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Abstract— Though visible light communication (VLC) is a
significant supplement to current communication technologies,
disadvantages such as the sensitivity to obstacles limit its devel-
opment and commercialization. As a revolutionizing technology,
intelligent reflecting surface (IRS) offers an ability to reconfigure
the wireless environment dynamically and passively, which is
considered beneficial to improve the performance of VLC. This
paper devotes to investigating the effect of VLC IRS and
putting forward a joint resource management method for an
instantaneous IRS-aided VLC system. To this end, the line-of-
sight (LoS) and non-LoS channel gains are first discussed under
the point source assumption, after which the system model is
established and the optimization problem is formulated. Then,
the frozen variable algorithm and minorization-maximization
algorithm are proposed to iteratively maximize the overall spec-
tral efficiency (SE), and detailed discussions on the weak/severe
interference cases and computational complexity analysis are
carried out. Moreover, numerical results are provided to show the
improvement of SE and the effects of the proposed algorithms,
which offers beneficial insights on joint resource management of
IRS-aided VLC.

Index Terms— Visible light communication (VLC), intelligent
reflecting surface (IRS), spectral efficiency maximization, joint
resource management, frozen variable algorithm, minorization-
maximization algorithm.

I. INTRODUCTION

ECENTLY, the academic research and commercial
deployment of the fifth-generation (5G) and beyond
communications are in full swing, including sub-6G and
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millimeter-wave communication technologies. Nevertheless,
the traffic volume of the wireless networks will grow up by
thousands-fold in the foreseeable future, which imposes a lot
for the crowded and fragmented frequency resources in the
radio frequency (RF) range [1]. To meet the requirements
of forthcoming wireless communications, visible light com-
munication (VLC) shows unique advantages, including the
broad bandwidth, high physical layer security, no interfer-
ences with RF communications, and the ubiquity of light-
emitting diodes (LEDs) [2]. Abundant foundational research
has been investigated around the channel gain derivation [3]
and channel capacity analysis [4]-[6], and also VLC multiple-
input and multiple-output techniques [7] and dimming con-
trol approaches [8] are two important branches of VLC.
In the meantime, the progress of VLC industrialization has
attracted much attention, and a growing number of inter-
national organizations have been established to promote its
commercialization, including Visible Light Communication
Consortium (VLCC) from Japan, OMEGA-the Home Gigabit
Access Project from the European Union, and WPAN Visual
Light Communication Interest Group (IGvlc) from the society
of IEEE [1], [2]. Even so, the VLC technology still remains
extensive pending problems, among which the propagation
distance is limited due to the unique properties of the visible
light. Moreover, it is generally believed that VLC cannot
penetrate obstacles due to the high penetration loss [9], and the
illumination requirements pose a challenge to the practicality
of VLC.

Intelligent reflecting surface (IRS) is an emerging tech-
nology that exploits the non-line-of-sight (NLoS) paths to
enhance the capability of wireless communication systems.
The principle of IRS lies in the manipulations of induction
current patterns after the electromagnetic wave impinges the
surface, which is a two-dimensional planar periodically made
of artificial atoms. Related studies in the RF range include the
joint passive and active beamforming design [10], the deep
reinforcement learning-based IRS [11], channel estimation for
IRS [12], etc. However, due to the nonnegative and real-
valued amplitude and other differences, these technologies
cannot be directly extended into VLC, and the research on
IRS-aided VLC is just beginning. In the mainstream, there
are two feasible hardware architectures of IRS in the visible
light range, namely the mirror array-based IRS [13], [14] and
the metasurface-based IRS [15]. The former implementation
is based on geometric optics like Snell’s law of reflection, and
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each unit can rotate around two independent and orthogonal
axes similar to micro-electro-mechanical systems [13], [14].
Then, the second hardware exploits dielectric structures or sub-
wavelength metallic to abnormally manipulate the propagation
behavior, and the structures in the near-infrared range (NIR)
and visible light range are developed in [16], [17], respectively.
On the other hand, follow-up works focus on the channel gain
analyses of the NLoS links reflected by IRS [13]-[15], and in
particular, an upper bound of the irradiance intensity level is
given in [15] under the point source condition, which follows
an “additive” model due to the near field assumption [18].
Also, the reflection behavior is investigated in the free space
optical system, and it reveals that the outage probability can
be reduced by IRS [19], [20]. Based on the above foundation
studies, the authors in [21] categorize the advantages of IRS-
aided VLC into three main aspects, namely the signal coverage
expansion, the illumination requirement relaxation, and the
signal power enhancement. Then, the IRS configuration policy
is optimized for the sum rate maximization, and numerical
results indicate that IRS can address blockage problems to
an extent [22], [23]. Moreover, the research shows that the
physical layer security of VLC systems can also be improved
by IRS [24].

Under the point source assumption, this paper endeavors to
jointly optimize the IRS configuration, the power allocation,
and the user association behavior in an individual time slot
of the time division multiple access (TDMA) VLC system.
To this end, the channel models of the line-of-sight (LoS)
link and NLoS link are elaborated, and the instantaneous
signal expression is derived as the objective of the spectral
efficiency (SE) maximization problem. Specifically, the con-
tributions of the paper are summarized as follows:

o One highlight is defining a binary IRS coefficient matrix,
by which the configuration process is abstract into a
binary programming problem and complicated triangular
transformations and geometric operations are avoided.
After this matrix is optimized, the physics coefficients
of each unit can be obtained by reverse lookup tables,
which are generated in advance by mapping the angles of
reflected light to unit coefficients. This method is feasible
since the indoor VLC channel gain sensitively depends
on the geometric locations of transceivers and IRS units,
which are assumed known to the system controller.

o This paper proposes an alternating optimization algorithm
to maximize the overall SE of the IRS-aided multi-user
VLC system. Particularly, the variable frozen algorithm
is proposed to solve the IRS configuration subproblem
in reduced complexity, and the numbers of variables and
constraints decrease in the scale of min(1, K/L), where
K and L denote the numbers of users and transmitters,
respectively. Moreover, the minorization-maximization
(MM) algorithm is utilized to solve the power allocation
subproblem and user association subproblem, which are
non-convex problems and conventional convex optimiza-
tion tools cannot be used directly.

o Theoretical analyses on extremely weak/severe inter-
ferences cases and the computational complexity of
the proposed algorithms are carried out in the paper.

6509

TABLE I
SYMBOL NOTATIONS

Symbol Description

The number of users (PDs)

The number of transmitters (LEDs)
The number of IRS units

The LoS channel gain

The NLoS channel gain

The channel capacity of VLC

The spectral efficiency

The IRS coefficient matrix

The power allocation matrix

The user association matrix

The minimum optical power of LED
The maximum optical power of LED
The total maximum optical power

K
L
N
HD
HD
C
R
G
P
F

Pmin

Then, extensive numerical results are executed to verify
the SE improvement of the proposed algorithms over
other baselines, and it is also observed that the SE
gain from IRS is almost linear to the number of IRS
units and the reflection factor. Moreover, considering IRS
configuration depends highly on geometric factors, the
analysis of the locations and IRS size is provided detailly.

The remainder of the paper is organized as follows: in
Section II, the channel gain and signal model are discussed
elaborately. Then, the optimization problem is formulated in
Section III, and an alternating optimization algorithm is pro-
posed by dividing the original problem into three subproblems
and solving them iteratively. Afterwards, detailed numerical
simulations are carried out in Section IV. Finally, Section V
concludes the whole paper.

