichh =m = e = 1).

To describe this system FN considered the Schrodinger equation

i = —%Bfw+®(x)(U—Ex)¢ (1.1)
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Ep = U — Wereeemsmssesssssssssessssssen]

Fig. 1. The potential considered by Fowler and Nordheim. x < 0 corresponds to the region inside the metal
and x > 0 corresponds to the vacuum outside

where ® (x) is the Heaviside function, equal to 1 if x > 0 and 0 otherwise. To compute
the stationary current observed after the field has been on for a while, FN made the
Ansatz that ¥ (x, ) is a generalized eigenfunction of (1.1)

YD) = e 5 op(x) (12)

with ¢ satisfying the equation

k2 1
S 0E = 50065 — O — Ex)p. (1.3)

The requirement that there be only one incoming wave from the left, given by
e** k>0, forx < 0and only outgoing electrons for x > 0, as well as that ¢ (x) and
its derivative be continuous at x = 0, and that ¢ (x) be bounded as |x| — oo, gave
¢E(x) = e + Rpe ™ for x < 0 and an Airy function expression for x > 0.

The FN computation is still the basic ingredient for the analysis of constant field
currents experiments at present [1,4,22,24,27-37]. Their analysis does not consider the
initial state of the system when the field is turned on. To check the validity of the FN
ansatz (1.2) we recently revisited the FN setup by solving (1.1) for general initial values
of ¥ (x, 0). We showed that for all 1 (x, 0) representing an incoming beam ¢’%* [38] plus
some square integrable function, 1/ (x, ) converges to the FN solution when ¢ — oo.

The asymptotic approach behaves like 1= . We considered in particular the initial state
corresponding to a solution of (1.3) when E = 0:
2. 0) = dol®) e** 4+ Rye~ % for x <0 R ik +~2U — k?
X 9 - X) = 9 Ny ——)
0 Toe V2U=F% forx > 0 O U R

2ik
Tp=e — 2% (1.4)
ik — 22U — k?

Time-periodic electric field and the photoelectric effect. In the present work, we
consider a setup similar to that of FN, except that the external field E is taken to be
periodic in time with period %’ More precisely, we consider solutions of the equation

iy = —%8?1# +Ox)(U — Excoswt)y, t>0 (1.5)
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with an initial value v (x, 0). Physically, this can represent, depending on w, a great
variety of situations ranging from an alternating field produced by a mechanical generator
to one produced by shining a laser on the metal surface. This model is commonly used
by theoreticians and experimentalists alike to study the effect of lasers on metal surfaces
[1,4,22,24,28,29,31-36].

For small values of w the situation is in some ways similar to the constant field case
with electrons tunneling through the (oscillating) barrier, although the limit  — 0
in (1.5) is very singular. For larger w, the situation is expected to be similar to that
of the photoelectric effect, where light shining on a metal surface causes the almost
instantaneous emission of electrons with a well-defined maximum kinetic energy K,
given by the Einstein formula K = w — W (recall that o~ = 1 in our units). Here
of course we do not consider discrete photons, since (1.5) represents the electric field
classically. It is expected however that the discrete jumps will show up as resonances,
see [39]. Something like this is indeed the case for weak fields [40]. For larger fields
one has to add to W the ponderomotive energy % [40] of the electron in the oscillating
field, see Fig.3 in the Appendix. There is a vast physical literature on this topic: For a
comprehensive review see [41] and references therein.

1.2. Mathematical setting. From a mathematical point of view, the existence of solutions
of (1.5) with appropriate physical initial conditions which remain bounded and behave
in a physical way for all x and 7 is not obvious. In the physics literature, Faisal et al. [28]
considered periodic solutions of (1.5) for general periodic fields E(t) = E(t + 27w /w)
and, in analogy to the work of FN sought solutions of (1.5) in the form!

V(x, 1) = e 2R (x, 1) (1.6)

where ¢ (x, t) is periodic in time and has a single incoming wave ek forx <0,k > 0.
The continuity conditions at x = 0 then lead to an infinite set of linear equations for the
time-Fourier coefficients of ¢. The existence of solutions for this infinite system was not
proven. What Faisal & al. did was to truncate the infinite set of equations and solve the
truncated system numerically.

In this paper we rigorously analyze the full time evolution of (1.5) both for L? initial
conditions as well as for an incoming beam ¢*** as in (1.4) plus other terms which do not
contribute to the long time behavior. We then find that for L? initial conditions Y(x,t)
decays pointwise at least at arate O (r~'/?). For this, we first obtain a RAGE-type theorem
for this time-dependent potential. In the case the initial condition contains an incoming
wave as in (1.4) (plus possible L? perturbations), the solution converges at least at a
rate O (t~1/?) to the ansatz in [28]. It follows from our result that the infinite system of
equations obtained by Faisal & al. has a solution. We limit our analysis to time-periodic
fields of the form in (1.5) but expect our results to extend to general periodic fields.
The fact that the external excitation is of infinite duration is mathematically convenient,
but, as long as the excitation is not too short, the asymptotic behavior of the wave
function should be a good approximation of the outcome. Indeed, numerical simulations
performed under typical choices of parameters show that the system approaches a steady
state after 50 oscillations or so. Similarly, a smooth onset of the excitation, or a smooth
decay should not influence the outcome, except when the total duration of the process
is short.

1 Using the magnetic rather than the length gauge.
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To obtain these results we derive an integral equation (5.2) for ¥ (x, 0) := ¥o(x),
which we show to have a unique solution (Lemma 11). We also obtain a set of formulas
(3.8), (3.10), (5.6), that recover the full wave function v (x, ) from yy. The properties
of Y9, and therefore of ¥, are derived from the integral equation that it solves. By far the
most delicate analysis concerns the long time behavior of the solution of the Schrodinger
equation.

Behind the apparent simplicity of the potential in (1.5) lie a number of significant
mathematical difficulties making the analysis particularly challenging. Among them:
lack of smoothness, and the fact that the Hamiltonian is unbounded in a time dependent
way both in physical domain and in momentum space (owing to the unboundedness of
the potential energy term and lack of continuity). As a result, the classical PDE toolkit
does not apply. To overcome these difficulties, we develop new methods, described in
Sect. 2.1, which we combine with the spectral measure theory of the underlying un-
bounded operators. Preliminary results, without proofs, were given in [38]; that paper
also contains interesting, and rigorously controlled numerical findings about the solu-
tions, see Appendix B.

Another model that could be considered would be one with a smooth transition
between the metal and vacuum (regularizing the Heaviside function), but this would
make some of the explicit calculations in this work dauntingly complicated, and dealing
with smoother interfaces may require new ideas.

The techniques introduced in this paper supersede previous methods of the authors,
and overcome some of the serious difficulties exhibited by systems in external electro-
magnetic fields, notably dealing with potentials which are unbounded in both physical
and Fourier space. These new methods are expected to apply to realistic models of ion-
ization, such as the Coulomb system [42] where the external field is a monochromatic
laser field. This however will be the subject of a subsequent paper.

2. Main Results

Denote

D=HR\{OHhNH' R)N{f|xf € L’R)} 2.1)
Theorem 1 .
(a) The Hamiltonians H; = —%B%W + Ox)(U — Excoswt)y, densely defined on

C5° (R) have self-adjoint extensions on D for each fixed t.
(b) Assuming L2 initial conditions, the Schrodinger evolution in the model (1.1) is unitary.

Theorem 2. If the initial state (-, 0) := f is in D, then (1.5) has a unique solution
Y (-, t) € D, and ¥ (x,t) is continuously differentiable in t > 0.

Theorem 3. (Long time behavior)

(i) For initial conditions in a dense subset of D we have: for any compact set A C R
the long time behavior of solutions is*

/ W, D>dx =00"") ast — oo (2.2)
A

2 We believe that the actual behavior below is O (t -3 ), but this results from difficult to calculate cancellations
occurring in algebraically cumbersome expressions.
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(ii) If the initial condition ¥ (-, 0) is in D, then
lim ¥ (x,r) =0 (2.3)
11— 00

uniformly in x in compact sets in R.

Theorem 4 (Wave initial condition). For the initial state (1.4) equation (1.5) has a
unique solution that is bounded, and

Y(x,t) ~ e_ik21/2¢(x, t) ast — oo

where ¢ is time-periodic of period 21 | w.

Remark 5. In the proof of Theorem4 we make an additional simplifying assumption:

U+ % is not an integer multiple of w, and neither is U + % - % We do this because
these two special cases have a slightly different singularity structure, which would require
small changes in the proof, which we will not belabor. The two exceptional cases above
correspond to a marginal situation in which absorbing an integer number of photons
raises the energy of the electron to exactly the ionization value.

Remark 6. In [28], Faisal, Kaminski and Saczuk computed the periodic solutions of the
Schrodinger equation (1.5) with an incoming plane wave. By Theorem 4, the solution
they computed must be the asymptotic solution ¢.

The rest of the article deals with proving these results.

2.1. Outline of the mathematical approach. The external potential ® (x)(U — Ex cos(w
t)) is unbounded both in the physical domain and, due to low regularity, in spatial
Fourier space. These issues are at the root of some of the more serious difficulties of
this model. Since non-smoothness is localized at x = 0, it is convenient to work with
one-sided Fourier transforms, by means of which we obtain a left-to-right continuity
integral equation. Existence, uniqueness, regularity and unitarity are derived, by more
or less standard operator theory techniques, in Sect. 4.3 from the Fourier transform of
this equation.

Specific information about the behavior of the system is obtained from the equation
satisfied by ¥ (0, t), an equation of the form (5.2) below. The integral operator in this
equation is quite involved. The high complexity of the equations governing the evolution
of many quantities of interest represents another source of technical difficulties.

By far the most delicate task in this model is finding the large time behavior of
the system. The usual Laplace transform methods (see [39,42] and references therein)
cannot be used here because of their daunting algebraic complexity. Instead, we introduce
a number of new methods.

In a nutshell, we rely on “sampling” the wave function at t = 1, = n(1 + r)%’, ne
N, r € [0, 1) which we use as coefficients of a generating function, which is analytic in r
in the open unit disk. This analyticity only requires exponential bounds on the growth of
the wave function with respect to time, a type of bounds which are not difficult to get from
the integral equation it satisfies. This generating function satisfies a sequence of equation
based on compact operators in a family of Banach spaces (a type of decomposition of
the governing equation that also seems new).

The type of singularities of the generating function on the unit circle determine, by
means of asymptotics of Fourier coefficients, the long time behavior of the system (see
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Sect. 6). If these singularities are weaker than poles, then L? initial conditions result
in decay of the wave function for large time, pointwise in x. The presence of poles
has an equivalent reformulation as the existence of nontrivial discrete spectrum of a
compact operator in (a sequence of) Banach spaces. We show that the discrete spectrum
of the aforementioned compact operators is empty, a property which is equivalent to
the absence of poles of the generating function, hence of bound states of the associated
quasi-energy operator. The analysis of bound states of the quasi-energy operator, always
anontrivial task, is especially delicate here, and to tackle it we resorted to a new approach
relying on the theory of resurgence and transseries, cf. Sect. 6.3.5, as well as techniques
of determining the global analytic structure of functions from their Maclaurin series
[43], see Sects. 6.3.2-6.3.3.

The proof of Theorem 1 (a) is given in Sect. 4.2; The proof of Theorem 1 (b) is given
in Sect. 4.3. The proof of Theorem 2 is given in Sect. 5 and Theorems 3 and 4 are proved
in Sect. 6.

3. The Spatial Fourier Transform of (1.5)

Before turning to the proofs of the main results, we reduce the Schrodinger equation
(1.5) to a system of integral equations, which are derived by taking one-sided (half-line)
Fourier transforms of 1, denoted by 1ﬁ, and @@+ (this is equivalent to taking a pair of
Laplace transforms; see also the paper by Fokas [44]).

Denote ¥o(t) = ¥ (0, 1) and ¥y o(t) = 9,¥ (0, t). Recall the notation i (x, 0) :=
f ).

We show that these transforms are in L? when the initial condition is in L2. For the
initial condition (1.4), the calculation is understood in the sense of distributions. After
establishing the main equations we need, the proofs will rely on essentially reversing,
rigorously, these steps.

