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Resource Management and Reflection Optimization
for Intelligent Reflecting Surface Assisted
Multi-Access Edge Computing Using Deep
Reinforcement Learning

Zhaoying Wang ', Yifei Wei
F. Richard Yu

Abstract— Multi-access edge computing (MEC) enables the
computation-intensive and latency-critical application to be
processed at the network edge, which reduces the transmission
latency and energy consumption. The quality of the wireless
channel seriously affects the performance of the edge network.
Consequently, the performance of the edge network can be
significantly improved from the perspective of communication.
The recently advocated intelligent reflecting surface (IRS) intel-
ligently controls the radio propagation environment to improve
the quality of wireless communication links. This paper proposes
an edge heterogeneous network with the assistance of intelligent
reflecting surface. Specifically, the macro base station and small
base stations are equipped with MEC servers, and IRS is adopted
to provide an additional computation offloading link. The user
association, computation offloading and resource allocation,
as well as IRS phase shift design are optimized with the aim
of minimizing the long-term energy consumption subject to the
constraints imposed on quality of service (QoS) and available
resources. The challenge of the optimization problem is rooted
from the fact that update timescale of user association is different
from others. Hence, a two-timescale mechanism is invoked by
marrying tools from matching theory and deep reinforcement
learning. More specifically, the user association decision takes
place in the long timescale. In the short timescale, the com-
putation offloading, resource allocation and IRS phase shift
design strategy is performed. The effectiveness of the proposed
two-timescale mechanism is verified by the simulation results.
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I. INTRODUCTION

HE forthcoming sixth-generation (6G) network and the

booming Internet of Things (IoT) technology contribute
to an exponential growth of intelligent devices. The emergence
of novel applications and services (e.g., autonomous vehicles,
ultra-high-definition (UHD) video streams and augmented
reality (AR), etc.) put forward higher requirements on band-
width, latency, reliability, and energy consumption. Due to
the shortfalls of high latency and high energy consumption
caused by processing tasks in the remote cloud, the centralized
cloud computing is incapable of ensuring the quality of service
(QoS) for users [1]. To combat the above issue, a new para-
digm multi-access edge computing (MEC) [2] is introduced to
deploy computing, storage and control functions at the network
edge (e.g., access points and base stations, etc.), which
enables the resource-constrained mobile devices to execute
the computation-intensive and latency-critical applications.
Therefore, the computation tasks of terminal user equipment
can be offloaded to the MEC server in the edge network for
executing, thereby reducing the transmission latency and the
energy consumption of user equipment, as well as alleviating
the backhaul burden.

The computation offloading problem is formulated in the
edge network with the consideration of whether to offload
and which part to offload [3]. The authors in [4] consider the
binary offloading scheme, where the application is offloaded
to the MEC server as a whole or executed entirely on
local equipment. The work in [5] and [6] considers partial
offloading where the application consists of multiple proce-
dures/components (e.g., AR application), and some compo-
nents is executed on the user equipment and another part is
executed at the network edge. Inter-user interference exists
on both wireless communication links and edge computing
nodes due to the limited resources, which impairs the overall
performance of the edge network. Therefore, computation
offloading and resource allocation are jointly considered in the
recent literature. The transmission power allocation policy is
proposed in [7] with the goal of minimizing the system energy
consumption. The research in [8] formulates the bandwidth
and computation resource optimization problem under QoS
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guarantee constraints, and proposes an alternating direction
multiplier based algorithm to solve the problem. However,
due to the random channel fading characteristic, the quality
of the computation offloading link between users and edge
computing nodes cannot be guaranteed, which affects the data
rate and cannot meet the needs of end users. There exist
three typical methods to increase the data rate of wireless
communication [9]. The first is to deploy more heterogeneous
nodes (such as small cells) in the network to improve access
availability and spectrum utilization. The second is to add
more antennas at the base station to increase channel gain
through massive Multiple Input Multiple Output (MIMO)
technology. The third is to extend the available bandwidth with
higher frequency bands such as mmWave. These promising
technologies generate high hardware and energy costs, com-
plex signal processing problem, and unable to intelligently
adjust random channels while increasing wireless communi-
cation data rates.

Recently, a new paradigm Intelligent reflecting surface (IRS)
is invoked to realize intelligent and reconfigurable wireless
propagation environment in 6G wireless communication sys-
tems [10]. The surface is two-dimensional artificial electro-
magnetic material (namely metasurface), which consists of
considerable passive reflection elements with special physical
structures. The IRS controller implements intelligent control
of the physical channel by adjusting the amplitude and phase
shift of the passive reflective elements in a software-defined
manner. Thus, the ideal multipath effect can be realized by
adjusting the reflection amplitude and phase of the incident
radio frequency (RF) signals. Subsequently, the received sig-
nal power can be enhanced through coherently adding the
reflection RF signals and the interference can be mitigated via
destructively combining signals [11]. Recent work focuses on
integrating intelligent reflecting surface into traditional wire-
less networks to improve communication performance [12],
such as channel modeling [13], channel estimation [14], [15],
and passive reflection optimization in different scenarios [16],
[17], [18], etc. In addition, IRS is utilized in novel scenarios,
such as IRS-assisted physical layer security [19], [20] and
IRS-aided wireless power transfer [21] to improve system
performance.

