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Abstract— Semantic segmentation is a process of partitioning
an image into segments for recognizing regions of humans
and objects, which can be widely applied in scenarios such as
healthcare and safety monitoring. To avoid privacy violation,
using radio frequency (RF) signals instead of photos for semantic
segmentation has gained increasing attention. However, tradi-
tional human and object recognition by using RF signals is a
passive signal collection and analysis process without changing
the radio environment. The recognition accuracy is restricted
significantly by unwanted multi-path fading, and/or the limited
number of independent channels between RF transceivers. This
paper introduces MetaSketch, a novel RF-sensing system that
performs semantic recognition and segmentation for humans
and objects by making the radio environment reconfigurable.
A metamaterial-based reconfigurable intelligent surface is incor-
porated to diversify the information carried by RF signals. Using
compressive sensing techniques, MetaSketch reconstructs a point
cloud consisting of the reflection coefficients of humans and
objects at different spatial points, and recognizes the semantic
meaning of the points by using symmetric multilayer perceptron
groups. Our evaluation results show that MetaSketch is capable
of generating favorable radio environments, extracting exact
point clouds, and labeling the semantic meaning of the points
with an average error rate of less than 1% in an indoor space.

Index Terms— RF sensing, reconfigurable intelligent surface,
semantic segmentation, compressive sensing.

I. INTRODUCTION

I
N COMPUTER vision, semantic segmentation seeks to

partition the pixel set of an image into subsets, with each

subset having the same semantic meaning. Owing to its wide
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applications in public safety and healthcare monitoring sce-

narios, semantic segmentation has garnered significant interest

recently as a powerful tool for simultaneous recognition and

localization of humans and objects. Generally, semantic seg-

mentation is conducted over images captured by video cameras

and is used to obtain meaningful representations for the images

to simplify and facilitate further potential analyses [1].

However, using video cameras to collect images for seman-

tic segmentation inevitably introduces privacy concerns. As a

potential solution, recently, using radio frequency (RF) signals

for profiling humans and objects has attracted increasing atten-

tion. Many RF-sensing systems based on WiFi or millimeter-

wave signals have been proposed for recognizing humans and

objects [2]–[6], or generating images that can be further used

as materials for semantic segmentation [7]–[9]. Nevertheless,

the systems in these works only passively adapt to the radio

environment. Due to the complicated and uncontrollable nature

of radio environments, the accuracy and flexibility of the

systems can be affected significantly [10], [11].

Recently, reconfigurable intelligent surfaces (RISs) have

been developed as a promising solution to actively cus-

tomize the undesirable propagation channels into favorable

ones [12]. RISs can be used as passive multiple-input multiple-

output (MIMO) transmission systems to improve data rates

and spatial resolution [13], [14], and also have the potential to

improve the accuracy of RF sensing [15]. An RIS is composed

of an intelligent controlling circuit and a 2D metamaterial

surface which contains a massive number of sub-wavelength

electrically controllable elements [16]. Applied with different

controlling voltages, an element is able to impose different

phase shifts to the signals reflected by it. Thus, by program-

ming its elements, an RIS can reconfigure radio propagation

channels, which can focus RF signals for better receiver

SNRs [17] or enable RF signals to carry diverse information

about humans and objects [15]. Equipped with an RIS, an RF

sensing system can potentially achieve more accurate semantic

recognition and segmentation results than those of traditional

RF-sensing systems.

In this paper, we present MetaSketch, an RIS-based

RF-sensing system that can extract a spatial point cloud

of reflection coefficients from the received RF signals and

perform semantic segmentation on the point cloud to recog-

nize humans and objects. Specifically, via programming the

configurations of the RIS, MetaSketch creates independent

propagation channels to facilitate the point cloud extraction.
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After deployment, MetaSketch requires no video camera

to obtain images for segmentation, and thus it is privacy-

protecting and has various potential applications in healthcare

and security scenarios.

The main challenge of building an RF sensing system for

semantic segmentation without cameras is the absence of a

method to directly capture humans and objects and to match

them to a certain set of received signals. To handle this issue,

MetaSketch extracts point clouds directly from processing the

RF signals by compressive sensing and performs semantic

segmentation based on the point cloud. The design of MetaS-

ketch is structured around three components that together

provide an architecture for using compressive sensing and

semantic segmentation for RIS-based RF-sensing systems:

(1) a radio environment reconfiguration module that creates

independent propagation channels by using an RIS to facilitate

compressive sensing; (2) a point cloud extraction module that

extracts reflection coefficients of different spatial points; and

(3) a semantic segmentation module that labels the point

clouds with their semantic meanings to recognize humans and

objects.

We implement a prototype system and evaluate its semantic

segmentation capability over daily scenarios which involve a

human and a set of practical objects. Experimental results

show that MetaSketch can extract point clouds in space

from RF signals and perform semantic segmentation accu-

rately with an average error rate of less than 1%, given

the setup of a human and multiple objects in a 1.6 m3

indoor space represented by 400 evenly distributed points.

In summary, the contributions of this work can be listed as

follows.

• We propose a novel RF-sensing system named MetaSketch,

which has radio environment reconfiguration capability

and can perform semantic segmentation for point clouds

extracted from received RF signals.

• We design efficient algorithms for MetaSketch to optimize

the reconfiguration of the radio environment, to extract

reflection coefficient point clouds, and to recognize the point

clouds with their semantic meanings.

• We implement a prototype system, and the evaluation results

show that MetaSketch is capable of labeling the semantic

meaning of the spatial points with an average error rate of

less than 1% in an indoor setting.

The rest of the paper is organized as follows. Section II

reviews related work on RF-sensing systems and video-

image-based semantic segmentation. Section III provides

preliminaries for understanding the design of MetaSketch.

In Section IV, we describe the system model, including

the system components and a protocol to coordinate them.

In Section V, we describe the component modules of MetaS-

ketch. In Section VI, we elaborate on the implementation of

MetaSketch, and Section VII provides the evaluation results.

Finally, we draw conclusions in Section VIII.

II. RELATED WORK

In this section, we summarize related work, including the

existing literature on RF-sensing systems and the image-based

semantic segmentation technique.

A. RF-Sensing Systems

Recent years have witnessed much interest in RF-sensing

systems for human and object recognition. Most existing

systems passively adapt to the radio environment and obtain

the sensing results by analyzing the influence of human bodies

and objects on the RF signals. Different systems have been

designed for people localization [18], [19] and particular pos-

ture and gesture identification [20]–[24]. Further, RF-sensing

has also proven to be feasible for imaging humans and objects

with the help of MIMO techniques [7], [25].