We calculate {_ for x < 0 by taking the half-line Fourier transform of (1.5) on R_,
and the solutions ;. for x > 0 by taking the half-line Fourier transform on R.. We then
impose the matching condition ¥_(0—, t) = ¥4 (0+, 1) := Yo(¢) and 9, ¥ _(0—, 1) =
Ox Y+ (0+, 1) := Yy 0(). Then Y (x, 1) = O(—x)Y_(x, 1) + O(x)Y4(x, t) is a solution
of (1.5). We write

1 o

VE D= —— | ey, 0)dx = Y_(E, 1)+ PeE, 1)

where I}i are the half-line Fourier transform of /.

Note 7. As usual, the Fourier F transform of an L* function f on a noncompact region
R is understood as an L? limit of Fourier integrals on increasing compact subdomains

Ry such that U Ry =R. We have
N
A 1

fi=Ff= ml.i.m - e 5% f(x)dx

where we adopted the notation of [45, p.11]: in n dimensions l.i.m. stands for the norm
limit of the integral over a ball of radius R as R — oo.
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To avoid complicating the notation, when we are not performing operations with
such integrals, we will simply write

~ 1 .
=Ff=—= [ e f(x)d
Fierr= g e
By (1.5), ¥_ (&, 1) satisfies
By 1, 1 1
= 820 — (1) — iE——— 3.1
Ly 25 14 vaf 0(t) zézmwo(t) (3.1

where ¥o(¢t) = ¥ (0_, ¢) and ¥ () = 9, ¥ (0—, t), whose solution with initial condi-
tion f is

U (€. 1) = e 12 {c_@) + &2 i 0(s) — & (s)] ds} (3.2)

Wi

where

O .
e ¢ f(y)dy (3.3)

Similarly, 1/}+ satisfies

s My (1
i ;/; =—iEcoswt%+(§§2+U) I//+ \/_I/fx o(t) +i& \/_I/f()(l)
(3.4)

where ¥ (t) = ¥ (04, t) and ¥y o(¢) = 9, (04, t) (since we will impose the matching
conditions we denote the lateral limits at O the same, to avoid an overburden of the
notation), with the solution

t
Vi€, 1) = e 1w {C+(u) + / e ) [—iY0(s) + swom]} ds (3.5)
0

2427
where
E .
u==§&— —sinwt,
w
D (u, 1) 12r+ U+E2 t E (wt) E? in(2wt) (3.6)
= —U e — —=U COS — ——= SIn .
“ 2 4w? w? @ 8w3 @
and
FEECE) = / e £ () dy (3.7)
V27 Jo

Taking the inverse Fourier transform, we obtain that for x < 0 the wave function
¥ = _ satisfies

x2
2([ s)

Ji—s

Yo (x,1) = h_(x, r)+—¢_ / ds (wxo<s>+—wo(s>) (3.8)
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(note that the last term is a convergent improper integral) where

_2

1 0 iG—y)
dy f(y)e 2 . 3.9)
A/ 2mit —00 Y f Y

h_(x,t) =

For x > 0, ¢ := . satisfies

1 T + G SN0t YO) i
2o e
E
Lz [cos(wr) — cos(ws)] +x
ds Yo(s) <

2«/2711 / (t — )32

Vel 1) = ha(x, 1) +

e Fes(3.10)

where

2
i|x—y— %(l—cos(wt))]

2 o0
£ sin(on—i(U+ L5 )t+18 - sm(2wt)f dy f(y)e+
0

@3.11)

h+(x, [) = \/ﬁe

and
2

E
F(x,s,t)=x—sinwt —i (U + —
(x,s,1) xw w l( o)

E2
) (t —s) —i— [sin(Rwt) — sin(2ws)]
8w3

E 2
[x + E(COS wt — Ccos a)s)]

+ YT, (3.12)

From (3.8) and (3.9) we have

1/f(0,t)=h(0,t)+2://;_n dswxo(S)m 21ﬂo(t) (3.13)
where
1 0 iv2
h_(0,1) = d o 3.14
0,1 Nz e yf(ye (3.14)

From (3.10)—(3.11) we have

E 1 .
Y4(0,1) = hy (0, 1) + «/_/ ds[—il/fx,o(s)+—sinwm/fo(s)]ﬁezmm
1 E cos(wt) —cos(ws) ;p (.
g |y 49 TG R ) 619
where
1 B 2 o 10+ (1—cos(@n))?
10, 1) = \/ﬁ iU+ Es )t+t sm(zwt)/o dy Fo)e—"T—— (3.16)
and

2

Fo(s,t) =FQO,s,t) =—|U + —
o(s.1) = F(0,5.1) ( T

E2
) (t—s)+ —3[sin(2a)t) — sin(Qws)]
8w
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Ez(cos wt — cos a)s)2
204(t — )

Imposing the condition that ¥_(0, t) = ¥o(¢) in (3.13) and that ¥, (0, ) = ¥o(?) in
(3.15) we obtain a system of equations for ¥/g and ¥ o

(3.17)

1 t .
wo(t):2h+(o,t)+7+%/() ds Yo(s) g(s, 1) e Foe:D (3.18)
where
7o /t [—ivy00)] L men gy
V27i Jo " Ji—s
and

E sinwt E coswt — cos ws
g(S,t)Z - +_2 3/2
wft—s o (t —s)3/

The continuity of v and its derivative imply

t
Vo) = 2h_(0, t)+,/i/2n/ (t — )2y, o(s)ds (3.19)
0

which will be used in Lemma 10 below to eliminate v, o from the equation ensuring the
continuity of ¢ at 0: ¥4 (0,¢) = ¥_(0, 1) = ¥o(¢), which in Lemma 11 is then shown
to have a unique solution.

4. Proof of Theorem 1

4.1. A few more general results. The unitary transformation ¥ +— ¢ = U;y given by
0 (x) = e FAOW Y (1) where A, = /O "4 E. = %‘ sin(wr) (4.1
maps (1.5) to the magnetic gauge representation,
10,01 (x) = (i0y — O(X)A) 2@ (x) + OX) Vg (x) =: Har;. 4.2)
The quasi-energy operator K is defined on the domain
DK) = {yf € L2(TxR)NAC(T x R) : 8¢ € L*(T x R),
3v € L2(T x R), 32y € LX(T x R), 3, ¥ (-, 1) € AC(R)} (4.3)
where T is the torus R/2w7Z, by
K=—id+(@idy —Ox)A)> +O(X)V (4.4)
Let

Dy = {w € LA(R), 9y € L2(R), 9,9 (. 1) € AC(R), 82y € LZ(R)} (4.5)
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Proposition 8. (i) For each t, H 4., is self-adjoint on D 4.
(ii) K is self-adjoint on D (see (4.3)).

Proof. We only prove (ii); (i) is similar and simpler. We rely on Rellich’s theorem [46],
which we restate for convenience.

Theorem 9 (Rellich). Let T be selfadjoint. If A is symmetric and T-bounded with
T —bound smaller than 1, then T + A is also selfadjoint.

Here T — bounded means that D(T) C D(A) and for any u € D(T) we have
lAull < allull + bl Tull

and b is the T—bound. We take T = —id; — 85, with D(T') given in proposition 8 and
A = K —T. Clearly A is symmetric. We first note that —i9,® = —i®d, — id where
4 is the Dirac distribution at zero. It is enough to show that ®d, and § are T —bounded
with b < 1. Indeed, the time-dependent coefficients are bounded and commute with the
spatial part, and ®V is T —bounded with b = 0. The rest is fairly standard. We start with
®9, and note that |®0d,u|| < ||0yu||, and, foru € D(af) (the domain in the proposition
with k = 0)

HMW+WW=A@+MW&= (§+MW&+/|@%Dw%s

—n
1

. /@Mnm%é
n“+1Jr
192ul?
n2+1

<2n(n®+D)|a|® +

=2n(n*+ Du|’ +

(4.6)

and the rest is straightforward. We check now that § is 9, — bounded with bound one.
Indeed,

|dul| = ﬁ(é)dé'

7=

4.2. Proof of Part (a). The Hamiltonians H; and H 4., are related by a unitary transfor-
mation; it remains to verify the transformation of domains which is straightforward.

4.3. Proof of Part (b). We prove this result in Fourier space. Consider f € Dy C D,
a dense set of initial conditions, such that f is C*, exponentially decaying at infinity,
and f(0) = f'(0) = f"(0) = f"(0) = 0.
We see in (3.5) that the half-line Fourier transform of v for x > 0
Ve =Ti+T 4.7)

with

t
Ty = %W C ). T :e—wb(u,r)/ FOWS) (s £ ds.
0
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8(s,8) = —ivx0(s) + EYo(s) (4.8)

Let ¢ be a constant large enough so that 9; (P (u, t) + ct) > 0 for all u (such a ¢ satisfies

c > 2E—22 — U). Integrating by parts twice in 7> and using the fact that d;(0,&) =

3ssg(0:0$) = (0 we obtain

T = e—i®(u,t)/t Le™'“g(s,§) 9.l PS)HEs g
o i ®g(u,s)+c

gt &) +ie—i®(u,t)/t 3 <e_l”g(s,§)> O s)Hes ¢
0

o e (1, 5) +
= —i—g(t’ §) e QWD) 4 /l 1 3 e g5, 8) 35€i¢(u’s)+icsds
D (u,t)+c o Ds(u,s)+c O, (u,s)+c
; g, &) + —ic+0,8 _ g%
S, ) +c (D, t)+c)>  (Pi(u, 1) +c¢)?

_,-e—icb(u,r)f 5, ! o e g(s, §) SIS tiCs g
0 Os(u,s)+c b, (u,s)+c

_ ;88
T du, ) +c

+g1(t,§) where g1(1,§) = O(§7) (€ - +00) (4.9)

Similarly, in (3.2) 1}, is a sum of two terms which are, up to multiplicative constants,
T1,— and T» _ which are obtained from 77, 7> above by replacing g with —g and for
®(u, t) by £2¢/2. Tt follows that we have Lh_+T, = 0.

Integrating by parts twice in 7} and using the fact that f(0) = f’(0) = 0 we obtain

—iown-iLe [
Tl —e 1@u lmz A e lysf(y)d}"uzg—gsinmt

-1 —iEe [ _;
= e P [Tt gy a

and similarly for 77 _.
Now 1} = I/A/_ + 1ﬁ+ and we see that 8t1ﬁ, Etﬁ, 521& are in L2(R, d&) for each 1.
Returning to Eq. (1.5), we see that, for any ¢, ¥, and 831# are in L2, implying straightfor-

wardly that x € L?. Writing now, as usual, the equation for % . 1) ||% it follows
that ||y ]|(-, £)]l2 is conserved. Since the evolution is reversible, it is unitary.

5. Proof of Theorem 2

The proof relies on the following Lemmas, proved below.

5.1. The equation for (0, t). Let D be as defined in (2.1). We use the convolution

(f )(s) = /0  f)g(s —u)du (5.1)
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Lemma 10. Assume the initial condition f satisfies f € D.
Let (0, t) be given by (3.13) and ¥+(0, t) given by psiplus0).
We have ¥_(0,1) = ¥4+(0, 1) = o if and only if (3.19) holds and Vo satisfies the

integral equation

Yo(t) = h(t) + Lo (1) (5.2)

with
1 t
h(t) = hy(0,1) +h_(0,1) — —/ (h_%s~V?)G(s, 1) ds (5.3)
T Jo
(see (5.1), in which s—1/2 stands for the function s +— s7V2) and

Lw - L ! —1/2
o(t) := a7 ), (Yo *s VG (s, t)ds

E ! 1 . cos(wt) — cos(ws)) iF
+——— | ds Yo(s) —= | sin(ws) + et fols:n)
2w~/ 2imT ./0 vols) Jt—s ( (@s) w(t —s)
(5.4)
Here
d eiF()(x,t) -1
G(s,t) = — | ————— 5.5
(-0 =7 [ NET] 6
and Fy is given by (3.17). Furthermore,
V2 d )
_ Vs a4 -12 _ —-1,2
o= =0 [1/,0(:) %1 20_(0,1) % 1 ] (5.6)

The proof is given in Sect. 5.2.

Lemma 11. Consider equation (5.2) with h given by (5.3)and L by (5.4) Assume the
initial condition f satisfies f € D.

