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AbstractÐIn this paper, we investigate the employment of
reconfigurable intelligent surfaces (RISs) into vehicle platoons,
functioning in tandem with a base station (BS) in support of
the high-precision location tracking. In particular, the use of a
RIS imposes additional structured sparsity that, when paired
with the initial sparse line-of-sight (LoS) channels of the BS,
facilitates beneficial group sparsity. The resultant group sparsity
significantly enriches the energies of the original direct-only chan-
nel, enabling a greater concentration of the LoS channel energies
emanated from the same vehicle location index. Furthermore, the
burst sparsity is exposed by representing the non-line-of-sight
(NLoS) channels as their sparse copies. This thus constitutes
the philosophy of the diverse sparsities of interest. Then, a
diverse dynamic layered structured sparsity (DiLuS) framework
is customized for capturing different priors for this pair of
sparsities, based upon which the location tracking problem is
formulated as a maximum a posterior (MAP) estimate of the
location. Nevertheless, the tracking issue is highly intractable
due to the ill-conditioned sensing matrix, intricately coupled
latent variables associated with the BS and RIS, and the spatial-
temporal correlations among the vehicle platoon. To circum-
vent these hurdles, we propose an efficient algorithm, namely
DiLuS enabled spatial-temporal platoon localization (DiLuS-
STPL), which incorporates both variational Bayesian inference
(VBI) and message passing techniques for recursively achieving
parameter updates in a turbo-like way. Finally, we demonstrate
through extensive simulation results that the localization relying
exclusively upon a BS and a RIS may achieve the comparable
precision performance obtained by the two individual BSs, along
with the robustness and superiority of our proposed algorithm
as compared to various benchmark schemes.

Index TermsÐReconfigurable intelligent surface, location
tracking, vehicle networks, diverse sparsities.

I. INTRODUCTION

With a tidal wave of technological innovation upon us,

the sixth-generation (6G) communication system tends to

be a game changer in terms of placating the extraordinary

Manuscript received 31 August 2022; revised 31 March 2023; ac-
cepted 3 May 2023. This work was supported by Beijing Natural Science
Foundation under Grant 4222011, and in part by NSF CNS-2107216, CNS-
2128368, CMMI-2222810, US Department of Transportation, Toyota and
Amazon. (Corresponding author: Ying Wang.)

Yuanbin Chen, Ying Wang, Xufeng Guo, and Ping Zhang are with the
State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing 100876, China (e-mail:
chen yuanbin@163.com; wangying@bupt.edu.cn; brook1711@bupt.edu.cn;
pzhang@bupt.edu.cn).

Zhu Han is with the Department of Electrical and Computer Engineering
in the University of Houston, Houston, TX 77004, USA, and also with the
Department of Computer Science and Engineering, Kyung Hee University,
Seoul, South Korea, 446-701 (e-mail: hanzhu22@gmail.com).

promises, particularly in support of enormous amounts of

widely heterogeneous information exchange in a hyperfast,

low-latency and ultra-reliable manner. A grand 6G paradigm

needs to be materialized by revolution-natured technologies,

such as terahertz (THz) communications, reconfigurable intel-

ligent surfaces (RISs), and artificial intelligence, in an effort

to advance the existing mechanisms and accommodate the

newly encountered particularities [1], [2]. Reaping plethora of

benefits in 6G, connected autonomous vehicles (CAVs) have

the potential to provide unparalleled quality of experiences,

tremendously improved traffic conditions, road safety, and

an abundance of cutting-edge vehicular applications [3]. This

relies significantly upon a high-definition degree of situational

awareness with the physical environment, i.e., the ability to

identify its own position. In response, standardization lays

the foundation of localization use cases and specifications

for sidelinks (e.g., vehicle platoons and coordinated maneu-

vers), including the recently frozen 3rd generation partnership

project (3GPP) Release 17, in an effort to further improve the

fifth-generation (5G) localization for fulfilling more stringent

criteria, e.g., centimeter-level accuracy [4], [5]. The existing

vehicle localization technologies, such as global positioning

system (GPS), radar, lidar and inertial sensors, however, fall

well short of achieving these specifications, thus mandating

rethinking ways and new contributing technologies that go

beyond the present ones.

The common localization techniques can be informally

categorized into indirect approaches and direct thereof. In

particular, the indirect localization aims to obtain the in-

termediate parameters, e.g., angles of arrival (AoA), time

of arrival (ToA), and received signal strength (RSS), from

the received signals before applying the trick of triangu-

lation to determine user’s location. For instance, the data-

driven methods including deep learning and fingerprinting are

employed in [6] and [7], respectively, to estimate the RSS

in a massive multiple-input multiple-output (MIMO) system.

It is investigated in [8] that a joint estimate of AoA and

ToA is considered for establishing user’s location. The direct

localization, by contrast, recovers the associated positions

straightforwardly from the received signal, which is applicable

exclusively in the pure line-of-sight (LoS) environment but can

also be extended to the multi-path scenario, based upon which

such a geometry-based approach allows the user’s location to

be constructed by taking full advantage of various LoS and

non-line-of-sight (NLoS) components [9], [10]. Furthermore,

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2023.3288262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Houston. Downloaded on July 02,2023 at 14:23:13 UTC from IEEE Xplore.  Restrictions apply. 



2

the application of the two localization techniques facilitates

the location tracking in the context of vehicular networks

[11]±[13], including the geometry-based cooperative localiza-

tion [11], indirect approach-based tracking [12], and data-

driven learning-based method [13]. Owing to the high degrees

of freedom and large apertures in the array equipped at the

base station (BS), the localization accuracy may be improved

if used in conjunction with an appropriate LoS/NLoS model

that is crafted to appropriately characterize the vehicular multi-

path environment. While these initiatives share common facts

with the collaborative efforts of multiple BSs, they may, in

practice, achieve so at the expense of unacceptable signaling

overhead and infrastructure costs.

Benefiting from the digitally controlled meta-surfaces, RIS

has been hailed as an impressive technology capable of trans-

forming the conventional uncontrollable wireless channels into

their controllable counterparts, thus materializing the concept

of ªsmart and customizable radio environmentº [14]±[16].

Intriguingly, a tight amalgamation of RIS with localization

is capable of making significant contributions to several chal-

lenging issues, with a number of fledgling research efforts

already available to date [17]±[24]. More explicitly, in [17],

the use of a RIS enables the exact construction of distinct RSS

values across adjacent locations by appropriately adjusting

the phase shifts of the RIS in the presence of only one

access point (AP) indoors. It is investigated in [18] that a

joint localization and synchronization paradigm is conceived

based on an optimized design of the BS active precoding

and RIS passive beamforming. A RIS is deployed in [19] for

investigating the capability of positioning a single-antenna user

by taking into account the mobility of the user and spatial-

wideband effects in a single-input and single-output (SISO)

system. Furthermore, RIS can be treated as a known anchor

point that may be utilized for multi-path augmentation in pure

LoS scenarios for the improved localization accuracy [20]±

[22], while also functioning excellently in NLoS scenarios

in the presence of obstructions by introducing beneficial LoS

paths [23], [24]. Therefore, as can be succinctly concluded

from the above attempts, RIS-aided localization is primarily

characterized by the various advantages provided by the varied

roles that RIS plays: i) as a known anchor point, a RIS has

the potential to introduce additional location reference, based

upon which the established priori facilitates the retrieval of

the exact posterior associated with user’s location using the

Bayesian framework [22], [25], and ii) due to its ability to

integrate into the wireless environment functioning as any

scatterer or reflector, a RIS is capable of delivering additional

observations, independent of the uncontrolled and passive

multiple paths, which relaxes the dependence of scatterers that

is required for the standard multi-path-based positioning [26].

In spite of the potential benefits of integrating RISs in

vehicular networks, achieving the high-accuracy and real-

time localization remains an open issue, as evidenced by

the following facts. Firstly, since the LoS channels between

the vehicle and different infrastructures (e.g., BSs and RISs)

originate from the same vehicle location, the LoS channel

energies associated with the BS and RIS are all concentrated

on the same location index, which induces a group sparsity

structure of the LoS channels. The burst sparsity structure

inherent to the angular NLoS channels also provides additional

angle references contributing to the improved localization

accuracy. Therefore, an appropriate probabilistic model is

required for characterizing the heterogeneous LoS/NLoS chan-

nels with diverse sparsities in support of the high-precision

localization. Secondly, concerning that vehicle platoons are

typically featured by vehicles advancing shoulder-to-shoulder

at approximately the same speed, vehicle positions are highly

spatial-correlated. With the passage of time, the previously

obtained vehicle position delivers rich priors for the present

tracking, and hence the use of such probability-dominated ran-

dom correlations has the potential to achieve a high-accuracy

location tracking with a reduced overhead. Furthermore, this

pair of critical facts aforementioned motivate us to use sparse

Bayesian-like approaches for the real-time location tracking.

Nevertheless, the conventional Bayesian-based methods, e.g.,

variational Bayesian inference [27] and pure approximate

message passing (AMP) [28], may be fruitless to cope with

the elusive priors due to the tight coupling of the direct and

cascaded location supports with various structured sparsities.

Accordingly, the entries in the BS- and RIS-associated sensing

matrices are not perfectly orthogonal, which renders them ill-

conditioned. Consequently, a location tracking scheme has to

be tailored for encapsulating LoS/NLoS channels with various

structured sparsities, sufficiently robust in the presence of the

sophisticated priors and highly tractable for enabling efficient

algorithm design. In a nutshell, we target these non-trivial

challenges in this paper to conceive a robust and high-accuracy

tracking strategy for the RIS-aided vehicle platoon system.

Geared towards the challenges mentioned above, the current

work presents the following advancements in the state-of-the-

art:

• We investigate a scenario of vehicle platoon with a

BS and a RIS functioning in tandem for the real-time

and high-accuracy localization. The employment of a

RIS imposes additional structured sparsity, which, when

paired with the initial sparse LoS channels of the BS,

facilitates the group sparsity. The group sparsity con-

tributed by both enriches the energies of the original

direct-only channel, resulting in a greater concentration

of the LoS channel energies associated with the BS and

RIS at the same location index that is based on a set

of uniformed road grids prescribed by the off-grid basis.

By contrast, the NLoS channels can be represented as

their sparse copies, revealing the burst sparsity. This thus

explicates the philosophy of the diverse sparse sparsities,

which allows the original location tracking problem to

be pruned as a joint estimate of the off-grid location and

angle offsets. Additionally, by leveraging the geometric

dilution of precision (GDOP) metric, we evince that the

application of RISs can reduce the estimation error to

some extent.

• A hierarchical framework, namely Diverse dynamic

Layer structured Sparsity (DiLuS), is crafted to concur-

rently capture diverse sparsities while taking into account

the spatial-temporal correlations among the vehicles. We
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use a pair of layered probabilistic models to characterize

these diverse sparsities inherent to the LoS/NLoS chan-

nels, each of which functions independently before being

assimilated into the conditional probability of the re-

ceived localization signal, thus facilitating high-accuracy

location tracking using the adequate priors available. To

this end, we aim at obtaining the maximum likelihood

estimation (MLE) of the off-grid location and AoA offsets

as well as the minimum mean square error (MMSE)

estimates of the sparse LoS/NLoS channel vectors.

• The investigated problem is a quasi-compressive sensing

(CS) copy, but it differs significantly from the stan-

dard CS-based problem due to its ill-conditioned sensing

matrices (containing the offsets to be estimated) and

dynamic sparse priors furnished by DiLuS, demonstrating

a high level of intractability. To attain a stable solution for

this problem, we develop a DiLuS-STPL algorithm that

blends the techniques of variational Bayesian inference

(VBI) and message passing to recursively achieve the

offset updates in a turbo-like way while taking into

account the spatial-temporal correlations of the vehicle

platoon. The proposed DiLuS-STPL offers the capability

of fully harnessing the diverse dynamic sparse priors as

enveloped by DiLuS despite the presence of uncertain

sensing matrices.

• Simulation results reveal that the RIS is a powerful

facilitator for robust and high-accuracy localization by

contributing to beneficial location references, in particular

for its nature of low cost and ease of implementation. We

elucidate that, under the same configurations, the coop-

eration between a BS and a RIS achieves the comparable

localization precision obtained by the two individual BSs

as measured by GDOP. In addition, our proposed DiLuS-

STPL algorithm performs desirably even at a coarse grid

resolution, and we show that it can mitigate the NLoS-

induced misleading effect while attempting to identify

the LoS channels in the presence of a fluctuating number

of NLoS paths, thus unveiling the critical robustness for

high-accuracy localization.