Notations: normal letters a (or A), boldface letters a,
boldface uppercase letters A represent the scaler values,
vectors, and matrices, respectively. Particularly, Iy denotes
an N x N identity matrix, and diag(a) is a diagonal matrix
with the elements of a on the main diagonal. Then, rank(-),
rank(®(-), vec(-), ||| » are the symbols of rank, column rank,
vectorization operator, Frobenius norm, respectively. Given
defined variables, @, ®, | - |, (-)7, 8, denote the direct sum
operator, Hadamard product, absolute value, transpose, and
partial operator, respectively. Moreover, R is defined as the
real and positive number set, and calligraphic letter .A denotes
the other defined set. The operator supp(a) represents the
support set of the vector a, and A{-} is a submatrix composed
of columns with indices from the inside set.

II. SYSTEM MODEL OF THE IRS-AIDED VLC

Considering the downlink side of an IRS-aided TDMA VLC
system, where K users are served by L LEDs and an IRS
with N units is equipped to enhance the communications.
It is assumed that each LED serves a single user in one
time slot, and multi-user interferences (MUI) will be caused
among different lamps. Without loss of generality, the user
locations and VLC channel state information (CSI) are known
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Fig. 1. Channel gain of the NLoS path.

at the system controller, which can be accomplished by VLC
positioning technologies [25] and various channel estimation
methods [26], respectively.

A. Channel Gain of LoS Paths

Suppose the k-th user is served by the [-th LED, its LoS
direct gain in VLC generally follows the Lambertian model,
which in mathematics is given by [3], [27]

m+1 A m
p) = O o 0)geg con@) @), )
’ 27rdk7l
where m = —1/log,(cos(©/2)) is the Lambertian index

with ©/, the semi-angle at half illuminance of the LED,
A is the physical area of the photodetector (PD), dj; is
the distance between the transceivers, and € and ¢ are the
angles of irradiance and incidence, respectively. Then, g,y is
the optical filter gain, and the optical concentrator gain f(¢)
with respect to field-of-view (FoV) & is given in [28]. For
simplicity, a generated matrix H) = [h{") h{" ... h{]7 is
defined to represent the LoS channel gain, where each column
h,(cl) = [h,(ﬁli, h,(:’%, . .,h,(cly)L]T denotes the direct gain vector
between LEDs and the k-th user.

B. Channel Gain of NLoS Paths

In general, NLoS paths in wireless communications include
reflection paths, diffraction paths, scattering paths, and pene-
tration paths. Considering the extremely high penetration loss
of visible light, the penetration paths are commonly ignored in
VLC [9]. Then, the diffraction path is also negligible due to the
nanoscale of wavelength. According to the surface properties
of the reflector, the light reflection can be categorized into
two types: diffusely reflected link and specularly reflected link.
The channel gain of these two paths will be investigated and
compared in the sequel of this subsection.

1) Diffuse Reflection Path: When the surface is made of an
inhomogenous medium, the incident light will be reflected and
spread in all directions, which is known as diffuse reflection.
As shown in Fig. 1(a), the energy of the reflected light is
scattered on the surface of the reflector, and only the part
that in a specific direction can be received by the target PD.
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Based on [29], the channel gain of the first reflected link by
the unit area of the reflector can be expressed as

(Diffuse) T(m + 1)A

fod a Qﬂdi.ld%.n

cos™(0) cos(ay ) cos(az)

X goy cos(9) f(¢),  (2)

where 7 is the reflection factor of the diffuse reflector, d,,;
is the distance between the [-th LED and the n-th IRS unit,
and dy, ,, is the distance between the n-th IRS unit and the
k-th user. Then, a; and o are the angles of irradiance and
incidence based on the reflection plane, respectively. Notably,
Eq. (2) follows a “multiplicative” model, which is structurally
identical to the far field channel gain in RF IRS systems [30].

2) Specular Reflection Path: Specular reflection refers to the
situation that the energy loss mainly occurs in the medium
absorption, and the reflected light will travel in a unique
direction. The surface of the reflector in Fig. 1(b) should be
homogenous, including the planar mirror or the medium with
compact periodic microstructure. Geometrically, the angle of
irradiance equals the angle of incidence, which is also known
as Snell’s law of reflection [13]-[15]. An upper bound of
the irradiance level is derived in [15] under the point source
condition as

Jp(Specular) _ d(m + 1)pcos™(0)
kyn,l 27T(dn’l —+ dk,n)Q

where § and p are the reflection factor and the emission
power, respectively. Eq. (3) demonstrates that the specular
reflection path can equivalently be regarded as an extended
path, consisting of the LED-to-IRS link and IRS-to-PD link.
On the other hand, considering the nanoscale wavelength
in VLC, the signal propagation distance is smaller than the
threshold as

cos(), 3)

2D?
Lo = - 4)

where D and X represent the largest IRS dimension and the
wavelength, respectively [18]. Then, the near field assumption
is ensured in IRS-aided VLC, and therefore the path loss
follows an “additive” model as derived in (3).

To be clear, both diffuse and specular reflection paths
coexist in VLC. Nevertheless, the fact has been justified that
the path loss by the second diffuse reflections is nearly 25 dB
larger than that of LoS path, and even the gain of the one-hop
diffuse reflection path is 15 dB lower than the LoS one
[9], [28]. As a result, the specular reflection is generally
considered as the significant NLoS component in IRS-aided
VLC, while diffuse reflection is ignored [13], [15], [19], [24].
Based on (3), the NLoS channel gain can be rewritten as

+ 1A
R? - (m—cosm 0)g, ¢ cos . (5
k,n,l 27T(dn,l +dk’,n)2 ( )g f (¢)f(¢) ( )
Moreover, a matrix H®? is defined to denote the
NLoS channel gain for simplicity. This matrix is three-
dimensional and consists of slices as H,(f) = diag(hgfiT,
h,g?%T,...,hé%)LT) € RE*NL where each column h,(fl) =
[h,i?l, hf;l, e h,(f}v,l]T denotes the NLoS direct gain vec-
tor between the /-th LED and the k-th user.
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C. Instantaneous Received Signal of IRS-Aided VLC

This subsection devotes to calculating the instantaneous
received signal in one time slot. To this end, a user association
matrix F and a power allocation matrix P are defined to
describe the behavior of transmitters, and then a discrete
matrix G is introduced to denote the IRS configuration
process. These three matrices are variables to be jointly
optimized later, and their descriptions are given in detail as
follows.

1) User Association: In a time slot of the TDMA system,
let L transmitters carry information symbols of K users,
which are denoted by the vector y = [y1, ¥, ..., yx]|’. Then,
suppose the emission signal on LEDs is defined as x =
[1,22,...,21]T, a description of the association behavior
between the transceivers is given by

x = Fy, (6)

where F = [f1,fs, ..., fx] is a binary matrix with each column
fi, € Ri“ indicating the projections of the information
symbol y;, on all transmitters. More specifically, f; , = 1 and
0 represent that the k-th user does or does not accept the
l-th LED’s service, respectively.

2) Emission Power: As a wireless communication technol-
ogy that takes into account both communication and illumina-
tion functions, both peak and total power constraints cannot
be ignored in VLC, and it has been demonstrated that VLC
performance gain can be achieved by properly allocating the
emission power among different transmitters [28]. In this
paper, a diagonal power matrix P = diag (P, Ps,... Pr) is
defined to indicate the emission power on LEDs, and therefore
the transmit signal can be expressed as X = Px. Based on (6),
the LoS received signal of the k-th user is formulated as

K
o = oV T% = peh VTPl + o D b TPEy;,

i=1,i£k

(N

where the two components denote the useful signal and the
MUISs, respectively.