(i) There exists vo > 0 such that, if v > vy, then (5.2) is a contraction in the Banach

space

By = {yo(1) : e " ho(r) € L (R4)}. (5.7

(ii) The functions h— and h, defined in (3.14) and (3.11) resp. are differentiable for
t>0.

(iii) The solution Vo of (5.2), unique in B,, is continuously differentiable.
(iv) Moreover, Y, 1= % |x=0 is Holder continuous of exponent 1/4.

Remark. If f is of class C" then h are of class C”.
The proof of Lemma 11 is found in Sect. 5.3.

Lemma 12. Assume the initial condition f satisfies f € D and let Yo, ¥y 0 be given by
Lemma 1.

(i) The function ¥— given by (3.8) is a solution of (1.5) for x < 0 and satisfies
Y-(x,0) = f(x) forx <0, ¥_(0—,1) = Yo(?), 0xY—(0—, 1) = ¢rx 0(2).
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(ii) The function ¥4 given by (3.10) is a solution of (1.5) for x > 0 and satisfies

Vi(x, 0) = f(x) for x > 0, Y. (0+, 1) = Yo(1), 0x Y4 (0+, 1) = Y 0(2).
(iii) The Fourier transform of W— is (3.2) and the Fourier transform of ¥ is (3.5).
V_(-, 1) and ¥, (-, t)are L? functions.

The proof is found in Sect. 5.4.

Note 13. If f € L*°(R) formulas (3.8)—(3.11) also hold in the sense of distributions.
This is needed in order to accommodate initial conditions of the form (1.4).

5.2. Proof of Lemma 10. Relation (3.19) is precisely the condition that ¢_ (0, 1) = .
We will now use this to eliminate v, o from the condition v, (0, ) = .
Equation (3.19) implies

_ 21
Yrox 1™ = = [Yo(t) = 2h-(0, )] (5.8)
Vi
which convolved with #~!/2, and using the fact that t =1/ % =1/ = 7 gives
! 2
o(s)ds = 2= [ o) # 1= 2 Z 20 (0, 1) * fl/z] (5.9)
N2 —[v

Note that this also proves (5.6).
The condition that 1 (0+, t) = ¥ (¢) is equivalent to

t
Yo(t) =2h, (0, 1) +T + \/21_/0 ds Yo(s) g(s, 1) e Fos:D (5.10)

i
where

t
= —ir Ky R e 0(s,1) ds
V2ri Jo [=iv0@)] JVi—=s

and

E sinwt E coswt — cos ws
JR— + RE—

o Jt—s w* (t—s5)32

Noting that ¢! 00 = 14 (t —s)W(s, t — s) where W (s, z) is entire, and using (5.8),
integrating by parts, then using (5.9), we rewrite 7 as

g(s, 1) =

eiFols.) _q

/ VoIV —s ———— ds

— S

—i d 1 —i
7= [ u, d
zﬁ/o Voo =t T
elFo(A,t) -1
= —Wo(t) +2h—(07 t) + \/—/ |:ds / wx ()(u) duj| ﬁd&‘
i elF()(S,[) _ K
= —wo(t) + Zh_(O, f) + ﬁ /(; dSa ﬁ /0 wx,()(l/t)du
t
= —Yo(t) +2h_(0, 1) + %f (Yo %572 G(s, 1) ds
0

t
_%/ (h_xs~Y2)G(s, )] ds (5.11)
T Jo

Substituting (5.11) in (5.10), we obtain (5.2).
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5.3. Proof of Lemma 11. (i) We prove that (5.2) is a contraction in the Banach space
B, (5.7).
Defining ||g||, := |Ig(s)e™"* ||o0, We bound

efvt

t
/ (Vo %5~ 2)G(s, 1) ds
0

t K e—v(s—u)
< ||1/f0||v/ IG(s,t)le_"(’_S)/ duds. (5.12)
0 0 S —u
Furthermore,
s ,—v(s—u)
/ ¢ du = errf—( vvs) < ‘/_E (5.13)
0 s —u Jv Jv
Now, changing variables,
t t
/ |G (s, 1)]e "= ds =/ |G(t —s,1)|e”"* ds. (5.14)
0 0
We then write
iPot=s) 1 —jsdsFo(t — s, t
Gt—s,1)="2 % 0t =s.0) (5.15)
§2

and by (3.17),as s — 0, Fo(t — s,t) ~ const.s, so G(t — s,t) — 0 ass — 0. On the
other hand, for large s, d; Fo(t — s, t) is bounded, so G (s, t) is as well. Thus

t
/ IG(t —s,D)]e ™ ds=00w™") (5.16)
0
and
! 1 3
/OWO*S 2)G(s, ) ds| = O™ 2)[[Yolly. (5.17)
Similarly,
! 1 ) — .
e V! /0 Yo(s) N <sin(a)s) + COS(a;)zt _Cs)s(a)s)> el Fols.0) ds‘
t sin(a)s) + cos(wt)—icc')s(ws)
< ||‘/f0||v/(; P ﬁ(’ D ds (5.18)

in which we change variables:

cos(wt)—cos(ws)

/t S sin(ws) + BT s
0 =S

cos(wt)—cos(wt —ws)
s

! sin(wt — ws) + — =22
= e "’ ds (5.19)
/0 Vs
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and since, as s — 0, sin(wt — ws) + w ~ const.s, so the integrand is

bounded as s — 0. For large s, the integrand is 0bV10usly bounded above, so

=0 Yol

v

<sin(a)s) +
s

[ oo

Combining this with (5.17), we find that

ILYolly = O™ HIYolly. (5.21)

Therefore, for v large enough, 1 — L is invertible in ,,, so (5.2) is a contraction.

(ii) To prove that (0, ¢) is differentiable we split the integral in (3.9) into the integral
from —1 to 0, which is clearly differentiable plus the integral from —oo to —1, which
we show it is differentiable using L? limits to integrate by parts as follows. We have

-1 iy? 1 © f(—\/ﬁ) iu
lim / dy f(y)ez ==1l.im / du ————e2
—00 2 1 ﬁ

cos(wt) — cos(ws) P50 g
w(t —9)
(5.20)

and, integrating by parts twice we find
1 o0 - iu i i
5 Lim / au L e igp et — ek (-1 + 1)
2 1 \/_
o0 iu d
—2:%1im / due2 —f( Vi)
1 du?  Ju

The first two terms are obviously differntiable for ¢ € (0, 00), so it suffices to consider

[ (=)
w32 >

the integral term. The second derivative above is a sum of terms of the form:

['(=u) f(—ﬁ)‘

u? ’ ud/2
Since f” € L? then the following quantities are finite:

—1 00
/ I DI1*dy = /1 L (—/u)|?

1
du < o0
2/u
hence £ //(T/}/E) is in L2 The other two terms, i f), iG] ( [) have faster decay. Then

dd:Z oA ff) g3(w)u>* with g3 in L2. Denoting 7 = l / (2t), we need to show that

Gi(t) := f €7 g3 (u)u">/* du is differentiable in 7. Calculate then

w . .
Gs(t +€) — G3(1) = f "7 gy (uwyu=5* (e”“ _ 1) du
1

5/4

; . ; - .
We have e'* = 1 +ix + g1(x) x>/* where g1 := (¢’ — 1 —ix)x~ 4 is a continuous,

bounded function. Therefore

Gi(t+€)—G S
3T +e) 3@ = / g3y du + I,
1

ie

3 The boundary terms vanish since we are dealing with an L2 function which is continuous in R, cf. Note
7, hence it goes to zero along some subsequence {R; },cn Where limy, o0 Ry = 00.
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oo
114 iut
where I, = i4¢ e'""g3(u)g(ue)du
1

Using the fact that the integral in / is the Fourier transform of the L? function 8381 X[1,00)
then its L2 norm is bounded by e g3l sup|g1| hence I goes to 0 in the L? norm,
hence in Llloc. It follows that G5 is differentiable in distributions and its derivative is
ifloo e g3(u)u~*du, an L? function (hence Llloc) implying that G3 is absolutely
continuous, hence differentiable a.e.

Now it follows that G3’ is continuous a.e. since, using e =1+ g2(x) x4 where
g2 is a continuous, bounded function, we have
0 . .
Gy'(t +€) — G3'(1) = i/ e g3 (w14 (g”“ — 1) du
1
0 .
= (ie)' /4 f ¢ g3(u) du (5.22)
1

which goes to zero as € — 0, as I did before. We have also shown:

Lemma 14. The function G3 is differentiable and the derivative is Holder continuous
of exponent 1/4 uniformly in t.

Indeed the integral in the last term of (5.22) is bounded.
Ly+E5 (1-cos(wr)1?

Clearly, 7,(0, 1) is differentiable if and only if [;°dy f(y)e' " 2 is dif-
ferentiable. Let u = [y + 5(1 — cos(wr))]%. We need to show differentiability in v of

00 _ E /. _ —1/2 Litu i H
f%i(l—COS(wt))Z dy f(Ju 25 (1 — cos(wt)))u e'T  for which it suffices to show

that fcoo dy f(Ju— % 1 — cos(wt)))u—1/2 ¢i™ is differentiable, where ¢ is a constant
large enough. The rest of the proof is similar to the one above for 41_ (0, ).
(iii) To prove regularity of v, note first that, since ¥y € B, C L}’:C then L is

continuous, since integrals of the form fot Yo(s)(t —s) V2 f(s, 1)ds with g € L and
f continuous are continuous in ¢. Therefore, since 4 () is differentiable, v is continuous.

Then, iterating (5.2), it follows that L is differentiable, as follows. We have vy =
L+o+h where h is differentiable and L has the form Ly (¢) = fé ds Yo(s)(g1(s, )+

1 g2(s, 1)) and we will now show that g, g> are analytic in s, 7. By (5.4),

1—s
1 ! G(u,t)
s, 1) = — du ,
gi(s, 1) 277./s e

E . cos(wt) — cos(ws) [ Fo(s.1)
2(s,1) = —— <sm(a)s) + e' oS, (5.23)
¢ 202im w(t =)
By (3.17), Fy is analytic, and so g» is as well. As for g1, we rewrite (5.5) as
Gi(u, 1) . F ot — 1
Gu,1) = ——=, G(u,t):=idyFolu,nefo®D _—_______— (524
(u, 1) N 1(u, 1) wFo(u, 1) 20 =) (5.24)

in terms of which
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1 ! Gi(u,t)
1) = du 5.25
gi(s,1) = T (525)
Furthermore, by (3.17), G is analytic in u, ¢, and since for n > 0,
1 [ t—u)" C(n+1
L[ gzt _Tera) (5.26)
Jt—uu—s 2/mn!
we have
o0
Fn+1) "G(u,t)
§1(5.0) = Y — =2 =) (5.27)
—n an du et

which is analytic in s, . We then split ¥ (¢) = fot ds Yo(s)(g1(s,s) + \/%gz(s, s)) +

hi (1) with hy = () + [gdspo(s)((g1(s.1) = 81(5.9)) + 7= (82(5. 1) — 82(5. %))
which is differentiable. We now iterate this formula:

f 1
%(t):/o ds (gl(s,s)+mgz(s,s)>
s 1
[/O do Yro(o) <g1(0,0)+mgz(a,o)>+h1(s)]+h1(t) (5.28)

in which we change the order of integration to find

t t 1
Yolt) = fo do yo(o) [ / ds (gl(s,s>+ m&(&S))
(gl(a, o)+ g2 (o, 0)) + hl(s):| +h(t). (5.29)

1
JE—o
In this integral, g1, g» are analytic in a neighborhood of R* and v is continuous, hence
the integral is differentiable with continuous derivative. Using Lemma 14, the same

arguments, and the fact that the integral operators preserve Holder continuity, show (iv)
holds.

5.4. Proof of Lemma 12 . We will first prove (iii), and then move on to (i) and (ii).

(i) For x < 0 we show that the function given by (3.2) is in L2, we take its inverse
Fourier transform and show that the result is (3.8) which is an L? function.