IRS is expected to effectively enhance the communication
and computation performance of edge network in recent
research [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31]. By deploying IRS between users and edge servers,
IRS provides auxiliary links for users through passive beam-
forming, which increases the wireless link capacity, thus the
computation-intensive tasks can be offloaded to the edge
servers without high computation latency and transmission
energy consumption. Most of the existing work focuses on
single-cell scenarios in IRS-assisted MEC systems [22], [23],
[24], [25], [27], [28], [29], [30]. However, the multicell
scenarios are considered in a paucity of the IRS-assisted
MEC research work [26], [32]. For large-scale edge network
with abundant users and edge servers, the deployment of IRS
plays a crucial role in computation offloading and resource
allocation strategies. IRS can be utilized to assist in offloading
computation tasks to different MEC servers in order to
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achieve high resource utilization and low computation latency.
Specifically, IRS can adjust the offloading channel of certain
users to different servers with less computation burden, instead
of offloading to the same adjacent server that would cause
high computation latency. Therefore, this paper innovatively
proposes edge heterogeneous network scenarios with IRS
assistance to minimize energy consumption by optimizing user
association, computation offloading and resource allocation,
as well as IRS phase shift.

The formulation problems with coupled optimization vari-
ables are generally non-convex in the IRS-assisted MEC sys-
tems. Therefore, previous literature mainly employs alternate
optimization to solve the radio and computation resource
allocation subproblem and the IRS phase shift design subprob-
lem separately [26], [32], [33]. The alternating optimization
provides near-optimal solution with guaranteed convergence.
However, due to the high computation complexity and exe-
cution time, the above solution may hinder the practical
application of IRS in edge networks. Deep reinforcement
learning (DRL) can solve complex optimization problems
in the wireless communication system by adopting adaptive
modeling and intelligent learning [34], [35], [36]. Few authors
utilize the DRL algorithms to solve optimization problems
in IRS-assisted MEC systems. The research work in [37]
proposes the DRL algorithm to maximize total utilities of users
in the IRS assisted wireless powered mobile edge computing
network. An asynchronous actor-critic DRL based computa-
tion offloading scheme with reconfigurable intelligent surface
assistance is designed in [9] to minimize the total latency
of users for task execution. Therefore, the DRL algorithm
is leveraged in this paper to learn resource management and
reflection optimization strategy.

The main contributions and innovations of this work are
summarized below:

o This paper proposes an IRS-assisted edge heterogeneous
network including the macro base station and multiple
small base stations equipped with MEC servers. The
IRS provides auxiliary links for users and intelligently
controls the channel status to enhance the communication
performance between users and base stations, and achieve
efficient resource utilization. With the aim of minimizing
the long-term energy consumption of all users while
guaranteeing the QoS (e.g., latency requirements) of
users, a two-timescale mechanism is invoked to optimize
the user association, computation offloading and resource
allocation, as well as IRS phase shift in this paper.

« For the long timescale user association problem, matching
theory with low complexity is adopted to perform one-to-
many matching based on two sides’ preferences between
users and BSs. Since the interference between users
matched with SBSs affects the transmission rate, we uti-
lize swap matching to deal with the interdependence
among users’ preferences (externalities).

o Markov decision process (MDP) is applied to model
the short timescale optimization problem which can be
solved through the reinforcement learning (RL) algo-
rithm. To deal with the high-dimension state space,
the value functions in RL are approximated by deep
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Fig. 1. System model.

neural network (DNN), as well as experience replay and
independent target network techniques to speed up the
convergence of DRL algorithm. Specifically, the Deep
Q-network (DQN) algorithm is introduced to learn com-
putation offloading, resource allocation and IRS phase
shift design policy.

o The simulation result validates the convergence of the
proposed two-timescale algorithm. In contrast with the
benchmark schemes, the performance of energy con-
sumption is demonstrated in different simulation environ-
ments. The proposed algorithm shows that a suitable IRS
phase shift design can provide the passive beamforming
gain, thereby reducing the energy consumption of edge
network.

The organization of this paper is listed as follows. The
system models are showed in Section II. The Section III
introduces the optimization problem. The two-timescale mech-
anism for resource management and reflection optimization
is proposed in Section IV. Section V give the simulation
parameters and results. Finally, this paper is concluded in
Section VI.

Notation: In this paper, italic letters represent scalars.
Vectors and matrices are indicated by boldface lowercase
and uppercase letters, respectively. The superscript (-)T and
(-)H represent transpose operation and Hermitian transpose
operation, respectively. RM >N represents real matrices with
the space of M x N. CM>*¥ represents complex matrices with
the space of M x N.

II. SYSTEM MODELS

This paper considers multiple single-antenna base stations
(BSs) in edge heterogeneous networks, as shown in Fig. 1.
N = {0,1,..., N} denotes the set of BSs, and the symbol
n represents the nth base station, where n = 0 represents
the macro base station (MBS) and n € {1,..., N} denotes
the small base stations (SBSs). Each BS is equipped with a
multi-core MEC server and the number of CPU cores of BS
n is Cp,, which can simultaneously serve at most C,, users.
The set of single-antenna user equipment (UE) is expressed
as K = {1,..., K}, and the symbol % is used to denote the
kth UE. The set of users associated with BS n is denoted
as K, = {1,2,...,K,}, where K,, is the number of users
associated with BS n and k,, refer to the kth user associated
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design occur on a short timescale

Fig. 2. Graphical illustration of two-timescale model.

with the BS n. Each user has latency-critical applications
including multiple procedures/components with dependency.
Each component of the task is computed on the local equip-
ment or on the MEC server. Since the computing resource of
the SBSs are limited, and to avoid frequent handovers, users
can associate with the MBS for computation offloading. As the
cell-edge users are far away from the MBS, the quality of
the channel is poor. Therefore, it is assumed that the IRS is
utilized to assist the users to associate with MBS. There exist
M 1IRS reflection elements and the mth reflection element is
represented by symbol m. A smart controller connected to
the IRS dynamically adjusts the reflection elements and also
exchanges control information with the MBS via a separate
wireless link. The base station controller connected to all
BSs is responsible for resource management and reflection
optimization [38]. The MBS is considered as a centralized
controller in this paper [39].