3) IRS Configuration: Thirdly, an IRS coefficient matrix
G is defined to indicate the relationship between IRS units
and transmitters. Specifically, G = [g;, 8, ..., 8] is a binary
matrix with column g, € Rf %1 representing the indices of
the assigned units for the [-th transmitter, i.e., g,; = 1 means
the n-th IRS unit belongs to the I-th LED. Considering the
channel model in indoor VLC is determined mainly by the
locations of the transceivers, any movement of the trans-
mitter/receiver/reflector may significantly change the channel
gain, resulting in the high spatial resolution of the VLC
channel. As shown in Fig. 1(b), the specular reflection path can
be considered as an extended path emitted from the imaging
LED. When an IRS unit is configured well so that the PD
can receive the light from LED 1, the reflection path of the
LED 2 points at a completely different direction according
to Snell’s law of reflection. The probability that any other
PD happens exactly to be here is (a.s.) 0 in mathematics,
which demonstrates that the interferences caused by specular
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Fig. 2. IRS-aided VLC system model that denotes the process of joint

resource management.

reflection paths are negligible. Therefore, a single IRS unit
cannot serve more than one PDs simultaneously, and the NLoS
received signal of the k-th user can be expressed as

N
y;(fl) = Pk Z h;(le’lgn,lﬂxlfz,k = pkh;(jl)ngﬂxzfl,k- (®)
n=1

Then the overall NLoS signal gj,(f) = Zle g),(fl) is given by

27122) = Pk {hﬁT&PMh . 'vhgjiTgLPL-TL} £y,
= p {hfjiTgl, e ,h,f)LTgL] Pdiag(x)f}

T
— {H,(f)vec(G)} Pdiag(Fy)f;. )
Notably, the equation diag (Fy)f;, = yif; holds due to the
orthogonality among f, and the above formula can be further
rewritten by replacing the last two multiplicators as
T
3@ = {H,(f)vec(G)} Pl ys. (10)
To sum up, the received signal of the k-th user is comprised
of the LoS component g),gl), the NLoS component Q,(f), and the
noise wy, at the receiver modeled by additive Gaussian white
noise (AWGN) [28]. The overall received signal g, can be
expressed as

A1) 5(2)

?Jkak + Yp. (11)

+ Wy,

A sketch map is provided in Fig. 2 to denote the sys-
tem model. Specifically, the communication or illumination
requirements of users are uploaded to the system controller,
which then jointly realizes the downlink resource manage-
ment by associating the relationship between LEDs and data
streams, allocating emission power on each LED, and config-
uring IRS coefficients by reverse lookup tables. The evaluation
indicator of the resource management is the overall SE, and
the proposed optimization algorithms and theoretical analyses
are provided in the next section.
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III. JOINT RESOURCE MANAGEMENT FOR SPECTRAL
EFFICIENCY MAXIMIZATION

Motivated by the aforementioned discussions, this section
formulates a combinatorial optimization problem, and an alter-
nating optimization algorithm is proposed to manage system
resources jointly. Specifically, the frozen variable algorithm
and the MM algorithm are utilized to solve the IRS config-
uration subproblem and the power allocation/user association
subproblems, respectively. Moreover, the discussions on the
optimization problems under extremely weak/severe interfer-
ences and the computational complexity analysis are also
carried out in this section.

A. Problem Formulation

The classic Shannon capacity formula cannot be utilized
to describe VLC channel capacity due to several unique
constraints, including the nonnegative and real-valued signal,
the illumination requirements, and the sensitivity to geometric
locations [28]. As a result, the VL.C channel capacity has been
broadly investigated, and the achieved results reveal that the
optimal capacity-input distribution is discrete in VLC [4], [5].
Furthermore, a tight lower bound for dimmable VLC systems
is proposed in [6], where the capacity formula is in a contin-
uous form as

1 p? P2
C:§W10g2 <1—|—w = >,

12)

where w = e/27 is a constant with e is the value of the base
of natural logarithms. W, p, P, and o2 denote the modulation
bandwidth, the responsivity of the PD, the optical power, and
the variance of the Gaussian noise, respectively. Therefore, the
SE of the k-th user is given by

1
Ry = 3 logy (1 -+ wy). (13)

where 7, indicates the individual signal-to-interference-plus-
noise ratio (SINR) and can be expressed as

T 2
p: { [H,(f)vec(G) + h,(:)} Pfk}
= 2 2 K h(l)TPf 2 ’
Tj + Py, Zz’:l,i;ﬁk k i var (i)

(14)

where var(y;) = 1 denotes the variance of the interference
signal y;, and o7 € Ry denotes the variance of wy. In the
end, the overall SE is formulated as

K
R=> Ri(G,PF).
k=1

15)

Significantly, this paper focuses on maximizing the overall
SE by jointly optimizing the IRS coefficient matrix G, the
power allocation matrix P, and the user association matrix F.
For the sake of simplicity, the index sets of transmitters, IRS
units, and users are denoted by £, N, and K, respectively.
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Therefore, the optimization problem is formulated as

(P) : max R (16)
s.t. Ry > Rmin,lm Vk € K, (17)
L
> P < Pou, (18)
=1
Pmin S ]Dl S Pmaxv Vi e L:v (19)
fir€{0,1}, YleL, kek, (20)
K
Y fwefo1), Ver, Q1)
k=1
gn1 €{0,1}, Yne N, leL, (22)
L
> gni€{0,1}, VneN. (23)

=1

Here the constraint in (17) denotes the individual quality of
service (QoS) requirement. The constraint in (18) is the total
power limitation and the constraint in (19) is the individual
illumination requirement in VLC systems. Then, constraints
in (20) and (21) indicate that one transmitter cannot carry
information symbols for multiple users simultaneously, while
constraints in (22) and (23) result from the definition of the
IRS coefficient matrix. Moreover, CSI is denoted by matrices
HY and H(z), which are assumed known by VLC channel
estimation techniques.

Algorithm 1 Alternating Optimization Algorithm to Solve (P)

Input: CSI matrices HY and H(Q), constant €7.
Output: G, P, and F.
1: Init: iteration rounds ¢ «— 0, G(O), P(O), and F© are a
random feasible solution to (P).
2: repeat
3. Given P and F¥, solve (P1) by variable frozen method
and obtain IRS coefficient matrix G(”l);
4. Given G/ and F, solve (P2) by MM algorithm and
obtain power allocation matrix P01,
5. Given GUFY and PO | solve (P3) by heuristic MM
algorithm and obtain user association matrix F(H'l);
until |[RCHD (G, P,F) — RY(G,P,F)| < ¢

a

Note that the IRS configuration subproblem is structurally
identical to the resource allocation problems in orthogonal
frequency division multiplexing (OFDM) systems, which is
proved to be typically non-deterministic polynomial (NP)-
hard [31]. Therefore, the complexity for pursuing the optimal
solution of (P) suffers an exponential explosion and it can only
search for a suboptimal solution. As a consequence, (P) is split
into three subproblems (P1)~(P3) in Algorithm 1, which once
optimize a single variable while the other two variables are
fixed. Take IRS configuration process as an example, GO s
defined as argg rnax(R(G(i)7 P("),F(i))7 R(fo), P, F(i))),
namely the one with larger SE according to (15), where G(*i) is
the optimized result of (P1). The above definition is extended
to other variables, and therefore, the monotonicity of the
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Algorithm 2 Frozen Variable Algorithm to Solve (P1)

Input: fixed matrices P, F and CSI matrices HY and H?.
Output: optimal result G.

