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Abstract— Multi-access edge computing (MEC) enables the
computation-intensive and latency-critical application to be
processed at the network edge, which reduces the transmission
latency and energy consumption. The quality of the wireless
channel seriously affects the performance of the edge network.
Consequently, the performance of the edge network can be
significantly improved from the perspective of communication.
The recently advocated intelligent reflecting surface (IRS) intel-
ligently controls the radio propagation environment to improve
the quality of wireless communication links. This paper proposes
an edge heterogeneous network with the assistance of intelligent
reflecting surface. Specifically, the macro base station and small
base stations are equipped with MEC servers, and IRS is adopted
to provide an additional computation offloading link. The user
association, computation offloading and resource allocation,
as well as IRS phase shift design are optimized with the aim
of minimizing the long-term energy consumption subject to the
constraints imposed on quality of service (QoS) and available
resources. The challenge of the optimization problem is rooted
from the fact that update timescale of user association is different
from others. Hence, a two-timescale mechanism is invoked by
marrying tools from matching theory and deep reinforcement
learning. More specifically, the user association decision takes
place in the long timescale. In the short timescale, the com-
putation offloading, resource allocation and IRS phase shift
design strategy is performed. The effectiveness of the proposed
two-timescale mechanism is verified by the simulation results.
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I. INTRODUCTION

THE forthcoming sixth-generation (6G) network and the

booming Internet of Things (IoT) technology contribute

to an exponential growth of intelligent devices. The emergence

of novel applications and services (e.g., autonomous vehicles,

ultra-high-definition (UHD) video streams and augmented

reality (AR), etc.) put forward higher requirements on band-

width, latency, reliability, and energy consumption. Due to

the shortfalls of high latency and high energy consumption

caused by processing tasks in the remote cloud, the centralized

cloud computing is incapable of ensuring the quality of service

(QoS) for users [1]. To combat the above issue, a new para-

digm multi-access edge computing (MEC) [2] is introduced to

deploy computing, storage and control functions at the network

edge (e.g., access points and base stations, etc.), which

enables the resource-constrained mobile devices to execute

the computation-intensive and latency-critical applications.

Therefore, the computation tasks of terminal user equipment

can be offloaded to the MEC server in the edge network for

executing, thereby reducing the transmission latency and the

energy consumption of user equipment, as well as alleviating

the backhaul burden.

The computation offloading problem is formulated in the

edge network with the consideration of whether to offload

and which part to offload [3]. The authors in [4] consider the

binary offloading scheme, where the application is offloaded

to the MEC server as a whole or executed entirely on

local equipment. The work in [5] and [6] considers partial

offloading where the application consists of multiple proce-

dures/components (e.g., AR application), and some compo-

nents is executed on the user equipment and another part is

executed at the network edge. Inter-user interference exists

on both wireless communication links and edge computing

nodes due to the limited resources, which impairs the overall

performance of the edge network. Therefore, computation

offloading and resource allocation are jointly considered in the

recent literature. The transmission power allocation policy is

proposed in [7] with the goal of minimizing the system energy

consumption. The research in [8] formulates the bandwidth

and computation resource optimization problem under QoS
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guarantee constraints, and proposes an alternating direction

multiplier based algorithm to solve the problem. However,

due to the random channel fading characteristic, the quality

of the computation offloading link between users and edge

computing nodes cannot be guaranteed, which affects the data

rate and cannot meet the needs of end users. There exist

three typical methods to increase the data rate of wireless

communication [9]. The first is to deploy more heterogeneous

nodes (such as small cells) in the network to improve access

availability and spectrum utilization. The second is to add

more antennas at the base station to increase channel gain

through massive Multiple Input Multiple Output (MIMO)

technology. The third is to extend the available bandwidth with

higher frequency bands such as mmWave. These promising

technologies generate high hardware and energy costs, com-

plex signal processing problem, and unable to intelligently

adjust random channels while increasing wireless communi-

cation data rates.

Recently, a new paradigm Intelligent reflecting surface (IRS)

is invoked to realize intelligent and reconfigurable wireless

propagation environment in 6G wireless communication sys-

tems [10]. The surface is two-dimensional artificial electro-

magnetic material (namely metasurface), which consists of

considerable passive reflection elements with special physical

structures. The IRS controller implements intelligent control

of the physical channel by adjusting the amplitude and phase

shift of the passive reflective elements in a software-defined

manner. Thus, the ideal multipath effect can be realized by

adjusting the reflection amplitude and phase of the incident

radio frequency (RF) signals. Subsequently, the received sig-

nal power can be enhanced through coherently adding the

reflection RF signals and the interference can be mitigated via

destructively combining signals [11]. Recent work focuses on

integrating intelligent reflecting surface into traditional wire-

less networks to improve communication performance [12],

such as channel modeling [13], channel estimation [14], [15],

and passive reflection optimization in different scenarios [16],

[17], [18], etc. In addition, IRS is utilized in novel scenarios,

such as IRS-assisted physical layer security [19], [20] and

IRS-aided wireless power transfer [21] to improve system

performance.

IRS is expected to effectively enhance the communication

and computation performance of edge network in recent

research [22], [23], [24], [25], [26], [27], [28], [29], [30],

[31]. By deploying IRS between users and edge servers,

IRS provides auxiliary links for users through passive beam-

forming, which increases the wireless link capacity, thus the

computation-intensive tasks can be offloaded to the edge

servers without high computation latency and transmission

energy consumption. Most of the existing work focuses on

single-cell scenarios in IRS-assisted MEC systems [22], [23],

[24], [25], [27], [28], [29], [30]. However, the multicell

scenarios are considered in a paucity of the IRS-assisted

MEC research work [26], [32]. For large-scale edge network

with abundant users and edge servers, the deployment of IRS

plays a crucial role in computation offloading and resource

allocation strategies. IRS can be utilized to assist in offloading

computation tasks to different MEC servers in order to

achieve high resource utilization and low computation latency.