For the first term in (3.2), note that since f is in L?(R) then by (3.3), so is C_ hence

so is the inverse Fourier transform of e’isz’/ 2c_ (¢). We have (see Note 7)
1 (N o 0 '
Linm. —/ dg ™ P i, / dye ™8 £(y)
27T _N _N
1 0 N s ‘
= llmz—/ dy f(y)/ d%— ele—lE 1/2—1)7%‘
T J_N _N

1 (9 S2r i
=l.i.m.—/ Tt (5.30)
2 ) VA
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yielding (3.9), and that 4_(-, ¢) is an L? function.
The second termin (3.2) is ﬁe‘ifz[/z fot ds ei6’5/2 iYy 0(s),isalsoan L? function.

Indeed, from (5.6) we have Yy o(#) = u*t~/2 withu = const(y, —2d,;2_(0, -)) hence,
after changing the order of integration and a substitution we have

! i£25 )2 ! e202 [1° i£20/2_—1/2
/dse'S s/ Ipx,o(s)=/ do u(o)e't f’/f drel& 271/
0 0 0

and the last integral can be explicitly calculated and, for large |£], it is less than const.
€1

The Fourier transform of this second term can be then computed as was done above
for h_, yielding

iv2

e2i-m (5.31)
— S

NE/ ds ¥re.o(s)

The third term in (3.2) is also in L?, since integrating by parts we have

! t
/ ds e gy (s) = & / ds & € D512 ¢=is 2y ()
0 0

—2i .
=T e o) — yo(0)

+/Otds eié7s/2 (%WO(S) - 1ﬁ(/)(S)) ds:| (5.32)

which, since ¥ and v’ are locally bounded by lemma 11, is manifestly in L2. To calculate
its inverse Fourier transform we write

—1 N . ) 1—€ )
— Lim. / dg e¥EeiE f%/ ds Yro(s)e’s 572
—N 0

-1 t—e N _ .
=—\im. / ds Yo(s) / dg elXEa—ié (tfs)/z‘;§
0 -N

4

i 1—e 00 _ »
—li.m. / ds Yo (s) O / dé: elee—lé (t—s)/2
47'[ e—=0 Jo —o0

i ! 21 ix2
d 9 —— 2=5) 5.33
471/0 $ Y0(s) 9 Ji =5 —se ( )

Adding up (5.30), (5.31) and (5.33) we obtain (3.8).

For x > 0, we show that taking inverse Fourier transform in (3.5)—(3.7) we obtain
(3.10), an L? function.

The inverse Fourier transform in (3.5) is a sum of two tems: /1 + I, where [ is the
inverse Fourier transform of e~ ®®-1) C, (1) (where u = £ — % sin(wt)):

1 _Eg _iEg [ ‘
Il 27[ d%' 1)(5 (E 7 sm(wt),t) lwzg/(; dy e—lyff(y) — h+(x, t)
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where the calculation is similar to that of z_, and yields (3.11) (which is an L? function
since f is).
1 [N . . ro
L =Llim— f dge S e / P i o(s) + EYo(s)] ds
4 —N 0

1 ixEsinowt; . N ixu —i®(u,t)
= —e"o lim. due e ’
47 —-N

t
[ i)+ e Z sinonpo)ds
0 w

| . ! E
— _ixgsinet / ds[—iVy.o(s) + — sinwt Yo(s)] Lim.
4 0 @
N
/ du eixu—i@(u,t)+i<l>(u,s) ds
—N
I i Egnor !
+o—ete e / ds Yo(s) Li.m.
4 0
N
/ du u X TIPWDHOWS) go . oy, (5.34)
-N

To continue the calculations in (5.34), we have

. E . , E2
_ 1 ezxasmwt—z(U+4w—2)t
4

t
X / ds[—ivy0(s) + £ sinwt Yo(s)] e
0 w

\/E ; [x+w—Ez[cos wt—cos ws]]2
a—ti =9 (5.35)
Vit —=s

I3

i £ [sin(2et)—sin(2 U+
z&u—3[sm( wt)—sin(2ws)]+i ( +m)s

Thus

| C i) + g sinot Yos)
Lh=——" ds o
2271 Jo P

where F is given by (3.12).
We evaluate 14 in a way similar to (5.33):

(5.36)

t—e N
14 — Leix% sin wt llm/ ds 1//0(S) / du u eixu—i<1>(u,t)+id>(u,s) ds
47 0 N
t—e N
— Leixg sin wt llm/ ds Iﬂo(S) (—i)3x / du eixu—i@(u,t)ﬂ'(b(u,s) ds
4 0 _N
_ %ei)ff Sinwffi(l/ﬁffzz)tl'i.m /'_E ds Vo(s) (_l.)efiXEw—é[sin(ZwI)fsin(Za)s)JH(U+%)s
T e—0
E 2
X —————— 3 e 2G-5) (5.37)
Vii=s

1 ixﬁsinwz—i(m%)z ! . —iLi[sin(2wr)—sin(2ws)]+i(U+L22)x
= e 40 dswo(s)(—l)e 83 40

2/2mi
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2
[7 (cos wt —cos ws )+r]

T (5.38)

%[cos(wt) —cos(ws)] +x
(t —s)3/2

thus

d 0)2 [cos(a)t) — cos(ws)] +x
2¢_ s Vo(s) (—s)72

a convergent improper integral, with F given by (3.12).
Adding (5.34), (5.35) and (5.38) we obtain (3.10), an L? function.
(i) The fact that (3.8) is a solution of (1.5) for x < 0 is a simple calculation.
We will now calculate the limit of (3.8) as x — 0—. Note that, for x < 0,

I = e FnD (539

ix2

/ ds 1,00(5) )3/282(t S) = wo(t)/ ds )3/232(t7s)

t
+/0 s IX(W((;(S_)S)3/2 (5.40)
and
t
/od M(wg(s_)g;//jz()(”) 15 = 0(x), (5.41)
Furthermore,
1 .
w0t [ ds et = i) ., s (5.42)
o)

/ ds 1/fo(s)( )Wezv 5 > i Yo()V2mi (asx — 0-).  (5.43)

Therefore, taking x — 0—,

wx 0(s)

V_(0,1) =h_(0,1) + + = w (1)
S

o

and the right hand side in the above equals () by (5.2).

The limit of (3.8) as t — 0+ for x < 0 equals lim;_, o+ h_(x, t). With the large
parameter ¢!, the integrand has a saddle point at y = x, hence, by the saddle point
method, equals f(x).

(ii) The fact that ¥, given by (3.10) is a solution of (1.5) for x > 0 is a simple
calculation.

We will now take the limit of (3.10) as x — 0+. From (5.36) we have

lim I3 e FO5D (544)

1
x>0t~ 2/2mi

To calculate the limit of 14, we write I4 = I4; + I4» where

! , E .
A ds[—iyo(s) + Z sin wt Yo(s)] ﬁ

ds Yo(s) wz[COS(wt)—COS(a)S)]
S Yols

1
Iy = ——— /
2270 (t — )32

elF(x,x,t)’
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I/fo(s) )3/2 e F st

o [

‘We have

. %[cos(wt) — cos(ws)]
Jm ar = ¢_/ ds Yo(s) = t — )

while (by the same reasoning as in (5.41),)

P00 (5.45)

Tomr o® / )3/2 e FEsD 1 0(x) (5.46)

X2
F(x,s,00= 35—
t—s

Now, by (3.12), is analytic, hence from (5.47) we further have

2

142—%/_ wo(t)/ ds )3/2eﬁ+0(x)—>%¢o(t) asx — 0+
(5.47)

where the last limit is evaluated as in (5.40).

Combining (5.44), (5.45), (5.47) we obtain (3.15), whose right hand side equals
Yo (1), since ¥ satisfied the relations in Lemma 10.

The limit of (3.10) as ¢t — 0+ equals

1 o0 ilr—y1%
= lim —— /O dy f(y)e” 7 +0@) = f(x)

where we used the saddle point method.

5.5. Proof of Theorem?2. Let ¥4 and ¥_ be given by Lemma 12. Then ¢ (x,?) =
V_(x, )O(—x) + Y4 (x, 1)O(x) is an L? solution of (1.5) with the initial condition f.

6. Long Time Behavior: Proof of Theorems3 and 4

Most of the technical elements of the proof of Theorem 4 are common with those of
Theorem 3. The only distinction (the presence of some additional poles due to the initial
condition) are dealt with at the end of this section.

The discrete-Laplace transform technique used in this section was devised as an
adaptation of Laplace-Borel methods used in [38,39], in order to deal with the present
setting of noncompact operators, see Appendix A for the connection between the two.

We perform a discrete Laplace transform (DLP) and the long time behavior of the
system is now contained in the analytic properties of the transformed wave function
with respect to the Laplace parameter o . Namely, the discrete inverse Laplace transform
(DILT), whose coefficients are obtained by Cauchy’s formula, shows that the solution
of the Schrodinger equation (1.5) decay, as t — oo, uniformly for x on compact sets, if
and only if the Maclaurin coefficients decay with respect to their index k, which happens
if and only if the DLP has no poles in the Laplace variable in an open neighborhood of
the unit disk. The decay in + mimics the decay of the coefficients with respect to their
index k, and for the latter we show to have an upper bound of k~!/2. The absence of
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poles is shown by proving the absence of discrete spectrum of the quasienergy operator
where we use methods of Ecalle’s theory of resurgence of transseries [47,48].

The mathematical details in this section are as follows. To avoid complicating the
notations, in this section we assume w = 1 (in fact @ can be rescaled in equation (1.5);
see appendix A for w not rescaled).

In Sect. 6.1 we define the DLT and its inverse DILT, and we show how it can be used
for the study of integral equations of our type. In Sect. 6.2 we study integral kernels
with a singularity of the type we are dealing with, and give details on the techniques
we use and results. In Sect. 6.3 we discrete-Laplace transform the equation (5.2) for ¥
and deduce that its discrete-Laplace transform only has singularities of the square root
branch point type and possible poles, with a finite number in any compact set, having the
analytic structure (6.46). In Sect. 6.3.4 we show that existence of poles imply existence
of nontrivial solutions of the quasienergy equation. The latter are ruled out in Sect. 6.3.5
based on Ecalle’s theory of transseries, showing that the DLP of ¢ has no poles in a
neighborhood of the closed unit disk.

Combining all these elements the proof of Theorem 3 is completed in Sect. 6.4, and
that of Theorem4 is completed in Sect. 6.7.

6.1. Discrete-Laplace transform and long time behavior of ¥ (0, t). The logic of the
construction is as in Sect. 5.1: we derive formally an integral equation for the discrete-
Laplace transform (defined below) of ¥ (¢) := (0, t), we show existence and unique-
ness of solutions of that equation after which we check, in a straightforward way, that
the solution is the discrete-Laplace transform of .

Let S be the space of functions of the form ¢ +— ©(¢)g(¢) which decay faster than
t~1=¢ For f € S define its discrete-Laplace transform for t € (—m, w] and o € [0, 1)
by

(Po f)(x) := Y _ &7 f (z +2km) (6.1)
k>0

Note that the function f can be recovered from its discrete-Laplace transform by

1
f (T +2km) = / do e 9% (P ) (1) (6.2)
0

forall T € (—m, 7] and k > 0.

For functions with not enough decay to ensure convergence of (6.1) it is convenient
to define a more general transform by taking complex o with Jo > 0. Denote 7 = e!?%*
(note that |z| < 1) and define

(P-f)(x) =) 2" f (x +2kn) (6.3)

k>0

Then (6.3) is a generating function. Assume (6.3) converges in Ds := {z € C| |z| < §}.
Then the inversion relations (6.2) are replaced by the Cauchy formula:

f(t+2kn) = — yg d¢ (szfB](T) (6.4)

where C C Ds is a simple closed path around 0.
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If the limit of P, in (6.3) as z approaches the unit circle exists, except possibly at a
discrete set of singular points (which we show to be our case), we take that limit (called
the Abel sum, or Abel mean) as the discrete-Laplace transform of our function. As is
well known, Abel summation of a convergent series is the ordinary sum [47], hence the
two definitions coincide in this case.

We aim to transform vg. All that is guaranteed for now for v, by Lemmall, are
exponential bounds in time, therefore we use (6.3) which is guaranteed to converge for
z small enough. We then prove in this section that, if the initial condition f € Lj then
Yo decays in time, while for the wave initial condition (1.4) 1o approaches a periodic
function.

The proposition below shows the form of a discrete-Laplace transformed integral
operator with a kernel of the form in which we are interested here.