1: Init: n «— 1, G is a feasible solution.

2: Construct indication matrices by Hff) {supp (fx)};

3: Compare h,(le’l in the n-th row of the indication matrix
and select the column index [* with the large value;

4: Freeze variables in other columns of G and aggregate
changeable elements into matrix G;

5: Solve (P1-b) by PGD algorithm and obtain the global
optimal point Gy;

6: Recovery the relaxed result of (P1-a) G with the informa-
tion of F, P, and H,(f);

7: repeat

ly «— argmin gy, ;;

90 Gngy 1 and Gni#l, < 0;

100 n+<n-+1;

11: until n > N

algorithm in the ¢-th loop is warranted as
AR(Gu%Pu%FuQ SAR(G@+n7Pu%Fu0
<R (G(i+1)7P(i+1),F(i))

<R (G(iJrl)’P(iJrl),F(iJrl)) @4

It is noted that the overall SE will not decrease in each
step since the worse result is discarded. Moreover, the SE
is also upper-bounded due to the power constraints in (18)
and (19) and row sum constraints in (21) and (23), resulting
in its convergence with the progress of iterations.

B. Frozen Variable Algorithm for (P1)

The IRS configuration subproblem is investigated in this
part, and the frozen variable algorithm is proposed in
Algorithm 2 to optimize G. To start with, when the power
allocation matrix P and the user association matrix F are fixed,
the original problem (P) is simplified into

K

P1): Ri(G
(PT) G:(17§I,1(22l§)7(23) ; HE)

(25)

which is an integer programming problem and NP-hard to
solve [31]. To find a suboptimal but effective algorithm,
we relax the constraint in (22) to

0<gn:=<1, (26)

and rename (P1) as (P1-a). Then, the relaxed problem (P1-a)
will be optimized firstly, after which the result can be utilized
to obtain the suboptimal point of (P) expediently. A property is
derived in the following lemma to simplify the constraint (23).
Lemma I1: R(G) increases monotonically versus g, ;.
Proof: Considering the VLC channel gain is naturally
real and nonnegative, i.e., h,(fzbl > 0, 7x(G) is a monotone
increasing function versus g,, ;. Therefore, R(G) also increases
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Fig. 3. Three steps to generate G from G: variables extraction, frozen, and
aggregation.

monotonically versus g, ; since it is a compound function of
Vi (G) and Ry (’yk). |

Based on Lemma 1, the optimal result of (P1) and (P1-a)
must lie on the boundary of the constraint (23), which can be
rewritten as

27)

L
Z gn,l = 1.
=1

Till now, the relaxed problem (Pl-a) can be solved by
abundant optimization algorithms, which are provided in the
CVX toolbox [32]. However, the scales of variables and
constraints in (P1-a) are proportional to /N x L, which heavily
increases the computational complexity when L and N are
large. Notably, one of the highlights of this paper is to freeze
partial variables in (P1-a), by which (P1-a) can be transformed
into an equivalent problem with much fewer variables and
constraints. As shown in Fig. 3, this transformation exploits the
discreteness and row features of matrices F and G to generate
areduced variable G, detailed discussions are given as follows.

o Extract: This step aims to select the corresponding vari-
ables for each user and divide them into K disjoint sets.
According to (8), the variable g,, ; can make contributions
to Ry if and only if the index [ lies in the space of
supp (fy,). Therefore, the elements in G {supp (fx)} form
a variable set, which is disjoint with other sets due to the
orthogonality of fj.

o Freeze: In this step, some variables in the k-th set will be
fixed as zeros, while other ones remain changeable to be
optimized. Specifically, the location of the largest element
h,(fzbl in each row of H,(f) {supp (fx)} is selected, and
then the variable at the corresponding location remains
unfrozen. At the same time, other elements in that row of
G {supp (fr,)} are to be zeros, which reduces the numbers
of variables and constraints together.

o Aggregate: After the above two processes, only N ele-
ments of each set are still changeable. To maintain the
structure of variables, this step vectorizes the variables in
different sets and aggregates them into a new matrix G,
and its column rank is given by

rank(® ((E) =min (K,L). (28)

In this way, the dimensions of variables and constraints is

decreased from N L to N min(K, L), which significantly

reduces the computational complexity when K < L.
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These operations correspond to steps 2~4 in Algorithm 2,
which perform as the basis of the frozen variable algorithm.
Then, (P1-a) is transformed into the following form

iRk, (6).

k=1

(P1-b) :

max

- (29)
G:(17),(26),(27)

Proposition 1: The optimal result of problem (Pl-a) is
equivalent to that of (P1-b).

Proof:  Suppose the summation of ZlEsupp(fk) Gn, 1S
limited by constant c,, 5, the SINR can be rewritten as

2
{zleafl,kh,ilhzﬁzlcmk max (ch,i%)}
< ’ l€supp(fy) T

Tk = K 0T
or/pp + Zz’:l,i;ﬁk{hgc ) Pf; }2

(30)

where the equality holds under the condition g,, ;+ = cp . With
1T = arg max;equpp(ty) Plhl(f,Zz,l’ and the other variables g,, ;4
are zeros. Considering the orthogonality among the columns
of F as

T . .
fif; =0, Vi#j, (3D

the sets supp (fy,) are disjoint with each other and the process
of maximizing R(G) is independent among different users.
Therefore, the steps of extracting and freezing variables will
not lose optimal feasible solutions, which proves the suffi-
ciency of Proposition 1. On the other hand, when the optimal
result of (P1-b) is obtained, the corresponding optimal solution
to (P1-a) can be reconstructed conversely due to the linearity
of transformation in Fig. 3. [ |

Briefly, the relationship between the optimal results of
(P1-a) and (P1-b) can be expressed by the following formula:

N F, P, H® ~%
Gp1ay == G (32)
F, P, H®

Proposition 2: The objective function in (P1-b) is concave
when 7, > 27 /e, and the concavity of the subproblem holds
asymptotically with the increase of SINR.