Since the update timescale of user association is larger than
the timescale of computation offloading, resource allocation
and IRS phase shift design, the IRS-assisted edge heteroge-
neous network scenario is modeled as a two-timescale edge
computing model. Hence, the process of the IRS-assisted edge
heterogeneous network occurs on two different timescales:
the user association profile updates on a long timescale, and
computation offloading, resource allocation and IRS phase
shift profile design occur on a short timescale, as shown in
Fig. 2. The basic time unit of the long timescale is defined as
epoch. Z = {0, 1, .., I'} is adopted to represent the index set of
user association profile starting at each epoch ¢;, {t;|i € Z}.
Each epoch can be divided into a set of time slots which is
denoted as J = {0, 1, .., J}. Computation offloading, resource
allocation and IRS phase shift design are executed at each
time slot ¢/, {t/|i € Z,j € J}, where t] is the maximum task
execution latency. Without loss of generality, we omit (¢;) and
(t]) in the following expressions, unless epoch ¢; and time slot
t] are emphasized.

Next, we describe the system model that includes the
communication model in Subsection II-A, and the computation
model in Subsection II-B.

A. Communication Model

In this paper, z,, (t;) € {0, 1} represents the user associa-
tion variable, where z, , = 1 indicates that user k£ associates
with BS n, otherwise 0. At each epoch, each user can be
served by only one BS: Zr]:;o Zk,n = 1. On the condition
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of 10 = 1, user k associates with the MBS with two
links: user-BS direct link and user-IRS-BS reflection link.
If 2, = 1,vn € N.,n # 0, user k is associates SBS
with user-BS direct link. The direct channel of user k£ and
BS n (baseband equivalent time-domain channel) is denoted
as hy, € CLin*l The time-domain channel of the MBS
and IRS reflection elements is define as G = [g;,...,d,,] €
CTo*M The time-domain channel of user k and IRS reflection
element m is expressed as fl;m € Chrxi, Lg’n, Lo and
Lj, are the number of delayed taps of the corresponding
link, respectively. The above channels are assumed to remain
approximately constant at each time slot. Large-scale path
loss and small-scale fading are taken into account in the
communication model. Furthermore, the direct channel of
kth user and nth BS is assumed to follow the exponential

power-delay feature for each multipath channel: {ﬁz’"}z =

=2 —a!/2y,V1 =0,..,L{ . where ¢ , denotes the

Qz,n 1_@L;§yn
large-scale path loss, and 0 < o < 1. Small-scale fading v;
follows the complex Gaussian distribution with zero mean and
unit variance v; ~ CN (0,1) [40]. The above expression is
also applicable to the channel of the MBS and the IRS, and the
channel of the users and the IRS, which will not be described
here. The path loss is defined as o = go (d/ do)_ﬂ , where 3
denotes the path loss exponent. gg denotes the reference path
loss at reference distance dy. The IRS phase shift matrix is

. . \N1T
expressed as ¢ (tf) = {qbl (tf) e M (ti)} € CMx1,
where ¢,,, = Bme??m, B,, € [0,1] denotes the amplitude and
0., € [0,27] denotes the phase. In this paper, the amplitude
is set to a maximum value of 1, and the discrete phase
shift design with p phases is considered. The phase set is
denoted as 0, € {0,A0,...,(p—1) A0}, A0 = 27”. The
time-domain effective reflection channel through reflection
element m is denoted as the convolution of the user-IRS
channel, the IRS reflection coefficient and the IRS-MBS
channel: h;’,’m * Om * G, = d)mh;,mb *g,, € CLex1 where
L}, = Lo + L — 1 is the corresponding number of delayed
taps and * denotes the convolution operation. We adopt
Orthogonal Frequency-Division Multiple Access (OFDMA)
in our work. The number of equally divided sub-bands is
B, and the set is denoted as B = {1,..., B}, the bth sub-
band is represented by symbol b [27], [40]. The orthogonal
frequency spectrum is assumed among users associated with
the same BS, as well as users associated with the MBS and
SBS. By and B,,,Vn € {1, ..., N} are represented as the set of
sub-bands allocated to the MBS and SBSs, respectively where
BoN B, =0,Yn € {1,..., N}. Therefore, we consider the
interference between SBSs. The sub-band allocation variable
Ykb (tf) € {0, 1} indicates whether sub-band b is allocated to
the user k, where vy, ;, = 1 denotes that sub-band b is allocated
to user k, otherwise 0. At each time slot, each sub-band can
only be allocated to at most one user associated with any
BS: ZZ(:l Yy < 1,Vn € N,Vb € B. Each user should be
allocated to at least one sub-band: Zle vk > 1,Vk € K.
The transmit power on sub-band b is expressed as pyp (ti ),
where the transmit power is assumed to be a discrete set:
Dk,b (ti) S {O,pl,pl...,P,:”“”}. And the relationship between
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the transmit power with the sub-band allocation variable yy,

is defined as,
0, if pgp =0,
. = ’ 1
Yib {1, if pk,b>0~ ( )

And Zszl Prp < P VE € K, where P*** denotes the
maximum transmit power of kth user.