In comparison, RIS-based RF sensing systems are capa-

ble of reconfiguring multiple RF propagation channels into

mutually independent ones [11]. As RF signals traveling over

independent channels generally carry more information than

those on coherent ones, the proposed system can potentially

achieve higher accuracy compared with existing systems [23],

[26]. Specifically, in [15], the authors have proposed an

RIS-based RF sensing system to recognize human postures

with high accuracy. Furthermore, in [27], the authors proposed

a millimeter-wave RF sensing system aided by an RIS for

imaging an object, which verifies the performance advantages

provided by an RIS in RF imaging. Moreover, in [28], the

authors proposed RIS-aided RF systems for the localization

of user devices.

Nevertheless, it remains a challenge to design an effective

RF semantic segmentation system, which can directly recog-

nize the semantic meanings of different spatial points based

on received RF signals. Comparing the MetaSketch and the

existing works on RIS-aided RF sensing systems, we highlight

that the main differences are:
• To the best of the author’s knowledge, MetaSketch is the

first RF-sensing system model proposed to realize compli-

cated computational vision approaches, such as semantic

segmentation, by using pure RF signals.

• Technically, the novelty of MetaSketch lies in that it jointly

utilizes the RIS-aided radio environment reconfiguration,

compressive sensing, and semantic segmentation to recover

a semantically labeled point cloud in space.

B. Image-Based Semantic Segmentation

In image-based semantic segmentation, each segment is a

set of pixels of the image which collectively represent one

semantically meaningful object. Most semantic segmentation

approaches process images captured by 2D video cameras.

These approaches are increasingly mature due to the avail-

ability of deep convolutional neural networks (CNNs), such

as fully CNNs [29], region-based CNNs [30], and deep con-

volutional encoder-decoders [31].

Different from the increasingly mature semantic segmen-

tation in 2D, the semantic segmentation in 3D is imma-

ture and has received much research attention. The authors

in [32] proposed to construct human skeletons in 3D from

2D images by using CNNs combined with kinematic skeleton

fitting. Further, the authors in [33] explored deep learn-

ing architectures capable of reasoning about geometric data

other than 2D images such as 3D point clouds and meshes.

This work lays the foundation for semantic recognition and
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Fig. 1. RIS elements and signal reflection on the RIS.

segmentation in RIS-based RF-sensing systems, where the

reflection coefficients of spatial points are captured as a point

cloud.

III. PRELIMINARIES

In this section, we provide three preliminaries for under-

standing the feasibility of MetaSketch’s design.

A. Feasibility of Reconfiguring Radio Environments by RIS

An RIS is an artificial thin film of reconfigurable electro-

magnetic materials, which is composed of a massive number

of uniformly distributed RIS elements. As shown in Fig. 1,

the RIS elements are arranged in a two-dimensional array,

and each RIS element can adjust its response to the inci-

dent RF signals by leveraging positive-intrinsic-negative (PIN)

diodes [34]. We refer to the different responses as the states

of the RIS element. Thus, each state of an RIS element has a

unique reflection coefficient for the incident signals, which

can be represented by a complex number. The amplitude

and phase of the reflection coefficient indicate the amplitude

ratio and the phase shift between the reflected and incident

signals, respectively [35]. Moreover, to reduce the controlling

complexity, groups of adjacent RIS elements are controlled

together, which means that the states of the elements in a

group are set the same. Therefore, the states of all the RIS

elements can be indicated by the states of the groups, which

is referred to as the configuration of the RIS.

Through changing its configuration, the RIS is able to

modify the waveforms of the reflected signals and form direc-

tional beams [36]. With this beamforming capability, the RIS

can reconfigure the radio environment and generate diverse

reflection beam patterns in the plane in front of it, as shown

in Fig. 2. To show the RIS’s capability of reconfiguring the

radio environment, we conduct a pilot testing by changing the

configuration of the RIS and measuring the reflected signals

at 9 different positions on a plane around 1.2 m in front

of the RIS. In Fig. 2, the configurations of the RIS are

depicted in the upper part, where the four colors indicate four

different states of groups. The corresponding reflected signal

values are visualized as colored solid circles in the lower part.

Specifically, the size of each circle is proportional to the signal

amplitude, and the color represents the signal phase. It can be

observed that by changing the configuration of the RIS, the

amplitude and phase of the reflected signals in the environment

can be effectively modified.

Fig. 2. Configurations of the RIS and the corresponding reflected signals at
different positions.

B. Feasibility of Extracting Point Cloud via Compressive

Sensing

In the following, we demonstrate the feasibility of extracting

a point cloud of reflection coefficients from RF signals by

using compressive sensing. Specifically, we aim to restore

the reflection coefficients at multiple spatial points from the

received signals with a limited number of RIS’s configurations,

which can be expressed mathematically as follows.

Denote the reflection coefficients at the M spatial points

as an M -dim vector η. Assume that the RIS takes K con-

figurations, and the K corresponding received signals form a

received signal vector y. Then, denote the mapping between

the η and y by H , which is a K × M matrix determined

by the K configurations of the RIS. Thus, y = Hη + e,

with e being the noises at the receiver with element-wise

variance �, and the point cloud extraction problem can be

expressed as to reconstruct η based on y and H . The

point cloud extraction problem is an underdetermined linear

system problem as M � K . This is because, in general, the

number of spatial points in a point cloud, i.e., M , needs to

be large to obtain high spatial resolution. Nevertheless, the

number of RF measurements, i.e., K , needs to be limited so

that the measurement duration is short enough for real-time

measuring.

The underdetermined linear system problems have infinite

solutions, which means additional constraints on η are needed

to reconstruct η effectively. In our considered scenarios, the

additional constraint we used to help reconstruct η is that

η is a sparse vector. This is because firstly, a majority

of spatial points do not contain reflectors. Secondly, based

on [7], only a small number of spatial points have reflec-

tors whose surfaces can reflect signals towards the wireless

receiver. Therefore, only a small number of spatial points

have non-zero reflection coefficients, which indicates η to

be sparse.

Given the constraint of η being sparse, we can adopt the

compressive sensing technique to extract η from received

signal vector y effectively. The compressive sensing technique

seeks to solve the sparsest η which satisfies y = Hη + e [37].

Specifically, η can be obtained by solving the following

l1-norm minimization problem [38],

η̂ = argmin
η

kηk1 s.t. kHη − yk2 ≤ �. (1)

To verify the feasibility of (1) in practice, we use

the RIS-based RF-sensing to reconstruct the reflection
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Fig. 3. (a) The signal plane with 10 cm × 10 cm metal patches at part of
the 9 positions; and (b) illustrations of the reconstructed absolute values of
the reflection coefficients at different positions by solving (1).

coefficients of 9 rectangle spatial grids. Specifically, we place

a 10 cm × 10 cm metal patch at each of the 9 positions on

the plane shown in Fig. 2 in turn and obtain 9 received signal

vectors when the RIS takes 5 configurations. Based on the

received signal vectors, H can be obtained. Then, we place

multiple metal patches on the 9 grids, obtain received signal

vector y, and solve (1) to obtain η̂, which indicates the

average reflection coefficients of the 9 grids with respect to

the metal patch.