The remainder of this paper is structured as follows.

Section II introduces the system model and off-grid basis

representation. In Section III, we present the DiLuS framework

for capturing diverse sparse priors. In Section IV, the DiLuS-

STPL algorithm is proposed to effectively resolve the formu-

lated location tracking problem, followed by the simulation

results provided in Section V. Finally, concluding remarks are

drawn in Section VI.

Notation: Scalar variables, column vectors and matrices

are represented by Italic letters, boldface lower-case and

capital letters such as x, x, and X, respectively. The upper-

case calligraphic letters such as M is employed to indicate

finite and discrete sets. C
M×N represents the space of a

M ×N complex-valued matrix. (·)∗, (·)T , and (·)H represent

the conjugate, transpose, and Hermitian (conjugate transpose)

operators of their arguments, respectively. ∥·∥2 and ∥·∥F
represent the spectrum norm and Frobenius norm of their

arguments, respectively. For a vector x, diag(x) returns a

diagonal matrix with the entries of x located on its main

diagonal. The symbol ⊗ stands for the Kronecker product. The

imaginary unit is given by ȷ =
√
−1. The expectation operator

is denoted by E {·}. Regarding CN (x;µ,Σ), we indicate that

the complex random vector x is distributed in accordance with

a Gaussian probability density function (PDF) with a mean

vector µ and a covariance matrix Σ. The symbol ∼ stands for

ªdistributed asº.

II. SYSTEM MODEL

A. Localization Scenario

We consider a vehicle platoon composed of M single-

antenna vehicle user equipments (VUEs) indexed by M =
{1, ...,M}, with these VUEs moving at approximately the

same velocity. The vehicle platoon is within the commu-

nication coverage of a BS equipped with a uniform linear

array (ULA) having K antennas, in which a RIS that is an

N -element uniform planar array (UPA) takes over the role

for enhancing the communication and localization services

between the BS and VUEs. The system being investigated

divides the continuous time into a number of slots indexed

by T = {1, ..., T}. For a two-dimensional (2D) geographic

area, the mth VUE is located at ptm = [xtm, y
t
m, z

t
m]
T

along a

road in the tth slot, and the center of the array gravity for

the BS and the RIS are given by p̃BS =
[
xBS, yBS, zBS

]T

and p̃RIS =
[
xRIS, yRIS, zRIS

]T
, respectively. Note that such

a 2D area must be known as a priori such that the road map

can be uniformed as grids to establish the exact location of

each VUE. Due to the intricacy of the traffic situation, a

road map suffices for the precise localization instead of the

comprehensive information on the road’s dynamics.

B. Channel Model

The general clustered delay line (CDL) model [29] is

employed for the corresponding channels in our considered

system1. With both highly elevated BS and RIS having a

large number of antennas and elements, the spatial resolution

increases significantly in the presence of the angular basis,

and the channel becomes much more sparse in this case. The

channels spanning from the mth VUE to the BS htm,b ∈ C
K×1

and that spanning from the mth VUE to the RIS htm,r ∈ C
N×1

are, respectively, given by

htm,b = βtmaK
(
ωAoA
m

)
+

Lm,b∑

l=1

β̃tm,laK
(
ωAoA
m,l

)
, ∀m, t, (1)

1We consider a narrowband system in this paper, and the proposed
algorithm can be readily extended to the wideband system. More precisely,
the DiLuS paradigm still holds for the channels over each sub-carrier, and
our proposed algorithm can be directly harnessed to track VUE’s locations
employing the measurements received from the BS at this specific sub-
carrier. Furthermore, the algorithm can be extended to incorporate the ToA
information in wideband system by introducing a 2D grid of both AoAs and
ToAs, based upon which the ToA offsets can be likewise attained by MLE.
One may refer to [30] for related details in wideband systems. However, in the
mobility scenario, the increased grid dimension induced by ToA information
significantly enlarges the search space and exacerbates the computational
burden in a short coherent interval. To facilitate simplicity and clarity, we
concentrate on a narrowband system in this paper to strive for a critical trade-
off between the localization performance and complexity for the RIS-aided
vehicle platoon system.
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htm,r = ηtmaN
(
φAoA
m , ϑAoA

m

)
+
Lm,r∑
l=1

η̃tm,laN

(
φAoA
m,l , ϑ

AoA
m,l

)
, ∀m, t.

(2)

In (1) and (2), Lm,b and Lm,r represent the number of

propagation paths for their individual channels, respectively.

For the channel spanning from the mth VUE to the BS,

βtm and ωAoA
m denote the complex gain and AoA of the

LoS path, while β̃tm,l and ωAoA
m,l indicate the counterparts

of the lth NLoS path, respectively. Similarly, as for the

channel spanning from the mth VUE to the RIS, ηtm denotes

the complex gain and
(
φAoA
m , ϑAoA

m

)
denotes the azimuth-

elevation AoA pair, whereas η̃tm,l and
(
φAoA
m,l , ϑ

AoA
m,l

)
represents

the corresponding parameters of the lth NLoS path. The

channel complex gains associated with the LoS channels

are generated according to ηm = η0dm,r exp
(
ȷ 2π
λ
dm,r

)
and

βm = β0dm,b exp
(
ȷ 2π
λ
dm,b

)
, respectively, where dm,r =∥∥ptm − p̃RIS

∥∥−ζm,r
and dm,b =

∥∥ptm − p̃BS
∥∥−ζm,b

denote

their individual link distances, η0 and β0 indicate the path-loss

at the reference distance of one meter, as well as ζm,r and ζm,b
for path-loss exponents. The NLoS counterparts are generated

in compliance with Gaussian distributions with zero means

and variances ση̃ and σβ̃ , i.e., η̃tm ∼ CN (0, ση̃) and β̃tm ∼
CN

(
0, σβ̃

)
, respectively [31]. The array steering vectors of

the half-wavelength-space ULA and UPA at the BS and RIS

are denoted by aK (ω) =
[
1, e−ȷπ cosω, ..., e−ȷπ(K−1) cosω

]T

and aN (φ, ϑ) = aNx
(φ)⊗aNy

(ϑ), respectively. Furthermore,

we denote Hr,b ∈ C
K×N by the channel spanning from

the RIS to the BS which is available in advance due to

their fixed positions. The mapping between the Cartesian

coordinate and the spherical coordinate regulates the con-

version between corresponding angles and coordinates, e.g.,

ωAoA
m (ptm), φAoA

m (ptm), and ϑAoA
m (ptm), which is omitted here

for conciseness. Additionally, as for the narrowband system

of interest in this paper, the location information of each

VUE can still be gathered from the received signal at the BS,

even if no information can be retrieved from the ToA. In this

case, we just need to acquire the angle-related information to

determine the exact location of each VUE by applying the

trick of triangulation for such a non-synchronous system [26].

At each time slot t, all the VUEs simultaneously transmit G
information-carrying pilot sequences xtm (g) , g = 1, ..., G, ∀t,
for localization, in which xtm (g) represents the gth pilot

sequence transmitted from the mth VUE in the tth slot. Thus,

the signals propagating across the multi-path environment and

being reflected by the RIS and eventually being received at

the BS, are given by

yt (g) =

M∑

m=1

(
Hr,bΘhtm,r + htm,b

)
xtm (g) + nt (g),

g = 1, ..., G, ∀t, (3)

where nt (g) ∼ CN
(
0, σ2I

)
is the additive white Gaus-

sian noise (AWGN) with power σ2 at the BS. We denote

Θ = diag (θ) ∈ C
N×N by the diagonal phase shift matrix

at the RIS, where θ ∈ C
N×1 is the phase shift vector with its

nth entry satisfying |θn|2 = 1, 1 ≤ n ≤ N 2. Additionally, it

is assumed that the large-scale parameters, such as ηtm, βtm,

φAoA
m , ϑAoA

m , and ωAoA
m , remain approximately constant within a

slot of interest. This assumption is practically reasonable since

in comparison to the nominal distance with a remote BS, the

traveling distance of the vehicle within one slot is marginal,

resulting in subtle variations in the geometry-associated pa-

rameters that impact the large-scale characteristics [29], [32].

This potentially relaxes the frequency of instantaneous channel

information updates, thus achieving pilot savings. As regards

the channel fluctuation on the slot-level of the order of hun-

dreds of milliseconds, that of the VUE location, for instance,

is on the scale of say 72 km/h (2 cm/ms).

C. Off-grid Basis Representation

Generally, the maximum likelihood (ML) or least square

(LS) method may be used to directly recover the location

of VUE from the received signal at the BS. However, such

a strategy is arduous due to its non-convexity-induced high

intractability and the possibility of falling into a number of

local optima. To resolve this issue, the location of VUE can

be determined via its maximum a posteriori (MAP) estimation

by exploiting the sparsity inherent to the grid basis model

[11]. Specifically, we introduce a uniform grid of U positions

along the center of the road, denoted by U , for the location

of VUE, which is given by U = {r1, ..., rU}. Meanwhile,

a uniform grid of K̃ AoAs at the BS over [−π/2, π/2)
are prescribed to take values from the discrete sets:{
ω̃AoA
m,k : sin

(
ω̃AoA
m,k

)
= 2

K̃

(
k −

⌊
K̃−1
2

⌋)
, k = 0, ..., K̃ − 1, ∀m

}
.

Nevertheless, the true VUE location and AoAs do not coincide

exactly with the grid points. To capture the attributes of

mismatches between the true angles and the grid points, we

adopt an off-grid basis for the associated sparse representation.

More explicitly, the AoA offset vector at the BS for the mth

VUE is defined as ∆ωAoA
m =

[
∆ωAoA

m,1 , ...,∆ω
AoA
m,K̃

]T
, ∀m

with ∆ωAoA
m,k given by

∆ωAoA
m,k =

{
ωAoA
m,k − ω̃AoA

m,kl
, k = kl, l = 1, ..., Lm,b, ∀m,

0, otherwise,
(4)

where kl indicates the index of the AoA grid point nearest

to the AoA of the lth NLoS path between the mth VUE and

the BS. Then, let ∆rtm =
[
∆rtm,1; ...; ∆rtm,U

]
, ∀m denote the

location offset vector with ∆rtm,u given by

∆rtm,u =

{
ptm − rtm,q, u = q, ∀m,
[0, 0]

T
, otherwise,

(5)

where q indicates the index of the off-grid location nearest

to the uth counterpart for the mth VUE, i.e., the square

with the center of the qth off-grid location rtm,q in U .

Furthermore, the azimuth-elevation AoA pair
(
ϕAoA
m ,ϑAoA

m

)

associated with the mth VUE at the RIS takes the values from

2It is indeed difficult to determine a RIS phase profile in the absence of any
prior channel information. What we try best is to fix it when doing channel
estimation in accordance with practicable principles (e.g., random/directional
RIS profiles presented in [19]).
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a discrete set of size Ñ :
{(
φAoA
m,n, ϑ

AoA
m,n

)
: n = 1, ..., Ñ

}
. Simi-

larly, let ∆ϕAoA
m =

[
∆φAoA

m,1, ...,∆φ
AoA
m,Ñ

]T
, ∀m and ∆ϑAoA

m =
[
∆ϑAoA

m,1, ...,∆ϑ
AoA
m,Ñ

]T
, ∀m denote the offset vectors of the

azimuth-elevation AoA pair at the RIS, respectively.

With the above definitions of off-grid location and AoA

offsets, the off-grid basis for the LoS/NLoS array response at

the BS can be reformulated as

ALoS
K

(
∆rtm

)
=
[
aK
(
ω̃AoA
m,1

(
rtm,1 +∆rtm,1

))
, ...,

aK
(
ω̃AoA
m,U

(
rtm,U +∆rtm,U

))]
∈ C

K×U , (6)

ANLoS
K

(
∆ωAoA

m

)
=
[
aK
(
ω̃AoA
m,1 +∆ωAoA

m,1

)
, ...,

aK

(
ω̃AoA
m,K̃

+∆ωAoA
m,K̃

)]
∈ C

K×K̃ . (7)

Similarly, the off-grid basis for the LoS/NLoS array response

at the RIS can be given by

ALoS
N

(
∆rtm

)

=
[
aN
(
φAoA
m,1

(
rtm,1 +∆rtm,1

)
, ϑAoA
m,1

(
rtm,1 +∆rtm,1

))
,

...,aN
(
φAoA
m,U

(
rtm,U +∆rtm,U

)
, ϑAoA
m,U

(
rtm,U +∆rtm,U

))]

∈ C
N×U , (8a)

ANLoS
N

(
∆ϕAoA

m ,∆ϑAoA
m

)

=
[
aN

(
φ̃AoA
m,1 +∆φAoA

m,1, ϑ̃
AoA
m,1 +∆ϑAoA

m,1

)
,

...,aN

(
φ̃AoA
m,Ñ

+∆φAoA
m,Ñ

, ϑ̃AoA
m,Ñ

+∆ϑAoA
m,Ñ

)]
∈ C

N×Ñ .