Specifically, IRS can adjust the offloading channel of certain

users to different servers with less computation burden, instead

of offloading to the same adjacent server that would cause

high computation latency. Therefore, this paper innovatively

proposes edge heterogeneous network scenarios with IRS

assistance to minimize energy consumption by optimizing user

association, computation offloading and resource allocation,

as well as IRS phase shift.

The formulation problems with coupled optimization vari-

ables are generally non-convex in the IRS-assisted MEC sys-

tems. Therefore, previous literature mainly employs alternate

optimization to solve the radio and computation resource

allocation subproblem and the IRS phase shift design subprob-

lem separately [26], [32], [33]. The alternating optimization

provides near-optimal solution with guaranteed convergence.

However, due to the high computation complexity and exe-

cution time, the above solution may hinder the practical

application of IRS in edge networks. Deep reinforcement

learning (DRL) can solve complex optimization problems

in the wireless communication system by adopting adaptive

modeling and intelligent learning [34], [35], [36]. Few authors

utilize the DRL algorithms to solve optimization problems

in IRS-assisted MEC systems. The research work in [37]

proposes the DRL algorithm to maximize total utilities of users

in the IRS assisted wireless powered mobile edge computing

network. An asynchronous actor-critic DRL based computa-

tion offloading scheme with reconfigurable intelligent surface

assistance is designed in [9] to minimize the total latency

of users for task execution. Therefore, the DRL algorithm

is leveraged in this paper to learn resource management and

reflection optimization strategy.

The main contributions and innovations of this work are

summarized below:

• This paper proposes an IRS-assisted edge heterogeneous

network including the macro base station and multiple

small base stations equipped with MEC servers. The

IRS provides auxiliary links for users and intelligently

controls the channel status to enhance the communication

performance between users and base stations, and achieve

efficient resource utilization. With the aim of minimizing

the long-term energy consumption of all users while

guaranteeing the QoS (e.g., latency requirements) of

users, a two-timescale mechanism is invoked to optimize

the user association, computation offloading and resource

allocation, as well as IRS phase shift in this paper.

• For the long timescale user association problem, matching

theory with low complexity is adopted to perform one-to-

many matching based on two sides’ preferences between

users and BSs. Since the interference between users

matched with SBSs affects the transmission rate, we uti-

lize swap matching to deal with the interdependence

among users’ preferences (externalities).

• Markov decision process (MDP) is applied to model

the short timescale optimization problem which can be

solved through the reinforcement learning (RL) algo-

rithm. To deal with the high-dimension state space,

the value functions in RL are approximated by deep
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Fig. 1. System model.

neural network (DNN), as well as experience replay and

independent target network techniques to speed up the

convergence of DRL algorithm. Specifically, the Deep

Q-network (DQN) algorithm is introduced to learn com-

putation offloading, resource allocation and IRS phase

shift design policy.

• The simulation result validates the convergence of the

proposed two-timescale algorithm. In contrast with the

benchmark schemes, the performance of energy con-

sumption is demonstrated in different simulation environ-

ments. The proposed algorithm shows that a suitable IRS

phase shift design can provide the passive beamforming

gain, thereby reducing the energy consumption of edge

network.
The organization of this paper is listed as follows. The

system models are showed in Section II. The Section III

introduces the optimization problem. The two-timescale mech-

anism for resource management and reflection optimization

is proposed in Section IV. Section V give the simulation

parameters and results. Finally, this paper is concluded in

Section VI.

Notation: In this paper, italic letters represent scalars.

Vectors and matrices are indicated by boldface lowercase

and uppercase letters, respectively. The superscript (·)T
and

(·)H
represent transpose operation and Hermitian transpose

operation, respectively. R
M×N represents real matrices with

the space of M×N . CM×N represents complex matrices with

the space of M × N .

II. SYSTEM MODELS

This paper considers multiple single-antenna base stations

(BSs) in edge heterogeneous networks, as shown in Fig. 1.

= {0, 1, . . . , N} denotes the set of BSs, and the symbol

n represents the nth base station, where n = 0 represents

the macro base station (MBS) and n ∈ {1, . . . , N} denotes

the small base stations (SBSs). Each BS is equipped with a

multi-core MEC server and the number of CPU cores of BS

n is Cn, which can simultaneously serve at most Cn users.

The set of single-antenna user equipment (UE) is expressed

as = {1, . . . , K}, and the symbol k is used to denote the

kth UE. The set of users associated with BS n is denoted

as n = {1, 2, . . . , Kn}, where Kn is the number of users

associated with BS n and kn refer to the kth user associated

Fig. 2. Graphical illustration of two-timescale model.

with the BS n. Each user has latency-critical applications

including multiple procedures/components with dependency.

Each component of the task is computed on the local equip-

ment or on the MEC server. Since the computing resource of

the SBSs are limited, and to avoid frequent handovers, users

can associate with the MBS for computation offloading. As the

cell-edge users are far away from the MBS, the quality of

the channel is poor. Therefore, it is assumed that the IRS is

utilized to assist the users to associate with MBS. There exist

M IRS reflection elements and the mth reflection element is

represented by symbol m. A smart controller connected to

the IRS dynamically adjusts the reflection elements and also

exchanges control information with the MBS via a separate

wireless link. The base station controller connected to all

BSs is responsible for resource management and reflection

optimization [38]. The MBS is considered as a centralized

controller in this paper [39].

Since the update timescale of user association is larger than

the timescale of computation offloading, resource allocation

and IRS phase shift design, the IRS-assisted edge heteroge-

neous network scenario is modeled as a two-timescale edge

computing model. Hence, the process of the IRS-assisted edge

heterogeneous network occurs on two different timescales:

the user association profile updates on a long timescale, and

computation offloading, resource allocation and IRS phase

shift profile design occur on a short timescale, as shown in

Fig. 2. The basic time unit of the long timescale is defined as

epoch. I = {0, 1, .., I} is adopted to represent the index set of

user association profile starting at each epoch ti, {ti|i ∈ I}.