Proof: To investigate the concavity of overall SE with
respect to G, the concavity property of Ry (G) is studied
firstly and its general Hessian matrix expression is denoted by
HY = G (k) ] where each element represents

g (n1,m2,l1,12). NL.XNL’ p
the second-order derivative and can be expressed as
(k)

(n1,n2,l1,l2)

8 'yk I_)l1fll7khl(92,'211,l1/1n2

= T
na iz | 2m/e+ 0 Hvec(G)+h{”| P,

8 Pllfh,khl(f,zu,ll/an
~ T
OFns 1> [H,(f)vec(G) + h,(cl)} Pfy,

2 2
_ _-Pl1flhkhl(ﬁ:,gu,ll'Plzflz’kh](‘:}u’h (33)

T 2
{{H,(CQ)VGC(G)—Fh,(CI)} Pfk} In2
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where ~ denotes the symbol of asymptotic equal and the rela-
tionship in the second line holds due to the general condition
vk > 2w /e in VLC. Given the structure of the formula in (33),
the Hessian matrix of the k-th user is written as

—aaT
(k) _ aa i 7 (34)
(2) m]"
[Hk vee(G) + h{ } P, \ In2
where the introduced vector a € Rf Ex1 is given by
a=ak, (Pfidy)ve (hﬁ},h,(f;, . ,h,(f)L) . 35)

It is observed that the Hessian matrix is a rank-one matrix
and the inequality zTH(gk)z < 0 ensures for any vector
z € RNVEX1 When the condition 7 > 27/e holds, H(gk)
is negative semidefinite, and therefore R(G) is a concave
function. Considering G lies in the subspace projected by
G, R(G) is also concave under that condition, leading to the
fact that (P1-b) is asymptotically a convex problem with the
increase of SINR ~y. [ ]

In this way, the relaxed problem (P1-a) is equivalently trans-
formed into an asymptotical convex problem (P1-b), with the
numbers of variables and constraints reduced to min(1, K/L)
times of those in (Pl-a). Given the assumption K < L,
(P1-b) has far lower computational complexity than (P1-a)
to be solved in an instantaneous system. Typically, convex
problems can be optimized by directly solving Karush-Kuhn-
Tucker (KKT) equations [33]. The closed-form result can be
obtained in this algorithm, e.g., the water-filling algorithm and
algorithms in [33], providing low optimization complexity.
However, a strict requirement for the problem structure is
needed, which limits its popularity in problems with complex
structure and extensive inequality constraints. The gradient
descend algorithm can also be utilized to optimize (P1-b),
but its convergence time will be too long when the con-
dition number of the Hessian matrix is large [34]. This
section herein chooses the projected gradient descent (PGD)
algorithm, which is widely used in convex optimization to
accelerate convergence [35]. After obtaining the optimal result
of (P1-b), the solution to (P1-a) can be achieved according
to (32). This inverse transformation is linear and fast under
the given matrices F, P, and H,(f). Finally, in steps 7~11
of Algorithm 2, a greedy policy is adopted to recover the
discreteness of G and achieve the suboptimal result of (P1).

C. Minorization-Maximization Algorithm for (P2) and (P3)

1) Power Allocation Problem: When the IRS coefficient
matrix G and the user association matrix F are determined,
the original problem (P) can be reformulated as

K

P2): Ry, (P
(P2) P:(17§221L§{)7(19) ; L0

(36)

which is proved to be non-convex according to Appendix V
and is intractable to search for the optimal result. Generally,
a powerful tool to solve non-convex problems is the successive
convex approximation (SCA) method, which is realized by
optimizing a series of approximate convex problems [36].
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As one of the SCA methods, the MM algorithm has been
widely used in signal processing, communications and net-
working, and machine learning [37]. In this paper, we exploit
the MM algorithm to solve (P2), and more detailed discussions
are provided in the sequel.

In mathematics, the MM algorithm devotes to solving a
series of approximate convex problems iteratively, and its key
lies in the way of objective function approximation. For any
given point of the problem (P2), the MM algorithm requires
a lower bound function with as little gap as possible, i.e.,
a tangent function is the best. In the considered SE maximiza-
tion problem, this lower bound function has to be concave so
that convex optimization algorithms can be used. To this end,
we denote the SE function as ¥ (z) = 1/21og,(1 + ) with
= the individual SINR, and a function named R (z; x%) is
given by [38]

RO (a;07) = n (1) logy (2) + € (a1)

where 7 is a parameter, ) and £ are two functions with respect
to ] as

(37)

_r
2(1+x)’

(@) = 5logy (14 2) -

n(z) = (38)

T

Then, the following properties are fulfilled for R (z; 2}):

o It can be proved that the minimum value of T(V) (z) —
R (z; %) obtains at z = «7, and the following inequal-
ity ensures for any z € R:

T (2) > RO (2;27). (40)

¢ At the point of z7, two functions have the same value as

T (z7) = RW (a7;27). (41)

o The tangent slope of two functions can be obtained by
calculating the first derivatives as

2T (2) B ORW (x; aﬁ)'
oxr T Ox e

Consequently, the function T(Y)(x) is tightly lower bounded
by RO (z; %) with 27 the tangent point, and the SE function
Ri(P) = SW(wy,(P)) is bounded by the approximate
function RM (wv, (P); %), where 27 = wy(PY) denotes
the tangent point in the ¢-th loop. This approximate function is
renamed as f,gl)(P; P®) for simplicity. Unfortunately, it has
been proved to be non-convex in Appendix V, and therefore
the requirements of the MM algorithm is not met.

Nevertheless, making one more approximation is reasonable
here since the gap between the T (z) and KM (z; %) is
extremely negligible, even if far from the tangent point [38].
Specifically, we further rewrite f,gl) (P; P(t)) by expanding the
numerator and denominator in the logarithmic function, and
an approximation function is introduced as

(42)

R (z;23) =log, (z3) + (z/z3 — 1) /In2,  (43)

which is the first-order Taylor expansion of the function
T@) () = log,(z) with z3 the tangent point [39]. Then, the
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subtracted Logarithmic term in f,gl) (P; PM) can be substituted
by the Taylor expansion, leading to a much lower bound as

= 21 (27) log, <[H§€2)vec(G) + hfﬁl)}T Pfk>
+&(27) —n(27)
K

2
xR (ot +pp > (PR}
i=1,i%k

+n(2})logy (wpi) (44)

where the tangent point is denoted by z3 = o} +
0: E£17i¢k{h;1)TP(t)fi}2. According to the characteristics
of the first-order Taylor expansion, the local and global prop-
erties similarly to (40)-(42) also hold for f,iz)(P; P(t)), and a
partial order relation is ensured as

2 (pp0) < 0 (PPY) <Ry (). @)

Lemma 2: f,il) (P; P(t)> and f,E,Q) (P;P(t)) are non-
concave and concave functions, respectively.
Proof: The derivation is given in Appendix V. [ ]
By now, two lower bounds of the SE function Ry(P)
have been given, where the latter one is a concave function.
Considering requirements of the MM algorithm, the objective
in (P2) is replaced by f,iQ) (P;PM), and the transformed
subproblem can be expressed as

K

ZfIEQ) (P;P(t)) .

k=1

(P2-a) : (46)

max
P:(18),(19)
£3 (PPD) > R 1

Proposition 3: (P2-a) is a convex problem.

Proof: The constraint of the replaced QoS requirement is
convex due to Lemma 2, and the constraints in (18) and (19)
are linear. Moreover, the objective function is concave since
it is the summation of K concave functions, leading to the
convexity of the subproblem (P2-a). |

As illustrated in Algorithm 3, the problem (P2) is solved
by optimizing a series of approximate convex problems iter-
atively. Taking the ¢-th loop as an example, (P2) is replaced
by (P2-a) firstly, which is proved to be a convex problem in
Proposition 3. Therefore, the KKT conditions of (P2-a) will
always be satisfied unless the feasible space is an empty set.
Then, the PGD algorithm can be utilized in step 4 to solve
the convex problem (P2-a) [35], where the optimal result is
denoted by P®). Once the result P®) is obtained, the tangent
points xI(H_l) and x;(tH) and the related parameters can be
calculated. The iteration will continue until the convergence
condition [P+ — P®)||n < e, is met, where €, is a given
threshold.

2) User Association Problem: Given the IRS coefficient
matrix G and power allocation matrix P, the problem (P) is
transformed into user association problem, which is given by

K

R (F).
e e 2 )

(P3): (47)
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Algorithm 3 MM Algorithm to Solve (P2)

Input: Fixed parameters F, G, and ¢,, and CSI matrices HY
and H®?.
Output: suboptimal P.