(8b)

Therefore, the signal received from M VUEs at the BS can

be recast as a CS form with indeterminate parameters in the

sensing matrix, i.e.,

yt =
[
Ft (∆rt) Ξt

(
∆ωAoA,∆ϕAoA,∆ϑAoA

) ] [ zt

vt

]
+nt,

(9)

where yt = [yt (1) ; ...;yt (G)] ∈ C
KG×1,

nt = [nt (1) ; ...;nt (G)] ∈ C
KG×1, zt =[

ztR,1; ...; z
t
R,M ; ztB,1; ...; z

t
B,M

]
∈ C

2UM×1, and

vt =
[
vtR,1; ...;v

t
R,M ;vtB,1; ...;v

t
B,M

]
∈ C(K̃+Ñ)M×1. The

sensing matrices Ft (∆rt) and Ξt
(
∆ωAoA,∆ϕAoA,∆ϑAoA

)

are expressed as

Ft
(
∆rt

)
=




Hr,bΘALoS
N (1) ALoS

K (1)
...

...

Hr,bΘALoS
N (G) ALoS

K (G)


 ∈ C

KG×2UM ,

(10)

Ξt
(
∆ωAoA,∆ϕAoA,∆ϑAoA

)

=




Hr,bΘANLoS
N (1) ANLoS

K (1)
...

...

Hr,bΘANLoS
N (G) ANLoS

K (G)


 ∈ C

KG×(K̃+Ñ)M ,

(11)

where the entries Hr,bΘALoS
N (g), ALoS

K (g), Hr,bΘANLoS
N (g),

and ANLoS
K (g) are shown in (12) at the top of the next page.

Next, let us concentrate on the physical meaning of the two

blocks, i.e., zt and vt, in the sparse vector
[
zt vt

]T
.

As for zt, the vector ztR,m =
[
ztR,m,1, ..., z

t
R,m,U

]
∈ C

U×1

represents the sparse LoS channel pertaining to the RIS-VUE

link, the uth entry of which denote the complex gain of the

LoS path associated with the off-grid location rtm,u +∆rtm,u
in the tth slot. The vector ztB,m ∈ C

U×1 represents the

sparse LoS channel for the BS-VUE link. Note that each

ztR,m and ztB,m only has one non-zero entry that points to

the true location of the mth VUE, whose index of the non-

zero entries of LoS channel vectors
[
ztR,m; ztB,m

]
, ∀m, are the

same, as given by qtm (which will be clear later). In other

words, the LoS channel vectors
[
ztR,m; ztB,m

]
, ∀m, can be

grouped into U blocks with block size 2, with the uth block

constituted by
[
ztR,m,u, z

t
B,m,u

]
, ∀m, and only the uth block

is non-zero. This implies that the sparse LoS channel vector

zt can be grouped into UM blocks with block size 2. By

contrast, the sparse vectors vtR,m and vtB,m, ∀m, contained

in the block vt denotes the complex gains of NLoS paths

with respect to direct and cascaded channels, respectively.

vtR,m =
[
vtR,m,1, ...,v

t
R,m,K̃

]
∈ C

K̃×1 stands for the NLoS

channel vector, the kth entry of which denotes the complex

gain of the NLoS path arriving at the RIS with elevation-

azimuth pair
(
φ̃AoA
m,n +∆φAoA

m,n, ϑ̃
AoA
m,n +∆ϑAoA

m,n

)
. The NLoS

channel vector vtB,m associated with the BS conform to the

same definition given above. Note that there are Lm,r and Lm,b
non-zero entries in vtR,m and vtB,m , respectively, in which

the indices of the non-zero entries indicate the significant

AoAs associated with the NLoS paths. Therefore, the diverse

sparsities inherent in (9) motivate us to conceive a customized

tracking framework for the RIS-aided vehicle platoons.

D. Geometric Dilution of Precision (GDOP) Metric

GDOP has been commonly used as a metric for the ac-

curacy evaluation of localization and tracking systems. Due

to the fact that the high-accuracy localization requires both

precise range measurement and a strong geometric association

between the VUE and prescribed grids, the study of GDOP is

a crucial aspect of assessing the performance of a localization

system. Despite the fact that the CramÂer-Rao lower bound

(CRLB) metric may be applied to represent the minimum

variance of the estimate error from any unbiased estimator,

it fails to explicitly quantify the impact of system geometry

on performance and also incorporates the effect of input

noise [33]. Therefore, we elucidate that the integration of RIS

into our considered vehicle platoon system has a beneficial

GDOP performance by means of the concise GDOP analytical

expressions for each VUE. We first present the GDOP in the

instance of a ULA at the BS, and then extend it to the UPA

case at the RIS, as these phases are pertinent to the discussion

that follows.

1) ULA Case: Let µB,k denote the kth entry of htm,b when

there is no ambiguity, in which case the Fisher information

matrix (FIM) associated with the AoA ωAoA
m returns to a scalar

FIM
(
ωAoA
m

)
=

2

σ2
Re

{
K∑

k=1

∂µ∗
B,k

ωAoA
m

∂µB,k

ωAoA
m

}
, (13)
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Hr,bΘALoS
N (g) =

[
xt1 (g)Hr,bΘALoS

N

(
∆rt

)
, ..., xtM (g)Hr,bΘALoS

N

(
∆rt

)]
∈ C

K×MU , (12a)

ALoS
K (g) =

[
xt1 (g)A

LoS
K

(
∆rt

)
, ..., xtM (g)ALoS

K

(
∆rt

)]
∈ C

K×MU , (12b)

Hr,bΘANLoS
N (g) =

[
xt1 (g)Hr,bΘANLoS

N

(
∆ϕAoA

1 ,∆ϑAoA
1

)
,

..., xtM (g)Hr,bΘANLoS
N

(
∆ϕAoA

M ,∆ϑAoA
M

)]
∈ C

K×MÑ , (12c)

ANLoS
K (g) =

[
xt1 (g)A

NLoS
K

(
∆ωAoA

1

)
, ..., xtM (g)ANLoS

K

(
∆ωAoA

K×K̃

)]
∈ C

K×MK̃ . (12d)

with
∂µB,k

ωAoA
m

= ηmπ (k − 1) cosωAoA
m exp

{
−ȷπ (k − 1) sinωAoA

m

−ȷπ2
}

and
∂µ∗

B,k

ωAoA
m

= η∗mπ (k − 1) cosωAoA
m exp {−ȷπ (k − 1)×

sinωAoA
m + ȷπ2

}
. We can further structure (13) in the form of

FIM
(
ωAoA
m

)
=

2

σ2

(
π cosωAoA

m

)2|ηm|2
K∑

k=1

(k − 1)
2

∝ K3

3

2

σ2

(
π cosωAoA

m

)2|ηm|2. (14)

Thus, the CRLB associated with the AoA ωAoA
m at the BS can

be given by

CRLB
(
ωAoA
m

)
= FIM−1

(
ωAoA
m

)

=
3σ2

2K3(π cosωAoA
m )

2|ηm|2
. (15)

Furthermore, the GDOP remapped from the ωAoA
m -based

CRLB at the BS can be expressed as

GDOPULA =
(
cosωAoA

m

)−1
d
−ζm,b

m,b

√
CRLB (ωAoA

m )

=
√
1.5σK−1.5η−1

0 π−1d
1+ζm,b

m,b

(
cosωAoA

m

)−1
.

(16)

Without loss of generality, η0 = (c/4πfc)
ζm,b with c being the

speed of light and fc for the carrier frequency, and regarding

the half-wavelength-space ULA, GDOPULA can be recast as

GDOPULA

=
√
1.5π−1(c/4π)

−ζm,bσK−1.5f
ζm,b
c d

1+ζm,b

m,b

(
cosωAoA

m

)−1

≜ GDOP
(
ωAoA
m , dm,b;σ,K, fc, ζm,b

)
. (17)

As observed in (17), the GDOP is dependent on different

factors, e.g., AoAs at the BS ωAoA
m , the link distance dm,b,

the noise σ, the array size K, the carrier frequency fc,
and the path-loss exponent ζm,b, etc. Next, we extend the

aforementioned insights to the instance of a UPA at the RIS.

2) UPA Case: For an N -element UPA, we further denote

Nh and Nv by the number of elements along the horizontal

and vertical directions, respectively, i.e., N = Nh × Nv , in

which we can readily obtain the GDOP of the nvth ULA

with size Nh based on the argument in (17). In view of the

independence among the observations achieved by each ULA,

the observation of a UPA can be treated as a combination of

Nv observations, thus yielding that

GDOPUPA =
√
1.5π−1(c/4π)

−ζm,rσN−1.5
h N−0.5

v

× fζm,r
c d1+ζm,r

m,r

(
cosφAoA

m cosϑAoA
m

)−1
. (18)

3) GDOP Achieved by a BS Plus a RIS: In light of the facts

in (17) and (18), the cascaded channel Hr,bΘhtm,r-associated

GDOP at the RIS can be given by

GDOPRIS =|PLr,b|−1
K−0.5N−0.5

v

× GDOP
(
φAoA
m , ϑAoA

m , dm,r;σ,Nh, fc, ζm,r
)
,

(19)

where we use PLr,b here for representing the complex gain of

the BS-RIS channel. One can refer to Appendix A for detailed

derivation. Accordingly, we arrive at the closed-form GDOP

expression with respect to the implementation of a BS plus a

RIS

GDOPBS&RIS =
(
GDOP−1

BS + GDOP−1
RIS

)−1
. (20)

Given that GDOPRIS is typically non-negative, it is evident

that

GDOPBS&RIS ≤ GDOPBS. (21)

This implies that the application of RIS evidently improves

localization precision owing to the richer localization infor-

mation explored by RIS, i.e., additional LoS paths dominated

by the significant angles, resulting in a reduction in error

estimation (a lower GDOP).

Additionally, one may argue that the implementation of

double BSs results in possibly better localization performance

in comparison to the case of a BS plus a RIS. Despite its

intuitive plausibility, achieving this typically necessitates a

number of ideal conditions, such as the presence of strong

direct links without any blockages, which may be impractical

due to the complex nature of traffic patterns. Putting another

BS in a single cell may introduce significant interference and

additional complexity of the practical implementation since

a BS is far more expensive than a RIS. From an economic

standpoint, we would favor a more cost-effective solution if

the two function comparably in the majority of circumstances.

Then, to compare the localization performance of double BSs

and a BS plus a RIS, we analyze their GDOPs in the following.

4) A BS Plus a RIS vs. Double BSs: The GDOP with

respect to the implementation of double BSs can be explicitly

written as

GDOP =
(
GDOP−1

BS + GDOP−1
BS

)−1
= 0.5GDOPBS. (22)

Given the facts in (17) and (19), GDOPBS/GDOPRIS can be

given by (23) shown at the top of the next page. It is intuitive

that the ratio GDOPBS/GDOPRIS is subject to a number of

parameters associated with the direct and cascaded channels,

in particular for the array scale and the link distance. If we
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GDOPBS

GDOPRIS

=

√
1.5π−1(c/4π)

−ζm,bσK−1.5f
ζm,b
c d

1+ζm,b

m,b

(
cosωAoA

m

)−1

|PLr,b|−1
K−0.5N−0.5

v GDOP (φAoA
m , ϑAoA

m , dm,r;σ,Nh, fc, ζm,r)
. (23)

appropriately neglect some trivial parameters, (23) can be

boldly trimmed to

GDOPBS

GDOPRIS

∝ |PLr,b| ·K−1N1.5
h N0.5

v . (24)

It can be inferred that the localization performance achieved

by a BS plus a RIS is superior to that of the double BSs

in the event of the ratio GDOPBS/GDOPRIS being greater

than 1, i.e., GDOPBS

GDOPRIS
> 1. With a glance at (24), the ra-

tio GDOPBS/GDOPRIS is inversely proportional to K while

proportionate to Nh and Nv . This connotes that the local-

ization performance of RIS may be considerably enhanced

by increasing its element number N = Nh × Nv , since this

may compensate for the multiplicative fading nature inherent

to the cascaded channels [32]. Therefore, it is not wise to

follow empiricism rather than observing their attributes with

theoretical analyses. Under different simulation configurations,

we compare localization performance attained by double BS

and a BS plus RIS using GDOP metric, as will be elaborated

in Sec. V. C.