Proposition 15. Consider an operator of the form
t
Li 0 = [ ds FoIK G, 65)
0
where K (s,t) =0ift <0ors &[0, t]. Then

T 1
(PyLf)(x) = / dr /0 41 (Poy 1)) (P—oy Po K)(1, T) i= (Py LYPy f (6.6)

For complex o with 3o > 0 the integrals fo do are replaced by 2m f =dz.

Proof. An immediate calculation, using (6.1), then (6.2) shows that

T 0 T+2km
(PoLf)(7) =/ ds f()K (s, r)®(r)+ze"”2k”/ ds f(s)K (s, T +2km)
0 0

k=1

_ / ds f(5)K (5, 7)O(7)
0

o bia 20+ T+2km
+ Z eman / / / ds f(s)K(s, T+ 2ki)
0
k=1

2j—Drm Qk—1m

= /T ds f(s)K (s, T)O(1) + Ze"ﬂk” [/n ds f()K (s, T +2km)
0 k=1 0

— s
+2/ ds (s +2jm)K (s +2jm, T +2km)
. -7
T
+/ ds f(s+2k71)K(s+2k7t,r+2kn):|
—7T

T 1
_ / ds / do1Po, f(5)K (5. 7)
0 0

© 7 1
+Ze”’2k”/ ds / doy Po, f(s)K (s, T + 2k)
P 0 0
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oo k—1

+ZZ@"’2k”/ﬂds/ doy e 0127 P, f()K (s +2jm, T + 2km)

k=1 j=1

+Zeu72knf ds / doy e_’UIZk”P S S)K (s +2km, T+ 2km)
k=1 o
(6.7)

which equals the right hand side of (6.6), since K (s, ¢) = 0if s & [0, ¢]. O

6.2. Analytic structure of solutions. We will aplply the discrete-Laplace transform to
integral kernels K (s, t) which are multiples of —— Wt and this factor introduces singular-
ities in 0. We start by treating ﬁ as a standalone term, as this clarifies the techniques

needed, and then proceed with the actual operator.
For K (s,t) =
transformed kernel in (6.6) has the expression

| 102k7t
P-oPo K)(r, T) = OO)x10.01() 7= + X071 1) Z VT H2kn =7
oo k—1 io2km ,—io|2jm
e e
+ZZ JTH2(k— N —71
k=1 j=1
X io2kw ,—io12kw
e e
— Z —— (6.8)

k=1

Some of the series in (6.8) must be interpreted in the sense of distributions. To see
how, we truncate the series in k to a term N then take the limit N — oo. Take for
example the third term in (6.8), the most involved. Changing the index of summation j
to £ = k — j we have

i Zl ol02kT p—ic12j 1 i uk k=1 wt
T2k —m —r  2m = wk —~ Ja+l
=1 j=1 k=1 =1
where
; : T—r
U= 610271’ w = 610127[, a= (69)
2

For u, w # 1 (meaning that o, o1 # 0) we use the integral representation of the Lerch
transcendent [49, (25.14)]:

s 1 e~
®(z,5,a) = l"()/ r—— Pdp, Z & [1, +00) (6.10)
and the identity
k—1 Zz
Y S =@ bia+ )~ F D@ boa+h) (6.11)

= (a+0)b
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We then have
T ! 3 u* Ddw. 2oa+ 1) — whd@w, L a4k
= — — W w, -, d —w w, -,a
2TV ok 2 2
N N
1 u 1 dp _ Kk —pk
= —wd(w, - a+1) I uke™P
V2n Zwk \/271\/_ f l—we*PkX:;
=T31—T32 (6.12)
with
T : d( + 1)2
31 = —wd(w, -, a
2
N
1 © d 1 1— (ue™?
T3, = L Lee@nr (ue™?) (6.13)

V2 v o f 1—we ™ 1—ue?

To determine limy_, o 73,1, we note that it appears in (6.7) in an integral form, after
multiplication by the periodic function Py, f, then integrated in 0. We have, using (6.9),
for o, 01 # 0,

1
lim do113,1Ps, f (1)

N—oo Jo
(- !
— th : Zeanw/ dU]e—Zkﬂml 2mcrlq>< 2mwio| a+ 1) Palf(r)
—00 T 0
k=1
1
_Eeanq) ez’””,z,a+1>7)af(r)
1 ld 2ior g ( p27iol 1 )P 6.14
—E o ole e ,5 a+ crlf(") (6.14)

(the limit is a distribution).
Clearly, for u, w # 1,

1 © g 1 1
[lim T35 = “ P ~Ga+bp (6.15)

N—o0 \/E \/_ f 1—weP1—ue7>

The other terms in (6.8) are similar and simpler.

We now show that o = 0 and o1 = 0 are indeed singularities, namely square root
branch points. For this we define the operator for ¢ in the upper complex plane, and take
the limit o — 0.

Clearly (6.15) still holds for u, w complex with |u| < 1, |lw| < 1.

We now deform the path of integration: [;° = % Jo where C is a Hankel contour
around [0, +00), namely a contour starting at co — 0i, going around 0, and ending at
oo + 0i. We further deform the path of integration to C; so that the poles at p = Inw
and p = Inu are now inside Cj, in the process collecting the residues:

th T3, = u dp —(a+1)p 1

—oo T 22w e, f (1 —we=P)(1 — ue=P)
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u u u,a,1 w,a,1
— 2mwi < — )
221 Uu—w \ /Inu VInw
Letting 3o, 01 — 0, the first integral above is an analytic function, while the sum of
residues equals

i pio4T <e—i(a+1)02ﬂ e—ila+Do12n )

2 Vio2mw a Jio 2w

ﬁ eioZn _ ei01271
and is analytic (including when o = o1) except for 0 = 0 and o7 = 0, where there are
square root branch points.
The term 73 1 is similar: we deform the path of integration of @, [0, +00), to C, which
is further deformed to C; so that the pole at p = In w = 2mioy is inside Cy, in the process
collecting the residue:

q)( : .\ 1) 1 00 dp e—(a+l)p 1 dp e—(a+l)p
w, 5,04 = —= - = = -5 _ -
2 Vo Jpl—we P 2m Je /Pl —we P

1 dp ef(a+l)p 1 .ef(a+1)i2mr]

= — + 2 =
27 Joy pl—wer oyz ' Jizmor 1(91)
(6.16)

and in this form we can let Jo; — 0. Taking the limit N — oo as before, we obtain
the limit as a distribution, which now, due to the residue, contains square root branch
points. We thus see that @1 (o) has the form

1
Ai(o1) + —=A2(01), with Ap 7 analytic (6.17)
NG g

6.3. Solving the discrete-Laplace transformed equation (5.2). We first note that the
series for P, () converges when z := e>7° has small enough absolute value, by
Lemma 11. We show in Proposition 20 that the series converges for |z| < 1 and that the
only singularities are square root branch points at ¢ = 0 and at 0 = 0. Based on this,
Lemma?21 provides the decay of ¥/ (0, ¢) and finishes the proof of Theorem 3 (ii).

The following Theorem establishes the analytic structure of P, 9. We apply discrete-
Laplace transform of Proposition 15 to our integral equation (5.2) and obtain

Theorem 16. Assume the initial condition f(x) := v (x, 0) is differentiable, with f' €
L2(R), that f(0) = 0, f has compact support and f?oo fdy =0, [;° f(y)dy =0.
Let o be the fractional part of U + %.
Let g be the unique solution of equation (5.2) given by Lemma 11.

For simplicity, we choose units such that w = 1.
(a) The discrete-Laplace transform V, := Py satisfies the equation

Vo =LoVo + KoV +Poh (6.18)

where Ly + Ky is the discrete-Laplace transform of the integral operator L given in
given by (5.4) and h is given by (5.3).



2058 O. Costin, R. Costin, I. Jauslin and J. L. Lebowitz

The operator Ky is a sum of operators of the form
b4 1
Y, (1) > ds / do1Vs, (s)H (s, 01,7,0) (6.19)
- 0

where H is an analytic function for Jo > 0 multiplying characteristic functions of
intervals, and for real o having square root branch points at ¢ = o9, 01 = ¢, 01 =0
and at o = 0 and analytic at all other points.

The operator L is a sum of operators of the form

Y, (1) > " ds WV, (s)F(t,s,0) (6.20)

—TT

where F is an analytic function for Jo > 0 multiplying characteristic functions of
intervals, and for real o having square root branch points at 0 = oo and at 0 = 0 and
analytic at all other points.

The operator L is compact on L2([—7'r, 7], dt) and Ky is compact on Lz([—n, X
[0,1),dt do).

Vo — 09 Ky is analytic in \/o — oy and Ky has analytic continuation on the Rie-
mann surface of the square root.

(b) /o — 00 Yy is analytic in \/o — 0.

Proof. The outline of the proof is as follows. In Sect. 6.3.1 we calculate the discrete-
Laplace transform of the integral operator and of the inhomogeneous term. The discrete-
Laplace transformed operator, L, + Ky, has a “singular” part, L,, which needs to
be considered in a one-dimensional space, with o being a parameter. /s is a usual
Fredholm operator in two dimensions. In Sect. 6.3.2 we calculate the discrete-Laplace
transform of the inhomogeneous term #, finishing the proof of (a). To prove (b), we
deduce the existence and analytic structure of (I — L, — K)~! using the analytic
Fredholm alternative as follows. First, in Sect. 6.3.3, we first apply the analytic Fredholm
alternative to invert / — L, (operator in one variable). We then treat the resulting equation,
(6.40), by splitting it into a system (a regular part and a ’pole” part) which we show has
ameromorphic solution. In Sect. 6.3.4 Lemma 17 we show that any poles can only occur
for o € R, and thus the series of P, 1o converges for |z| < 1. Finally, in Sect. 6.3.5 we
show that there are no poles even if o € R, proving (b).

6.3.1. Calculation of L, Ky and their analytic properties By Proposition 15 the oper-
ator L, + K is the integral operator

T 1
f(1) > dr/ doy f(0)K (01, 0,7, 7) (6.21)
-7 0

where K (01, 0,7, 7) = (P-6,P5K)(r, 7) is the discrete-Laplace transform of K, the
kernel of the integral operator L.

The kernel of L is a sum of three terms. We detail below the calculations for one of
them, namely the most delicate. The others are similar and simpler.

Consider the first term:

G(u,t)
Ju—s

t t t
T1(1) ::/ dswo*s_l/zG(s,t)zf dswo(s)/ du
0 0 s
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where, applying P, in the variable ¢, see (6.1), we obtain

’ T G(u, 1)
PyTi(t) = / ds Yo(s) dy ———=
7 0 s AJu—=Ss
< T+2kmw T+2km
. G(u, 2k
+Zewk2n[ dslﬂo(s)/ gy G T +2km)
k=1 0 s vu—=s
T v G(u, 1)
= ds 1//0(5)/ du
/(; s Ju—S
o T T+2kmw
. G(u, t+2k
+y el / ds ro(s) / d S T2
k=1 0 s vu—s
0 k=1 i+ T+2km G 2k
+ Z emk2n Z/ ds 1/’0(5)/ du (u, 7 )
= oilej-na s Ju—s
< T+2kmw T+2kmw
. G(u, 2k
+ Ze"”‘Z’T/ ds wo(s)/ dy GG T2k
k=1 k-1 s AVu—S
=Ti1+Ti2+T13+T14 (6.22)

It suffices to establish the properties listed in a) for each of the terms above. Let us
look at the most involved of the terms 77 ; above: changing the variable of integration
we have

00 [ T+2km
. Gu, v +2k
Tis=)Y ey / ds Yo (s +2j7) ay ST o3
=2 =T s+2j7 Ju—s—=2jn

SO
S ok N [T QDT Gu, T +2k
Tia=) " / ds Yo(s +2jm) gy ST H 2T
k=2 j=1""TF S+2jm Ju—s—2jm
> —l ew k=1 comihr g oy
+Zetok2n Zf ds Yo(s +2j7T) Z / du (u,t 77)
k=3 j=1""7" m=j+1 7 @m=Dx Ju—s—2jm
i k=1 o 42k
i Gu,t+2km
+Z eto’kZﬂ / ds wo(s + 2]]‘[) du M (624)
k=2 -1V (k-7 u—s—2jm
— j= WV
and so
00 k=1 . . .
' . Gw+2jm, t+2km)
Tig=) 7 / ds Yo(s +2j7) / dv
kX:; JX_; - K AUV — S8