Each epoch can be divided into a set of time slots which is

denoted as J = {0, 1, .., J}. Computation offloading, resource

allocation and IRS phase shift design are executed at each

time slot tji , {t
j
i |i ∈ I, j ∈ J }, where tJi is the maximum task

execution latency. Without loss of generality, we omit (ti) and

(tji ) in the following expressions, unless epoch ti and time slot

tji are emphasized.

Next, we describe the system model that includes the

communication model in Subsection II-A, and the computation

model in Subsection II-B.

A. Communication Model

In this paper, xk,n (ti) ∈ {0, 1} represents the user associa-

tion variable, where xk,n = 1 indicates that user k associates

with BS n, otherwise 0. At each epoch, each user can be

served by only one BS:
PN

n=0 xk,n = 1. On the condition
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of xk,0 = 1, user k associates with the MBS with two

links: user-BS direct link and user-IRS-BS reflection link.

If xk,n = 1, ∀n ∈ ,n 6= 0, user k is associates SBS

with user-BS direct link. The direct channel of user k and

BS n (baseband equivalent time-domain channel) is denoted

as h̄
d
k,n ∈ C

Ld
k,n×1. The time-domain channel of the MBS

and IRS reflection elements is define as Ḡ = [ḡ1, . . . , ḡm] ∈
CL0×M . The time-domain channel of user k and IRS reflection

element m is expressed as h̄
r
k,m ∈ CLk×1. Ld

k,n, L0 and

Lk are the number of delayed taps of the corresponding

link, respectively. The above channels are assumed to remain

approximately constant at each time slot. Large-scale path

loss and small-scale fading are taken into account in the

communication model. Furthermore, the direct channel of

kth user and nth BS is assumed to follow the exponential

power-delay feature for each multipath channel:
h

h̄
d
k,n

i

l
=

q

%d
k,n

1−α

1−α
Ld

k,n

αl/2νl, ∀l = 0, .., Ld
k,n, where %d

k,n denotes the

large-scale path loss, and 0 < α < 1. Small-scale fading νl

follows the complex Gaussian distribution with zero mean and

unit variance νl ∼ C (0, 1) [40]. The above expression is

also applicable to the channel of the MBS and the IRS, and the

channel of the users and the IRS, which will not be described

here. The path loss is defined as % = %0 (d/d0)
−β

, where β
denotes the path loss exponent. %0 denotes the reference path

loss at reference distance d0. The IRS phase shift matrix is

expressed as φ
�

tji

�

=
h

φ1

�

tji

�

, . . . , φM

�

tji

�iT

∈ CM×1,

where φm = βmejθm , βm ∈ [0, 1] denotes the amplitude and

θm ∈ [0, 2π] denotes the phase. In this paper, the amplitude

is set to a maximum value of 1, and the discrete phase

shift design with ρ phases is considered. The phase set is

denoted as θm ∈ {0, ∆θ, . . . , (ρ − 1)∆θ}, ∆θ = 2π
ρ . The

time-domain effective reflection channel through reflection

element m is denoted as the convolution of the user-IRS

channel, the IRS reflection coefficient and the IRS-MBS
channel: h̄

r
k,m ∗ φm ∗ ḡm = φmh̄

r
k,m ∗ ḡm ∈ CLr

k×1, where

Lr
k = L0 + Lk − 1 is the corresponding number of delayed

taps and ∗ denotes the convolution operation. We adopt

Orthogonal Frequency-Division Multiple Access (OFDMA)

in our work. The number of equally divided sub-bands is

B, and the set is denoted as B = {1, . . . , B}, the bth sub-
band is represented by symbol b [27], [40]. The orthogonal

frequency spectrum is assumed among users associated with

the same BS, as well as users associated with the MBS and
SBS. B0 and Bn, ∀n ∈ {1, . . . , N} are represented as the set of

sub-bands allocated to the MBS and SBSs, respectively where

B0 ∩ Bn = ∅, ∀n ∈ {1, . . . , N}. Therefore, we consider the

interference between SBSs. The sub-band allocation variable

yk,b

�

tji

�

∈ {0, 1} indicates whether sub-band b is allocated to

the user k, where yk,b = 1 denotes that sub-band b is allocated

to user k, otherwise 0. At each time slot, each sub-band can

only be allocated to at most one user associated with any

BS:
P

n

k=1 yk,b ≤ 1, ∀n ∈ , ∀b ∈ B. Each user should be

allocated to at least one sub-band:
PB

b=1 yk,b ≥ 1, ∀k ∈ .

The transmit power on sub-band b is expressed as pk,b

�

tji

�

,

where the transmit power is assumed to be a discrete set:

pk,b

�

tji

�

∈ {0, p1, p2,...,P
max
k }. And the relationship between

the transmit power with the sub-band allocation variable yk,b

is defined as,

yk,b =

(

0, if pk,b = 0,

1, if pk,b>0.
(1)

And
PB

b=1 pk,b ≤ Pmax
k , ∀k ∈ , where Pmax

k denotes the

maximum transmit power of kth user.

The zero-padded concatenated IRS-BS channel and user-

IRS channel of IRS reflection element m is denoted as hk,m =
h

	

h̄
r
k,m ∗ ḡm


T
, 0, . . . , 0

iT

∈ CB×1. Thus, the zero-padded

concatenated channel between user k and IRS, and the MBS

can be uniformly expressed as Hk = [hk,1, . . . ,hk,M ] ∈
CB×M . And we denote the zero-padded concatenated user-BS

channel as hd
k,n =

h

h̄
d
k,n, 0, . . . , 0

i

∈ CB×1. Consequently,

the superposed channel impulse response (CIR) is derived as,

hCIR
k,n = xk,0Hkφ + hd

k,n, (2)

where Lk,n = max
�

Ld
k,n, Lr

k

�

stands for the number of

delayed taps. To eliminate the inter-symbol interference (ISI),

the number of cyclic prefixes is assumed to be not less than

the maximum number of delayed taps. The channel frequency

response (CFR) on sub-band b of user k associated with BS

n is defined as,

hCFR
k,n,b = xk,0f

H
b Hkφ + fH

b h
d

k,n, (3)

where fH
b is the bth row of discrete Fourier transform (DFT)

matrix F B . The B × B DFT matrix F B is defined as

[FB]ı, = e−j 2πı

B , 0 ≤ ı,  ≤ B − 1. It is assumed that

the perfect knowledge of channel h
d
k,n and Hk are available

at BSs.1 The achievable rate (bps) of user k associated with

BS n is defined as (4), shown at the bottom of the next page,

where Γ is the gap between a specific modulation and coding

scheme and the channel capacity. The receiver noise at each

sub-band is modeled as an independent circularly symmetric

complex Gaussian (CSCG) random variable with zero mean

and variance σ2.