III. DIVERSE DYNAMIC LAYERED STRUCTURED SPARSITY

(DILUS) FRAMEWORK

In regard to high-accuracy and robust VUE location track-

ing, we intend to recover both the sparse LoS and NLoS

channel vectors, namely zt and vt as presented in (9), for

each VUE of the considered vehicle platoon system from the

observation ytm. Although such a parameter-recovery problem

seems straightforward, it poses a few challenges owing to a

pair of peculiarities: i) the uncertainty of the sensing matrices

containing the location and angle offsets to be determined, i.e.,

Ftm and Ξtm, and ii) the unavailability of the exact distributions

for the sparse vectors zt and vt with diverse sparsities (the

same for the distribution of each entry within both vectors).

Therefore, targeting the twofold issues, we customize a DiLuS

framework as illustrated in Fig. 1, for completely capturing

diverse sparsity structures. The proposed DiLuS, on the one

hand, leverages spatial-temporal correlations associated with

LoS/NLoS channels among the vehicle platoon, in a formation

to facilitate the closed-form updates with reduced complexity

and overhead. On the other hand, it can provide appropriate

prior distributions for zt and vt in support of efficient and

robust performance in location tracking across a range of

channel distributions.

A. LoS Channel

Recall that zt represents the sparse LoS channels incorporat-

ing the information of both direct and cascaded channels, and

we let ρt = [ρtR;ρ
t
B] ∈ C

2UM×1 represent the precision vector

of zt. In particular, ρtR =
[
ρtR,1; ...;ρ

t
R,M

]
∈ C

UM×1, ρtB =[
ρtB,1; ...;ρ

t
B,M

]
∈ C

UM×1, ρtR,m =
[
ρtR,m,1, ..., ρ

t
R,m,U

]T ∈
C
U×1, and ρtB,m =

[
ρtB,m,1, ..., ρ

t
B,m,U

]T ∈ C
U×1, where

ρtR,m,u indicates the precision of the entry ztR,m,u involved

in the uth block with 1/ρtR,m,u being the variance of ztR,m,u,

and ρtB,m,u for ztB,m,u. For ease of exposition, we denote

a sequence of time-related variables {zτ}tτ=1 by z1:t, the

shorthand of which is shared with others.

1) Dynamic Hidden Markov Model for the Vehicle Platoon:

Given that q indicates the index of the off-grid location nearest

to the uth prescribed grid for the mth VUE, we refine qtm ∈
{1, ..., U} as the off-grid location state in order to represent

the coarse position of the mth VUE along the prescribed U
location grids in the tth slot, with qt = [qt1, ..., q

t
M ]

T
, ∀t.

Taking into account the spatial-temporal attributes of vehicle

platoons, a dynamic hidden Markov model is used to generate

priors, i.e.,

p
(
q1:t
)
=
∏

τ

p
(
qτ |qτ−1

)

=
∏

τ

∏

m

p
(
qτm+1|qτm

)
︸ ︷︷ ︸
≜hτ

S,m
(Spatial)

p
(
qτm|qτ−1

m

)
︸ ︷︷ ︸
≜hτ

T,m
(Temporal)

. (25)

Particularly, we suppose that the spatial correlation between

the mth and (m+1)th VUE, i.e., p
(
qτm+1|qτm

)
, is drawn from

a sampled Gamma distribution [34]

p
(
qτm+1|qτm

)
∝ (qτm − q0)

ϖ−1

λϖΓ (ϖ)
exp

(
−q

τ
m − q0
λ

)
, qτm ≥ q0,

(26)

where q0 denotes the minimum distance between vehicles,

ϖ ≥ 1 is the common shape parameter, and λ is the scale

parameter. Exploiting the collected data (received signals) and

the EM technique, parameters ϖ and λ can be calculated

in practice, which is a widely held belief in the academic

literature confirmed by empirical research [11], [34]. Further-

more, the VUE’s location in the previous slot provides a priori

indicator of its location in the present slot, which may be

achieved by message passing and will be expounded upon

later in Sec. IV. B.

2) Layers II & III: A Pair of Conjugate Distributions: A

Gamma prior distribution is imposed on the precision vector

ρt of the off-grid location state qt

p
(
ρt|qt

)
=
∏

m,u

p
(
ρtR,m,u|qtm

)
p
(
ρtB,m,u|qtm

)
, (27)

where p
(
ρti,m,u|qtm

)
=
∏
m,u

Γ
(
ρti,m,u; a

t
i,m, b

t
i,m

)I(q=u) ×

Γ
(
ρti,m,u; ā

t
i,m, b̄

t
i,m

)I(q ̸=u)
, i ∈ {R,B}, and Γ (ρ; a, b) is a

Gamma hyperprior with the shape parameter a and rate param-

eter b. For the mth VUE, ai,m and bi,m are the shape and rate

parameters of the LoS channel precision ρti,m,u, conditioned

on the fact that the uth off-grid location corresponds to the mth

VUE’s location, i.e., q = u. On the contrary, the parameter and

rate parameters āi,m and b̄i,m should be delicately chosen on

the event of q ̸= u.
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Fig. 1. The proposed DiLuS framework.

Regarding the LoS channel vector zt, each entry thereof is

considered to have a non-stationary Gaussian prior distribution

conditioned on a specified precision ρtm,u, i.e.,

p
(
zt|ρt

)
=
∏

m,u

p
(
ztR,m,u|ρtR,m,u

)
p
(
ztB,m,u|ρtB,m,u

)
, (28)

in which p
(
ztR,m,u|ρtR,m,u

)
=∏

m,u CN
(
ztR,m,u; 0,

(
1/ρtR,m,u

))
and p

(
ztB,m,u|ρtB,m,u

)
=∏

m,u CN
(
ztB,m,u; 0,

(
1/ρtB,m,u

))
.

3) Joint Distribution of the Layered Group Sparsity for LoS

Channel: As regards the LoS channel, the joint distribution

of q1:t, ρ1:t, and z1:t is given by

p
(
q1:t, z1:t,ρ1:t

)
=
∏

τ

p (qτ )︸ ︷︷ ︸
Off-grid location

p (ρτ |qτ )︸ ︷︷ ︸
Precision

p (zτ |ρτ )︸ ︷︷ ︸
LoS channel

.

(29)

Note that the LoS channel vector zt can be segmented into

UM blocks (U blocks for each VUE m) with the uth block

carrying the channel energies of both direct and cascaded

channels, as both energies are all concentrated on the same

location index qtm. More explicitly, the conditional prior in (27)

imparts fewer precisions to the blocks fulfilling q = u, forcing

the entries thereof to depart from zero. For the opposite event

of the blocks satisfying q ̸= u, more precisions are assigned by

the conditional prior in (27) to focus the block entries towards

zero. Thus, the LoS channel vector contains separate blocks

having distinct precisions for capturing different path gains,

with the non-zero entry indexing the exact grid location of the

mth VUE, termed as the group sparsity.

B. NLoS Channel

We also scrutinize NLoS channel modeling at the BS/RIS

using a layered heterogeneous paradigm. For the sake of clar-

ity, we use the RIS-VUE link as an instance employing only a

set of self-contained variables to construct hierarchical priors

for the exact channel distributions3. Thus in this instance,

we just use vt in place of vtR or vtB for notational brevity.

Denote ct = [ct1; ...; c
t
M ]

T ∈ C
ÑM×1, ∀t by the NLoS channel

support, in which ctm =
[
ctm,1, ..., c

t
m,Ñ

]T
∈ C

Ñ×1, ∀m, t
with ctm,n ∈ {0, 1} indicating whether there is an active

NLoS path arriving at the BS from the nth angular grid

at the RIS. Then, let γt = [γt1; ...;γ
t
M ]

T ∈ C
ÑM×1, ∀t

denote the precise vector of the NLoS channel support with

γtm =
[
γtm,1, ..., γ

t
m,Ñ

]T
∈ C

Ñ×1, ∀m, t, for which γtm,n
represents the precision of vtm,n, i.e., 1/γtm,n is the variance

of vtm,n.

1) Layer I: Markov Model for NLoS Channel Support:

In a time-varying environment, the AoAs at the BS/RIS may

change slowly on the timescale of slots, and thus we employ

the following model to capture the temporal correlation of the

non-zero entries in the NLoS channel support ct

ctm,n = ϱ̃m,nc
t−1
m,n +

√
1− ϱ̃2m,nCN

(
αtm,n; 0, σ̃

2
m,n

)
, (30)

where ϱ̃m,k,n,q ∈ (0, 1) characterizes the temporal correla-

tion between two consecutive slots, termed as the temporal

correlation coefficient, and CN
(
αtm,n; 0, σ̃

2
m,n

)
is the added

Gaussian perturbation with zero mean and variance σ̃2
m,n.

Hence, the NLoS channel support ct takes the form of a

conditional probability as follows

p
(
c1:t
)
= p

(
c1
) t∏

τ=2

p
(
cτ |cτ−1

)

=
∏

m,n

p
(
c1m,n

) t∏

τ=2

p
(
cτm,n|cτ−1

m,n

)
. (31)

Concerning the smooth dynamic behaviors inherent in the

time-varying channels, we are allowed to identify the follow-

3Actually, there is still NLoS channel support over the BS-VUE link. The
hierarchical priors of the BS-VUE NLoS channel continues to share with
those presented in the RIS-VUE NLoS channel.
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ing independent first-order auto-regressive processes for the

temporal correlation of the non-zero entries in ct [35]

p
(
cτm,n|cτ−1

m,n

)
=
∏

m,n

p
(
cτm,n|cτ−1

m,n; ϱ̃m,n, σ̃m,n
)

=
∏

m,n

CN
(
cτm,n; ϱ̃m,nα

t−1
m,n,

(
1− ϱ̃2m,n

)
σ̃2
m,n

)
,

(32)

where p
(
c1m,n

)
≜ p

(
c1m,n|c0m,n

)
= CN

(
c1m,n; 0, σ̃

2
m,n

)
spec-

ifies a steady-state distribution. To this end, the Markov model

for the NLOS channel supports can be applicable for encapsu-

lating various channel realizations in practice by subtly tuning

parameters thereof. Hence, our analysis takes into account the

steadily changing propagation environment between VUEs and

BS/RIS, in which case the temporal coefficient ϱ̃m,n remains

(almost) static during the tracking process of interest.
2) Layers II & III: A Pair of Conjugate Distributions: The

conditional prior of the precision vector γt associated with the

NLoS channel vector vt is given by

p
(
γt|ct

)
=
∏

m,n

p
(
γtm,n|ctm,n

)

=
∏
m,n

Γ
(
γtm,n; a

N
m, b

N
m

)I(ctm,n)Γ
(
γtm,n; ā

N
m, b̄

N
m

)I(1−ctm,n).

(33)

The case of ctm,n = 1 indicates that there is an active

NLoS path between the RIS and the mth VUE, in which the

shape and rate parameters a
N
m and b

N
m are required to satisfy

a
N
m/b

N
m = E

[
γtm,n

]
, ∀m,n due to the fact that the variance

1/γtm,n of ztm,u equals to E
[
γtm,n

]
for the active NLoS path.

With respect to the opposite case of ctm,n = 0, it holds that

ā
N
m/b̄

N
m = E

[
γtm,n

]
≫ 1, ∀m,n owing to the fact that the

variance 1/γtm,n approaches zero for the associated inactive

NLoS path.

As regards NLoS channels, a non-stationary Gaussian prior

distribution with varying precision γtm,n is assigned to each

entry of the NLoS channel vt as follows

p
(
vt|γt

)
=
∏

m,n

p
(
vtm,n|γtm,n

)

=
∏

m,n

CN
(
vtm,n; 0,

(
1/γtm,n

))
. (34)

3) Joint Distribution of the Layered Group Sparsity for

NLoS Channel: Accordingly, the joint distribution of ct, γ,

and v is given by

p
(
c1:t,γ1:t,v1:t

)
=
∏

τ

p (cτ )︸ ︷︷ ︸
NLoS channel support

p (γτ |cτ )︸ ︷︷ ︸
Precision

p (vτ |γτ )︸ ︷︷ ︸
NLoS channel

.

