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Abstract— Though visible light communication (VLC) is a
significant supplement to current communication technologies,
disadvantages such as the sensitivity to obstacles limit its devel-
opment and commercialization. As a revolutionizing technology,
intelligent reflecting surface (IRS) offers an ability to reconfigure
the wireless environment dynamically and passively, which is
considered beneficial to improve the performance of VLC. This
paper devotes to investigating the effect of VLC IRS and
putting forward a joint resource management method for an
instantaneous IRS-aided VLC system. To this end, the line-of-
sight (LoS) and non-LoS channel gains are first discussed under
the point source assumption, after which the system model is
established and the optimization problem is formulated. Then,
the frozen variable algorithm and minorization-maximization
algorithm are proposed to iteratively maximize the overall spec-
tral efficiency (SE), and detailed discussions on the weak/severe
interference cases and computational complexity analysis are
carried out. Moreover, numerical results are provided to show the
improvement of SE and the effects of the proposed algorithms,
which offers beneficial insights on joint resource management of
IRS-aided VLC.

Index Terms— Visible light communication (VLC), intelligent
reflecting surface (IRS), spectral efficiency maximization, joint
resource management, frozen variable algorithm, minorization-
maximization algorithm.

I. INTRODUCTION

RECENTLY, the academic research and commercial

deployment of the fifth-generation (5G) and beyond

communications are in full swing, including sub-6G and
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millimeter-wave communication technologies. Nevertheless,

the traffic volume of the wireless networks will grow up by

thousands-fold in the foreseeable future, which imposes a lot

for the crowded and fragmented frequency resources in the

radio frequency (RF) range [1]. To meet the requirements

of forthcoming wireless communications, visible light com-

munication (VLC) shows unique advantages, including the

broad bandwidth, high physical layer security, no interfer-

ences with RF communications, and the ubiquity of light-

emitting diodes (LEDs) [2]. Abundant foundational research

has been investigated around the channel gain derivation [3]

and channel capacity analysis [4]–[6], and also VLC multiple-

input and multiple-output techniques [7] and dimming con-

trol approaches [8] are two important branches of VLC.

In the meantime, the progress of VLC industrialization has

attracted much attention, and a growing number of inter-

national organizations have been established to promote its

commercialization, including Visible Light Communication

Consortium (VLCC) from Japan, OMEGA-the Home Gigabit

Access Project from the European Union, and WPAN Visual

Light Communication Interest Group (IGvlc) from the society

of IEEE [1], [2]. Even so, the VLC technology still remains

extensive pending problems, among which the propagation

distance is limited due to the unique properties of the visible

light. Moreover, it is generally believed that VLC cannot

penetrate obstacles due to the high penetration loss [9], and the

illumination requirements pose a challenge to the practicality

of VLC.

Intelligent reflecting surface (IRS) is an emerging tech-

nology that exploits the non-line-of-sight (NLoS) paths to

enhance the capability of wireless communication systems.

The principle of IRS lies in the manipulations of induction

current patterns after the electromagnetic wave impinges the

surface, which is a two-dimensional planar periodically made

of artificial atoms. Related studies in the RF range include the

joint passive and active beamforming design [10], the deep

reinforcement learning-based IRS [11], channel estimation for

IRS [12], etc. However, due to the nonnegative and real-

valued amplitude and other differences, these technologies

cannot be directly extended into VLC, and the research on

IRS-aided VLC is just beginning. In the mainstream, there

are two feasible hardware architectures of IRS in the visible

light range, namely the mirror array-based IRS [13], [14] and

the metasurface-based IRS [15]. The former implementation

is based on geometric optics like Snell’s law of reflection, and
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each unit can rotate around two independent and orthogonal

axes similar to micro-electro-mechanical systems [13], [14].

Then, the second hardware exploits dielectric structures or sub-

wavelength metallic to abnormally manipulate the propagation

behavior, and the structures in the near-infrared range (NIR)

and visible light range are developed in [16], [17], respectively.