B. Computation Model

In fact, mobile applications consist of multiple proce-

dures/components (such as face recognition and AR applica-

tions), and so it is necessary to partially offload the users’

computation tasks to the MEC servers. Task models of

partial offloading consist of data partition model [41] and

task partition model [42]. The task input size of the data

partitioning model is bit-wise independent. The task can be

divided into groups of any size, and then are computed on the

user equipment and the MEC server concurrently. Whereas, the

dependencies between the components of application cannot

be ignored in certain applications. Hence, a typical directed

acyclic graph (DAG) task-call graph is utilized in the task

partition model. G(V , E) is denoted as the task-call graph,

where the set of vertices V stands for the set of component and

1Naturally, the assumption is idealistic. Therefore, the algorithm proposed in
this paper can be regarded as representing the best-case bound for the energy
performance of realistic scenarios.
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the set of edges E represents the dependency between subtasks.

Typical dependency models of subtasks include sequential

dependency, parallel dependency, and general dependency. The

sequential dependency task model is considered in this paper

(e.g., immersive applications [43] or deep neural network

models [44], [45]). The subtasks can be computed locally

on the user equipment, or offloaded to the MEC servers for

computation.

Tuple J v
k � (v, χv

k, du,v
k , dv,w

k ) represents subtask v of

user’s application Gk, where du,v
k stands for the input data

size of subtask v and u is the previous task of subtask v.

dv,w
k expresses the output data size of subtask v and w is the

next task of subtask v. χv
k (cycles/byte) denotes the number

of clock cycles performed by the microprocessor per byte of

data. The maximum tolerable latency of user k is expressed

as T max
k .

BS n manages a virtual task queue in each time slot

tji to store the computation requests of users associated

with it and the queue is represented by Qn

�

tji

�

=

{q1,n

�

tji

�

, . . . , ql,n

�

tji

�

}, where l is the maximum length

of the task queue, qi,n = {k,J v
k } denotes the parameter

vector of element i in the task queue. The set of computation

offloading decision for the task queue at time slot tji is

expressed as zn

�

tji

�

= {z1,n

�

tji

�

, . . . , zl,n

�

tji

�

}, where

zi,n ∈ {0, 1} denotes the computation offloading variable of

element qi,n. When the subtask i is offloaded to the MEC

server: zi,n = 1, if the subtask i is executed locally on user

equipment: zi,n = 0. At time slot tji , the total execution time

of the task queue Qn

�

tji

�

is derived as

T exe
n

�

tji

�

=

l
X

i=1

T exe
i,n

�

tji

�

, (5)

where T exe
i,n

�

tji

�

is defined as

T exe
i,n

�

tji

�

=







du,v

k
χv

k

f l
k

, if zi,n = 0,
�

1 − zi,n

�

tj−1
i

��

du,v

k

rk,n
+

du,v

k
χv

k

fc
n

, if zi,n = 1,

(6)

where f l
k denotes the CPU frequency of user k and f c

n

expresses the CPU core frequency of the MEC server associ-

ated with BS n. At each time slot, the computation capability

of the MEC server is limited:
Pl

i=1 zi,n ≤ Cn.

At time slot tji , the total energy consumption of the task

queue Qn

�

tji

�

is expressed as

Eexe
n

�

tji

�

=
l

X

i=1

Eexe
i,n

�

tji

�

, (7)

where Eexe
i,n

�

tji

�

is obtained as

Eexe
i,n

�

tji

�

=















ζmob (du,v
k )χv

k

(

f l
k

)2
, if zi,n = 0,

�

1 − zi,n

�

tj−1
i

��

PB
b=1 pk,b

du,v

k

rk,n

+ζed
u,v
k χv

k (f c
n)

2
, if zi,n = 1.

(8)

ζmob and ζe denote the effective capacitance coefficients that

are determined by the chip architecture of user equipment and

MEC server, respectively [46], [47]. It is worth noting that we

only consider the uplink execution latency and energy con-

sumption, and the downlink latency and energy consumption

are ignored in this paper [44].

III. PROBLEM FORMULATION

In this paper, the optimization problem is formulated to

minimize the system energy consumption over the entire time

horizon while satisfying the QoS of users, i.e.,

min
X,Y ,P ,φ,Z

I
X

i=0

J
X

j=0

N
X

n=0

Eexe
n

�

tji

�

(9)

s.t.

N
X

n=0

xk,n (ti) = 1, ∀k ∈ , (9a)

m
X

k=1

yk,b

�

tji

�

≤ 1, ∀m ∈ , ∀b ∈ B, (9b)

B
X

b=1

yk,b

�

tji

�

≥ 1, ∀k ∈ , (9c)

B
X

b=1

pk,b

�

tji

�

≤ Pmax
k , ∀k ∈ , (9d)

l
X

i=1

zi,n

�

tji

�

≤ Cn, ∀n ∈ , (9e)

T exe
k,n (ti) ≤ T max

k , ∀k ∈ , (9f)

Here X = [x1, . . . ,xK ] ∈ R(N+1)×K denotes the user

association matrix where xk = [xk,0, xk,1, . . . , xk,N ]
T ∈

R(N+1)×1. Y = [y1, . . . ,yK ] ∈ RB×K stands for the

sub-band allocation matrix where yk = [yk,1, . . . , yk,B]
T ∈

R
B×1. P = [p1, . . . ,pK ] ∈ R

B×K expresses the power

allocation matrix where pk = [pk,1, . . . , pk,B]
T ∈ RB×1.