(35)

Additionally, recall that the noise in (3) follows a complex

Gaussian distribution, and we denote κt = σ−2 by the noise

precision. The noise precision κt is typically unavailable and

can be modeled using a Gamma distribution as a hyperprior

p (κt) = Γ (κt; aκ, bκ), where the hyper-parameters a
κ and

b
κ can be tuned towards near zero, i.e., aκ, bκ → 0, for an

approximation of a more general hyperprior [36].

Significant angles typically appear in bursts (clusters), with

each burst coinciding to a scattering cluster in the propagation

environment, as contrasted to the group sparsity associated

with the LoS channel vector zt previously demonstrated. This

is referred to as the burst sparsity.

C. Problem Formulation

Our goal is to estimate the off-grid location offsets and

AoA offset vectors associated with NLoS path, i.e., Ω̂t ={
∆r̂t,

(
∆ω̂AoA

)t
,
(
∆ϕ̂AoA

)t
,
(
∆ϑ̂AoA

)t}
, given the obser-

vations up to the tth slot y1:t =
[
y1:t
1 ; ...;y1:t

M

]
∈ C

KM×1

in (3) and Ω̂t−1 up to the (t − 1)th slot. To be specific, the

offset parameters Ωt can be obtained by a maximization of

the likelihood function as follows

Ω̂t = argmax
Ωt

ln p
(
y1:t; Ω̂1:t−1,Ωt

)

= argmax
Ωt

∫

αt

ln p
(
y1:t,αt; Ω̂1:t−1,Ωt

)
dαt, (36)

in which we denote αt = {zt,vt,ρt, γt, qt, ct} by the

collection of corresponding variables for brevity. We attempt

to determine the off-grid location index qtm by calculating

marginal posteriors p
(
qtm|y1:t; Ω̂1:t−1,Ωt

)
for the given es-

timates of offset parameters Ωt, after which the estimate q̂tm
of qtm might be provided by the MAP probability estimate

q̂tm = argmax
qtm∈{1,...,U}

p
(
qtm|y1:t; Ω̂1:t−1,Ωt

)
, (37)

with the conditional marginal posterior

p
(
qtm|y1:t; Ω̂1:t−1,Ωt

)
given by

p
(
qtm|y1:t; Ω̂1:t−1,Ωt

)

∝
∑

ct

∫

−qtm,z
t,vt,ρt,γt

p
(
y1:t,αt; Ω̂1:t−1,Ωt

)

=
∑

ct

∫

−qtm,z
t,vt,ρt,γt

p
(
αt; Ω̂1:t−1,Ωt

)
p
(
y1:t|αt

)
, (38)

where −qtm denotes the vector collection over qt except for

the entry qtm, and ∝ refers to the equality after scaling.

Consequently, the location estimate of the mth VUE in the

tth slot can be determined by p̂tm = rtm,q̂ +∆r̂tm,q̂ .
Actually, it is quite challenging to attain the precise estimate

of p̂tm, ∀m, due to the prohibitive integration in (38). More

specifically, problem (38) exposes the time-sequence attribute

due to the spatial-temporal correlated off-grid location qt,

which implies that the determination of qt in each slot

relies upon the observations y1:t up to the current slot t.
As t increases, the location tracking may become formidable

owing to the excessively high computing complexity and

memory costs. Furthermore, the complex priors of the RIS/BS-

associated latent variables (such as ct, qt, ρt, γt) and their

intricate couplings (correlations) impart intractability to the

exact conditional marginal posterior in (38). This also induces

the non-convexity in (36) and renders some general optimiza-

tion techniques fruitless for achieving a stationary solution.

Therefore, the section that follows goes on to present beneficial

techniques for clearing up the above obstacles, as well as an

effective algorithm for the VUE location tracking with high

accuracy and great robustness.
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Fig. 2. The proposed DiLuS-STPL algorithm.

IV. DILUS-STPL ALGORITHM

The fundamental goal of our examined location tracking

is the robust and accurate recovery of the sparse LoS/NLoS

channel vectors, e.g., zt and vt, and the offset parameters Ωt

based on the received signals y1:t up to the tth slot. Despite

this, the computing complexity and memory costs involved

should be taken into account if running an algorithm that

performs tracking in each slot relying on the observations up

to its current slot. To tackle this critical issue, this section aims

to propose DiLuS-STPL algorithm in support of the intra-slot

VBI estimates of zt, vt, and Ωt, while incorporating the inter-

slot message passing at a reduced complexity and overhead.

A. Temporal Decomposition and Problem Approximation

The joint probability distribution in (36) can be decomposed

into two lightweight parts. In particular, one part covers the

joint distribution in the tth slot which can be harnessed to

determine zt, vt, and Ωt. The other part, actually being the

message passed from the previous slot, incorporates the infor-

mation delivered by previous observations y1:t−1. Firstly, we

restructure the joint distribution in the tth slot p (yt,αt;Ωt)
as

p
(
yt,αt;Ωt

)
=p
(
yt, zt,vt,ρt,γt, qt, ct

)

(a)
=p

(
yt|zt,vt;Ωt

)
p
(
zt|ρt

)
p
(
ρt|qt

)

× p
(
vt|γt

)
p
(
γt|ct

)
p
(
qt
)
p
(
ct
)
, (39)

in which (a) holds due to the proposed DiLuS framework.

By taking into account the priors from the previous slot, the

joint distribution in (36) can be recast leveraging the sequential

Bayesian inference technique [37], [38], i.e.,

p
(
y1:t,αt; Ω̂1:t−1,Ωt

)

(b)∝ p
(
yt,αt;Ωt

)
p
(
αt|y1:t−1; Ω̂1:t−1

)
, (40)

where (b) holds due to [37, Eq. (3.2)]. The conditional

posterior p
(
αt|y1:t−1; Ω̂1:t−1

)
is given by

p
(
αt|y1:t−1; Ω̂1:t−1

)

(c)
=

∫
p
(
αt|αt−1

)
︸ ︷︷ ︸

Transition

p
(
αt−1|y1:t−1; Ω̂1:t−1

)

︸ ︷︷ ︸
Prior

dαt−1, (41)

where (c) holds due to [38, Eq. (3.12)] with p
(
αt|αt−1

)
given

by

p
(
αt|αt−1

)
= p

(
zt,vt,ρt,γt|qt, ct

)
p
(
qt|qt−1

)
p
(
ct|ct−1

)
.

(42)

Regarding the conditional posterior p
(
αt|y1:t−1; Ω̂1:t−1

)
, we

have

p
(
αt|y1:t−1; Ω̂1:t−1

)

(d)
= p

(
zt,vt,ρt, γt|qt, ct

) ∑

qt−1,ct−1

p
(
qt|qt−1

)
p
(
ct|ct−1

)

× p
(
qt−1, ct−1|y1:t−1; Ω̂1:t−1

)
, (43)

for which (d) holds due to [38, Eq. (3.12)]. Hence,

p
(
y1:t,αt; Ω̂1:t−1,Ωt

)
in (40) can be further structured as

p
(
y1:t,αt; Ω̂1:t−1,Ωt

)

∝ p
(
yt,αt;Ωt

)
p
(
αt|y1:t−1; Ω̂1:t−1

)

= p
(
yt|zt,vt;Ωt

)
p
(
zt|ρt

)
p
(
ρt|qt

)
p
(
vt|γt

)
p
(
γt|ct

)

×
∑

qt−1,ct−1

p
(
qt|qt−1

)
p
(
ct|ct−1

)

× p
(
qt−1, ct−1|y1:t−1; Ω̂1:t−1

)
. (44)

Owing to the intractability of the exact posterior

p
(
qt−1, ct−1|y1:t−1; Ω̂1:t−1

)
, one may need a safe approx-

imation in its place, i.e., p
(
qt−1, ct−1|y1:t−1; Ω̂1:t−1

)
≈

ψ
(
qt−1

)
ψ
(
ct−1

)
with ψ

(
qt−1

)
≈ p

(
qt−1|y1:t−1; Ω̂1:t−1

)

and ψ
(
ct−1

)
≈ p

(
ct−1|y1:t−1; Ω̂1:t−1

)
. In this case,

the joint prior distribution in (44) can be further recast

as (45) shown at the top of the next page, where

the approximate priors of qt and ct are particularly

given by p̂ (qt) ≜
∑

qt−1 p
(
qt|qt−1

)
ψ
(
qt−1

)
and

p̂ (ct) ≜
∑

ct−1 p
(
ct|ct−1

)
ψ
(
ct−1

)
. Note that the only

discrepancy between the prior in (45) and the original

prior lies in that the dynamic hidden Markov model p (qt)
associated with the off-grid location is replaced by an

approximate prior p̂ (qt) with independent entries, while

the Markov model p (ct) is approximated by its safe copy
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p
(
y1:t,αt; Ω̂1:t−1,Ωt

)
≈ p̂

(
y1:t,αt; Ω̂1:t−1,Ωt

)

= p
(
yt|zt,vt;Ωt

)
p
(
zt|ρt

)
p
(
ρt|qt

)
p
(
vt|γt

)
p
(
γt|ct

) ∑

qt−1,ct−1

p
(
qt|qt−1

)
p
(
ct|ct−1

)
ψ
(
qt−1

)
ψ
(
ct−1

)

= p
(
yt|zt,vt;Ωt

)
p
(
zt|ρt

)
p
(
ρt|qt

)
p
(
vt|γt

)
p
(
γt|ct

)
p̂
(
qt
)
p̂
(
ct
)
, (45)

p̂ (ct). In what follows, we expound the realization of the

approximate posteriors ψ
(
qt−1

)
and ψ

(
ct−1

)
.

B. Outline of DiLuS-STPL

As a key feature of DiLuS-STPL, the approximate posteriori

ψ
(
αt|y1:t;Ωt

)
can be attained in the DiLuS-STPL-E Step

using the observation at the tth slot and the message passed

from the previous slot, while updating Ωt by leveraging

a gradient-based technique, e.g., majorization-minimization

(MM), in the DiLuS-STPL-M Step. Due to myriads of loops in

such a dense factor graph, the classical sum-product message

passing (SPMP) [39] fails to traverse the factor and variable

nodes over the entire factor graph. As a potential resolution,

the approximate message passing (AMP)-based algorithms,

e.g., Turbo-AMP [40] and Turbo-CS [41], tend to be entrapped

into their local optimum and exhibit usually poor performance.

In an effort to facilitate the practical implementation, two

entities are specified in the DiLuS-STPL-E Step, i.e., En-

tity A and Entity B as illustrated in Fig. 2, in support of

sparse VBI estimates and forward-backward message passing,

such that the proposed algorithm may achieve approximate

message passing over the entire factor graph with a faithful

performance. Concretely, the message passing over the entire

factor graph can be interpreted as an iteration of this pair of

partitioned entities, one of which undertakes inference on one

subgraph that encapsulates the group sparsity in the observa-

tion, and the other of which plays inference on the subgraph

that captures the spatial correlation among vehicle positions.

Furthermore, the interactions between the twin entities may

effectively eliminate the self-reinforcement during the update

procedure.
1) Entity A: This entity intends to obtain the approxi-

mate conditional marginal posteriors of latent variables using

sparse VBI estimation, i.e., ψ (αt) = ψ
(
αt|y1:t;Ωt

)
. Let

νχ→qtm
(qtm) ,m = 1, ...,M denote the input of Entity A,

which can be interpreted as the message passed from Entity B

and incorporates the spatial correlation among different vehi-

cles in the vehicle platoon. The sparse VBI estimates executed

in Entity A will be detailed later in Sec. IV-D.
2) Entity B: The message νhρ→qtm

(·) provided by Entity A

constructs the input of Entity B. For ease of exposition, the in-

put and the output of Entity B are defined as νinm ≜ νhρ→qtm
(·)

and νoutm ≜ νχ→qtm
(·) ,m = 1, ...,M , respectively. In each

algorithm iteration, the message νinm (qtm) = νhρ→qtm
(qtm) can

be obtained in accordance with the belief propagation rule [39]

νinm
(
qtm
)
∝ ψ(qtm)

νoutm (qtm)
, ∀qtm. (46)

Next, let us examine the off-grid location qtm’s corresponding

technique as an example of detailing the forward-backward

message passing. By leveraging the belief propagation rule,

the forward messages ν̄f
′

m and ν̄fm associated with qtm are

respectively given by

ν̄f
′

m

(
qtm
)
∝





p
(
qt1
)
, m = 1,∫

−qtm

p
(
qtm|qtm−1

)
ν̄fm
(
qt−1
m

)
, 2 ≤ m ≤M,

(47)

ν̄fm+1

(
qtm
)
∝ ν̄f

′

m

(
qtm
)
ν̄inm
(
qtm
)
ν̄ht

T,m
→qtm

(
qtm
)
. (48)

The message ν̄ht
T,m

→qtm
(qtm) characterizes the temporal cor-

relation of the nth VUE, implying that the location in the

previous slot provides a priori for the current slot, which, in

particular, is given by

ν̄ht
T,m

→qtm

(
qtm
)
∝
∫

−qtm

p
(
qtm|qt−1

m

)
ν̄qt−1

m →ht
T,m

(
qt−1
m

)
.