1: Init: iteration rounds ¢ — 0, and 27, 5(2}?), (1),
x;(o) are initialized, respectively.
2: repeat
3 t—t+1, k1,
4:  Solve (P2-a) by the PGD algorithm and find the power
allocation matrix P(t);
repeat
x;(t) — wy (PD);
n(xi(t)) is calculated based on (38);
(") is calculated based on (39);
xg(t) — op + i ZiKzl,i#k{hgcl)TP(t)fi}Q;
10: k—k+1;
1:  until £ > K
12: until [PEFY — PO p < e,

© ® 3w

To start with, the constraint in (20) is relaxed as
0 < fir < 1, which can be regarded as the service proba-
bility of the k-th user provided by the [-th transmitter. Then,
according to the definition of the individual SINR in (14), the
objective function Ry (F) has a similar structure with Ry, (P),
which indicates that the relaxed form of (P3) is also a non-
convex problem. Therefore, the MM algorithm is appropriate
to solve (P3), and the detailed process has been elaborated
in the power allocation problem (P2). Notably, the result of
the MM algorithm is a continuous variable. To maintain the
correctness of the constraint (20), we can directly force the
largest element in each row to 1 while other elements are
zeros. Considering the similarity of (P2) and (P3), the proof
of related properties and the descriptions of the algorithm are
ignored here.

D. Discussions on Extremely Weak/Severe Interferences

Though the proposed MM algorithm can deal with non-
convex problems well, the process of optimizing a series
of subproblems still suffers from considerable computational
complexity. In this subsection, we re-examine the power
allocation problem and Algorithm 3, aiming to simplify the
optimization processes in the extremely weak/severe interfer-
ence regimes.

1) Extremely Weak Interference: Generally, weak interfer-
ence refers to cases such as extreme low emission power or the
user is exactly under the LED. For both situations the inter-
lamp interferences for an individual user is faint, and therefore
the denominator term of (14) is dominated mainly by the
AWGN noise. Specifically, R is asymptotically rewritten as

1 2 T 2
! log, <1 + U { [HPvee(G) + ("] pfk} )
k

2 T 2
WP (2) (1)
~ 5713 {[Hk vec(G) + h } Pfk,} :

R =

(48)
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where the approximation ensures by setting the tangent point
of (43) to 1. Based on (31), the SE functions R;L) are
independent to each other, and these K objective functions
are related by power constraints in (18) and (19). Moreover,
the problem aims to maximize a convex function (48) in a
convex feasible space, which demonstrates that the optimal
point must be at the boundary of the feasible space, resulting
in the maximum of R,(CL) as

2
L L wp 1)

R N R

k lesupp(fy),

1A
+max( S P (supp(E)| — 1) mm,Pmm>
lEsupp(fy,)

2

X (h( )(k)gl(k) +hkl(k)) } ) (4’9)

where l;k) denotes the index of LED with the largest power,
and is given by

l]Ek) = arg max (hgfl)Tgl + h,(:l)) . (50)

lesupp(fy)
Then, the power allocation problem under weak interference
assumption can be expressed as

(P2-b) : (51)

max
P:(18),P;> Pin

Z Rfrfw)x k ’
where the maximum illumination requirement P; < P .« 18
assumed satisfied in advance. Though (P2-b) is a non-convex
problem, the facts that the feasible space is a polyhedron and
the objective is convex simplify the problem dramatically, i.e.,
we can check and compare the function values at corners of
the polyhedron. By replacing each variable P, with §5; = P, —
Prin, the above problem is transformed equivalently as

Z R I(nLeL)x k‘

The corner of (P2-c) has a general form of 3, = P —
LP,;, for a specific [ while other variables are zeros.
Conversely, the global optimal result of (P2-b) is

max
B: i1 =0,

>L | 81 <Pow—LPuin

(P2-¢) : (52)

<k> =
Potal — (L — 1) Ppin for one user, and other emission power
are all P,i,. The number of comparisons equals the number
of corners of the polyhedron, i.e., the complexity is O(L).

2) Extremely Severe Interference: The severe interference
corresponds to the cases such as high emission power or the
user is located at the overlapping area of multiple LEDs.
In these circumstances, the noise power is negligible to the
inter-lamp interferences, and consequently the interference
term dominates the denominator of (14). More specifically,
the individual SINR of the k-th user can be expressed as

T 2
{ Hvee(G) + b | Pfk}

2
K HT
Ei:l,i;ék {hl(c ) Pfi}

W (P) ~ (53)
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Notably, it can be observed that the power allocation policy
among transmitters is important, while the absolute emission
power will not affect the achievable SE at all, i.e., vy (P) =
vk (aP) with any real and positive number a. This is because
the growth of emission power will increase the MUIs and the
power of effect signals simultaneously in the severe interfer-
ence regimes. Particularly, allocating all emission power with
Poin will lead to the same overall SE as the case of P ay,
namely vi (Pmin) = Y& (Pmax), wWhere P, and P,y are
the results of identical matrices multiplied by P, and Ppax,
respectively.

E. Computational Complexity Analysis

This section discusses the computational complexity of the
proposed algorithms. The analysis is performed firstly on the
frozen variable algorithm and the MM algorithm, and then
the complexity of the overall algorithm is provided. To be
clear, an operation corresponds to one time of iteration, and
the content of each algorithm is split into segments.

1) The Frozen Variable Algorithm for (P1): The discussion
on the complexity of Algorithm 2 includes the following
aspects:

o Extract and freeze variables: Step 2 generates K
support sets according to the columns of F, lead-
ing to O(KL) operations. Then, steps 3~4 compare
the elements in the indication matrix, which require
O (KN max (L — K,0)) comparisons;

o Solve (P1-b) by the PGD algorithm: According to [35],
the number of iterations for PGD algorithm to converge
is O (1/e€), where € is a given error threshold;

o Discreteness recovery: Steps 7~11 require the operations
of O(NL).

2) The MM Algorithm for (P2) and (P3): The analysis on

the complexity of Algorithm 3 is provided as follows:

¢ Solve (P2-a) by the PGD algorithm: When the condition
2K > L ensures, the Hessian matrix Hp is full-rank and
the objective function is m°-strongly concave according
to (67). Then, the number of iterations to be converged
is O (log(1/€)) with e the error threshold. Neverthe-
less, we have rank (Hp) < rank (P) when 2K < L,
leading to O (1/e) iterations for the PGD algorithm to
converge [35];

o Parameters update: The parameters of f,gQ) (P; P(t)) are

updated in steps 5~11, including 2", (2", £(27™"),
x;(t), which require 4K operations;

o Function approximation: Assume the number of function
approximations is 7', at least O (T'log(1/¢)) iterations are
needed for the PGD algorithm to converge and O (4T K)
operations are desired to update the parameters. As for
(P3), K L more operations are needed to force the relaxed
result to be discrete.s

3) Overall Algorithm for (P): Algorithm 1 is composed

of three main steps, namely the frozen variable algorithm for
(P1) and the MM algorithm for (P2) and (P3). As for the
former algorithm, though the objective function is not a strong
concave function, the variable freeze process reduces the num-
bers of elements and constraints from LN to Nmin(K, L).
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TABLE 11
SIMULATION PARAMETERS

Parameter Value
The Lambertian index, m 1
The optical filter gain, g 1
The FoV of the concentrator, ® 70°
The PD area, A 1 cm?