The zero-padded concatenated IRS-BS channel and user-
IRS channel of IRS reflection element m is denoted as hy, ., =

[[ﬁ;}m *gm]T,O, . .,O}T € CPB*1 Thus, the zero-padded
concatenated channel between user k& and IRS, and the MBS
can be uniformly expressed as Hy = [hg1,...,hgm] €
CB*M_ And we denote the zero-padded concatenated user-BS
channel as h(,in = [I_LZJL,O, ...,0| € CB*L. Consequently,
the superposed channel impulse response (CIR) is derived as,

hilf = 2 oHiop + by, 2)

where Ly, = max (L%’n,LZ) stands for the number of
delayed taps. To eliminate the inter-symbol interference (ISI),
the number of cyclic prefixes is assumed to be not less than
the maximum number of delayed taps. The channel frequency
response (CFR) on sub-band b of user k associated with BS
n is defined as,

d
hEE = avofy Hid + £ by, 3)

where ff is the bth row of discrete Fourier transform (DFT)
matrix F'g. The B x B DFT matrix Fp is defined as
[Fgl,, = e %50 <1, 5 < B — 1.1t is assumed that
the perfect knowledge of channel hz!n and H, are available
at BSs.! The achievable rate (bps) of user k associated with
BS n is defined as (4), shown at the bottom of the next page,
where I' is the gap between a specific modulation and coding
scheme and the channel capacity. The receiver noise at each
sub-band is modeled as an independent circularly symmetric
complex Gaussian (CSCG) random variable with zero mean

and variance o2.

B. Computation Model

In fact, mobile applications consist of multiple proce-
dures/components (such as face recognition and AR applica-
tions), and so it is necessary to partially offload the users’
computation tasks to the MEC servers. Task models of
partial offloading consist of data partition model [41] and
task partition model [42]. The task input size of the data
partitioning model is bit-wise independent. The task can be
divided into groups of any size, and then are computed on the
user equipment and the MEC server concurrently. Whereas, the
dependencies between the components of application cannot
be ignored in certain applications. Hence, a typical directed
acyclic graph (DAG) task-call graph is utilized in the task
partition model. G(7,E) is denoted as the task-call graph,
where the set of vertices ¥ stands for the set of component and

Naturally, the assumption is idealistic. Therefore, the algorithm proposed in
this paper can be regarded as representing the best-case bound for the energy
performance of realistic scenarios.
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the set of edges & represents the dependency between subtasks.
Typical dependency models of subtasks include sequential
dependency, parallel dependency, and general dependency. The
sequential dependency task model is considered in this paper
(e.g., immersive applications [43] or deep neural network
models [44], [45]). The subtasks can be computed locally
on the user equipment, or offloaded to the MEC servers for
computation.

Tuple J2 £ (v,xP.dy",d;"™") represents subtask v of
user’s application G, where d;" stands for the input data
size of subtask v and w is the previous task of subtask v.
d,""" expresses the output data size of subtask v and w is the
next task of subtask v. x7 (cycles/byte) denotes the number
of clock cycles performed by the microprocessor per byte of
data. The maximum tolerable latency of user k is expressed
as T"er,

'BS n manages a virtual task queue in each time slot
t] to store the computation requests of users associated

with it and the queue is represented by Q, (t{) =

{ql,n (tZ) e ’ql,n
of the task queue, q;,, = {k,J;} denotes the parameter
vector of element ¢ in the task queue. The set of computation
offloading decision for the task queue at time slot ¢! is

(tf )}, where [ is the maximum length

2L (tf)}, where
zin € {0,1} denotes the computation offloading variable of
element g, ,,. When the subtask ¢ is offloaded to the MEC
server: z; , = 1, if the subtask ¢ is executed locally on user

equipment: z; , = 0. At time slot t] the total execution time
of the task queue Q,,

expressed as z, (ti) = {z1n (tg),

i) is derived as

l

T (i) = o (), )
i=1
where T77¢ (ti ) is defined as
A Xk if 2 —
pexe (tj) - T if Zim = 0,
in ) = . LA
(6)

where f! denotes the CPU frequency of user k and f¢
expresses the CPU core frequency of the MEC server associ-
ated with BS n. At each time slot, the computation capability
of the MEC server is limited: 22:1 Zin < Ch,.

At time slot tg , the total energy consumption of the task

queue Q,, (tf )

is expressed as

l

1179
where Ej7¢ (tf ) is obtained as
Cmob (du 1}) Xk f]lc ) if Zin — 07
Ere (tg): (1—21-”( ))Zb 1pkbrk,,
+Ce ZUXk (fc)2 if Zim = 1.
@)

Cmob and (. denote the effective capacitance coefficients that
are determined by the chip architecture of user equipment and
MEC server, respectively [46], [47]. It is worth noting that we
only consider the uplink execution latency and energy con-
sumption, and the downlink latency and energy consumption
are ignored in this paper [44].

II1. PROBLEM FORMULATION

In this paper, the optimization problem is formulated to
minimize the system energy consumption over the entire time
horizon while satisfying the QoS of users, i.e.,

exe 7
XYP¢ZZZZE (#) ©)
=0 j=0n=0

Zxkn (t:) = 1,VEk € K, (%a)
Zykb(tz)glvmeNVbesg (9b)
Zykb(t)21Vk€‘K, (%)

Z pro (#) < Pes vk € K, (9d)
sz(tg) <Cp,¥neN, (%)

Tfff( i) < T Vk € K, (9f)

Here X = [x1,...,xx] € RWHDXK denotes the user
association matrix where x;, = [xkyo,xhl,...,:ck,]v]T €
RNFDXL Y = [y,,...,yg] € REXK stands for the
sub-band allocation matrix where y;, = [yk.1,-- -, Yk, B]T €
REXL P = [p;,...,px] € RB*E expresses the power
allocation matrix where p;, = [pkyl,...,pk,B]T € RBx1,
¢ = [p1,....0m)" € CM*L represents the phase shift
matrix. Z = [z1,...,2] € RVTUX! shows the computation

offloading matrix. Constraint (9a) restricts that only one BS
can be associated with each user. Constraints (9b) and (9c)
guarantee that each sub-band can only be allocated to at most
one user associated with any BS at each time slot and each