(49)

In (49), as demonstrated in Fig. 3, message ν̄qt−1
m →ht

T,m

(
qt−1
m

)

corresponds to the approximate posterior ψ
(
qt−1
m

)
associated

with the off-grid location qtm of the mth VUE in the tth slot,

and thus we have

ν̄qt−1
m →ht

T,m

(
qt−1
m

)
∝ ν̄ht−1

S,m
→qt−1

m

(
qt−1
m

)
≜ ψ

(
qt−1
m

)
. (50)

The backward messages ν̄b
′

m and ν̄bm respectively given by

ν̄b
′

m+1 (q
t
m) ∝

∫
−qtm

p
(
qtm+1|qtm

)
ν̄bm+1

(
qtm+1

)
, 1 ≤ m ≤M − 1,

(51)

ν̄bm
(
qtm
)

∝
{
ν̄b

′

m+1

(
qtm
)
ν̄inm
(
qtm
)
ν̄ht

T,m
→qtm

(
qtm
)
, 1 ≤ m ≤M − 1,

ν̄inM
(
qtm
)
ν̄ht

T,m
→qt

M

(
qtm
)
, m =M.

(52)

We omit here, for the sake of conciseness, the intricacies of

the similar procedure that pertains to the message passing

associated with the NLoS channel support ctm,n.

Having established the method for carrying out message

passing between the twin entities, let us proceed to a thorough

investigation of the DiLuS-STPL-M Step and the DiLuS-

STPL-E Step in what follows, respectively, based upon which

the off-grid location and corresponding parameters can be

determined.

C. DiLuS-STPL-M Step: Inexact Majorization-

Minimization (MM)

The likelihood function ln p
(
y1:t;Ωt

)
is indeed intractable

owing to the absence of the closed-form expressions induced

by the prohibitive integrals of the joint distribution with respect
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Fig. 3. The partial factor subgraph and the interaction between the two entities. The factors are defined as follows: hz,R,m ≜ p
(

ztR,m,u
|ρtR,m,u

)

,

hz,B,m ≜ p
(

ztB,m,u
|ρtB,m,u

)

, hρ,m ≜ p
(

ρtR,m,u
|qtm

)

p
(

ρtB,m,u
|qtm

)

, hv,m ≜ p
(

vtm,n|γ
t
m,n

)

, and hγ,m ≜ p
(

γt
m,n|c

t
m,n

)

.

to αt. An alternative is to construct its surrogate function

based on Ωt,(r) available in the rth iteration in place of the

objective in problem (36), providing that the exact posterior

p
(
αt|y1:t;Ωt,(r)

)
has been determined. Unfortunately, the

exact posterior p
(
αt|y1:t;Ωt,(r)

)
is also highly intractable

in our investigated problem because of the intricate loops

intrinsic in the factor graph. To circumvent this issue, the VBI

and message passing techniques are employed to identify an

alternative ψ (αt) for a faithful approximation of the posterior

p
(
αt|y1:t;Ωt,(r)

)
. The to-be-identified posterior ψ (αt) has

a factorized form, i.e., ψ (αt) =
∏
l∈L ψ (αtl), in which

αtl denotes an individual in αt = {zt,vt,ρt,γt, qt, ct},

and we have L = {l|∀αtl ∈ αt}. Based upon the posterior

approximation, an equivalent of the original MLE problem in

(36) according to the following proposition.

Proposition 1: Denote Ω1:t,(r) by the optimal estimates

achieved for problem (36) in the rth iteration, the optimality

of which is equivalent to the following optimization problem

at the tth slot,

max
ψ(αt),Ωt

∫
ψ
(
αt
)
ln
p
(
y1:t,αt; Ω̂1:t−1,(r),Ωt

)

ψ (αt)
dαt

︸ ︷︷ ︸
F(Ωt;Ωt,(r))

. (53)

Proof: As regards the optimization problem in (53), we have

∫
ψ
(
αt
)
ln
p
(
y1:t,αt; Ω̂1:t−1,(r),Ωt

)

ψ (αt)
dαt

(a)

≤ ln

∫
ψ
(
αt
) p
(
y1:t,αt; Ω̂1:t−1,(r),Ωt

)

ψ (αt)
dαt

= ln

∫
p
(
y1:t,αt; Ω̂1:t−1,(r),Ωt

)
dαt, (54)

where (a) holds due to the Jensen’s inequality. Thus, prob-

lem (53) can be maximized when ψ (αt) has the following

form

ψ∗
(
αt
)
= p

(
αt|y1:t; Ω̂1:t−1,(r),Ωt

)
, (55)

and the optimization problem is pruned to

max
Ωt

ln p
(
y1:t; Ω̂1:t−1,(r),Ωt

)
. (56)

Therefore, the optimal estimates, i.e., Ωt,(r), are the opti-

mum to the original problem (53), which thus completes the

proof. ■

With the approximation of the joint distribution in (45), the

objective function in (53) can be recast as follows

F̂
(
Ωt;Ωt,(r)

)
=

∫
ψ
(
αt
)
ln
p̂
(
y1:t,αt; Ω̂1:t−1,(r),Ωt

)

ψ (αt)
dαt.

(57)

Then in the (r + 1)th iteration in the DiLuS-STPL-M Step,

we update Ωt,(r+1) as

Ωt,(r+1) = argmax
Ωt

F̂
(
Ωt;Ωt,(r)

)
. (58)

The non-concave nature of the objective, nevertheless, impedes

the pursuit of the global optimum for (58). We thus exploit the

following gradient update in an effort to obtain a stationary

solution

Ωt,(r+1) = Ωt,(r) + ι(r)
∂F̂
(
Ωt;Ωt,(r)

)

∂Ωt
, (59)

where ι(r) is the step size determined by the Armijo rule [36].

D. DiLuS-STPL-E Step: Closed-form Updates

1) Outline of Sparse VBI: The approximate conditional

marginal posterior can be determined by a minimiza-

tion of the Kullback-Leibler divergence (KLD) between

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2023.3288262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Houston. Downloaded on July 02,2023 at 14:23:13 UTC from IEEE Xplore.  Restrictions apply. 



13

p̂
(
y1:t,αt; Ω̂1:t−1,Ωt

)
and ψ (αt), subject to the factorized

structure on ψ (αt), thus yielding the following problem

ψ∗
(
αt
)
= argmin
ψ(αt),Ωt

∫
ψ
(
αt
)
ln

ψ (αt)

p̂ (αt|y1:t, ;Ωt)
dαt

s.t. ψ
(
αt
)
=
∏

l∈L

ψ
(
αtl
)
. (60)

The stationary solution ψ∗ (αtl) to problem (60) needs to

satisfy

ψ∗
(
αtl
)

= argmin
ψ(αt

l),Ωt

∫ ∏
l ̸=j

ψ∗ (αtl)ψ
(
αtj
)
ln

∏
l ̸=j ψ

∗(αt
l)ψ(α

t
j)

p̂(αt|y1:t;Ωt) dαt,

(61)

which can be attained by triggering alternating updates of

ψ (αtl) , ∀l ∈ L. Specifically, for given ψ
(
αtj
)
, j ̸= l, a unique

solution that facilitates the KLD minimization in problem (60)

is given by

ψ∗
(
αtl
)
∝




exp

(
E∏

l ̸=j ψ(αt
j)
[
p
(
αt|y1:t;Ωt

)])
, t = 1,

exp
(
E∏

l ̸=j ψ(αt
j)
[
p̂
(
αt|y1:t;Ωt

)])
, t > 1,

(62)

where Eh(x) [f (x)] =
∫
f (x)h (x) dx.

2) Initialization of Sparse VBI: The sparse VBI imple-

mented in Entity A is highly dependent on an appropriate

initialization, based upon which an alternating algorithm is

triggered for the initialization of the corresponding posteriors.

In the first outer iteration, the approximate prior of the off-grid

location qt is initialized by

p̂
(
qt
)
=
∏

m

∑

u

πL
m,uδ

(
qtm − u

)
, (63)

where πL
m,u = νχ→qtm

(qtm). Additionally, the approximate

prior of the NLoS channel support ct can be given by

p̂
(
ct
)
=
∑

ct−1

p
(
ct|ct−1

)
ψ
(
ct−1

)
. (64)

3) Update Posterior for LoS Channels zt: The LoS channel

ψ (zt)’s can be updated by a complex Gaussian distribution

with determined mean and variance

ψ
(
zt
)
= CN

(
zR
t;µtR,z,Σ

t
R,z

)
CN

(
zB
t;µtB,z,Σ

t
B,z

)
, (65)

where Σt
i,z and µti,z, i ∈ {R,B} can be calculated by

Σt
i,z =

(
diag (ρi,m,u) +

〈
κt
〉 (

Fti
(
∆rt

))H
Fti
(
∆rt

))−1

,

i ∈ {R,B} , (66)

µti,z =
〈
κt
〉
Σt
i,z

(
Fti
(
∆rt

))H

×
(
yt −Ξt

(
∆ωAoA,∆ϕAoA,∆ϑAoA

)
⟨vt⟩

)
, i ∈ {R,B} ,

(67)

with FtR (∆rt) =
[
Hr,bΘALoS

N (1) ; ...;Hr,bΘALoS
N (G)

]
∈

C
KG×UM and FtB (∆rt) =

[
ALoS
K (1) ; ...; ALoS

K (G)
]

∈
C
KG×UM .

4) Update Posterior for NLoS Channels vt: ψ (vt)’s can

be updated by

ψ
(
vt
)
= CN

(
vt;µtv,Σ

t
v

)
, (68)

where Σt
v =

(
diag (γm,u) + ⟨κt⟩ (Ξt)HΞt

)−1

and µtv =

⟨κt⟩Σt
v(Ξ

t)
H
(yt − Ft (∆rtm) ⟨zt⟩), with ⟨zt⟩ = µtz.

5) Update Posteriors for Precision ρt and γt: The poste-

rior of the precision vector ρt associated with the LoS channel

vector is given by

ψ
(
ρt
)
=
∏

i,m,u

Γ
(
ρti,m,u; ã

t
i,m,u, b̃

t
i,m,u

)
, i ∈ {R,B} , (69)

where ã
t
i,m,u = π̃L

m,ua
t
i,m+

(
1− π̃L

m,u

)
ā
t
i,m+1 and b̃

t
i,m,u =

π̃L
m,ub

t
i,m +

(
1− π̃L

m,u

)
b̄
t
i,m +

∣∣∣
[
µti,z
]
m,u

∣∣∣
2

+
[
Σt
i,z

]
m,u

, i ∈
{R,B}. The posterior associated with the off-grid location

π̃L
m,u is given by (70) shown at the top of the next page, in

which C1 is the normalization constant to let
∑U
u=1 π̃

L
m,u = 1.

Additionally, ψ (γt) is given by

ψ
(
γt
)
=
∏

m,n

Γ
(
γtm,n;

⌢

a
N
m,n,

⌢

b
N

m,n

)
, (71)

where
⌢

a
N
m,n = π̃NL

m,na
N
m +

(
1− π̃NL

m,n

)
ā
N
m + 1 and

⌢

b
N

m,n =

π̃NL
m,nb

N
m+

(
1− π̃NL

m,n

)
b̄
N
m+

∣∣µtv,m,n
∣∣2+Σt

v,m,n. The posterior

associated with the off-grid location π̃NL
m,n is given by (72)

shown at the top of the next page, with the normalization

constant C2 given by (73) shown at the top of the next page.