The internal refractive index, ¢ 1.5

PD responsivity, px 0.5 A/W
The area of the IRS unit, D 10 cm x 10 cm
L, K, N 4, 4,128
The power of Gaussian noise, o2 107 %W
The reflection factor, § 0.9
Minimum QoS requirments, Ryin k 0.02 bps/Hz
Prin, Poax> Potal 3W,7W,20W

Moreover, the PGD algorithm takes only once in (P1). On the
other hand, a series of convex approximation problems are
optimized in the MM algorithm. However, the strong concavity
of the objective function provides a faster convergence rate
when 2K > [, and therefore the computational complexity
has been balanced between step 3 and steps 4~5 of the overall
algorithm.

IV. NUMERICAL RESULTS

The performance of the IRS-aided indoor multi-user VLC
system is evaluated in this section. Without loss of generality,
the room size is 8 m X 8 m x 3 m, and four LEDs are evenly
distributed on the roof with the locations at (2 m, 2 m, 3 m),
2m, 6 m,3m), (6 m 2m,3 m), and (6 m, 6 m, 3 m).
All PDs are randomly distributed on the plane 1 m above the
ground, which is divided into 100 x 100 equidistant meshes.
Then, an IRS is deployed on one wall of the room, and all
units are evenly scattered within the rectangle area with (0 m,
1 m, 1.5 m) and (O m, 7 m, 2.5 m) as corners. More detailed
parameters are shown in Table II, and they will not be changed
in the sequel without special instructions. In general, various
numerical simulations are carried out to show the effectiveness
of IRS-aided VLC, including the comparisons among the
proposed algorithms and other baselines, the influence of
several important parameters, and also the geometric factors
such as the room size and the locations of IRS.

A. Simulations on the Proposed Algorithms

In this subsection, the proposed Algorithm 2 and
Algorithm 3 that focus on the IRS configuration subproblem
and the power allocation subproblem are examined separately
by comparing with other baselines. To start with, the compar-
isons among different IRS configuration schemes are shown
in Fig. 4, where the irrelevant variables P and F of all
baselines are optimized in the same way as Algorithm 1. It is
supposed that the NLoS channel of each user is blocked by
a homogeneous media with a probability of 50%, which is
modeled by a multiplicative factor of 0.3. For comparison,
the result under the relaxed constraint (26) and the one
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Fig. 5. Power allocation: the overall SE versus the Gaussian noise power
with different power allocation policies.

without IRS are chosen as the upper bound and lower bound,
respectively. Then, the distance greedy policy that allocates
each unit to the nearest transmitter and the random allocation
policy on G are also baselines. As shown in the results, the
SE of each policy converges to a value with the growth of the
average signal-to-noise ratio (SNR), and the proposed frozen
variable algorithm achieves more SE than other baselines,
e.g., more than 1 bps/Hz gain to the lower bound in the
high SNR regimes. Therefore, IRS can increase the overall
SE to mitigate the effects of occlusion in VLC, and the
proposed configuration algorithm achieves more gain than
other baselines.

On the other hand, Fig. 5 verifies the effectiveness of
the proposed power allocation policy on optimizing P, and
every scheme adopts the same policy in Algorithm 1 to
obtain the unconcerned variables G and F. To this end, the
exhaustive search method and no IRS result are considered
as upper and lower bounds, respectively. More specifically,
the interval of emission power P; € (Ppin, Pmax) is divided
into 100 equal slices in the former case, and then all possible
power allocation combinations of four LEDs are checked to
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obtain the optimal result. Another two fixed power baselines
include the maximum power allocation and the minimum
power allocation schemes, which assign Po/L and Py as
the emission power, respectively. Though (P2) is not a convex
problem, it is observed that the SE gap between the proposed
power allocation policy and the upper bound is limited, which
can attribute to the fact that the MM algorithm avoids falling
into the local optimal point. Secondly, the SE gain between the
no IRS scheme and the proposed algorithm exceeds 1.5 bps/Hz
when the noise power is 1079, and even 0.7 bps/Hz can be
achieved for the minimum power allocation scheme. Finally,
the numerical results also show that two fixed power schemes
almost share the same SE performance in weak interference
conditions, which is consistent with the theoretical analysis
in Section III-D.

B. Simulations on Important Parameters

Next, we investigate the influence of some important para-
meters on the SE performance, where the optimizations of
G, P, and F are executed by Algorithm 1. Notably, the
NLoS channel gain in this paper is based on the point source
assumption, which requires a sufficiently large area for each
IRS unit. Considering the predefined area for IRS is 6 m x 1 m
and the unit area is 10 cm x 10 cm, the unit spacing is about
2.5 cm if the number of units is 300. As shown in Fig. 6,
the overall SE increases almost linearly versus the number
of IRS units when N < 300. Moreover, once N increases
larger than 300, the point source assumption is violated and
the formula (5) is no longer right, which is beyond the scope
of this paper.

Then, the effect of reflection factor § is shown in Fig. 7.
Specifically, the number of IRS units changes from 4 to 256,
and the no IRS result performs as the lower bound. It is
observed that the overall SE increases versus the reflection
factor in a linear form, where the slope depends heavily on
the number of IRS units. For example, it needs § = 0.7 for
the N = 64 situation to achieve 4.6 bps/Hz while the only
6 = 0.2 is needed for the N = 256 situation. Therefore, the
number of IRS units and the reflection factor are two types
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Fig. 8. A two-dimensional geometrical diagram of IRS deployment.

of resources that need to be balanced, which provides a guide
for applications of VLC IRS.

C. Simulations on Geometric Factors of IRS

Considering that the indoor VLC channel gain highly
depends on the geometric factors of transceivers and reflectors,
this subsection validates these influences from three different
aspects, including the minimum area of PD, the deployment
height of IRS unit, and the size of room. To start with,
a two-dimensional diagram is provided in Fig. 8 with the
height of the IRS unit as z, and the size of the transmitter
is 10 cm. Without loss of generality, suppose parameters is b
=15m,c =25mand d = 1 m, the stretching factor of
triangle ABC and triangle ADE is 2/5. In this circumstance,
the minimum area is 4 cm x 4 cm, which enables the light
emitted from the imaging LED entirely propagates through the
unit.

Secondly, the influence of IRS height on the NLoS channel
gain is of great significance to be investigated. Based on the
Lambertian model, the received optical energy equals 0 when
the incidence angle is larger than the FoV [28], resulting in
the threshold height as

Tmin

d2 + 22

min

= cos P, (54)
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Fig. 9. NLoS channel gain versus the height of IRS unit with different
Lambertian index.
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Fig. 10. SINR performance when the room size is 8 m X 8 m X 3 m, and
an IRS is deployed on one wall.

which can be calculated as i, = d/tan®. On the other
hand, the channel gain h,(jzl’l = 0 when z,.« = c¢, since
the cosine of the irradiance angle is 0. Within the interval of
(Zmin, Tmax), the gain h,(jzl’l is real-valued and nonnegative,
and therefore there has an optimal x* to maximize h,(f’;’l
according to the continuity of (5). Nevertheless, it is intractable
to search for the closed-form expression of z*, and numerical
results are provided in Fig. 9 to show the NLoS channel gain
versus the IRS height x. Specifically, it can be observed that
h,(fil ; is larger when z is in the middle of the room height. The
results also indicate that x* decreases when the Lambertian
index grows from 1 to 5, which is reasonable since the half-
intensity radiation angle gets smaller.