Fig. 3 (a) shows the photos where the light (yellow)

regions are the metal patches, and the dark (brown) regions

are the cardboards which have a negligible impact on RF

signals. Fig. 3 (b) shows the reconstructed amplitudes of the

reflection coefficients at the 9 grids, where the brightness of

the color is proportional to the amplitude values. Comparing

Figs. 3 (a) and (b), we can observe that solving (1) successfully

reconstructs the reflection coefficients at the 9 grids, which ver-

ifies the feasibility of extracting point clouds via compressive

sensing with the help of an RIS.

C. Feasibility of Semantic Segmentation for Point Cloud

In this paper, we aim to label each point in the point cloud

with its semantic meaning. However, as the point clouds are

essentially sets and should be invariant to changing order,

they are different from traditional data structures for semantic

segmentation such as pixel images [33]. Thus, traditional

semantic segmentation methods based on CNN [29], [39] are

not suitable, which rely on spatially ordered input for regional

feature extraction and are not insensitive to changing order.

In order to handle the unordered properties of point

cloud data, the input data need to be treated symmetrically.

As shown in [33], this can be done by using multi-layer

perceptrons (MLPs) with shared parameters to treat the fea-

ture vector of each point in the point cloud. As shown in

Fig. 4, an MLP contains multiple layers of neurons. Each

neuron takes inputs from the connected neurons in the former

layer, handles them by weighted summation with bias and an

activation function (e.g., sigmoid), and outputs the result value

to the next layer. By this means, an MLP is able to obtain a

representative feature vector of a point from its position and

the extracted reflection coefficient vector. Moreover, since we

use the point cloud data for semantic segmentation, it will

be more privacy-protecting than existing RIS-aided sensing

Fig. 4. Illustration on a symmetric MLP group to process the feature vectors
in a point cloud.

Fig. 5. Component modules of MetaSketch: radio environment reconfigura-
tion is shown in the top, and point cloud extraction and semantic segmentation
modules are shown in the bottom.

systems, such as [40], which use images of human as training

data.

IV. SYSTEM MODEL

Based on the preliminaries in Section III, we introduce the

system model of MetaSketch in this section. The MetaSketch

is a sensing system that can perform semantic recognition and

segmentation for humans and objects based on RF signals.

To achieve this goal, MetaSketch uses an RIS to make the radio

environment reconfigurable and obtain spatial point clouds of

humans and objects by using compressive sensing techniques.

In the following, we first describe the components of the

MetaSketch and then provide a protocol that coordinates the

components.

A. System Components

As illustrated in Fig. 5, MetaSketch contains the following

three component modules:

• Radio environment reconfiguration module: This module

contains a pair of RF transceivers and an RIS, where the

transmitter (Tx) and receiver (Rx) have single antennas.

The Tx antenna is directional and has its main lobe pointed
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Fig. 6. Illustration on the data collection phase.

toward the RIS. Thus, the majority of the transmitted

signals arrive at the RIS, while few of them directly reach

the Rx antenna through the line-of-sight (LoS) path. The

transmitted signals are reflected by the RIS and then reach

the humans and objects in different spatial blocks, carrying

the information of them to the Rx. Besides, the Rx antenna

is omnidirectional to receive the reflected signals from

different positions in the space of interest.

• Point cloud extraction module: This module is imple-

mented in the server connected to the Rx and uses the

compressive sensing technique to extract the reflection coef-

ficient point cloud from the baseband signals from the Rx.

• Semantic segmentation module: This module is also

implemented in the server and takes the point cloud obtained

in the previous module as the input. This module adopts

symmetric MLP groups to label each point in the point cloud

with its semantic meaning for human and object recognition.

B. Coordination Protocol

In the following, we propose a protocol to coordinate the

component modules of MetaSketch to perform RF-sensing,

point cloud extraction, and semantic segmentation. In the

protocol, the timeline is slotted and divided into cycles, and

MetaSketch operates in a synchronized and periodic manner.

Each cycle is constituted of two phases: data collection and

signal processing phases. In the following parts, we describe

the data collection and signal processing phases in detail.

1) Data Collection Phase: As illustrated in Fig. 6, in the

data collection phase, the RIS changes configuration sequen-

tially. The receiver measures the received signals during each

configuration and stores them as a vector, referred to as the

measurement vector. Specifically, at the beginning of a data

collection phase, the Tx first transmits a starting signal to the

RIS and the Rx for synchronization. Then, the Tx starts to

transmit a sine wave signal with frequency fc, and the RIS

changes from the first to the K-th configuration sequentially,

which are denoted by c1 to cK . Here, K is the total number

of configurations in a data collection phase as shown in

Fig. 6, and ck (k ∈ [1, K]) is an L-dim vector with L
being the number of groups of the RIS. Moreover, the K
configurations of the RIS constitute a measurement matrix C,

i.e., C = (c1, . . . , cK). While the RIS can adopt a random

C, we propose a method to obtain an optimized configuration

matrix in Section V-A. At the end of a data collection phase,

the Rx generates y by taking the averages of the received

signals within each duration of the K configurations. Then,

the Rx sends y to the server for point cloud extraction and

semantic segmentation.

2) Signal Processing Phase: The signal processing phase

follows the data collection phase. Specifically, after receiving

the measurement vector generated by the Rx, the server first

invokes the point cloud extraction module to extract the point

cloud of the humans and objects from the measurement vector.

Then, the generated point cloud is processed by the semantic

segmentation module, which provides each point with the label

representing its semantic meaning. The algorithms used in the

point cloud extraction and semantic segmentation modules will

be explained in Sections V-B and V-C, respectively.

V. PROBLEM FORMULATION AND ALGORITHM

DESIGN FOR METASKETCH

In this section, we describe the problem formulation and

algorithm design for MetaSketch’s three component modules.

A. Radio Environment Reconfiguration

In this section, we describe how the radio environment

reconfiguration module of MetaSketch derives its config-

uration matrix. While random configuration matrices are

available, to facilitate the point cloud extraction and seman-

tic segmentation, it requires the configuration matrix to be

optimized. Specifically, the information about humans and

objects is contained in the reflection coefficients at different

spatial blocks. Denote the reflection coefficients by an M -dim

vector η, where M is the cardinality of a set of pre-assigned

spatial blocks in the space of interest whose reflection coef-

ficients we aim to restore. The j-th element of η indicates

the average reflection coefficient in the j-th spatial block.

Consequently, we need to optimize C so that η can be restored

from y with the highest accuracy.