φ = [φ1, . . . , φM ]
T ∈ CM×1 represents the phase shift

matrix. Z = [z1, . . . ,zl] ∈ R
(N+1)×l shows the computation

offloading matrix. Constraint (9a) restricts that only one BS

can be associated with each user. Constraints (9b) and (9c)

guarantee that each sub-band can only be allocated to at most

one user associated with any BS at each time slot and each

user should be allocated to at least one sub-band, respectively.

Constraint (9d) reflects the power of all sub-bands allocated

rk,n =

B
X

b=1

xk,nyk,bWlog2






1 +

pk,b

�

�

�
hCFR

k,n,b

�

�

�

2

PN
m=1,m 6=n

P

l∈ m
pl,b

�

�

�f
H
b h

d

l,n

�

�

�

2

+ Γσ2






, (4)
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to each user cannot exceed the maximum transmit power.

Constraint (9e) reveals that the MEC server connected to BS n
can serve at most Cn users at the same time. Constraint (9f)

ensures that the execution time of user’s application should

meet the requirement of the maximum tolerable latency, where

T exe
k,n (ti) =

PJ
j=1 T exe

k,n

�

tji

�

.

The optimization problem is a nonlinear integer program-

ming with variables of different timescales, which indicates

the problem is generally NP-hard. To combat the above issue,

this paper adopts a two-timescale mechanism for solving the

long timescale variables and the short timescale variables

separately. Specifically, the matching theory is employed to

obtain the user association decision in the long timescale.

In the short timescale, the computation offloading, sub-band

and power allocation, as well as IRS phase shift strategy

can then be learned using deep reinforcement learning. The

reason for employing the matching theory to address the

user association problem depends on the advantage of low

complexity in comparison with the traditional solutions, e.g.,

the exhaustive search. To be specific, the complexity is

O
(

NK
)

in the exhaustive search method, which leads to the

exponential growth in terms of the users’ number, while the

complexity is O
(

K2
)

in the matching theory method [48].

Since the dynamics of the environment which including

wireless channels, computation requests, and resource states

can affect the computation offloading, resource allocation

and IRS phase shift design decisions, the short timescale

optimization problem is viewed as the sequential decision

problem. Therefore, the short timescale problem is modeled

as MDP and solved by reinforcement learning.

IV. THE PROPOSED TWO-TIMESCALE MECHANISM

FOR RESOURCE MANAGEMENT AND

REFLECTION OPTIMIZATION

First, we introduce an outline of the proposed resource

management and reflection optimization scheme. The

details of proposed scheme will be described in the

Subsections IV-A and IV-B. In the beginning of each epoch,

we carry out a user association scheme. Since each user is

allowed to associates with only one BS, and each BS can serve

multiple users, we develop a one-to-many matching algorithm

to associate each BS with multiple users. Furthermore, due

to the high-dimension state space of the short timescale

RL-based framework, the DRL approach is then employed to

learn the computation offloading, resource allocation and IRS

phase shift design scheme in each time slot.

A. User Association Using Matching Theory

In this paper, the two-sided matching game is utilized to

model the long-timescale user association problem where there

exist two disjoint sets of players, the user set , and the BS set

. In the proposed game, each user can be matched with one

BS while each BS can be matched with multiple users. Thus,

a one-to-many matching is taken into account and defined as

follows.

Definition 1: The proposed one-to-many matching game

consists of two sets of players, and , and the matching x

is defined as a function from × to the set of all subsets

of × with

|x (k)| = 1, ∀k ∈ ,

|x (n)| ≤ K, ∀n ∈ ,

n = x (k) ⇔ k ∈ x (n) .

Therefore, the user association indicator can be specified from

a matching x,

xk,n (ti) =

(

1, if n = x (k) ,

0, otherwise.
(10)

Each user aims to be associated with the BS which enables

the user to achieve its maximum utility. Hence, the user’s

matching preference over the BSs is sorted in the descending

order based on the achievable rates. The preference profile of

the BS is defined over all users which minimizes the energy

consumption. Therefore, the matching preference of the BS

over the users is based on the negative energy consumption

in the descending order. The preference profile of user k is

represented by a vector of the utility ψk (x) which is defined

as follows:

ψk (x) = rk (xk, Y , P , φ) , (11)

and the preference profile of BS n is represented by a vector

of utility ψn (x) which is defined as:

ψn (x) = −Eexe
n (X, zn, Y , P , φ) , (12)

where zn, Y , P , φ are obtained by the short-timescale com-

putation offloading, resource allocation and IRS phase shift

design scheme in Subsection IV-B.

Since the rate is affected by interference between the users

which are associated with the SBSs, the preference of user also

hinges on the association situation of other users. Therefore,

the preference dynamically changes with the matching state of

other players and the interdependency between the preferences

of players is defined as externalities [49], [50]. Therefore, one-

to-many matching with externalities can be solved by swap

matching [51].

Definition 2: Given a one-to-many matching x with k ∈
x(n), and k0 ∈ x(n0), k, k0 ∈ n, n0 ∈ , a swap

matching is defined as xk′n′

kn = {x\ {(k, n), (k0, n0)} ∪
{(k, n0) , (k0, n)}}.

A swap matching allows one pair of users (k, k0) to

switch their matched BSs (n, n0) while keeping other user-BS

matchings unchanged.

Definition 3: For the matching x, (k, k0) is a swap-blocking

pair if and only if [50].

1) ∀u ∈ {k, k0, n, n0}, ψu(xk′n′

kn ) ≥ ψu(x),
2) ∃u ∈ {k, k0, n, n0}, ψu(xk′n′

kn ) > ψu(x),
3) the constraint (9f) is satisfied.

Hence, two users exchange their respective matched BSs on

condition that after the swap matching operation between a

swap-blocking pair, 1) the utilities of both users and BSs will

not decrease, 2) the utility of at least one increases, 3) the

latency constraint of each user is not violated.
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Definition 4 (Two-Sided Exchange Stability): A matching

x∗ is two-sided exchange stable if swap-blocking pairs don’t

exist [51].