T . - G +2mm, v+ 2km)
ds Yo(s +2jm) Z/ du NS TN
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00 k=1 .x T
‘ G(v+ 2k, T +2k
E:aMME:/ ds ot +2jm) [ ap SEFZRLTHZRD s
=2 P _— Ju—s+2k —

which we split into the terms

b4 1
T3 =: / ds / do1Ps (s) (Sumi[G] + Sumz[G] + Sum3[G]) (6.26)
- 0
where in the last step we used (6.2).
Now note that
19 Fo(s, t) oD 1 giFols.n) g
s ) o
N/ 2 (t—s)3/2

g, gls, )
= Jims T u—an =G1+G) (6.27)

G(s,t) =

and that

Fo(s +2mm, T +2kw) = —(k — m)27U + Fo(s, 7).
ds Fo(s +2mm, T + 2km) = 35 Fo(s, 7) (6.28)

where U = U + %22 and Fp, G are defined in (3.17), respectively (5.5). Note that Uis
the potential U pzius the ponderomotive energy [40].
The sums in (6.26) are split according to Sum ;[G]=Sum;[G]+Sum;[G>].
Calculation of Sum;[G1] contains the main ingredients needed for the calculation of
the others, so we start with this term, providing many details. From (6.27) and (6.28) we
—iU(k—j)2m

seethat g1 (s +2jm, T +2kw) = e g1(s, 7) thus we have

0 k=1 .n T .
. . Gi(v+2jm, T+2km)
Sum[G1] = E eloken E / ds Yo(s +2]n)/ dv
k=2 j=177"7 § vv—$§

T 1
/ ds /0 do1Pa, Yo(s) g1(s. T)

e—iU k=2 1

0 k—1 P
iok2m —io1 j2m d
](Z;e Ze /s ! Ju—s Jt—u+k—j)2n
= j:l
(6.29)

and the double sum above equals, after changing the index of summation from j to

C=k—j,
k—1 b4 e—il}&n 1

o0
Zeiakzn Z p—io1 k=02 / du
s Juu—s Jt—u+02n

k=2 =1

k—1 G —U)e2n

Todu i(0—01)k2
— el —ok2n
,/x ‘/”_st:; ;«/r—u+€2n

oo
_ /” du Zei(a—o])kzn ! I:ei(al—ﬁ)Zn(b <ei(a,—0)2n L r—u + 1)
s AJu—s P 27 2 27
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-0k gy (gie=th2x L T (6.30)
2 2w

where we used the formula (6.11).

The first sum in (6.30) must be understood in the sense of distributions, and the
second one is convergent. Indeed, for the first sum we have

1 g8, T) o o
/ do1Pg Yo(s) / du Zel(ﬁ—m) T
° y =2

Au—S —
i i i i I 7—u
l(alfU)anD i(o1=U)2m _ +1
N (e "2 2m )
T
gi(s, ) 1 o i o—e 1| T—u
=P d _ - (o )JT(-D i(o )JT’_’ +1
o Yo(s) fs U= e e > 5

= Psvo(s) Ki(s, 7) (6.31)

yielding a term in £, of the form (6.20). Since K is continuous, the operator with this
kernel is compact on L2([—71, ], ds).

To see that the second sum in (6.30) is convergent, we use the integral representation
(6.10) of the Lerch @ transcendendent; we have

Todu io—onk2r L io—0)k2 o—0y2r 1 T—U
Ze kr G ilor=URm g (Gilon=02m — — _ — 4k
s NU—S — 2 2 2w
o0 5 _ T—u k
= /ﬂ du Zei(o—al)kZH ol o1=0)k2n * d_P e P 2”~+ )
s AVuU—S k=2 A/ 27 0 \/ﬁ 1 — ei(o']*U)27Tefp
(6.32)

which is convergent for o1 — U # 0, yielding a term in K, of the form (6.19).

Analytic structure. For o1 — U=0 (meaning o1 = o) we proceed as in Sect. 6.2,
only here the square root branch point will be at 01 = oy (instead of o1 = 0): we deform
the path of integration and collect the residues. The integral kernel (6.32) has the form
(analogue to (6.17))

1
Aj(o1) + —=A3(01), with A1, Ay analytic in /o (6.33)
o1 — 0y
The operator with the integral kernel (6.32) is compact.
The calculation of Sum;[G] in (6.26) is the most labor intensive, and we outline
the main steps here (the details are as for the previous term). We change the order of
summation: le;} an;lj o = k2 S k71 and using (6.28) we obtain

o 2mm k—m—1 ei(olfﬁ)%n

7 0 k=2
[ e
Sumz[G1]=/ dugi(u,7v)y el@—o02%kn
o /; ,;m ; JT—u+2nl

1 T o k=2 ei012mn
— du gl(u7 7) Zel(a—mﬂkn Z

2 -7 u—s
k=3 m=1 4/ 7, +m

pilo1=002m g ( yito1=0)27 I 7—u +1
27 2w
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i@ =002(k=m)7 g ei(mfﬁ)Zn’ 1 T—u tk—m
2 2n
:= Term; + Term,

(6.34)
and furthermore

1 (7 >
Term, 7 / dugi(u, 1) Zel(ofm)an
TS k=3

x | o127 @ (i l . +1) = gforte=D2r g [ ion2m l K=a
2 2m 2

+k—1
27 >]
Xei(mf[/)Zn(D (ei(mf[?)er’ l T—u + 1)

2’ 2w

1 ke
7 / du g1(u, T)‘Sofal
T J-n

; ; 1 u—s
610127'[(1) (elen’

1 ei(m—[])an) ei(m—[/)zn 1 T—u 1
2" 2w T’

2w

e 00
du gl(u’ 'C) Zet(aﬂrl)Zkﬂ
27 Jr k=3

« |:ei01271¢ (ei6127r7 % u2— i 1) _ gl k=127 g, (eiaﬂn 1
JT

1
= S +k—1
2 2m

Xei(01—0)2ﬂ = dl e Ut lr

0 ﬁ 1 — eio12mo—p

1 T . . _
8o—o E/ dugi(u, 1)’ ® (e“ﬁ” L 1)
T

1
_ 20 2w
i o=0)27 g (ei(a—f/)Zn’ % tz;” n 1) + analytic
T

(6.35)
and the first term above produces a term of the form (6.20), while the second term has
the form (6.19).

Similarly, for G> we obtain the following term of the form (6.20):

T 1 T o0 ooy 1 U—S
/ dr[Psvol(s) 2—/ du e’ o <e”’ T + 1)
. b1

-7 ,E’ 27
% [eiFo(u,r)ei(a—U)an <ei(a—l~])2n’ § T — + 1)

2’ 2w
—6l92m g [ pio27 E t_u+1
27 2m

and a regular part, of the form (6.19).

The other terms are evaluated similarly and are simpler.

(6.36)

6.3.2. Calculation of Psh We note the following identities:
e—iB/(n+a)

00 e—iB/(n+a) o0
— —hq — —ngq
(n+a)]/2 _\/0 dqe Fl(q)a (n+a)3/2 _/0' dqe FZ(‘])
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with
e~ cosh(2/—iBq) Vie=% sinh(2/—i Bq)
1(q) 7 2(q) NeY (6.37)

We saw that the kernels of L, IC; have integral expressions. So will also P, except

(6.9) is replaced by

. ~ X ~ " E2
— e27rl(a—U)’ w = eZJTl(O'l—U)’ U=U+—
4?

and instead of ®(z, a, b) we have a sum of analytic functions multiplying fooo Fi12(p)
e (1 — ze_f’)_ldp, with the functions Fj and F; given by (6.37).

Indeed, let us calculate for the discrete-Laplace transform of h4(0, t): with w = 1
and the notations U = U + E2/4, A = E%/8, A = E we have

()+A(] COs ‘[))
2t

\/ﬁlpa—h_;_(f) — Lefi0t+iASin2T/ dyf( )e
VT 0

. (y+A(1—cos 7))

'S} - 00
. 3 . . T
+ 2 :elJane iU (t+2km)+i Asin 2t / dyf(y)e 47 (5 +hk)
k=1 0

. (y +A(1—cos r))

—zUr+qum2r |:\/_/ dyf(y)e 2t
+Zei("‘0)2"”/0 dyf(y)/o dqe_k"Fl(q)]

71Ur+zA sin 21 l(y+A(1 cosr))
= dyf(ye
[I /
efq+z(<77U)2n
+f0 dyf(y)/o qul(q)l

_ efq+i(d70)2ﬂ (638)

Note that under our assumptions on f, the term
1 /Ood FOEF ¢ = Al - cosT)
yriyye =, ¢= —COST
VT Jo

in the last line of (6.38) is in L2([—x, 7], d7). To see this we integrate by parts, then
change the variable of integration:

(u+¢)

- / dyf (e 5 = - / dyf'(y) f du "%

is

:ﬁ/o dyf'(y) %duﬁ

whichisin L? since f € L?(R) and the integral [~ du *~ f is uniformly bounded (easily

seen after an integration by parts).
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The discrete-Laplace transform of the term h3(t) = fot (h— % s~Y2)G(s,1) in h
yields singularities of the type studied in Sect. 6.2. Indeed

t t 1 1 eiF()(s,t) -1 8_g-F().€iF0(S’t)
h3(t) = duh_ d = +1i — 6.39
3(2) /0 u (u)/u sT—13 =7 i o (6.39)

which has a singularity of the type \/% which is preserved upon discrete-Laplace

transform due to the special form of Fj, as seen in Sect. 6.3.1. Indeed, by Proposition 15
it suffices to discrete-Laplace transform the integral kernel in (6.39), which leads to a
sum of terms of the form

el For+2jm,t+2kn) _ g e*l?(r+2k7r7r72j7r)eiFo(r,r) 1

(t+2km —r —2ja)32 —  (t+2km —r —2jm)32

which again, has a square root singularity.
In the same way as in Sects. 6.2 and 6.3.1 it follows that /o — o P is analytic in

o —opandin /0.

6.3.3. Existence of meromorphic solutions Existence of solutions of (6.18) for large
So > 0 follows from the existence of vy, proved in Lemma 11 and Propostion 15.

We showed in § 6.3.1 that the operator /o — 0oL, is analytic in /o — 0, 4/0 for
o # 0 and it is compact on L2[—7, 7r]. Denote z = €277 then Ly, K, are analytic in
z, except for z = z9 = €279 \where there is a square root branch point. For z # zo,
by analytic Fredholm alternative I — L, has an inverse merormorphic in z and in a
punctured neighborhood of each of its poles, say z, it has the form

(I — L)' = ;M@) + B(2)
(z—=zp)™

where M is a finite rank operator, depending polynomially on z, and B is analytic at z,.

Then (I — L)~ ! = WPM (z) + B(z) where P is the orthogonal projection on
Ran(M).
Applying this in (6.18) we obtain
1
=— —PMK;f+BKsf+|——PM+ B |h,,
f =" of of [(z—zp)’" } o
where f = W,, hy = Pyh (6.40)

Denote by P, the orthogonal projection on Ran(PM). Then f = Pf + P, f. Applying
P, to (6.40) we obtain

P, f=P BK;(Pf+P,f)+ P, Bh

Now, Ky is compacton H = L2([—n, 7] %[0, 1), ds doy). Then P BK, P, is compact
on P, 'H has it has a meromorphic inverse, and there is P) f := u:

u:=P f=(, — P BKoP) (P BKsPf+P Bhy):=APf+h  (6.41)
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Now applying P to (6.40) we obtain

Pf = ;PMIC(,(Pf+u)+PBICJ(Pf+u)+ [(;

PM+ PB] hy
(z—zp)™ z—zp)"

(6.42)

where, introducing u from (6.41) we obtain a finite dimensional equation for Pf, with
meromorphic coefficients, which we know it has solutions. Therefore the solution Pf
of (6.42) exists, and it is meromorphic in z. We established that (I — L5 — K,) ! is
meromorphic in a neighborhood of the closed unit disk except for two square root branch
points at 0 and g and, in a neighborhood of any of its finitely many poles z, ¢ {0, oo},
it has the form

1

[ =Ly —Ko) = ——+
( ) (Z_Zp)mp

M, + B, (6.43)
with M, of finite rank, polynomial in z and B, analytic. Using analyticity in /o

(Vo — og resp.), if a pole coincides with one of these branch points, then 1, is simply
replaced by m + 1/2 and M, becomes analytic in \/o (/o — o resp.).