In MetaSketch, though M can be large, most spatial blocks

are empty, and thus tend to have zero reflection coefficients.

Besides, for the spatial blocks that contain parts of humans

and objects, only those with specific angles can reflect the

signals towards the Rx antenna and have non-zero reflection

coefficients. Therefore, η is a sparse vector and can be

solved by using the compressive sensing technique. Based

on [41], to minimize the loss between the reconstructed η

and the actual one, we can minimize the average mutual

coherence (AMC) of H , which is defined as

µ(H)=
1

M(M − 1)

∑

m,m0∈[1,M ],m 6=m0

|hT
mhm0 |

khmk2 · khm0k2
. (2)

Here, hm ∈ CK and hm is the m-th column of H , where C

indicates the set of complex numbers. The i-th element of

hm (i ∈ [1, K]) indicates the influence of an object with

normalized reflection coefficient 1 in the m-th spatial block on

the received signals, under the k-th configuration of the RIS.

In (2), measurement matrix H is determined by C, and we

can obtain the value of H = g(C) according to the Appendix.

Based on (2), we can formulate the optimization problem

for the radio environment reconfiguration as the following
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Algorithm 1 Configuration Matrix Optimization

Input : Initial random configuration matrix C(0); Initial

population size in the genetic algorithm (GA)

NP ; Number of generations in the GA NG;

Small value σ to ensure convergence.

Output: Optimal AMC µ∗ and configuration matrix C∗.

1 Set C∗ = C(0), and compute initial µ∗ = µ(H∗) based

on (2) with H∗ = g(C∗) as in Appendix;

2 Set the number of consecutive iterations with no

improvements as Nnon = 0 and current frame index

k = 1;

3 while True do

4 Transform C∗ to zero-one matrix D̃ by (13) in

Appendix, and denote the k-th row of D̃ as d̃k and

the other rows as D̃−k;

5 Invoke pattern search algorithm [42] to solve

d̃
∗

k = arg mind̃k∈[0,1]L·Ns µ([d̃k, D̃−k]A), where A is

defined in Appendix;

6 Round up d̃
∗

k to discrete configuration vector c0k by

(c0k)l = argmaxj∈[1,Ns]((d̃
∗

k)(L−1)Ns+j);
7 Invoke genetic algorithm [43] to solve

c∗k = arg maxck∈[1,Ns]L µ(g(ck, C∗
−k)) with an initial

population containing c0k, and denote the resulting

AMC as µ∗0;

8 If µ∗0 < µ∗ − σ, update µ∗ = µ∗0 and the k-th row of

C∗ to be c∗k; otherwise, set Nnon = Nnon + 1;

9 If Nnon < K , set k = mod(k + 1, K) + 1; otherwise,

return µ∗ and C∗;

10 end

AMC minimization problem:

(P1) min
C

µ(H), (3)

s.t. H = g(C), (4)

ck,l ∈ {1, . . . , Ns}, ∀k ∈ [1, K], l ∈ [1, L], (5)

where Ns denotes the number of states of each RIS ele-

ment and ck,l denotes the state of the l-th group in the

k-th configuration. To solve (P1), we propose a configuration

matrix optimization algorithm, which is described in Algo-

rithm 1. The computational complexity and convergence of

the proposed algorithm can be analyzed as follows.

1) Computational Complexity Analysis: To evaluate the

scalability of Algorithm 1, we analyze its computational

complexity with respect to L, Ns, M , and K . We consider

the worst case where the maximum number of iterations is

reached. It can be observed in Algorithm 1 that the computa-

tional complexity is dominated by Step 5 and Step 7, where

the pattern search and genetic algorithms are invoked.

For the pattern search algorithm, in the worst-case sce-

nario, the computational complexity is determined by that

of an iteration. In each iteration, the algorithm polls each

element of the optimization variable vector and applies a

deviation on the element to find a vector improving the objec-

tive function value. As optimization variable vector d̃k has

L × NS elements, the objective function is evaluated for

O(L × Ns) times. Besides, the computational complexity to

evaluate the objective function µ([d̃k, D̃−k]A)) is determined

by H = D̃A and (2), which is O(KMNsL + KM2).
Therefore, the computational complexity of the pattern search

in Step 5 is O(KMNsL + KM2).
Moreover, for the genetic algorithm, as the number of

iteration, i.e., NG, is fixed, the computational complexity is

determined by that of an iteration. Specifically, in each iter-

ation, the algorithm evolves the optimization variable vectors

in the current population by cross-over and mutation. Then,

it evaluates the results in terms of the objective function

values to decide whether to replace the current vectors with

the evolved ones. Since the cross-over and mutation are sim-

ple element-wise operations, they have a low computational

complexity of O(L). Therefore, the computational complexity

of the genetic algorithm is dominated by the evaluation of

the objective function, which is also O(KMNsL + KM2).
In summary, the computational complexity of Algorithm 1 is

O(KMNsL + KM2).
2) Convergence Analysis: In each iteration of Algorithm 1,

(P1) is firstly relaxed to continuous optimization problem

d̃
∗

k = argmind̃k∈[0,1]L·Ns µ([d̃k, D̃−k]A), which is solved by

using the pattern search algorithm in Step 5. Based on [44],

the pattern search is guaranteed to converge to a global

optimal point satisfying the first-order necessary conditions

under linear constraints. Then, in Step 6, the solution obtained

by the pattern search algorithm, i.e., d̃
∗

k is then rounded up to

be c0k, which is close to the optimal k-th configuration and

used as the initial point for the following genetic algorithm.

Then, in Step 7, based on [45], given a sufficiently

large number of generations, the genetic algorithm con-

verges to a global optimum. Therefore, c∗k is a globally

optimal k-th configuration for the RIS given C∗
−k. Moreover,

in Step 8, the configuration matrix C∗ is updated when

c∗k results in a lower AMC value than the current best,

which ensures that after each iteration, µ∗ is monotonically

decreasing.

Based on the definition of µ in (2), µ∗ has a lower bound

of 0. Therefore, Algorithm 1 is bound to converge since µ∗

cannot decrease to lower than zero, which indicates the number

of iterations to be finite. Given that NG is sufficiently large,

Algorithm 1 converges to a locally optimal configuration

matrix, whose AMC value cannot be further reduced by

changing its row vectors individually.

B. Point Cloud Extraction

The point cloud extraction consists of two steps, which are

the measurement matrix construction and the reconstruction

of reflection coefficients.

1) Measurement Matrix Construction: To perform point

cloud extraction, we need first to estimate H∗ as accurately

as possible given C∗ obtained in Algorithm 1, so that the

accuracy of point cloud extraction is maximized. Though this

estimation can be done by theoretical analysis in Appendix,

i.e., H∗ = g(C∗) as in (P1), the precise H∗ may be slightly

different from the theoretical calculation. This is due to that
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the influence of environmental scattering and the LoS path of

RF signals are not handled.