Algorithm 1 One-to-Many Matching with Externalities based

User Association
1. Initialization: Choose a random matching x while the constraint
(9f) is satisfied. And calculate (11) and (12).
2. repeat
3. Choose user k ∈ ,x(k) = n and user k0

∈ x(n0).
4. if the pair of users (k, k0) is a swap-blocking pair in the current
matching

5. Update x ← xk′n′

kn ;
6. Calculate (11) and (12).
7. until There exist no swap-blocking pairs in the current matching.
8. The two-sided exchange-stable matching x∗ is obtained and then
the user association indicator is obtained according to (10).
9. return Stable one-to-many matching results.

The matching based algorithm is summarized as follows.

Firstly, a matching x is randomly initialized under the con-

dition that the QoS of users is satisfied, and the utility of

the user and BS is calculated according to (11) and (12).

Then, the iterative process is looped to find swap-blocking

pair, update swap matching and calculate utility until two-sided

exchange stable matching is reached, thus determining the user

association strategy. Algorithm 1 presents the one-to-many

matching with externalities based user association algorithm.

Each swap operation reduces the system energy consumption

strictly and generates a new matching. After finite number

of iterations, the algorithm will converge to a stable match-

ing owing to the limited number of users and BSs, which

ensures the convergence of the Algorithm 1. Consequently, the

exchange between any two users will not reduce the system

energy consumption, which achieves a local optimal solution.

B. Deep Q-Network Based Computation Offloading,

Resource Allocation and IRS Phase Shift Design

The user association strategy X∗ is obtained using match-

ing theory in the Subsection IV-A. Subsequently, Markov

decision process is employed to model the short timescale

optimization problem. The MDP consists of a five-elements

tuple hS, A, P, R, γi, where S is the state space, A is the

action space, P is the state transition probability, R is

the reward, and γ is the discount factor which is used

to calculate cumulative returns. The goal of reinforcement

learning algorithm is to learn an optimal policy given an

MDP, where the policy refers to the mapping from state to

action: π (s|a) = P [At = a|St = s]. Whereas, the state of the

next time slot cannot be obtained in the original optimization

problem, which means that the state transition probability

of the MDP framework is unknown in advance. Therefore,

this paper applies the model-free RL to address the above

issue. Specifically, through the continuous interaction with

the environment, the agent evaluates the actions according

to the feedback of the environment (reward), and aims to

continuously improve the policy, until the optimal solution

of actions in each state is found. The definitions of the state,

action and reward in the RL-based framework are given below.

State: At time slot tji , the state of the agent is defined as

S
�

tji

�

= {S0(t
j
i ), S1(t

j
i ), . . . ,SN(tji )}. The state includes

channel state, virtual task queue and current computing

resources. Thereinto, the state of the SBS is defined as

Sn =
n

H̄
d
n, Qn, cn

o

, ∀n ∈ {1, . . . , N}, where H̄
d
n =

{h̄
d
1,n, .., h̄

d
K,n}. cn

�

tji

�

indicates the number of CPU cores

available to the server at time slot tji , cn

�

tji

�

= cn

�

tj−1
i

�

−
Pk

i=1 zi,n

�

tj−1
i

�

and cn

(

t0i
)

= Cn. The state of the

MBS is defined as S0 =
n

H̄
d
0, Ḡ, H̄

r
m, Q0, c0

o

, where

H
r

m = {h̄
r
1,m, .., h̄

r
K,m}.

Action: At time slot tji , the action of the agent is defined as

A
�

tji

�

= {Y
�

tji

�

, P
�

tji

�

, φ
�

tji

�

, Z
�

tji

�

}, which denote

the sub-band allocation, power allocation, IRS phase shift

design and computation offloading actions, respectively.

Reward: The optimization goal of this work is to minimize

the system energy consumption under the latency constraint,

thus the reward is defined as the weighted sum of negative

energy consumption and latency penalty. At time slot tji , the

reward is defined as follows,

R
�

tji

�

= −β1

"

N
X

n=0

Eexe
n

�

tji

�

�

�

�

�

�

X∗ (ti)

#

+ 1 {j = J} β2

K
X

k=1

N
X

n=0

min

×
n�

T max
k − T exe

k,n (ti)
�

, 0
o

. (13)

The two terms of the reward have different units. Accordingly,

a weighting factor β is added to the reward for normalization,

where β1 + β2 = 1 and βi ≥ 0, ∀i ∈ {1, 2}. 1 {j = J}
denotes an indicator function whose value is 1 when j = J ,

otherwise 0.

It is worth noting that the action space of this work is

discrete. Therefore, the policy can be optimized according to

the action-value function Qπ (s, a) (Q function). Traditional

RL algorithms such as Q-learning [52] store the value function

in the Q-table. However, the state space of our work is high-

dimension, it is difficult to store and calculate value functions

in the table since the computation time and complexity of the

RL algorithms can increase exponentially, making it hard to

converge. To address the above issue, deep neural networks are

utilized for approximating the estimated value functions. The

neural networks are trained using the training sample obtained

by the interaction between the agent and the environment to

approximate the value function, which improves the estimation

accuracy, thereby accelerating the convergence speed of the

RL. In this paper, the Deep Q-Network (DQN) algorithm [53]

that introduces DNN into Q-learning is leveraged to learn

the computation offloading, resource allocation and IRS phase

shift design strategy.

Reinforcement learning is considered unstable or even dif-

ficult to converge when the value functions are approximated

using nonlinear functions such as DNNs. The reasons are

as follows. Firstly, there exist correlations between the data
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collected through a series of observations, and a tiny change of

Q function will significantly change the policy and thus change

the data distribution. Secondly, there exist correlations between

the Q function and the target value. The DQN algorithm

employs the experience replay and independent target network

techniques to deal with the algorithm instability. Specifically,

the experience replay technique randomly samples data to

break the correlation between data and smooth the change

of data distribution. Independent target network indicates that

the target value and the Q function are represented by different

parameters, and the parameter update frequency is set to be

different to reduce the correlation between the two networks.