6) Update Posterior for Off-grid Location qt: For the given

posterior π̃L
m,u, qt’s is updated by

ψ
(
qt
)
=
∏

m

∑

u

π̃L
m,uδ

(
qtm − u

)
, i ∈ {R,B} . (74)

7) Update Posterior for NLoS Channel Support ct: Using

the posterior π̃NL
m,n, the NLoS channel support ct’s is updated

by

ψ
(
ct
)
=
∏

m,n

π̃NL
m,nδ

(
ctm,n − 1

)
+
(
1− π̃NL

m,n

)
δ
(
ctm,n

)
.

(75)

E. Message Passing from the (t− 1)th to the tth Slot

The algorithm running in the tth slot is dependent on the

messages passed from the (t − 1)th slot, e.g., ψ
(
qt−1

)
and

ψ
(
ct−1

)
. Concerning the fact that the approximate posterior

ψ
(
qt−1

)
can be taken from the forward-backward message

passing in (50) (as is the same for ψ
(
ct−1

)
), the priors(

πL
m,u

)t
and p̂ (ct) can be obtained in light of πL

m,u =
νχ→qtm

(qtm) and p̂ (ct), the former of which incorporates

the messages over the forward-backward propagation while

the latter of which is derived from (64). Then, the pos-

teriors
(
π̃L
m,u

)t
and

(
π̃NL
m,n

)t
can be updated according to

(70) and (72). With the closed-form updates in (74) and (75),

the message passing across two adjacent slots can thus be

achieved. In summary, the proposed DiLuS-STPL algorithm

is summarized in Algorithm 1.
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π̃L
m,u =

1

C1
πL
m,u exp

(
∑

i

{
∑

m

(
a
t
i,m − 1

) (
∇

a
t
i,m

ln Γ
(
ã
t
i,m,u

)
− ln b̃ti,m,u

)
− b

t
i,m

ã
t
i,m,u

b̃ti,m,u

}

+
∑

i




(
ā
t
i,m − 1

) ∑

u ̸=u′

(
∇

a
t
i,m

ln Γ
(
ã
t
i,m,u′

)
− ln b̃ti,m,u′

)
− b̄

t
i,m

∑

u ̸=u′

ã
t
i,m,u′

b̃ti,m,u′






 , i ∈ {R,B} . (70)

π̃NL
m,n =

1

C2
p̂
(
ctm
)
(
b
N
m

)
a
N
m

Γ (aNm)
exp




(
a
N
m − 1

) (
∇

a
N
m
ln Γ

(
a
N
m

)
− ln bNm

)
− b

N
m

⌢

a
t
m,n

⌢

b
t

m,n



 . (72)

C2 =p̂
(
ctm
)
(
b
N
m

)
a
N
m

Γ (aNm)
exp




(
a
N
m − 1

) (
∇

a
N
m
ln Γ

(
⌢

a
t
m,n

)
− ln

⌢

b
t

m,n

)
− b

N
m

⌢

a
t
m,n

⌢

b
t

m,n





+
(
1− πNL

m,n

)
(
b̄
N
m

)
a
N
m

Γ (āNm)
exp




(
ā
N
m − 1

) (
∇

a
N
m
ln Γ

(
⌢

a
t
m,n

)
− ln

⌢

b
t

m,n

)
− b̄

N
m

⌢

a
t
m,n

⌢

b
t

m,n



 . (73)

F. Computational Complexity and Practical Implementation

This subsection discusses the computational complexity

and offers a glimpse into the practical implementation

of the proposed DiLuS-STPL algorithm. Following the

overall flow of DiLuS-STPL outlined in Algorithm 1, the

main computational burden is dominated by the updates

of the posteriors ψ (zt), ψ (vt), ψ (ρt), ψ (γt), ψ (qt),
and ψ (ct) in Step 8 using (65)-(75), respectively. More

precisely, the computational complexity of the matrix

inversion operation in (66) is O
(
U3M3

)
, along with the

total number of multiplications for updating ψ (zt) being

O
(
K3G3 + 3UM + 2KGU2M2 + 2K2G2UM +K2G2

)
.

Thus, the complexity order can be given by O
(
KGU2M2

)
,

since it typically holds that KG ≪ UM . Regarding its

practical implementation, the low-latency requirements of the

considered RIS-aided vehicle platoons may not be satisfied

when running DiLuS-STPL based on a regular desktop

computer with a PYTHON implementation. It is just what

we use to provide a theoretical guideline. This issue can be

effectively addressed by leveraging the powerful and parallel

computing power of the cloud, in which the BS first sends

the received signals yt to the cloud, and then the cloud

runs the DiLuS-STPL algorithm to attain the exact locations

of M VUEs based on the received signals yt. Therefore,

the low-latency requirements of the practical system can be

met due to the large-bandwidth and high-rate fronthaul links

between the BS and the cloud [42].

V. SIMULATION RESULTS

A. Simulation Configuration

A vehicle platoon system consisting of M VUEs is cus-

tomized according to the generation procedure in [34]. To be

specific, the spatial correlation of the M VUEs positioned

on a road is modeled using a sampled Gamma distribution as

presented in (26) with the shape and scale parameters given by

ϖ = 2 and λ = 1.5. Concerning that the inter-VUE distance is

a random variable due to the fluctuation in the speed control,

it is assumed that the speed of each VUE follows a complex

Gaussian distribution CN
(
v̄, σ̄2

)
with v̄ = −18 m/s as its

mean and σ̄ = 8 m/s as its standard deviation. In this case,

the temporal probability, i.e., htT,m, is given by

htT,m ≜ p
(
qtm|qt−1

m

)

=

(
σ̄∆t

∆L

√
2π

)−1

exp


−1

2

(
qtm −

(
qt−1
m + v̄∆t

∆L

)

σ̄∆t/∆L

)2

 ,

(76)

in which ∆L =
∥∥rtm,u − rtm,u−1

∥∥ denotes the grid length

and ∆t is the slot interval. The BS and the RIS are po-

sitioned on each side of the road, both of which are ori-

ented parallel to the road. The three-dimensional coordinates

of the BS and the RIS in meters are [50, 100, 25] and

[150, 0, 25], respectively. The considered system operates at

7 GHz. Furthermore, the exploited primary performance metric

for location estimates is the root-mean-square-error (RMSE),

i.e.,

√
1

TSM

∑T
t=1

∑S
s=1

∑M
m=1 ∥r̂tm − rtm∥2, where S is the

number of random channel realizations generated in a slot, and

thus the estimate output for each slot t have been averaged

over these S samples. The number of observation slots for

the system is T = 100. Other system parameters are set as

follows if not otherwise specified: M = 4, K = 16, N = 256,

ζm,b = 3, ζm,r = 2.5, ζr,b = 2 ∆L = 1 m, ∆t = 0.1 s,

S = 200, σ2 = −100 dBm, and ϱ̃m,n = 0.3.

B. Convergence Behavior

In Fig. 4, we show the convergence behavior of the proposed

algorithm by plotting the RMSE curves associated with the

estimated location r̂tm. Specifically, it is observed in Fig. 4(a)

that the RMSE performance decreases rapidly with the itera-

tion number, and ultimately converges to a value within around
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Algorithm 1 Diverse Dynamic Layer Structured Sparsity

Spatial-Temporal Platoon Localization (DiLuS-STPL) Algo-

rithm
1: for t = 1, 2, ..., T do

2: Initialize ∆rt = 0,
(
∆ωAoA

)t
= 0,

(
∆ϕAoA

)t
= 0,(

∆ϑAoA
)t

= 0, hyper-parameters atm, btm, ātm, b̄tm, aNm,

b
N
m, āNm, b̄Nm, aκm, bκm, the maximum iteration number

rmax, and the convergence threshold ϵ, ϵ′, ε, ε′.
3: repeat

4: DiLuS-STPL-E Step:

5: % Entity A: Sparse VBI Estimation

6: Initialize the distribution according to (63) and (64),

the message from Entity B passing to Entity A, i.e.,

νχ→qtm
(qtm).

7: repeat

8: Update posteriors ψ (zt), ψ (vt), ψ (ρt), ψ (γt),
ψ (qt), and ψ (ct) in compliance with (65)-(75) in

Sec. V. D.

9: until The convergence criteria of DiLuS-STPL-E

Step is met.

10: Calculate the message from Entity A, i.e., νhρ→qtm
,

and then send it to Entity B.

11: % Entity B: Forward-backward Message Passing

12: Update the message νχ→qtm
(qtm), and then send it to

Entity A.

13: DiLuS-STPL-M Step:

14: Construct surrogate functions F̂
(
Ωt;Ωt,(r)

)
in (57)

using the output of Entity A in DiLuS-STPL-E Step,

i.e., ψ (αt).
15: Update Ωt,(r+1) alternatively according to (59).

16: until The convergence criteria
∥∥∥µt,(r−1)

z − µ
t,(r)
z

∥∥∥ ≤
ϵ,
∥∥∥µt,(r−1)

v − µ
t,(r)
v

∥∥∥ ≤ ϵ′,
∥∥∥Σt,(r−1)

z −Σt,(r)
∥∥∥ ≤ ε,

and
∥∥∥Σt,(r−1)

z −Σ
t,(r)
z

∥∥∥ ≤ ε′ are met or the maximum

iteration number is exceeded.

17: Obtain the optimal posteriors ψ∗ (qtm) and ψ∗
(
ctm,n

)
,

as well as the parameters Ωt,∗. Then, pass both poste-

riors to the (t+ 1)th slot.

18: Estimate q̂tm according to q̂tm = argmaxqtψ
∗ (qtm), and

the location estimate in the tth slot is given by p̂tm =
rtm,q̂ +∆r̂tm,q̂ .

19: end for

5 iterations in a slot. Fig. 4(b) demonstrates that the RMSE

performance tends to stabilize over time, and DiLuS-STPL

eventually converges to a better performance. In the first slot,

DiLuS-STPL performs poor due primarily to the unavailability

of any priori provided. With an increase of the slot, DiLuS-

STPL takes advantage of the temporal correlations and the

priori delivered by the previous slot for an appropriate param-

eter adjustment. Upon achieving the performance saturation,

the location tracking process progressively transitions into a

steady state.

In order to confirm that the surrogate function adopted

in (57) typically provides a safe approximation of the likeli-

hood function in (36), Fig. 5 depicts the variation of surrogate
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Fig. 4. Convergence behaviors of the proposed DiLuS-STPL algorithm.
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Fig. 5. Surrogate function F̂
(

∆r
t
m

)

versus the estimated location ∆r
t
m

during the convergence procedure in a slot.

function F̂ (∆rtm) versus the estimated location (∆rtm) during

the convergence procedure in a slot. We are primarily con-

cerned with the impact introduced by the estimated off-grid lo-

cation, and thus it is assumed here that other angle-associated

offsets, e.g., ∆rt,
(
∆ωAoA

)t
,
(
∆ϕAoA

)t
, and

(
∆ϑAoA

)t
, are

perfectly available during the estimation. It can be intuitively

observed that the surrogate function, as the iteration number

increases, approaches the original likelihood more closely. As

DiLuS-STPL converges in the seventh iteration, the estimated

location (∆rtm) (also the maximum of F̂
(
∆r

t,(7)
m

)
) almost

coincides with an optimum MLE, indicating that our theoreti-

cal analyses are in excellent agreement with simulation results.

C. The Impact of RIS on Localization

1) GDOP Performance Evaluation: Fig. 6 plots the GDOP

performance versus the varying VUE location in different

points of the road, in which the location tracking relies

exclusively upon a single BS positioned at [50, 100, 25] (m) in
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Fig. 6. GDOP performance versus the varying VUE location in different
points of the road when K = 4, N = 256.