To obtain a precise H∗, we first assign a set of M spatial

blocks, which is denoted by M = {(xm, ym, zm)|m ∈
[1, M ]}. Then, we position a metal patch at the center of each

spatial block, and collect the measurement vectors using the

protocol described in Section IV-B with the RIS adopting C∗.

When the metal patch is at the m-th (m ∈ [1, M ]) spatial

block, the collected measurement vector is denoted as ŷC∗,m.

Following that, we remove the metal patch and obtain the mea-

surement vector for the environmental scattering and LoS path,

which is denoted as yB . Based on the superposition property

of the RF signals, the channel gain for the propagation channel

reflected at the m-th spatial block can be obtained by

h∗
m = (ŷC∗,m − yB)/ηM

m , (6)

where ηM
m is the reflection coefficient of the metal patch at

the m-th spatial block towards the Rx antenna. Moreover,

for normalization, we set ηM
m = 1. Furthermore, in (6),

by subtracting yB from ŷC∗,m, the influence of the LoS

path and environmental scattering is removed. It is also worth

noticing that though the construction of the measurement

matrix by (6) is accurate, it can be kind of time-consuming

when K and M are large. To improve the time efficiency of

constructing the measurement matrix, the channel estimation

method in [46] can be adopted. Based on (6), we obtain

measurement matrix H∗ ∈ CK×M corresponding to C∗ by

H∗ = [h∗
1, . . .h

∗
M ].

2) Reconstruction of Reflection Coefficients: Measurement

matrix H∗ can be used to extract the point cloud of reflection

coefficients as shown in (1), which is equivalent to recon-

structing η from a measurement vector y. Specifically, denote

the collected measurement vector in a cycle as y, and the

following equation holds:

y − yB = H∗η + e, (7)

where η ∈ CM is the relative reflection coefficient vector of

the pre-assigned spatial blocks with respect to metal patches,

and e indicates a noise vector with element-wise variance �.

Then, based on the compressive sensing technique described in

Section III-B, with known y, yB , and H∗, we can then extract

the point cloud, i.e., η, by solving the following l1-norm

minimization problem:

(P2) min
η∈CM

kηk1, (8)

kH∗η − y + yBk2 ≤ �. (9)

Problem (P2) can be recast as a second-order cone program

problem and solved by convex optimization tools in [47].

Based on η∗ obtained by solving (P2), the generation of

the point cloud, which is a set of feature vectors with spatial

positions, is described as follows. Denote the point cloud as P
which contains M elements. Each element in P is a 5-dim

real-valued feature vector, which is composed of its spatial

position and the reconstructed reflection coefficient of it, i.e.,

pm = (xm, ym, zm, Re(η∗
m), Im(η∗

m)) , ∀m ∈ [1, M ]. (10)

Fig. 7. Diagram of the semantic segmentation algorithm.

Here, the first three dimensions indicate the coordinates of the

center of the m-th spatial block, and Re(·) and Im(·) denote

the real and imaginary parts of a complex value, respectively.

C. Semantic Segmentation

The semantic segmentation module takes the extracted point

cloud P as input and outputs a set P̃, which contains the

elements with spatial positions and semantic labels, i.e.,

P̃ = {(xm, ym, zm, bm)|m ∈ [1, M ]} (11)

where Nobj denotes the total number of possible semantic

labels, and bm ∈ [0, 1]Nobj denotes the estimated probabilities

for the point to have the semantic labels with
∑Nobj

i=1 bm,i = 1.

Without loss of generality, we denote the mapping performed

by the semantic segmentation module by fθ
S : P → P̃ with θ

being the parameter vector.

The aim of the semantic segmentation algorithm is to

solve the optimal θ minimizing the differences between the

predicted semantic label, i.e., bm, and the ground truth label,

i.e., b̂m. It can be observed that compared with the works

on imaging [48] and localization [49], MetaSketch is featured

by its capability of recognizing and labeling different objects.

To handle this problem, we adopt the supervised learning

technique to train θ given a training data set [50].

As described in Section III-C, fθ
S needs to be symmetric.

Moreover, the process of labeling the semantic meaning of

each point needs to consider both local and global information.

This is because knowing the semantic meaning of the point

cloud as a whole facilitates figuring out the semantic meaning

of each point [33]. To satisfy the above requirements and solve

the semantic segmentation problem, we design the semantic

segmentation algorithm based on [33]. Specifically, fθ
S is

modeled as a specially designed neural network depicted in

Fig. 7, which contains symmetric MLP groups and feature-

gathering connections. In this case, θ indicates the connection

weights and biases in the neural network.

1) Symmetric MLP Groups: We process M points in P
by 2 symmetric MLP groups, each of which contains M
symmetric MLPs, as shown in Fig. 7 where the numbers in the

brackets indicate the numbers of neurons in different layers.

As the MLPs within a symmetric MLP group have the same
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structure and parameters, the results of the symmetric MLP

group are invariant to the permutation of the input points.

2) Feature-Gathering Connections: Feature-gathering con-

nections refer to the max-pooling layer and the concatenation

of the local feature vectors and the global feature vector,

which are depicted in Fig. 7. Specifically, in the max-pooling

layer, the maximum value in each dimension of the M input

feature vectors is picked to form the output vector, which

thus has 256 dimensions. By this means, the max-pooling

layer reduces the number of parameters and aggregates the

information, which also alleviates overfitting. The output of it

is then processed by a three-layer MLP to generate the global

feature vector. Then, the global feature vector is concatenated

to the local feature vector of each point. By this means, the

feature vector of each point now contains both local and global

information.

We adopt the average cross-entropy (CE) loss [50] as the

optimization objective in the algorithm, which is defined

by L(θ) = 1
|Dt|M

∑

(P,b̂1,...,b̂M )∈Dt

∑

m=1,...,MCE(bm; b̂m),

where {(xm, ym, zm, bm)}m∈{1,...,M} = fθ
S(P). Here, Dt

denotes the training data set. Then, the Adam algorithm [50]

is invoked to solve θ∗ = arg minθ L(θ).

VI. IMPLEMENTATION

In this section, we present the implementation of MetaS-

ketch, including the RIS, the RF transceivers, and the server.