6.3.4. Poles imply nontrivial solutions of the quasienergy equation Lemma 17 shows
that if poles exist in (6.43), then there is a solution of the Schrodinger equation (1.5)
with a special asymptotic behavior (6.44) in t.

Lemma 17. Let 7 = ¢¥™9 with S0 > 0 (so that |z| < 1).

Assume that (I — Lo — K)~" has a pole at o = op, that is, M, # 0 in (6.43) and
that the imaginary parts of the pole and branch point do not coincide. Then, for a dense
set of initial conditions the Schrodinger equation (1.5) has a solution of the form

Vx, 1) =1""tem " a(x, 1) [1+ O/ + O(1/4/1) (6.44)
withm € N* and a(x, -) is 2w -periodic, a(-, 1) € L?(R) and also op €R

Remark 18. In the exceptional case where the branch point coincides with the pole, then
m would be a half-integer, see the discussion after (6.43). We do not treat this case here,
and leave it up to the reader.

Proof. Substituting (6.43) in (6.18) we obtain
1
Y, (1) = mMp Poh + ByPsh (6.45)
where m ), > 0 is an integer with
(I = Ls, = Ko,) Ps,h =0

Let us simply denote m, =m, M, =M, B, = B.

We construct a ¥ so that W, of (6.45) is its discrete-Laplace transform using (6.3),
(6.4).

Denoting ¥, (t) = F(z, T) we have

Poo(r) = F(z.7) = Y 2Fpo(t +2k)

k=0



2066 O. Costin, R. Costin, I. Jauslin and J. L. Lebowitz

and the series converges in a disk |z] < § by Lemma 6. By (6.45) F has the form
F(z,t)= % + g(z, t) where P is a polynomial in z of degree at most m — 1 and
g is analytic at z,,. Then

1 F(z,7)

Yo(r +2km) = — ]

d
2ri Jo  z ¢

where C is a closed path containing 0 inside the disk of radius § and the pole z, is
outside C. To determine large k behavior we deform C past the pole z;, and leaving the
path hanging around cuts at the branch points. In the process we collect the residue at
the pole, and then using the analytic properties of the operator, we push to two Hankel
contours around the branch points o = 0 and 0 = oy linked by arccircles of radius 1 +e¢.

The contributions of the Hankel contours to the large k behavior is O (k~'/?). Indeed,
near o, by Theorem 16 we have

Pot = ———+aiVo =00+ f1(0) (6.46)
where f) is differentiable in o. Integration by parts shows that
fo 1 do e f1(0) = 0(1/k) (6.47)
Hence
/0] do e KP4y = —% erf (\/ﬂei”M) +0(1/k)
- _—63”:/;2‘”1(—1/2 +0(1/k) (6.48)

where O(1/k) comes from (6.47) and from fol do 7197 g, /5 — oy.
The contribution from the square root branch point at o = 0 is similar.
The contribution of the residues at the poles, each of which is, to leading order,

! P(z ) —1m—1_—k—
i dz e~ (=D R P (g, Ty (14 01k
2mi lz—zp|<e€ Zk+1(Z—Zp)m =D P (zp, T)( (1/k))

(6.49)

Consider initial conditions ¥ (x, 0) so that P,k does not belong to U, Ran(M;)
where j indexes the finitely many possible poles, and so that Psh ¢Ker(M)). Since
M are finite rank, this is a dense set of initial conditions. For such initial conditions the

leading order behavior of V(7 + 2kr) is, with the notation z, = e2miop,
Vo(T +2mk) ~ k" Leriop(Zk=mp (1) (6.50)

Fort > Olett € [—m, m) be the unique number so that t = 7 + 2k with k a positive
integer. Then for large ¢

Yo(t) ~ " e py(T) [1+ O(1/1)] + O(1//1) (6.51)

For the assumed initial conditions as discussed the discrete-Laplace transform of A
exists up to the unit circle, and since the asymptotic form (6.51) is still valid for o} real.
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By Lemma 11 v is continuously differentiable therefore b1 (t) extends to [—m, 7]
periodically, hence to a(t), a periodic functions of period 2.

Then v (x, t), obtained by introducing vy in formulas (5.6), (3.8), (3.10) has a similar
asymptotic form (6.51). To see this we note that convolutions with r~!/2 preserves
the asymptotic behavior (6.51) (up to multiplicative constants) since, expanding each
aj(t) := a(t) in Fourier series a(t) = Dk cxe'*" which converges uniformly since a(¢)
is continuously differentiable, we see that

t ) 1 . 4 : 1
ds s" e g (s = t’"*le*“"”/ ds (1 —s/0)" Ve q(t —s)—
/O O = s =/ (=9
Uiopt [ ! V2gmiont [ quel !
~ " e_mpt/ dse'?a(t —s)— =1t"" e_”’P’/ due'r"qt(l —u))—
0 g 0 Vu
1
. . . 1
= 2ot 3 gyt / du el (6.52)
0
k

where each integral in (6.52) is evaluated by deforming the path of integration of the
steepest descent and each integral is of order r~!/2k~1/2 and thus obtain that (6.52) has
dominant behavior 1~ e ~1°? q3(r) with a3 is 277 -periodic and smoothly differentiable.
Differentiation also preserves this form (being obtained from integral formulas, the
asymptotic is differentiable). Furthermore, note that we required initial conditions so
that 44 (-, t) decay sufficiently fast at oo, thus being smaller than behavior (6.51) for
m > 1. The other integrals in (5.6), (3.8), (3.10) are treated similarly (recall that in this
section we assumed @ = 1). Then, from (3.8), (3.10), ¥ (x, t) behaves, for large 7, as a
polynomial multiplying e 7 and a(t), a 27 -periodic function.

To study the behavior at 0 = op we denote { = /o — oy and we repeat the argument
above, ruling out poles at { # 0, while if there is a pole at ¢ = 0, it will have the form
™™ = (0 — 09)~"/?, which is not a pole in o.

We now show thata(-, t) € L*(R). The proof mimics the arguments in Sect. 5.4, (iii).
An algebraically simpler way to see why this is to combine those arguments with the
Fourier representations (3.1) and (3.4) below. ¥y (#) converges in a space of differentiable
functions with Holder 1/4 derivative, and, from (5.6), v, o converges in a space of
functions with Holder exponent 3/4 in intervals of the form [z, r + 27 /w]. The norm in
the latter space || flloo + Il f'lloo + supy , [x — y[77f"(x) = f'(»), with y = 1/4 and
exponential weights are place on the sup norm as in (5.7) to ensure contractivity. The
integral operator is smoothing in this space.

The integral term in (3.2) converges uniformly in a space of functions on R* with
values in {g : |[vVx2 +1g|ls < 00}, hence uniformly a space of functions on R* with
values in L2(R), to a 1} e L? periodic in ¢ which solves (3.1), as it is easy to check.
(Note that the boundary condition at x = 0 does not ensure symmetry of the Laplacian,
nor hence conservation of the L2 norm.)

It remains to show that o, is real. Denote ¥ (x, t) = e~ ¢ (x, 1). Since Y satisfies
the Schrodinger equation iy, = H1 then ¢ satisfies o, +i¢py = H¢ therefore o, € R,
since the operator is symmetric.

This completes the proof of Lemma 17. O

Consequence. Since there are no poles for |z| < 1 (and no other singularities, by the
Analytic Fredholm Alternative), the series of P,y converges for |z| < 1.
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6.3.5. Absence of solutions of the quasienergy equation We first show that the existence
of such solutions implies existence of actual eigenfunctions of the quasienergy operator;
this implication is very general.

Lemma 19. Consider a general Schrodinger equation
iv,(x,t) = Hx,HY¥(x,t); x e R" (6.53)
where H(x,t +2m) = H(x,t) for all t. Assume (6.53) has a solution of the form

Y(x,t) = P()e™ ¢ (x, 1),
where ¢ (x, 1 +27) = b (x, 1) [1 + 0(;‘1)] +00"?) (t > o0)
(6.54)

where P is a polynomial, \ is nonzero, A € R. Then P(t) is constant.

Proof. This follows from the fact that the evolution is unitary and || (x, )|| = 1 for all
f. O

Proposition 20. There are no nonzero solutions of satisfying (6.44) any A € R.
As a consequence, there are no poles for 7 = ™% with |z| < 1.

Proof. Recall that in this section we normalized equation so that w = 1.
Consider a solution satisfying (6.44). By Lemma 19 we have m = 1, therefore, with
o=,

Vx, 1) =e Max, ) [1+01/0)]+0(1/1) (6.55)

Substituting ¥ (x, 1) = e*@(x, ) in the Schrodinger equation (1.5) we see that ¢
solves:

i9,4(x, 1) — % [—aﬁ +O0)(U — Ex cos(t))] . 0) =2d(x, 1) (6.56)
where &(-, 7) is in L2 for each ¢ and for each x

Fx,0) = alx, 1) [1 + 0(;‘1)] + 0% (t - o0,
a(x,t) =a(x,t+2m), Vt >0 (6.57)

We have lim;_, o ¢~>(0, t) = a(0, t), periodic. We now show that there are no solutions
with such matching conditions at x = 0.

Remark 1. If Yo (t) := ¥ (0, 1) is 2w -periodic then ¥ (x, -) is 2 -periodic.

Indeed, let 7 = 2™ where Is > 0 to be complex. For x < 0 we have iy, +
V.x = 0 with boundary condition vy (¢). Now we write ¢ (x, 1) = eZ1%" 1 (x, 1) we get
—2m0¢ + ¢ + ¢xx = 0 where now ¢ (0, ¢) is periodic. Since for each fixed x ¢ (x, t)
is continuous, we take the discrete Fourier transform, ¢(t) = ) jez C; (x)eZ” it we

get —210C; — jC; + C}’ = 0. The solution is A je=V?™/+% where the sign depends
on the sign of M+/27j +5 where A; are the Fourier coefficients of ¢ (0, ). We note
that the Fourier series of ¢ converges pointwise since ¢ is differentiable.The series
D" Aje=V2TI* converges absolutely and uniformly since [C| < |A j|e*V27/+5* where
the sign ensures the real part is positive and because of the convergence of the Fourier



Non-perturbative Solution of the 1d Schrodinger Equation 2069

deriesof ¢, A; — Oas j — o0o. We note that for such solutions to exist, we need that the
Fourier coefficients A; vanish if j is below a certain value. We have shown that, if such
solutions exist, they are analytic in ¢ for any x 7 0 and periodic in 7. The proof forx > 0

is similar. The boundary condition becomes Y~ C;e®v2THsE cost+2mijt — S~ A, p2mijt,
Since fj is differentiable and hence ) A jez”if " converges for all ¢, for r = 1 we get
that C jejF*/m — 0 once more ensuring the absolute and uniform convergence of the
series Y CjeV2T+SE+it i the corresponding domain (6.50).

Remark 2. A straightforward but more tedious way is to rely on (3.1), (3.2) and (3.3),
starting with A in the upper half plane to obtain, for x < 0, an L? solution 4y such that
in the large #, ¢/’ is periodic. Similarly, for x > 0, one uses (3.4), (3.5), (3.6), and (3.7).