(a); a pair of BSs operate cooperatively for location tracking

in (b), with their positions given by [50, 100, 25] (m) and

[150, 0, 25] (m), respectively; a BS and a RIS operate in

tandem in (c), with their positions given by [50, 100, 25] (m)
and [150, 0, 25] (m), respectively. Firstly, as observed, the

achieved GDOP is dependent on the relative VUE loca-

tion with respect to the BS and RIS. Only when the VUE

approaches the BS or RIS will a lower estimation error

be achieved, whereas the localization precision deteriorates

immediately as soon as the VUE moves further away from

them. Given that the uniform grid is fixed, the angular resolu-

tion
∥∥φAoA

m

(
rtm,u +∆rtm,u

)
− φAoA

m

(
rtm,u−1 +∆rtm,u−1

)∥∥
F

associated with the off-grid location declines with an in-

creased
rtm,u

hv
as u grows larger, which leads to the unfa-

vorable column-non-orthogonality in the LoS array response

ALoS
K

(
φAoA
m

(
rtm,u +∆rtm

))
, eroding the precision of esti-

mates. Secondly, the dual BSs cooperating for localization

provides the best-case bound by virtue of their powerful signal

processing capabilities. Intriguingly, we notice that the case

of the BS and RIS operating in tandem exhibits the almost

comparable localization performance with respect to GDOP,

with only marginal precision loss spotted on the side of

the RIS. This can be attributed to the following facts. The

passive nature of the RIS regulates its reflective behavior in

response to an incident signal. The localization signal, in this

context, may entail attenuation due to the double fading effect

[32], leading to a drop in propagation signal-to-noise ratio

(SNR) and an increase in estimate error. Despite this, no

noticeable performance loss is spotted, which reveals RIS’s

great potentials for enabling high-accuracy localization owing

to its cost-effective implementations in practice.

2) Localization Capabilities: BS vs. RIS: One may argue

that the double-BS configuration could supplant the combina-

tion of a BS and a RIS, albeit their comparable localization

performance demonstrated in Fig. 6. To further justify this,

we would like to go deeper into the rationale of employing a

BS and RIS for localization based upon the simulation results

in Fig. 7. Specifically, the GDOP ratio GDOPBS/GDOPRIS
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Fig. 7. GDOP performance achieved by a BS plus a RIS for different
antenna/element configurations.

presented in (23) motivates us to explore just their individual

localization capabilities in a neat manner, instead of more com-

plicated GDOP forms, e.g., GDOPBS&RIS and GDOPBS&BS.

Thus, we are interested in the case of a BS and a RIS

functioning in tandem with different antenna/element config-

urations. The BS and the RIS are placed at [50, 100, 25] (m)
and [150, 0, 25] (m), respectively. It is intuitive in Fig. 7 that an

increase in N boosts RIS’s localization capability in terms of

the GDOP performance. This occurrence is in good agreement

with the fact drawn in (23), since the ratio GDOPBS/GDOPRIS

is proportionate to Nh and Nv . A larger N has the potential

to compensate for the multiplicative fading nature inherent to

the cascaded channels, thus achieving favorable localization

performance. Therefore, we would prefer to implement a BS

plus a RIS rather than the double-BS configuration, due to the

extremely low implementation cost of a RIS (about $ 7000

[43]) in comparison to the high cost of a 5G BS (about $

23,000 [44]). Additionally, concerning the passive nature of

the RIS, additional interference cannot be introduced to the

users in a single cell.

D. Performance of DiLuS-STPL

For comparison, we employ the following several bench-

mark schemes:

• Naive VBI [27]: It is assumed that the naive VBI algo-

rithm employs i.i.d. priors for both LoS and NLoS chan-

nels without considering the diverse sparsity structures

presented in DiLuS.

• MAP [38]: The fundamental of MAP is a Bayesian

filter employed to approximate the posteriors of the

corresponding parameters, i.e., rt,
(
ωAoA

)t
,
(
ϕAoA

)t
, and(

ϑAoA
)t

, whose extremum points can be determined by

a brute-force-kind approach.

• LASSO [45]: The LASSO algorithm is a widely used

CS-based sparse signal recovery technique that directly

filters the non-zero entries in a sparse vector by a soft or

hard threshold.
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Fig. 8. CDF of the RMSE for various grid resolutions. (a) The grid length is ∆L = 0.5 m, and the number of grids is U = 200. (b) The grid length is
∆L = 1 m, and the number of grids is U = 100. (c) The grid length is ∆L = 5 m, and the number of grids is U = 40. (d) The grid length is ∆L = 20 m,
and the number of grids is U = 10.

• Without off-grid: The proposed DiLuS-STPL is utilized

for location tracking by employing the sparse priors pre-

sented in DiLuS without factoring the off-grid basis, i.e.,

the offsets ∆rt,
(
∆ωAoA

)t
,
(
∆ϕAoA

)t
, and

(
∆ϑAoA

)t
are set to be zero.

1) Impact of Grid Resolution: We present in Fig. 8 the CDF

of RMSE under several schemes for different grid resolutions.

It can be observed from Fig. 8 that our proposed DiLuS-

STPL achieves highly desirable RMSE performance for all

grid resolution cases and even outperforms that of MAP for

the instances illustrated in Figs. 8(a)&(b), i.e., the grid length

∆L =
∥∥rtm,u − rtm,u−1

∥∥ being both 0.5 m and 1 m, as well

as the number of grids being both U = 200 and U = 100.

This is attributed to the smoothness and convexity of the sur-

rogate function used in DiluS-STPL, as well as the beneficial

sparse priors provided by DiLuS, significantly facilitating the

posterior approximation and parameter updates. Furthermore,

as transpired in Figs. 8(a)&(b), a finer-grained gird resolution

delivers fairly slight improvement in RMSE performance but

adversely doubles the search space, which might make no

sense in the practical algorithm design since we are always

striving for a critical compromise between the precision and

computational complexity. By comparison, due to the absence

of these properties in MAP, its performance is bounded by the

grid-by-grid search, in which the grid resolution becomes the

bottleneck for achieving a higher level of localization preci-

sion. Furthermore, concerning that the approximate posteriors

in MAP are independent of the grid length, RMSE somehow

does not vary with the grid length using MAP approaches.

MAP’s use of a brute-force-kind approach allows it still to

perform excellently even at coarse grid resolutions, but at

the sacrifice of an extremely high computational complexity.

Additionally, a somewhat counterintuitive occurrence in Fig. 8

is that the RMSE performance tends to be improved as the

grid resolution lowers for the LASSO scheme. This is because

LASSO is highly dependent on the column-orthogonality in

the sensing matrix [36]. A refined grid length results in

marginal differences between the neighboring columns in the

AoA array response, i.e., ALoS
K

(
φAoA
m

(
rtm,u +∆rtm

))
, hence

rendering the undesirable correlations that may be detrimental

to the accuracy of grid estimates.

2) Impact of Temporal Resolution: Fig. 9 shows the CDF

of the RMSE performance achieved by DiLuS-STPL with

different temporal resolutions, i.e., ∆t = 0.05 s, ∆t = 0.1 s,

and ∆t = 0.2 s. As transpired in Fig. 9(a), the RMSE

performance might be slightly improved if the slot interval

is shortened. Despite this, their differences in regard to the

three temporal resolutions are marginal at best and, in practice,

may be ignored. Furthermore, Fig. 9(b) depicts an analysis of

the possible causes for this slight improvement. In particular,

the samples for each temporal resolution follow a truncated

Gaussian distribution whose variance is independent on ∆t.
A finer-grained ∆t induces a smaller variance, thus allowing

for a more subtle vibration of RMSE throughout the whole

observation procedure.

3) Impact of the Number of RIS Elements: In Fig. 10,

the RMSE performance is plotted for different numbers of

RIS elements N , when the number of BS antennas is fixed

with K = 16. It is evident that RMSE performance ob-

tained by all schemes improves with an increased N due

to the enhancement in angular resolution. As N grows to

a certain magnitude, neither the naive VBI nor the MAP
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Fig. 9. (a) CDF of the RMSE for various temporal resolutions. (b) Truncated
Gaussian distributions with various variances associated with different ∆t.

scheme demonstrates additional precision gains with respect

to RMSE. This is due primarily to the absence of a tailored

design for capturing additional NLoS priors brought by the

cross-slot temporal correlations, as well as the inability to

capture the location priors. Furthermore, we note that the

RMSE performance of DiLuS-STPL without off-grid levels

off as N grows because the estimation error is in general

bounded by the grid resolution as portrayed in Fig. 8. This can

also be attributed to the fact that DiLuS-STPL without off-grid

tends to converge around the grid length. Therefore, we evince

that the proposed DiLuS-STPL is capable of harnessing the

potential benefits brought by the improved angular resolution,

since it encapsulates various sparsity structures associated with

the LoS/NLoS channels and the spatial-temporal correlations

inherent to the vehicle platoon, in an attempt to recursively

identify exact priors for high-accuracy location tracking.

4) Impact of the Number of NLoS Paths: Fig. 11 investi-

gates the RMSE performance versus the varying number of

NLoS paths in cases of only the BS being active as well

as the BS and RIS functioning in tandem. It is assumed for

simplicity that the direct and the cascaded channels hold the
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Fig. 11. RMSE performance versus the number of NLoS paths. (a) Location
tracking relies exclusively upon the BS. (b) The BS and the RIS jointly track
VUE’s location.

same number of NLoS paths, i.e., Lm,b = Lm,r. Firstly,

RMSE is intuitively observed to somewhat deteriorate with an

increasing number of NLoS paths, particularly when only the

BS is responsible for the localization. The increased number

of NLoS paths makes it prohibitive to distinguish the LoS

paths that carries useful information for location tracking from

the NLoS paths, referred to as the NLoS-induced misleading

effect, thus eroding the accuracy of localization. Fortunately,

the favorable LoS paths constructed by the RIS enriches

the localization-associated information, along with the sig-

nificantly improved accuracy by limiting the NLoS-induced

misleading effect towards the LoS paths. Secondly, despite the

fluctuating number of NLoS paths, the proposed DiLuS-STPL

algorithm levels off even in the presence of an increase in

number of NLoS paths, showing its great robustness. Besides,

several benchmarks are able to mitigate the NLoS-induced

misleading effect while identifying the location-associated LoS

channels with the aid of the RIS. This facilitates the precise
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and robust localization despite the intricate dynamics of the

vehicular environment.

VI. CONCLUSION

In this work, we have examined the RIS as an extension

of the BS’s localization capability as it provides additional

location priors and location-associated LoS paths. By fully

exploiting the diverse sparsities that are available in the

LoS/NLoS channels, a DiLuS framework is customized for

encapsulating the sparse priors of corresponding channels, fol-

lowed by a MAP-form location tracking problem that is highly

intractable due to the uncertain sensing matrix and coupled

latent variables associated with the BS and RIS. To resolve

this hindrance, the DiLuS-STPL algorithm is developed by

recursively achieving updates of the parameters, i.e., sparse

LoS/NLoS channel vectors, off-grid location and angle offsets.

Our simulation results have verified the significant potential

of the RIS to enable high-accuracy localization. We evince

through the GDOP metric that location tracking using a BS

and a RIS may arrive at the comparable precision performance

obtained by the two individual BSs, which is an exciting

discovery due to the cost-effective attributes of the RIS in

practice. Additionally, the proposed DiLuS-STPL algorithm

has the potential to mitigate the NLoS-induced misleading

effect while attempting to identify the LoS channels in the

presence of a fluctuating number of NLoS paths, thus revealing

the critical robustness for high-accuracy localization in vehicle

platoons.

APPENDIX

DERIVATION IN (19)

Derivation is likewise performed by first achieving the

outcome for the ULA case, and then extending it to the UPA

case. As for the cascaded channel Hr,bΘhtm,r, the entry µB,k

in (13) can be replaced by µR,k that represents the (k, n)th
entry of Hr,bΘhtm,r. With the AoA φAoA

m , the FIM can be

written as

FIM
(
φAoA
m

)

=
2

σ2
Re
{
∇φAoA

m

(
Hr,bΘhtm,r

)H∇φAoA
m

(
Hr,bΘhtm,r

)}

=
2

σ2
Re
{
∇φAoA

m

(
htm,r

)H (
ΘHHH

r,bHr,bΘ
)
∇φAoA

m
htm,r

}
.

(77)

By letting H̃r,b = Hr,bΘ, the auto-correlation matrix can

be given by H̃H
r,bH̃r,b whose diagonal entries tend to zero

due to its sparsity in the angular-domain representation. The

(n, n)th entry of H̃H
r,bH̃r,b can thus be approximated as[

H̃H
r,bH̃r,b

]

n,n
≈ |PLr,b|2K. Furthermore, (77) can be re-

cast to

FIM
(
φAoA
m

)
= |PLr,b|2K· 2

σ2
Re

{
N∑

n=1

∂
(
htm,r

)∗
n

∂φAoA
m

∂
(
htm,r

)
n

∂φAoA
m

}
.

(78)

We observe that the structural distinction between (13) and

(78) resides in a cascaded channel-induced extra term. Thus,

by following the flow from (15) to (18), we can obtain

GDOPRIS in (19).
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