Algorithm 2 The DQN Based Computation Offloading,

Resource Allocation and IRS Phase Shift Design Algorithm

Initialization: replay buffer D with capacity N , Q network Q with

random weight θ, target network Q̂ with weight θ− = θ.

1. For Episode = 1, · · · , M do
2. Initialize state s1.
3. For each step t = 1, · · · , T do
4. According to the ε-Greedy strategy, the action at is randomly
choosed with the probability of ε, and is choosed based on at =
argmaxaQ (st, a; θ) with the probability of (1 − ε).
5. execute action at, transit to state st+1 and receive reward rt.
6. store (st, at, rt, st+1) in replay buffer D.
7. sample a minibatch of samples (sj , aj , rj , sj+1) from D

randomly.
8. set the target of TD-error:

Yj =

�
rj , if Episode = J + 1,

rj + γ maxa′ Q
�
sj+1, a

0; θ−

i

�
, otherwise.

9. Perform gradient descent for (Yj−Q (sj , a; θi))
2
, update net-

work parameter θ.
10. Update target network parameter every C steps θ− = θ.
11. End For
12. End For

For the DQN algorithm, DNN is applied to approximate

the action-value function Q (s, a; θi) (Q network), where θi

is the parameter of Q network at the ith iteration. The input of

the DNN is the state, followed by two fully connected layers,

and the output is the action-value function corresponding

to all actions in the input state. The data set that stores

the experience of the agent is required as the replay buffer

Dt = {e1 · · · , et}, where the experience of each step et =
(st, at, rt, st+1) consists of the current state, action, reward

and next state. DQN applies the update method of Q-learning,

randomly and uniformly samples a minibatch data in the replay

buffer, and adopts the following loss function to update the

neural network parameters:

Li (θi) = E(s,a,r,s′)∼U(D)

×

�

�

r + γ max
a′

Q̂
(

s0, a0; θ−i
)

− Q (s, a; θi)
�2

�

.

(14)

Specifically, the Q network Q (s, a; θi) and the target network

Q̂
(

s0, a0; θ−i
)

need to be updated, where θ−i denotes the target

network parameter at the ith iteration, and the update time

of parameters θi and θ−i are different. The target network

parameter θ−i is updated every C steps with the Q network

parameter θi and is fixed at other times, while θi is updated

every step. Training the Q network is the process of updating

the parameter θ with the goal of minimizing the loss function.

Yi = r+γ maxa′ Q
(

s0, a0; θ−i
)

denotes the target of temporal

difference (TD). Therefore, utilizing the target Yi with another

parameter set of delayed update adds a delay between the time

when the Q network is updated and the time when the TD

target Yi is updated, which solves the problem of oscillation

or non-convergence in RL. Gradient descent method is adopted

to update parameters with the aim of minimizing the loss

function L (θi):

∇θi
L (θi) = E(s,a,r,s′) [(Yi − Q (s, a; θi))∇θi

Q (s, a; θi)] ,

(15)

θi+1 = θi + α∇θi
L (θi) ,

(16)

where α is the learning rate.

Algorithm 2 demonstrates the DQN based computation

offloading, resource allocation and IRS phase shift design

algorithm. First, the replay buffer D and the two networks are

initialized. Episode represents the process from the initial state

of agent to the final state. The following steps are performed

for each episode. The initial state s1 of each episode is

initialized. For each step t of episode m, action at is chosen

according to the ε-Greedy strategy, then the agent performs

action at, observes reward rt and transits to the next state

st+1. The experience (st, at, rt, st+1) is stored in the replay

buffer D, and a minibatch of data is uniformly and randomly

sampled from D in order to update the Q network parameter θ
according to (16) using the gradient descent method. The target

network updates parameter θ− every C steps. The complexity

of learning procedure for the DQN based algorithm is denoted

as O
�

T
�

PLDQN

l=0 n
(l)
DQNn

(l+1)
DQN

��

, where LDQN is the number

of hidden layers in the DNN, and nDQN is the number of

neurons in each layer. We adopt a fully-connected DNN that

has two hidden layers of 100 neurons and adopt the activation

function of ReLU.

The proposed two-timescale mechanism for resource man-

agement and reflection optimization is shown in Algorithm 3.

Specifically, in each epoch i, the matching theory algorithm is

performed. And then at the current epoch, the DRL algorithm

is performed for each timescale slot j.

Algorithm 3 The Proposed Two-Timescale Mechanism for

Resource Management and Reflection Optimization

Initialization: The number of epochs I and the number of time slots
J .

1. For i = 0, · · · , I do
2. At epoch ti, the user association scheme is obtained based on
Algorithm 1.
3. For j = 1, · · · , J do
4. At time slot t

j
i , the computation offloading, resource allocation

and IRS phase shift design scheme is learned based on Algorithm 2.
5. End For
6. End For

Authorized licensed use limited to: University of Houston. Downloaded on July 02,2023 at 14:18:09 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: RESOURCE MANAGEMENT AND REFLECTION OPTIMIZATION FOR IRS ASSISTED MEC USING DRL 1183

TABLE I

SIMULATION PARAMETERS

V. NUMERICAL SIMULATIONS

The performance of the proposed two-timescale mechanism

for the resource management and reflection optimization is

simulated by Python 3.6 and TensorFlow 1.12.0. The numbers

of MBS and SBSs are set to 1 and 2, and the number of

users is considered as 10. In addition, the number of CPU

cores for the MEC server connected to the MBS is set to 16,

and the number of CPU cores for the MEC server connected

to the SBS is set to 8. The distance between the IRS and

the MBS is set to 200m. Users are located in a semicircular

area within 50m around the IRS, and the distance between

users and the SBS is within 50m. For each multipath channel,

α = 0.5. The reference path loss %0 at reference distance

d0 = 1m is -30dB. The computation task is considered as

augmented reality application, which consists of 3 separable

computation-intensive subtasks [47]. The specific simulation

parameters of this paper are given in Table I.

Two benchmark algorithms are adopted for comparison

with the proposed algorithm. 1) random phase shift scheme:

the user association, computation offloading and resource

allocation strategy is optimized according to Algorithm 3.