To explore the effect of room size, the SINR perfor-
mance versus locations of a single user, which is simultane-
ously served by four transmitters, is evaluated. Specifically,
Fig. 10 denotes the individual SINR with the room size of
8 m x 8§ m x 3 m, and Fig. 11 represents the result
when the room size is 12 m x 12 m x 3 m while other
conditions remain unchanged. In the latter case, the locations
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Fig. 11. SINR performance when the room size is 12 m X 12 m X 3 m,
and an IRS is deployed on one wall.

of LEDs are at 3 m, 3 m, 3 m), 3 m, 9 m, 3 m),
(9m, 3m, 3 m), and (9 m, 9 m, 3 m), and IRS units are evenly
in the rectangle with (0 m, 1 m, 1.5 m) and (O m, 11 m, 2.5 m)
as corners. As shown in the results, the locations that are close
to four LEDs have a higher SINR than other places, and the
SINR decreases globally with the increase of the room size.
Then, the place close to the wall with IRS achieves higher
SINR performance compared to other room edges, and such
an improvement is negligible when the user is far away from
the IRS. To sum up, the numerical results here reveal that the
influence of IRS on VLC systems weakens in large rooms, and
therefore, IRS-aided VLC is more suitable to enhance short
range communications.

V. CONCLUSION

In this paper, both LoS and NLoS channel gains in IRS-
aided VLC systems are discussed under the point source
assumption, and the overall SE maximization process is for-
mulated into a combinatorial optimization problem. Then,
an alternating optimization algorithm is proposed to iteratively
optimize the resource management, where the frozen variable
algorithm deals with the IRS configuration, and the MM
algorithm is utilized for user association and power allocation.
Though the global optimal point is intractable to obtain for
such an NP-hard problem, the proposed algorithm offers a
complexity acceptable way to search for a suboptimal result,
and the computational complexity is even less when the
condition K < L holds. Numerical results demonstrate that the
proposed power allocation and IRS configuration policies per-
form superior to other baselines, and the overall SE increases
almost linear to the numbers of IRS units and reflection factor.
Furthermore, high path loss of the optical channel gain limits
the affected area of VLC IRS, which requires multiple IRSs
to facilitate communications in reality. Benefiting from the
reconfigurability and passivity, IRS can dramatically improve
the SE performance of VLC and ease the blockage problems in
optical wireless communications, and therefore the technology
of IRS-aided VLC shows great potential in enhancing future
wireless communication capabilities.
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APPENDIX A
NON-CONCAVITY OF SE WITH RESPECT TO P AND F

To justify the non-concavity of SE function with respect
to the power allocation matrix P, a two-dimensional case is
considered and the expressions of individual SINR can be
expressed as

2,2 2,2
aip1 b3p3
MN=—""3535 2= 5 3535 (55)
of +a3p3 o5 +bipi

where a1, as, b1, ba, 01 and o, are the given parameters and
p1, p2 are the emission power on two LEDs. Then, the overall
SE can be formulated by R = [logy(1 + wy1) + logy(1 +
wy2)]/2 based on (15), and two functions f;(z) and fa(x)
are defined for the sake of convenience as

fi(z) =log, (1+27), fo(z;a) = log, (1 + m) ;

(56)

where @ € R, is a parameter, and the second derivatives are
given by

82f1($) - 2 1-— 1‘2
x> In2(1+a2)? (57)
?fa(x) 2 3zt + (1 + 2a2)2? — a?(a® + 1) (58)
0r2 2 (22 +a?)2(22+a2+1)2

Particularly, when p- is fixed as a constant, the overall SE
can be rewritten as
wa?
CET:

1
R(p1| p2) = 3 {fl <p1
b2
+f2 (pl Wép%) }7 (59)

where a = 02/\/wbip3. Afterwards, its second derivative is
calculated as

8QR(p1| p2) _ wa% anl(x)
op? 2(0% + a3p}) 0Ox?

b2 02 fa(x)
b2 -
I:pl\/wb%p%

Ox?

When the parameters are given by a3 = as = by = by =
o1 = oo = 1, two cases with P, = 6, P, = 3 and P, = 5,
P, = 2 lead to positive and negative second derivatives,
respectively, which indicates that the function R(p;|p2) has
uncertain concave-convex property. Therefore, the overall SE
function is a noncancave function with respect to variable P
since its projection function on p; is nonconcave.

As for the concave/convex properties of R(F) under the
relaxed constraint 0 < f;, < 1, we also consider a special
case with L = K = 2. By setting fi1 2 = 0 and fixing fo 1
and fs o as constants, the expressions of SINR ~1(f1,1) and
v2(f1,1) are structurally the same as (55), resulting in the non-
concavity of R(F) according to the derivation in the previous
discussions.

2wb§p§
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APPENDIX B
PROOF ON THE CONCAVITY OF TWO
APPROXIMATE FUNCTIONS

1) The Function f,gl)(P;P(t))
Consider the downlink communications of an IRS-aided
VLC system, where two users are served by two LEDs and an

IRS is deployed on the wall. To optimize the power allocation
behavior, an approximate function is given by

WP PO = 29 (27) log, (p1) — 1 (27) logy (o7 + adp3)

+1(27) logy (waf) + & (z1), (61)
where the Hessian matrix can be calculated as
e 0
PrUeP)| o) | #t
OP,OP; In 2 a3(of — aps)
0 2 2212
(07 +a3p3)

(62)

which is an indefinite matrix depending on the relation
between o7 and a3p». Therefore, since the concavity is no
longer maintained for the projection function, fl(l)(P; P(t)) is

not a concave function neither.

2) The Function f,gQ)(P;P(t))

In general, the function f(Q)( :P®) is formulated based
on (44). We define HY =

and each element P((lkl)_ Is) is the second partial derivative as

)7 W) (HDTe D
*® (hk,ll +hkll)< ko 8lo klz) Jio i fin ke

(i) = ) 01T 2
In?2 { {H;c )vec(G) + h;c )} Pfk} / (20 (z7))

[P((lk)l )]LxL is the Hessian matrix,

2p n(z;
e 1 Z fllﬂflzy 1, 11 ill)z (63)
x5In2
i=1,i#k
Then, the Hessian matrix can be further rewritten as
g - —(@n(zf)/In 2) bb”
i 2) 1" ’
{Hk vec(G) + h,, ] Pf;,
2Pk77 ) o7
64
x5 In2 iz;;ékc’ i (69
where b € Ri“ and ¢ € Ri“ are vectors as
b— [H,(f)vec(G)} ofi +h oy, e;=h of. (65)

According to (64), the following inequality ensures for any
x € RZ*! that

x"HYx <0, (66)

which indicates Hgf )

is a negative semidefinite matrix, and
consequently, (2 )(P' P(t)) is a concave function. Moreover,
the Hessian matrlx of Zk 1 f(z)(P; P®)) can be formulated
= Zk:l

as Hp = gf ) , which is also negative semidefinite.
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Based on (64) and (65), the independent com onents of Hp
include two forms of vectors: h( Vo, and [H vec(G)] Of,
Vk € K. Therefore, matrix H;D) is full-rank when the con-
dition 2K > L holds, which demonstrates that the objective
function in (P2-a) is a strong concave function with the
order as

o

m- = _Amax; (67)

where A\ ax 1S the largest eigenvalue of Hp.
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