A. Building the RIS

The RIS has a size of 69 × 69 × 0.52 cm3 and is composed

of 16 independently controllable groups which are tightly

paved in squares. The RIS is specially designed for the incident

signals of 3.198 GHz, which is referred to as the working

frequency. Each group contains 12 × 12 = 144 RIS elements

arranged in a two-dimensional array, and thus the total number

of RIS elements is 2304. The side length of an RIS element

is δ = 1.5 cm which is around 0.16 times the wavelength of

3.198 GHz signals. To be specific, each RIS element has the

size of 1.5 × 1.5 × 0.52 cm3 and is composed of 4 rectangle

copper patches printed on a dielectric substrate (Rogers 3010)

with a dielectric constant of 10.2 and 3 PIN diodes (BAR

65-02L). Any two adjacent copper patches are connected by

a PIN diode, and each PIN diode has two operation states,

i.e., ON and OFF, which are controlled by applying bias

voltages through the via holes. When the applied bias voltage

is 1.2 V (or 0 V), the PIN diode is at the ON (or OFF) state.

The detailed information of the RIS can be found in [15].

As there are 3 PIN diodes in an RIS element, the total

number of possible states of an RIS element is 8. We simulate

the S21 parameters, i.e., the forward transmission gain, of the

RIS element in different states for normal-direction incident

RF signals in the CST software, Microwave Studio, Transient

Simulation Package [51]. At its designed working frequency of

3.198 GHz, four states of an RIS element have phase shift val-

ues with an interval equaling to π/2. We pick these four states

to be the available state set Sa, i.e., Sa = {ŝ1, ŝ2, ŝ3, ŝ4}.

Specifically, the four selected states have the phase values

equaling to π/4, 3π/4, 5π/4 and 7π/4, respectively.

Fig. 8. Diagram of RIS control circuit.

Fig. 9. Components of the RF transceiver and the server of MetaSketch.

As described in Section III-A, the RIS elements within

the same group are in the same state. The states of

the 16 groups are controlled by the RIS control circuit.

As shown in Fig. 8, it contains a direct current (DC) power

source, 16 voltage-stabilizing circuits (LM2596), 16 digital

switch circuits (MAX4783), and a field-programmable gate

array (FPGA) (ALTERA AX301). The DC power source is

connected to the voltage-stabilizing circuits, and the input volt-

age to the voltage-stabilizing circuits is about 6 V. The voltage-

stabilizing circuits stabilize the input voltage and reduce it to

a 1.2 V output. Then, the digital switch circuits are single-pole

double-throw and control the PIN diodes to work under 0 V

or the stabilized 1.2 V biases.

B. Building the RF Transceiver and Server

The rest of the MetaSketch, i.e., the RF transceiver and the

server, are built and connected as shown in Fig. 9. The details

of each component are provided below.

1) USRP Devices: We implement the Tx and Rx based

on two USRPs (LW-N210), which are capable of converting

baseband signals to RF signals, or vise versa. The USRP

is composed of the hardwares including the RF modula-

tion/demodulation circuits and baseband processing units and

can be controlled by using the GNU packet in Python [52].

2) Low-Noise Amplifiers (LNAs): Since the RF signals are

reflected twice (on RIS and on objects) before reaching the Rx

antenna, they suffer from large attenuation in signal strength,

which results in low SNR and degrades the measurement

precision. To handle this issue, two LNAs (ZX60-43-S+)

connect the Tx and Rx USRPs and the antennas, which can

amplify the transmitted and received RF signals by 15 dB.
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Fig. 10. Environment layout in the experiments.

3) Tx and Rx Antennas: The Tx antenna is a directional

double-ridged horn antenna (LB-800), and the Rx antenna is

an omnidirectional vertical antenna (HT3500LC). The polar-

izations of both the Tx and Rx antennas are linear and aligned

to be vertical to the ground.

4) Signal Synchronizer: For the Rx USRP to obtain the

relative phases and amplitudes of the received signals with

respect to the transmitted signals of the Tx USRP, we employ

a signal source (DG4202) to synchronize the frequency and

phase of the Tx and Rx USRPs. The signal source provides the

reference clock signal and the pulses-per-second (PPS) signal

to the USRPs, which ensure the modulation and demodulation

of the USRPs to be coherent.

5) Ethernet Switch: The Ethernet switch connects the

USRPs and a server to form a local Ethernet, where the con-

trolling signals and received baseband signals are exchanged.

6) Server: The server controls the two USRPs by using

the GNU packet in Python, extracts the measurement vectors

from the received baseband signals, and performs point cloud

extraction and semantic segmentation.

VII. SIMULATION AND EXPERIMENTAL EVALUATION

In this section, we demonstrate the experimental setup

for MetaSketch and evaluate the performance of its compo-

nent modules by using simulation results and experimental

results.

A. Experimental Setup

We describe the experimental setup in four aspects: the

environmental layout to test MetaSketch, the setting of the RF

transceivers, the collected data, and the evaluation metrics.

1) Environmental Layout: The environmental layout of

MetaSketch is shown in Fig. 10. To be specific, the origin

of coordinate is at the center of the RIS, and thus the RIS

is in the y-z plane. Besides, the z-axis is vertical to the

ground and pointing upwards, and the x- and y-axes are

parallel to the ground. The Tx and Rx antennas are located at

(0.87,−0.84, 0) m and (0, 0,−0.5) m, respectively.

The humans and objects are in the space of interest, which

is a 0.4 × 2 × 2 m3 cuboid region located at 1 m away from

the RIS. Besides, the space of interest is regularly divided into

M = 400 spatial blocks each with size 0.4 × 0.1 × 0.1 m3.

Moreover, since the space of interest is behind the Tx antenna,

and the Tx antenna is a directional horn antenna, no LoS path

from the Tx antenna to the space of interest exists.

2) Transceiver Setting: To obtain a high SNR and reduce

the error of point cloud extraction in (P2), the Tx power of

the USRP device is set to be the maximum of 20 dBm. Thus,

given that the gain of LNA is 15 dB, the actual transmitting

power of the Tx Module is 35 dBm.

Besides, the operating frequency of the USRP devices in

MetaSketch is set to be the same as the working frequency

of the RIS, which is fc = 3.198 GHz, in order to obtain

the designed four phase shifts with a π/2 interval. This is

because if the USRP devices operate at other frequencies, the

RIS elements will not be able to effectively impose the phase

shifts on the reflected signals. Therefore, it results in a high

AMC value of the measurement matrix and the degradation

of the MetaSketch’s performance.1

3) Collected Data: The optimized configuration matrix of

RIS, i.e., C∗, is obtained by solving (P1) in the server and

is uploaded to the FPGA. In the data collection phase, the

RIS changes its configuration every 0.1 seconds. To obtain

the corresponding measurement matrix, i.e., H∗, we set a

0.1 × 0.1 m2 metal patch at the center of each spatial

block sequentially given RIS adopting C∗, as described in

Section V-B1.