We can equivalently work in the magnetic gauge. Let
1
o (x) = e FAOWG(x 1), A= / dt E cos(t) = E sin(r) (6.58)
0
Then ¢; (x) satisfies

1
10rr (x) — 3 [idy — O()A? 1 (x) — OX)Ug; (x) = A (x, 1). (6.59)
The matching condition ¥, (0—) = ¥, (0+), 0x¥;(0—) = 95+ (0+) becomes

@1 (0=) = @1 (04),  0x1(0—) = 0x¢ (0+) +i A1 (0) (6.60)

We solve the equation (6.59) for x < 0 and x > 0.
Negative x.
For x < 0 equation (6.59) becomes

1
—idr (x) — Ea%p,(x) = A (x)

which we solve with boundary condition ¢;(0) = a(0, #).
Substituting ¢; (x) = "7, uk (x)e’X we obtain that ug (x) = e=vV2k=4x,
Solutions that decay towards —oo must have ko — A > 0 and the plus sign must be
chosen at the exponent. Therefore, for x < 0,

px)= Y CreViThreil 6.61)
keZ,k>1

for some constants Cy.
Positive x. For x > 0 the equation (6.59) becomes

1
— i3 (x) — 3 (af +2iA,0, — A} — U) @ (x) = A (x) (6.62)

Gauge transformation on a half-line; and eliminating the magnetic field. Substi-
tuting

ux, 1) =e$DGx +q(1), 1)



2070 O. Costin, R. Costin, I. Jauslin and J. L. Lebowitz

with
iE%sin (21)

q(t) = Ecos(t), g@t)= 3 . E=x+q()

equation (6.62) becomes
. 1, E? -
—18,G($,t)—§8xG(§,t)= —A—U—T GE,t) =:AG(E, 1) (6.63)

The new PDE is defined on the domain
D={E,t):t>0, &+ Ecos(t) >0} (6.64)

It is clear that, for each fixed ¢, the change of variables is an isomorphism between
L2((—E cos(t), 00) and L2(R*). We are looking for periodic solutions of (6.63). Such
solutions have Fourier series, convergent in D:

GE 1) =) ca®)e™ (6.65)

nez

Substituting (6.66) in (6.63) we obtain that for any n € Z there is a D,, € C such that

en(€) = Dpe $V20=0. o o= 7 and ¢, = 0 otherwise (6.66)
hence
GE.1)= Y DyeEV2n—hint (6.67)
n>no

Since G is differentiable the series converges pointwise convergence in the interior of
D, which implies

|Dy| < Const ef V2= (6.68)
The best bound is obtained when t = 2m + 1)t (m € Z), see (6.64),
|D,| < Const e~ EV2=5) (6.69)

We note that this estimate implies that the series (6.67) converges uniformly and abso-
lutely to a locally analytic function in the interior of D, and it also converges uniformly
and absolutely, together with all derivatives to its boundary, except perhaps at the special
points (—Ew ™2, 2m + 1)7), m € N.

Returning to the variables (x, #) we obtain

@)=Y Dy fa(ye e (6.70)

neZ,n>ng

iE2
fn(t) —e § Sl]‘l(zl)fKnECOS(l)7 no = (_)\‘ —U - ET2)9

E2
Kn:\/z/n+)»+U+T 6.71)
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and convergence and analyticity are inherited from the above, for all x > 0,7 > 0, all
the way to x = 0 except for the points (0, (2m + 1)7).

We now show, by contradiction, that (6.59) has no nonzero solutions,

We impose the matching conditions (6.60) for ¢, (x) given by (6.61) for x < 0 and
by (6.70) for x > 0. We must have

dYoooadM= Y Dy (1) = 00) (6.72)

keZ,k>\ neZ,n>noq

This equation holds pointwise except for t = (2m + 1) := t,,, which means that,
except at these points we are dealing with locally analytic functions of ¢, and the series
on the left also converge pointwise uniformly a.e. (more precisely, except at #,,). From
(6.72), since we have C; = 0 for k < A, then

2
/ e M ®()dt =0 forallk < A
0

which we now show it is not possible unless all the D, = 0 in the sum.

Indeed, since the Fourier coefficients of ®(¢) vanish for k < A, then & extends as a
meromorphic function inside the disk bounded by T. Denoting z = ¢!’ the function ®
is presented as a convergent transseries (see e.g. [47]) at z = 0:

S @24 no—nde(ial) _ ~5 % —kn2e -
d=e z Z D, 7'e 2T 2: ZGZZZZG "2 g,(2)
neZ,n>ngo n>nqo

(6.73)

with g, meromorphic and «, strictly increasing in n. When transseries representations
exist, they are unique. Since ® is meromorphic at z = 0, the transseries representation
(6.73) is possible only if all g,, n € N are zero, therefore ® = 0.
In conclusion a(x, t) = 0, hence no poles can exist. O
Note. In the process we showed that we could work with the dominant term in (6.57),
asymptotically, as t — oo.

6.4. End of proof of Theorem 3. Assume x is in a compact set and ¥ (x, 0) € L?. The
fact that decay of ¥ (x, 1) is at least as fast as #~!/? follows from the explicit formula for
¥ (x, t) in terms of ¥ (x, 0) and the following:

Lemma 21. Assume ¥ (x, 0) € L2

(i) We have ¥ (0,1) = Ot~ Y?) ast — oc.

(ii) For x in a compact set ¥ (x,t) = o172,

Proof. (i) The absence of poles proven in Proposition 20 shows that the main large k
asymptotic behavior of ¥ (0, t + 2km w) comes from the Hankel contours around the
branch points, namely (6.49) resulting in O (r~'/?) decay in x, uniformly on compact
sets. (Uniformity follows immediately from (3.8) and (3.10).)

(i) The same arguments as in Sect. 6.3.4 show that ¥ (x, t) = o@=1?).
0

Since V¥ (x,t) = o@u~V% uniformly on compact sets in R, formula (2.2) follows.
Theorem 3 is proved.
Remark 22. Note that starting with distributional (plane wave) initial condition (1.4),

poles appear in h4 as seen by a straightforward calculation and decay to an eventually
periodic solution obtained by physical arguments by Faisal [28]).
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6.5. Computation of hy. Let us start by computing /.
Proposition 23. For the initial condition f(x) = ¥ (0, x) in (1.4) we have

2

—ik t
ho(0,1) = S [erfe (= [4:K) + Roerte ((/£)] (6.74)
and
he (0, 1) = 2 L (I—cos(@n)V2U k2~ 5 (k*+ L )t+1 £ ~ sin(201)

erfc (@\/w RyCR m cos(wt))) . (6.75)

Proof. We first compute i_: by (3.9),

1 0 . . ,y2
h_(t) = ,/—,/ dy (&% + Rye Rl 7 . (6.76)
2mit J_ oo
‘We have

0 ¥ 42 [0 2 [ 1.2
/ dy ke i — i dy e P9 (y+h)? _ —e 7 / dy e'2”

—00 —0o0 —tk

[Tt ke
=,/%e—"‘7erfc(— L), 6.77)

(erfc(—e—%” Viky+ Roerfc(e_%\/f%)). (6.78)

Therefore,

ho(r) = &

We now turn to /24: by (3.11), if qx := ~/2U — k2, then

+-E 2 (1—cos(wr)))?

1 E2
ho(t) == To 2 t 1(U+ )t+l Sln(ZwI)/ dy e kY o — (6.79)
i 0
We have
y COS(wi 2
/Oody e ,M i £ cos(wz))Z/ dy e~y 3742513 (1 —cos(on)
0 0
(6.80)

and

0 1 E
/ dy e —aky ! 3y +21*(1 —cos(wt)) e—lz(—ttqk—;z(I—COS(wt)))2
0

o0 . .
/ dy o %(y+ltqk+w%(lfcos(wz)))2 6.81)
0
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SO

[e'e} (y+ 2(1 cos(wr)})z itq,% aiE [e%e) 1
D% L 9kE c1.2
/ dy e~ WY T — o 2 T2 a COS(M))/ dy &3
0 itq;ﬁ%(l—cos(wz))

itq,%

2
2ite ?

-y

+36E (1 _cos(wr))
w

dye

/fq;ﬁ 2‘/f(] cos(wt))

N 2
lﬂte”gk BE (1—cos(wr))

2
erfc(\/qu + %m(l — cos(wt))). (6.82)

Therefore,

k2+E—2 >
ha(t) = Ty 2(1 cos(et)) gy —i —42 i L sin(wr)
2

erfc(e™ 7 (lJ v + E1=cos@n) ;;%f}”». (6.83)

6.6. Poles of Pyh+. We now compute the poles of Pyh .

Proposition 24. P, h4. has poles at o, = % and /o Pyh is analytic in \/o.

Proof. We start with P, h_. Using the asymptotic expansion of the error function [49,
(7.12.1)],

2
ik

ho(0,1) = eﬁ

+R_(1) (6.84)

with

i
k27t

Proceeding as in section 6.2, we find that \/o P, R _ is analytic in /o . Furthermore,

R_(1) 1= —

(1—=Rop)+0(~ 2). (6.85)

k2 (+27n)
1

2iron € 2 —iﬁt
§ =e i3 — (6.86)
\/_ ﬁ(l _ 82171("7—0))

which has a pole at o = K
We now turn to P, hy. By [49, (7.12.1)],

TO e—lt(U+ )+l ™ 3 sin(2wt)
2,/int(U - &)

Again, proceeding as in section 6.2, we find that \/o P, R _ is analytic in /o O

heo(0, 1) = +0G ). (6.87)
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6.7. End of proof of Theorem 4. As we explained at the beginning of Sect. 6, we only
need to take into account that for the distributional plane wave initial condition, Py /4

has a pole at 0, = % Otherwise, /o P,h4 is analytic in v/o everywhere else (see
Proposition 24). Proceeding as in the proof of Lemma 17, we find that the solution of
the Schrodinger equation (1.5) is of the form

Yx,t) = e—”%p(x,z)(l +0(77) (6.88)

where ¢ (x, ) is 27 /w-periodic, which proves the theorem. m]
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A. Laplace Transform Versus Discrete-Laplace Transform

In a way similar to the classical Poisson summation formula approach, working in
distributions, taking a Laplace transform, which we denote by L, followed by a discrete
Fourier transform is related to a discrete-Laplace transform in the original variable, as
seen below.

1 , 1 O\ 2k 2k
Y Lo —ine)e OO = = |y ()00 + Y ey <r . 7”)
nez k=1
= (Ps)(r) (A1)
where -7 <r < Zand o € [0, ).
To deduce this formula, we calculate

1 . 1 oo .
- Z(lﬁlﬁ)(—ia —inw)e " = — Z/ Uy (e ner gy
2 nez 2 nez 0

Qk+)m/w

1 /o . © o )
- / e(m+mw)tw(t)e—mu)r dr + Z/ e(m+mw)t¢_(t)e—mwr dt
2 =1 Jo = ko

1 /o .
— T Z/ eldlw(t)(a(t) ema)(t—r) dt
T —/w

nez

1 X e 2%k 2k 2%k
[ri— io(s+=.%) + inw(s—r+=%) A2
o ZZ/n/we Vis+——)e (A.2)

neZ k=1°"

where we let 1 = 2]‘7” +s. Using the fact that 5= 3", €~ = Ls_ formula (A.1)
follows.
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Fig. 2. The normalized current % at the interface (in atomic units, so f is dimensionless) as a function of 5—‘7‘1’

for w = 1.55 eV and for the electric field: E = 25V nm™!. The dotted line is the graph of cos(wt) (not to
scale)
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w—we (eV)

Fig. 3. An average of the current after a number of periods as a function of w — w,, for various values of the
field: E = 3 Vam™! (blue), E = 10 Vnm~! (red). For the sake of comparison, we have also plotted the
asymptotic current predicted in [28] as dotted lines: green for E =3 V nm~! and purple for E =10V nm~L,
All four curves are almost on top of each other. We see a sharp transition as w crosses the critical frequency

K, E?
we=U— %+~
¢ 2 4a)[2,

B. Figures

As already mentioned in the introduction Eq. (1.5) is the underlying basic model used
for the interpretation of experiments of electron emission from a metal surface irradiated
by lasers of different frequencies [1,4,22,24,27-37]. This is so despite the fact that the
system described by (1.5) is very idealized, both in the description of the metal and in
the use of a classical electric field. The literature therefore contains many approximate
qualitative solutions of (1.5) or some modification of it. Our analysis which proves the
existence of physical solutions to (1.5) does not give a visualization of the form of such
solutions. To do that requires carefully controlled numerical solutions. Figure 2 shows the
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complex behavior of the current at early times for large fields. Figure 3 shows the steep
rise of the current as the frequency of the applied field crosses the field dependent critical
frequency, which is the energy that is necessary for an electron to absorb in order to be

.. . . . 2 2
extracted from the metal: it is the real solution to the cubic equation w, = U — % + 4’%
2 c

(the term f7 comes from the “Zitterbewegung” [40]). For small E, this reproduces the
usual physiccal picture of the photoelectric effect.

The figures are obtained by solving the integral equation numerically for ¥ (x, ¢) with
controlled approximations [38].
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