Eeee (tZ) _ Z Eere (tg) (7) user should be allocated to at least one sub-band, respectively.
= Constraint (9d) reflects the power of all sub-bands allocated
crr|?
B Pk.,b ‘hk,n,b‘
Thon = Zxk,nyk,bWIOQQ 1+ ~ o 5 5 R 4)
b=1 D m=1,m#n 21k, PLb ‘fb hl,n‘ +To
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to each user cannot exceed the maximum transmit power.
Constraint (9¢) reveals that the MEC server connected to BS n
can serve at most C,, users at the same time. Constraint (9f)
ensures that the execution time of user’s application should
meet the requirement of the maximum tolerable latency, where
T (t) = S, 1 (+)

The optimization problem is a nonlinear integer program-
ming with variables of different timescales, which indicates
the problem is generally NP-hard. To combat the above issue,
this paper adopts a two-timescale mechanism for solving the
long timescale variables and the short timescale variables
separately. Specifically, the matching theory is employed to
obtain the user association decision in the long timescale.
In the short timescale, the computation offloading, sub-band
and power allocation, as well as IRS phase shift strategy
can then be learned using deep reinforcement learning. The
reason for employing the matching theory to address the
user association problem depends on the advantage of low
complexity in comparison with the traditional solutions, e.g.,
the exhaustive search. To be specific, the complexity is
O (N*) in the exhaustive search method, which leads to the
exponential growth in terms of the users’ number, while the
complexity is O (K 2) in the matching theory method [48].
Since the dynamics of the environment which including
wireless channels, computation requests, and resource states
can affect the computation offloading, resource allocation
and IRS phase shift design decisions, the short timescale
optimization problem is viewed as the sequential decision
problem. Therefore, the short timescale problem is modeled
as MDP and solved by reinforcement learning.

IV. THE PROPOSED TWO-TIMESCALE MECHANISM
FOR RESOURCE MANAGEMENT AND
REFLECTION OPTIMIZATION

First, we introduce an outline of the proposed resource
management and reflection optimization scheme. The
details of proposed scheme will be described in the
Subsections IV-A and IV-B. In the beginning of each epoch,
we carry out a user association scheme. Since each user is
allowed to associates with only one BS, and each BS can serve
multiple users, we develop a one-to-many matching algorithm
to associate each BS with multiple users. Furthermore, due
to the high-dimension state space of the short timescale
RL-based framework, the DRL approach is then employed to
learn the computation offloading, resource allocation and IRS
phase shift design scheme in each time slot.

A. User Association Using Matching Theory

In this paper, the two-sided matching game is utilized to
model the long-timescale user association problem where there
exist two disjoint sets of players, the user set %, and the BS set
N . In the proposed game, each user can be matched with one
BS while each BS can be matched with multiple users. Thus,
a one-to-many matching is taken into account and defined as
follows.

Definition 1: The proposed one-to-many matching game
consists of two sets of players, i and N, and the matching x
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is defined as a function from K X N to the set of all subsets
of K x N with

() = 1,Vk €%,
|z (n)| < K,Vn e N,
n=zx(k)ekecx(n).

Therefore, the user association indicator can be specified from
a matching =z,

ehn (1) = {1, if n=uz(k),

10
0, otherwise. (19)

Each user aims to be associated with the BS which enables
the user to achieve its maximum utility. Hence, the user’s
matching preference over the BSs is sorted in the descending
order based on the achievable rates. The preference profile of
the BS is defined over all users which minimizes the energy
consumption. Therefore, the matching preference of the BS
over the users is based on the negative energy consumption
in the descending order. The preference profile of user £ is
represented by a vector of the utility ) () which is defined
as follows:

wk ((L’):Tk (wk;Y7P7¢)7 (11)

and the preference profile of BS n is represented by a vector
of utility ¢, (z) which is defined as:

u)n ((E) = _EfLClJG (X,Zn,Y,P, (p)a (12)
where z,,Y, P, ¢ are obtained by the short-timescale com-
putation offloading, resource allocation and IRS phase shift
design scheme in Subsection IV-B.

Since the rate is affected by interference between the users
which are associated with the SBSs, the preference of user also
hinges on the association situation of other users. Therefore,
the preference dynamically changes with the matching state of
other players and the interdependency between the preferences
of players is defined as externalities [49], [50]. Therefore, one-
to-many matching with externalities can be solved by swap
matching [51].

Definition 2: Given a one-to-many matching x with k &€
z(n), and ¥ € z(n'),k, k' € K n,n € N, a swap
matching is defined as ¥ = {z\{(k,n),(k',n')} U
{(k,n), (K',n)}}.

A swap matching allows one pair of users (k,k’) to
switch their matched BSs (n,n’) while keeping other user-BS
matchings unchanged.

Definition 3: For the matching x, (k, k') is a swap-blocking
pair if and only if [50].

1) Vu € {k, K, n,n'}, a2 ) > (),

2) Ju € {k, K ,n,n'}, u(af,") > ¢u(@),

3) the constraint (9f) is satisfied.

Hence, two users exchange their respective matched BSs on
condition that after the swap matching operation between a
swap-blocking pair, 1) the utilities of both users and BSs will
not decrease, 2) the utility of at least one increases, 3) the
latency constraint of each user is not violated.
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Definition 4 (Two-Sided Exchange Stability): A matching
x* is two-sided exchange stable if swap-blocking pairs don’t
exist [51].

Algorithm 1 One-to-Many Matching with Externalities based
User Association

1. Initialization: Choose a random matching = while the constraint
(9f) is satisfied. And calculate (11) and (12).

2. repeat

3. Choose user k € K,x(k) = n and user k' € z(n').

4. if the pair of users (k, k') is a swap-blocking pair in the current
matching

5. Update x «— xﬁ;”l;

6. Calculate (11) and (12).

7. until There exist no swap-blocking pairs in the current matching.
8. The two-sided exchange-stable matching z* is obtained and then
the user association indicator is obtained according to (10).