We first generate a set of 64 point clouds with semantic

labels as the ground truth set. Specifically, we arrange a human

and up to 4 objects in the space of interest according to each

of the point clouds. The 4 objects include a bottle, a laptop,

and a suitcase. We measure the received signals following

the protocol in Section IV-B. Using measurement matrix

H∗ corresponding to C∗, the point cloud extraction module

processes the received signals and extracts point clouds by

solving (P2). The ground truth set and the corresponding

extracted point clouds constitute training data Dt for the

semantic segmentation algorithm.

In the collected training data, each point is represented by

a 5-dim vector and a label. The first three dimensions indicate

the coordinates of the point; the next 2 dimensions indicate

the real and imaginary values of the regenerated reflection

coefficients of the point. The label is a 5-dim one-hot vector

indicating the semantic meaning of the point.

4) Evaluation Metrics: We adopt the following three eval-

uation metrics.

a) AMC: As defined in (2), the AMC evaluates the

average coherence between every two columns in the mea-

surement matrix. A lower AMC indicates the propagation

channels via different spatial blocks are more indepen-

dent of each other. The AMC is inversely proportional to

the reconstruction performance of the compressive sensing

method [41].

b) Average cross-entropy loss: We adopt average cross-

entropy loss as the objective metric to train the semantic

segmentation module as described in Section V-C. The aver-

age cross-entropy loss evaluates the divergence between the

estimated semantic labels and the ground truth.

1Since the design of MetaSketch is not specific to a certain RIS, the proposed
MetaSketch can adapt to an RIS with a different working frequency.
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Fig. 11. AMC of measurement matrix versus the number of iterations in
Algorithm 1.

c) Average error rate: For each semantic label, the error

rate is defined as the ratio between the points which belong

to this label in truth but are labeled incorrectly and the total

number of points belonging to this label in the ground truth.

We adopt the average error rate of the Nobj labels as an

intuitive metric to evaluate the performance of MetaSketch.

B. AMC Minimization by Radio Environment Reconfiguration

Fig. 11 shows the resulting AMC of H∗ obtained by solving

(P1) versus the number of iterations in Algorithm 1, under

different numbers of configurations, K . It can be observed

that the AMC decreases with the number of iterations, which

verifies the effectiveness of the proposed configuration matrix

optimization algorithm. Besides, it can also be seen that the

converged optimal AMC of H∗ decreases with K , which

can be explained as follows. To reduce the AMC of H∗,

it requires the columns of H∗ to distribute their large elements

into different dimensions. As K determines the number of

dimensions of h∗
m, large K increases the probability to have

the large elements at different dimensions and thus potentially

results in a lower AMC. Therefore, as K increases, the AMC

value of H∗ decreases, which can lead to higher accuracy for

the compressive sensing technique to extract point clouds.

Specifically, we then compare the mutual coherence of

the measurement matrices corresponding to the random and

optimized configuration matrices in the K = 10 case.

The configuration matrix in Fig. 12 (a) is C∗ obtained by

Algorithm 1, and Fig. 12 (c) shows the mutual coherence

of the corresponding H∗. Besides, the configuration matrix

in Fig. 12 (b) is a random configuration matrix where the

elements are generated following a uniform distribution on

[1, 4]. Fig. 12 (d) shows the coherence of column vectors of

H for the random C. Moreover, the overall AMC in the

two cases are showed by the black planes, and their values

are provided by the tags in Figs. 12 (c) and (d). Comparing

Figs. 12 (c) and (d), we observe that Algorithm 1 effectively

optimizes the configuration matrix and reduces the mutual

coherence of the measurement matrix, resulting in a lower

AMC than that of a random configuration matrix. Based on

the discussion in Section V-A, the configuration matrix in

Fig. 12 (a) achieves higher accuracy of point cloud extraction

than that in Fig. 12 (b).

Fig. 12. (a) and (b) illustrate the optimized and random RIS configuration
matrices in K = 10 case. (c) and (d) show the mutual coherence values
of the measurement matrices corresponding to the configuration matrices
in (a) and (b), respectively. The black planes in (c) and (d) indicate the overall
AMC, and their quantitative values are provided in the tags.

Fig. 13. AMC of the optimized measurement matrix H∗ given (a) different
numbers of RIS element groups and (b) different sizes of an RIS element.
In (b), δ = 1.5 cm denotes the size of the RIS element used in the
implementation.

Figs. 13 (a) and (b) show the influence of the number of

RIS element groups and the size of an RIS element on the

AMC value of H∗. It can be observed in Fig. 13 (a) that as

the number of RIS element groups increases, the AMC value

decreases. This is because more groups of controllable RIS

elements indicate that the RIS has a stronger beamforming

capability, which enables different spatial blocks to have less

coherent influence on the received signals. Therefore, based

on the discussion in Section V-A, the performance of the

MetaSketch in terms of point cloud extraction and semantic

segmentation improves with the number of RIS elements.

Besides, it can be observed in Fig. 13 (b) that the AMC

value increases with the size of the RIS element, which can

be explained intuitively as follows. Given a fixed number of

RIS elements, increasing the size of RIS elements enlarges the

RIS. Relatively speaking, it can be considered as the space of

interest is shrunken while the size of the RIS remains the

same. In this case, the spatial blocks become more close to

each other, which makes the measurement vectors of different
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Fig. 14. Extracted point clouds when the RIS adopts the optimized and
random configuration matrices, i.e., C∗ and C, respectively. The size of a
square indicates the amplitude of the extracted reflection coefficient in the
spatial block, and the color of a square indicates its phase.

Fig. 15. (a) Average cross-entropy loss and (b) average error rate versus the
number of training epochs given optimized and random configuration matrices
with different K . The shaded areas illustrate the values of each epoch, and
the thick lines indicate the average values for the last 20 epochs.

spatial blocks more coherent. Therefore, the AMC value

becomes higher as the size of RIS element increases.

C. Evaluation on Point Cloud Extraction

Fig. 14 show the photos and the corresponding extracted

point clouds given the optimized and the random configuration

matrices, i.e., C∗ and C. In the photos, the light (yellow)

regions are the metal patches, and the dark (brown) regions are

the cardboards which have a negligible impact on RF signals.

It can be observed that when the number of metal patches

is small, the point cloud extraction module can successfully

reconstruct the point clouds which reflect the ground truth

well given both C∗ and C. When the number of metal

patches is larger than 4, the point clouds may not be in accor-

dance with ground truth in the random configuration matrix

case. Nevertheless, the point clouds obtained when using the

optimized RIS configuration matrix reflect the ground truth

more accurately than those obtained when using a random

RIS configuration matrix, which verifies the effectiveness of

optimizing the radio environment reconfiguration.