The IRS phase is randomly selected which obeys the uniform

distribution with the range of [0, 2π] instead of optimizing

based on the proposed algorithm. 2) without IRS scheme:

the user association, computation offloading and resource

allocation strategy is optimized in the edge heterogeneous

network without IRS assistance.

Fig. 3 illustrates the average convergence performance

of the proposed algorithm and Q-learning based benchmark

algorithm for each epoch. The reward gradually increases as

the training continues. It is worth noting that due to the large

state space and action space, the environment is complex in

the proposed IRS-assisted edge heterogeneous network, about

1,250 training episodes are required for the proposed algorithm

to converge properly. While the Q-learning based algorithm

requires about 1800 iterations to converge. The proposed

DQN based scheme learns much faster than the Q-leaning

based scheme. Since the DRL based scheme can improve the

efficiency and accuracy for estimating the Q value by means

Fig. 3. The convergence performance of the proposed algorithm.

Fig. 4. The influence of different IRS discrete phase shift levels on total
energy consumption.

of DNNs, thereby allowing the agent to obtain the optimal

strategy faster. During the training process, the rewards of

subsequent episodes will fluctuate due to the utilization of

ε-greedy strategy for exploitation and exploration. Thus, the

result verifies the convergence of the proposed method.

Fig. 4 demonstrates the influence of the discrete phase shift

level number on energy consumption. The 1-bit phase shift

stands for ρ = 2; the 2-bit phase shift represents ρ = 4; the

3-bit phase shift denotes ρ = 8. When increasing the phase

shift level from 1-bit to 2-bit, the reduction in energy consump-

tion varies from 2.7% to 9.69%. However, when the phase shift

level increases from 2-bit to 3-bit, the energy consumption

decreases from 0.37% to 2.7%. The results demonstrate that

the adoption of 1-bit phase shift has a greater impact on

energy consumption compared to the adoption of 2-bit and

3-bit, while the performance loss of adopting 2-bit and 3-bit

is acceptable. Considering the difficulty of designing IRS,

2-bit phase shift is generally applied in practical system [54].

In addition, the increasing of IRS reflection elements can

compensate the loss generated through the low-precision

discrete phase shift. Therefore, 2-bit reflection array is adopted

to obtain good performance in this work.

Fig. 5 depicts the total energy consumption obtained based

on the proposed algorithm and benchmark algorithms under a

Authorized licensed use limited to: University of Houston. Downloaded on July 02,2023 at 14:18:09 UTC from IEEE Xplore.  Restrictions apply. 



1184 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 2, FEBRUARY 2023

Fig. 5. The total energy consumption versus the number of IRS reflection
elements.

Fig. 6. The total energy consumption versus the number of sub-bands.

set of various IRS reflection elements number. The gap in total

energy consumption between the without the IRS scheme and

the random phase shift scheme grows as the reflection element

increases, which indicates that even without careful design of

the IRS reflection coefficient, the energy consumption can be

reduced through the IRS assistance. Furthermore, the proposed

algorithm outperforms the random phase shift scheme, which

reflects that the passive beamforming gain is provided to

reduce the communication burden through the refined IRS

reflection coefficient design.

Fig. 6 shows the trend of total energy consumption as

the number of sub-bands changes. The energy consumption

reduces as the sub-bands number augments. This can be

explained as the sum of channel gains of each user equipment

increases with the escalation of sub-band. Furthermore, when

M increases, the sub-bands typically have greater channel

gain as it is assumed that the sub-bands are independent.

For the proposed algorithm, the total energy consumption

is down slightly when the number of sub-bands increases

from 16 to 32. Moreover, the figure depicts the insignifi-

cant reduction in energy consumption when the number of

sub-bands is larger than 32. This can explained as the energy

consumption is mainly generated through the process of

computation offloading when the communication resources are

Fig. 7. The total energy consumption versus the number of users.

not enough, while the energy consumption is mainly generated

by the process of task computation when the communication

resources are sufficient.

Fig. 7 illustrates the relationship between the total energy

consumption and the number of users. As the number of

users increases, the energy consumption of the proposed and

benchmark schemes augments rapidly. Compared with the

benchmark schemes, the energy consumption generated by the

proposed algorithm is the lowest since the user association,

computation offloading, resource allocation and IRS phase

shift design are jointly optimized by the proposed algorithm.

To be specific, compared with the proposed algorithm, the

energy consumption obtained by random phase shift scheme

is severely affected by the inability to optimize the phase shift.

Besides, the energy consumption generated by the without IRS

scheme is the highest in contrast with the proposed and random

phase shift schemes. Because channel condition cannot be

improved with IRS assistance, which results in the energy

consumption of the communication link increases. Whereas,

the proposed algorithm and random phase shift scheme utilize

the assistance of IRS to enhance the wireless link capacity and

reduce energy consumption.

VI. CONCLUSION

This paper proposes resource management and reflection

optimization scheme for IRS assisted edge heterogeneous

network. Specifically, a scenario composed of the MBS and

SBSs which are equipped with MEC servers is considered,

in which the IRS assists the users in offloading computation

tasks to the MBS. The optimization objective of our work

is to minimize the long-term total energy consumption while

guaranteeing the quality of service for the users. The opti-

mization problem is formulated as two-timescale mechanism

since the update timescale of user association is larger than

the timescale of computation offloading, resource allocation

and IRS phase shift design. For the long timescale, the

matching theory based user association algorithm is proposed.

For the short timescale, we put forward the DQN-based

computation offloading, resource allocation, and IRS phase

shift design algorithm. The simulation results validate the

convergence performance of the two-timescale mechanism

and illustrate that limited IRS discrete phase shift levels can

achieve good performance. Furthermore, by quantifying the
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energy consumption of the IRS-assisted edge heterogeneous

network in different simulation environments, the proposed

algorithm demonstrates phase-shift design can provide the

passive beamforming gain in comparison with the benchmark

schemes, which enables the edge network to reduce energy

consumption.
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