9. return Stable one-to-many matching results.

The matching based algorithm is summarized as follows.
Firstly, a matching = is randomly initialized under the con-
dition that the QoS of users is satisfied, and the utility of
the user and BS is calculated according to (11) and (12).
Then, the iterative process is looped to find swap-blocking
pair, update swap matching and calculate utility until two-sided
exchange stable matching is reached, thus determining the user
association strategy. Algorithm 1 presents the one-to-many
matching with externalities based user association algorithm.
Each swap operation reduces the system energy consumption
strictly and generates a new matching. After finite number
of iterations, the algorithm will converge to a stable match-
ing owing to the limited number of users and BSs, which
ensures the convergence of the Algorithm 1. Consequently, the
exchange between any two users will not reduce the system
energy consumption, which achieves a local optimal solution.

B. Deep Q-Network Based Computation Offloading,
Resource Allocation and IRS Phase Shift Design

The user association strategy X * is obtained using match-
ing theory in the Subsection IV-A. Subsequently, Markov
decision process is employed to model the short timescale
optimization problem. The MDP consists of a five-elements
tuple (S, A, P, R,~), where S is the state space, A is the
action space, P is the state transition probability, R is
the reward, and ~ is the discount factor which is used
to calculate cumulative returns. The goal of reinforcement
learning algorithm is to learn an optimal policy given an
MDP, where the policy refers to the mapping from state to
action: 7 (s|la) = P [A¢ = a|S: = s|. Whereas, the state of the
next time slot cannot be obtained in the original optimization
problem, which means that the state transition probability
of the MDP framework is unknown in advance. Therefore,
this paper applies the model-free RL to address the above
issue. Specifically, through the continuous interaction with
the environment, the agent evaluates the actions according
to the feedback of the environment (reward), and aims to
continuously improve the policy, until the optimal solution
of actions in each state is found. The definitions of the state,
action and reward in the RL-based framework are given below.
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State: At time slot tg , the state of the agent is defined as
S (ti) = {So(t]),S1(t}),...,Sn(t])}. The state includes
channel state, virtual task queue and current computing
resources. Thereinto, the state of the SBS is defined as
S, = I:I:ll,Qn,cn},Vn € {1,...,N}, where H =

{ﬁ‘in, - ﬁi{m}. Cn (tf ) indicates the number of CPU cores
available to the server at time slot tf Cn (tf ) =c, (tf _1) —
Zle Zin (t{fl) and ¢, (t?) = (). The state of the
MBS is defined as Sy, = {HS, G H,. Q,, co}, where
Frm = {ﬁvln,mv -y E;(,m}'

Action: At time slot tg , the action of the agent is defined as
A (t{) ={Y Qt{) P (tf) b (tf? ,Z (t])}, which denote
the sub-band allocation, power allocation, IRS phase shift
design and computation offloading actions, respectively.

Reward: The optimization goal of this work is to minimize

the system energy consumption under the latency constraint,
thus the reward is defined as the weighted sum of negative

energy consumption and latency penalty. At time slot ¢/, the
reward is defined as follows,

N

> (1)

n=0

R (tZ) = -

X" (ti)]

+1{j=J}BY_ > min

k=1n=0
x {(T,gm - T (ti)) ,0} .
The two terms of the reward have different units. Accordingly,
a weighting factor (3 is added to the reward for normalization,
where 01 + 02 = 1 and 5; > 0,Vi € {1,2}. 1{j =J}
denotes an indicator function whose value is 1 when j = J,
otherwise 0.

It is worth noting that the action space of this work is
discrete. Therefore, the policy can be optimized according to
the action-value function Q7 (s,a) (Q function). Traditional
RL algorithms such as Q-learning [52] store the value function
in the Q-table. However, the state space of our work is high-
dimension, it is difficult to store and calculate value functions
in the table since the computation time and complexity of the
RL algorithms can increase exponentially, making it hard to
converge. To address the above issue, deep neural networks are
utilized for approximating the estimated value functions. The
neural networks are trained using the training sample obtained
by the interaction between the agent and the environment to
approximate the value function, which improves the estimation
accuracy, thereby accelerating the convergence speed of the
RL. In this paper, the Deep Q-Network (DQN) algorithm [53]
that introduces DNN into Q-learning is leveraged to learn
the computation offloading, resource allocation and IRS phase
shift design strategy.

Reinforcement learning is considered unstable or even dif-
ficult to converge when the value functions are approximated
using nonlinear functions such as DNNs. The reasons are
as follows. Firstly, there exist correlations between the data

13)
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collected through a series of observations, and a tiny change of
Q function will significantly change the policy and thus change
the data distribution. Secondly, there exist correlations between
the Q function and the target value. The DQN algorithm
employs the experience replay and independent target network
techniques to deal with the algorithm instability. Specifically,
the experience replay technique randomly samples data to
break the correlation between data and smooth the change
of data distribution. Independent target network indicates that
the target value and the Q function are represented by different
parameters, and the parameter update frequency is set to be
different to reduce the correlation between the two networks.

Algorithm 2 The DQN Based Computation Offloading,
Resource Allocation and IRS Phase Shift Design Algorithm

Initialization: replay buffer D with capacity N, Q network @ with
random weight 0, target network ) with weight 0~ = 6.

1. For Episode = 1,--- , M do

2. Initialize state s1.

3. Foreachstept=1,---,7T do

4. According to the e-Greedy strategy, the action a; is randomly
choosed with the probability of ¢, and is choosed based on a; =
argmax, Q) (s¢, a;0) with the probability of (1 — ¢).