D. Evaluation on Semantic Segmentation

Figs. 15 (a) and (b) show the average cross-entropy loss and

average error rate versus the number of training epochs of the

Fig. 16. Semantic segmentation results for human and objects given that the
RIS adopts the optimized and the random configuration matrices with K = 10

and K = 50. The number of training epochs is 500. The human, suitcase,
laptop, and bottle are labeled by red, white, blue, and green, respectively.

semantic segmentation algorithm. The red and blue lines are

obtained when K = 10 and K = 50, respectively, where the

solid lines are the results given C∗ and the dash lines are

the results given C. It can be observed that as the number

of training epochs increases, both the average cross-entropy

loss and the average error rate decrease. Besides, when K is

small (K = 10), it can be observed that using C∗ can help

the semantic segmentation module to achieve a much lower

average cross-entropy loss and average error rate. Specifically,

when K = 10, after about 350 epochs of training, MetaSketch

can perform semantic segmentation with an average error

rate of less than 1%. If the number of configurations is

sufficiently large, e.g., K = 50, the average error rate can be

further reduced to less than 0.1% after 400 epochs of training.

Nevertheless, when K becomes larger, the duration of the data

collection phase increases, which may make the assumption

of humans and objects being static during the data collection

phase impractical.

Moreover, in Figs. 15 (a) and (b), the black dot lines

are obtained in a nonconfigurable radio environment, where

the configuration of the RIS is fixed to all states being ŝ1,

i.e., K = 1 and C = 1. Compared with the system with a

nonconfigurable radio environment, the average cross-entropy

loss and the average error rate of MetaSketch are significantly

lower, which verifies the effectiveness of the radio environment

reconfiguration as well as the proposed system.

Fig. 16 shows the semantic segmentation results

after 500 training epochs overlaid on the ground truth,2

given that the RIS adopts the optimized and random

configuration matrices with different K . Besides, Fig. 17

provides detailed information about the training process.

Specifically, Figs. 17 (a) and (b) are the ground truth photo

and the ground truth labeled point cloud, respectively, and

Fig. 17 (c) shows the semantic segmentation results in

different training epochs, where the RIS adopts C∗ with

K = 10 and K = 50. In the semantic segmentation results,

the human, suitcase, laptop, and bottle are labeled by red,

white, blue, and green colors, respectively.

2We use photos to show the ground truth to facilitate the comparison
between the segmentation results and real scenes. The photos can be used
to get the labeled point clouds in the training data set. After training, the
MetaSketch can perform semantic segmentation based on only the received
RF signals, which ensures privacy protection.

Authorized licensed use limited to: University of Houston. Downloaded on July 02,2023 at 14:21:26 UTC from IEEE Xplore.  Restrictions apply. 



HU et al.: MetaSketch: WIRELESS SEMANTIC SEGMENTATION BY RECONFIGURABLE INTELLIGENT SURFACES 5927

Fig. 17. (a) and (b) are the image of the human and objects and the ground truth labeled point cloud, respectively, and (c) is the semantic segmentation
results in different training epochs given RIS adopting the optimized C∗ with K = 10 and K = 50.

In Fig. 16, comparing the cases where K = 10 and

K = 50, we can observe that increasing the number of

configurations in a cycle enables the MetaSketch to obtain the

labeled point cloud closer to the ground truth. In Fig. 17 (c),

it can be seen that when K is larger, the training process

is faster, as the semantic segmentation result gets close to

the ground truth in an earlier epoch. Besides, in Fig. 16,

it can also be seen that using the optimized configuration

matrix improves the semantic segmentation accuracy. When

K = 50, the improvement due to using the optimized

configuration matrix is smaller than that when K = 10.

Nevertheless, since a large K results in a long duration of

the data collection phase, a small K is preferable, where

adopting the optimized configuration matrix is necessary and

important.

VIII. CONCLUSION

In this paper, we have presented MetaSketch, an RIS-based

RF-sensing system, to perform semantic segmentation based

on RF signals. We have designed MetaSketch to have three

component modules, i.e., a radio environment reconfiguration

module, a point cloud extraction module, and a semantic seg-

mentation module. MetaSketch can actively modify the radio

environment according to the configurations of the RIS and

generate favorable propagation channels for sensing purposes.

To optimize its performance, we have proposed a configura-

tion matrix optimization algorithm for the radio environment

reconfiguration. By using the point cloud extraction module,

MetaSketch can extract the spatial reflection coefficient point

cloud, which can be processed by its semantic segmentation

module for semantic recognition and labeling.

Our results have shown that, firstly, the RIS-based radio

environment reconfiguration module with the proposed algo-

rithm can generate measurement matrices with low AMC,

which can promote the accuracy of point cloud extraction.

Secondly, after training, MetaSketch can label semantic mean-

ings of the spatial blocks with an average error rate of ≤1%,

given the setup of a human, a suitcase, a laptop, and a bottle in

a 1.6 m3 indoor space. Thirdly, optimizing the measurement

matrix can reduce the number of training epochs and mea-

surements required to obtain accurate semantic segmentation

results.

APPENDIX

CALCULATION OF MEASUREMENT MATRIX

Given configuration matrix C, we now calculate the cor-

responding measurement matrix H . Based on ray-tracing

technique [53], we first calculate channel gain matrix A,

where the elements indicate the channel gains of the radio

paths from the Tx to Rx via the L RIS groups in Ns different

states and the M spatial blocks. Specifically, A is a (LNs) ×
M matrix. Based on [54], given l ∈ [1, L], i ∈ [1, Ns], and

m ∈ [1, M ], the element of A can be expressed as

(A)Ns(l−1)+i,m =
∑

n∈Nl

(λ · rn,m(ŝi)·√gT,ngR,m

4πdT,M
n · dM,S

n,m · dS,R
m

· e−j2π(dT,M
n +dM,S

n,m+dS,R
m )/λ

)

, (12)

where rn,m(ŝi) denotes the reflection coefficient of the

n-th RIS element in the l-th group with state ŝi for the inci-

dent signals towards the m-th spatial block, gT,n is the gain of

the Tx antenna towards the n-th RIS element, gR,m is the gain

of the Rx antenna towards the m-th spatial block, and dT,M
n ,

dM,S
n,m, and dS,R

m are the distance from the Tx antenna to the

n-th RIS element, from the n-th RIS element in the l-th group

to the m-th spatial block, and from the m-th spatial block

to the Rx antenna, respectively. Here, rn,m(ŝi) is calculated

by using the CST software [51]. Besides, gT,n and gR,m

are obtained from the data-sheets of Tx and Rx antennas,

respectively.

We then transform C to a K × (LNs)-dim zero-one

matrix D. Given ∀k ∈ [1, K], l ∈ [1, L], and i ∈ [1, Ns],
the element of D can be expressed as

(D)k,Ns·(l−1)+i =

{

1, if (C)k,l = i,

0, otherwise.
(13)

Therefore, H can be calculated by H = DA. We denote

process of calculating H from C by the function H = g(C).
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