5. execute action ay, transit to state s;41 and receive reward 7.
6. store (s¢, at, ¢, St+1) in replay buffer D.
7. sample a minibatch of samples (s;,a;,7j,s;+1) from D
randomly.
8.  set the target of TD-error:

Y, = rj, if Episode = J 4 1,

rj +ymax, Q (s]-.H7 a’; 9;), otherwise.

9. Perform gradient descent for (Y;—Q (s;,a;6:))>, update net-
work parameter 6.

10.  Update target network parameter every C steps 0~ = 0.

11. End For

12. End For

For the DQN algorithm, DNN is applied to approximate
the action-value function @ (s,a;6;) (Q network), where 6;
is the parameter of Q network at the ¢th iteration. The input of
the DNN is the state, followed by two fully connected layers,
and the output is the action-value function corresponding
to all actions in the input state. The data set that stores
the experience of the agent is required as the replay buffer
D; = {e1 ---,e,}, where the experience of each step e; =
(st,ae, 7, Se+1) consists of the current state, action, reward
and next state. DQN applies the update method of Q-learning,
randomly and uniformly samples a minibatch data in the replay
buffer, and adopts the following loss function to update the
neural network parameters:

Li (91) = E’(s,a,r,s’)NU(D)
R 2
X {(r—f—’ym@x@ (s’,a’;@[) — Q(s,a;@i)) } )
(14)

Specifically, the Q network Q (s, a; 6;) and the target network
Q (s',a’;6; ) need to be updated, where ;" denotes the target
network parameter at the ¢th iteration, and the update time
of parameters 0; and ¢, are different. The target network
parameter ¢, is updated every C' steps with the Q network
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parameter #; and is fixed at other times, while 6; is updated
every step. Training the Q network is the process of updating
the parameter 6 with the goal of minimizing the loss function.
Y; = r+~vymax, Q (s’ ,a'i 07 ) denotes the target of temporal
difference (TD). Therefore, utilizing the target Y; with another
parameter set of delayed update adds a delay between the time
when the Q network is updated and the time when the TD
target Y; is updated, which solves the problem of oscillation
or non-convergence in RL. Gradient descent method is adopted
to update parameters with the aim of minimizing the loss
function L (6;):

Vo, L (0:) = Esa,r6 [(Yi —Q(5,a;0;)) Vo,Q (5,0a;0;)],
(15)
Oiy1 = 0; + Ve, L (0;),
(16)

where « is the learning rate.

Algorithm 2 demonstrates the DQN based computation
offloading, resource allocation and IRS phase shift design
algorithm. First, the replay buffer D and the two networks are
initialized. Episode represents the process from the initial state
of agent to the final state. The following steps are performed
for each episode. The initial state s; of each episode is
initialized. For each step ¢ of episode m, action a; is chosen
according to the e-Greedy strategy, then the agent performs
action a;, observes reward 7; and transits to the next state
st4+1. The experience (s¢, at,7t, S¢11) is stored in the replay
buffer D, and a minibatch of data is uniformly and randomly
sampled from D in order to update the Q network parameter 0
according to (16) using the gradient descent method. The target
network updates parameter 6~ every C steps. The complexity
of learning procedure for the DQN based algorithm is denoted
as O (T Loan ng)QNngalN) ), where Lpqy is the number
of hidden layers in the DNN, and npqn is the number of
neurons in each layer. We adopt a fully-connected DNN that
has two hidden layers of 100 neurons and adopt the activation
function of ReL.U.

The proposed two-timescale mechanism for resource man-
agement and reflection optimization is shown in Algorithm 3.
Specifically, in each epoch ¢, the matching theory algorithm is
performed. And then at the current epoch, the DRL algorithm
is performed for each timescale slot j.

Algorithm 3 The Proposed Two-Timescale Mechanism for
Resource Management and Reflection Optimization

Initialization: The number of epochs I and the number of time slots
J.

1. For i =0,---,1 do

2. At epoch t;, the user association scheme is obtained based on
Algorithm 1.

3. Forj=1,---,Jdo

4. At time slot ¢7, the computation offloading, resource allocation
and IRS phase shift design scheme is learned based on Algorithm 2.
5. End For

6. End For
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TABLE I
SIMULATION PARAMETERS
[ Parameter [ Value
Delayed taps Lgn, Ly and Ly 4,2,3
B of MBS-IRS, user-IRS, user-BS channel 3.5,22,22
Gap I’ 8.8dB
Noise variance o~ -110dBm
Number of sub-bands B 32
Sub-band bandwidth W 180KHz
Maximum transmit power P;{"‘” 20dBm

Number of discrete power levels 10
Input data size of the subtask &;""" U[100, 500]KB
Number of clock cycles x, U[4000, 12000]cycles/byte

Maximum tolerable latency 7,"“~ UJ[1.5,3]s
Computation capability of UE fkl 10%cycles/s
Computation capability of MEC server f,¢ 5% 101, 10M0¢ycles/s
Effective capacitance coefficients {05, e 10727, 1072

Learning rate 0.01

Discount factor y 0.9
Capacity of replay buffer and minibatch 600, 128

V. NUMERICAL SIMULATIONS

The performance of the proposed two-timescale mechanism
for the resource management and reflection optimization is
simulated by Python 3.6 and TensorFlow 1.12.0. The numbers
of MBS and SBSs are set to 1 and 2, and the number of
users is considered as 10. In addition, the number of CPU
cores for the MEC server connected to the MBS is set to 16,
and the number of CPU cores for the MEC server connected
to the SBS is set to 8. The distance between the IRS and
the MBS is set to 200m. Users are located in a semicircular
area within 50m around the IRS, and the distance between
users and the SBS is within 50m. For each multipath channel,
a = 0.5. The reference path loss go at reference distance
dy = 1m is -30dB. The computation task is considered as
augmented reality application, which consists of 3 separable
computation-intensive subtasks [47]. The specific simulation
parameters of this paper are given in Table I.

Two benchmark algorithms are adopted for comparison
with the proposed algorithm. 1) random phase shift scheme:
the user association, computation offloading and resource
allocation strategy is optimized according to Algorithm 3.
The IRS phase is randomly selected which obeys the uniform
distribution with the range of [0, 27| instead of optimizing
based on the proposed algorithm. 2) without IRS scheme:
the user association, computation offloading and resource
allocation strategy is optimized in the edge heterogeneous
network without IRS assistance.

Fig. 3 illustrates the average convergence performance
of the proposed algorithm and Q-learning based benchmark
algorithm for each epoch. The reward gradually increases as
the training continues. It is worth noting that due to the large
state space and action space, the environment is complex in
the proposed IRS-assisted edge heterogeneous network, about
1,250 training episodes are required for the proposed algorithm
to converge properly. While the Q-learning based algorithm
requires about 1800 iterations to converge. The proposed
DQN based scheme learns much faster than the Q-leaning
based scheme. Since the DRL based scheme can improve the
efficiency and accuracy for estimating the Q value by means
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Fig. 3. The convergence performance of the proposed algorithm.
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Fig. 4. The influence of different IRS discrete phase shift levels on total

energy consumption.

of DNNs, thereby allowing the agent to obtain the optimal
strategy faster. During the training process, the rewards of
subsequent episodes will fluctuate due to the utilization of
e-greedy strategy for exploitation and exploration. Thus, the
result verifies the convergence of the proposed method.

Fig. 4 demonstrates the influence of the discrete phase shift
level number on energy consumption. The 1-bit phase shift
stands for p = 2; the 2-bit phase shift represents p = 4; the
3-bit phase shift denotes p = 8. When increasing the phase
shift level from 1-bit to 2-bit, the reduction in energy consump-
tion varies from 2.7% to 9.69%. However, when the phase shift
level increases from 2-bit to 3-bit, the energy consumption
decreases from 0.37% to 2.7%. The results demonstrate that
the adoption of 1-bit phase shift has a greater impact on
energy consumption compared to the adoption of 2-bit and
3-bit, while the performance loss of adopting 2-bit and 3-bit
is acceptable. Considering the difficulty of designing IRS,
2-bit phase shift is generally applied in practical system [54].
In addition, the increasing of IRS reflection elements can
compensate the loss generated through the low-precision
discrete phase shift. Therefore, 2-bit reflection array is adopted
to obtain good performance in this work.

Fig. 5 depicts the total energy consumption obtained based
on the proposed algorithm and benchmark algorithms under a
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set of various IRS reflection elements number. The gap in total
energy consumption between the without the IRS scheme and
the random phase shift scheme grows as the reflection element
increases, which indicates that even without careful design of
the IRS reflection coefficient, the energy consumption can be
reduced through the IRS assistance. Furthermore, the proposed
algorithm outperforms the random phase shift scheme, which
reflects that the passive beamforming gain is provided to
reduce the communication burden through the refined IRS
reflection coefficient design.

Fig. 6 shows the trend of total energy consumption as
the number of sub-bands changes. The energy consumption
reduces as the sub-bands number augments. This can be
explained as the sum of channel gains of each user equipment
increases with the escalation of sub-band. Furthermore, when
M increases, the sub-bands typically have greater channel
gain as it is assumed that the sub-bands are independent.
For the proposed algorithm, the total energy consumption
is down slightly when the number of sub-bands increases
from 16 to 32. Moreover, the figure depicts the insignifi-
cant reduction in energy consumption when the number of
sub-bands is larger than 32. This can explained as the energy
consumption is mainly generated through the process of
computation offloading when the communication resources are
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not enough, while the energy consumption is mainly generated
by the process of task computation when the communication
resources are sufficient.

Fig. 7 illustrates the relationship between the total energy
consumption and the number of users. As the number of
users increases, the energy consumption of the proposed and
benchmark schemes augments rapidly. Compared with the
benchmark schemes, the energy consumption generated by the
proposed algorithm is the lowest since the user association,
computation offloading, resource allocation and IRS phase
shift design are jointly optimized by the proposed algorithm.
To be specific, compared with the proposed algorithm, the
energy consumption obtained by random phase shift scheme
is severely affected by the inability to optimize the phase shift.
Besides, the energy consumption generated by the without IRS
scheme is the highest in contrast with the proposed and random
phase shift schemes. Because channel condition cannot be
improved with IRS assistance, which results in the energy
consumption of the communication link increases. Whereas,
the proposed algorithm and random phase shift scheme utilize
the assistance of IRS to enhance the wireless link capacity and
reduce energy consumption.

VI. CONCLUSION

This paper proposes resource management and reflection
optimization scheme for IRS assisted edge heterogeneous
network. Specifically, a scenario composed of the MBS and
SBSs which are equipped with MEC servers is considered,
in which the IRS assists the users in offloading computation
tasks to the MBS. The optimization objective of our work
is to minimize the long-term total energy consumption while
guaranteeing the quality of service for the users. The opti-
mization problem is formulated as two-timescale mechanism
since the update timescale of user association is larger than
the timescale of computation offloading, resource allocation
and IRS phase shift design. For the long timescale, the
matching theory based user association algorithm is proposed.
For the short timescale, we put forward the DQN-based
computation offloading, resource allocation, and IRS phase
shift design algorithm. The simulation results validate the
convergence performance of the two-timescale mechanism
and illustrate that limited IRS discrete phase shift levels can
achieve good performance. Furthermore, by quantifying the
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energy consumption of the IRS-assisted edge heterogeneous
network in different simulation environments, the proposed
algorithm demonstrates phase-shift design can provide the
passive beamforming gain in comparison with the benchmark
schemes, which enables the edge network to reduce energy
consumption.
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