On the other hand, follow-up works focus on the channel gain

analyses of the NLoS links reflected by IRS [13]–[15], and in

particular, an upper bound of the irradiance intensity level is

given in [15] under the point source condition, which follows

an “additive” model due to the near field assumption [18].

Also, the reflection behavior is investigated in the free space

optical system, and it reveals that the outage probability can

be reduced by IRS [19], [20]. Based on the above foundation

studies, the authors in [21] categorize the advantages of IRS-

aided VLC into three main aspects, namely the signal coverage

expansion, the illumination requirement relaxation, and the

signal power enhancement. Then, the IRS configuration policy

is optimized for the sum rate maximization, and numerical

results indicate that IRS can address blockage problems to

an extent [22], [23]. Moreover, the research shows that the

physical layer security of VLC systems can also be improved

by IRS [24].

Under the point source assumption, this paper endeavors to

jointly optimize the IRS configuration, the power allocation,

and the user association behavior in an individual time slot

of the time division multiple access (TDMA) VLC system.

To this end, the channel models of the line-of-sight (LoS)

link and NLoS link are elaborated, and the instantaneous

signal expression is derived as the objective of the spectral

efficiency (SE) maximization problem. Specifically, the con-

tributions of the paper are summarized as follows:
• One highlight is defining a binary IRS coefficient matrix,

by which the configuration process is abstract into a

binary programming problem and complicated triangular

transformations and geometric operations are avoided.

After this matrix is optimized, the physics coefficients

of each unit can be obtained by reverse lookup tables,

which are generated in advance by mapping the angles of

reflected light to unit coefficients. This method is feasible

since the indoor VLC channel gain sensitively depends

on the geometric locations of transceivers and IRS units,

which are assumed known to the system controller.

• This paper proposes an alternating optimization algorithm

to maximize the overall SE of the IRS-aided multi-user

VLC system. Particularly, the variable frozen algorithm

is proposed to solve the IRS configuration subproblem

in reduced complexity, and the numbers of variables and

constraints decrease in the scale of min(1, K/L), where

K and L denote the numbers of users and transmitters,

respectively. Moreover, the minorization-maximization

(MM) algorithm is utilized to solve the power allocation

subproblem and user association subproblem, which are

non-convex problems and conventional convex optimiza-

tion tools cannot be used directly.

• Theoretical analyses on extremely weak/severe inter-

ferences cases and the computational complexity of

the proposed algorithms are carried out in the paper.

TABLE I

SYMBOL NOTATIONS

Then, extensive numerical results are executed to verify

the SE improvement of the proposed algorithms over

other baselines, and it is also observed that the SE

gain from IRS is almost linear to the number of IRS

units and the reflection factor. Moreover, considering IRS

configuration depends highly on geometric factors, the

analysis of the locations and IRS size is provided detailly.

The remainder of the paper is organized as follows: in

Section II, the channel gain and signal model are discussed

elaborately. Then, the optimization problem is formulated in

Section III, and an alternating optimization algorithm is pro-

posed by dividing the original problem into three subproblems

and solving them iteratively. Afterwards, detailed numerical

simulations are carried out in Section IV. Finally, Section V

concludes the whole paper.

Notations: normal letters a (or A), boldface letters a,

boldface uppercase letters A represent the scaler values,

vectors, and matrices, respectively. Particularly, IN denotes

an N × N identity matrix, and diag(a) is a diagonal matrix

with the elements of a on the main diagonal. Then, rank(·),
rank(c)(·), vec(·), k·kF , are the symbols of rank, column rank,

vectorization operator, Frobenius norm, respectively. Given

defined variables, ⊕, �, | · |, (·)T , ∂, denote the direct sum

operator, Hadamard product, absolute value, transpose, and

partial operator, respectively. Moreover, R+ is defined as the

real and positive number set, and calligraphic letter A denotes

the other defined set. The operator supp(a) represents the

support set of the vector a, and A{·} is a submatrix composed

of columns with indices from the inside set.

II. SYSTEM MODEL OF THE IRS-AIDED VLC

Considering the downlink side of an IRS-aided TDMA VLC

system, where K users are served by L LEDs and an IRS

with N units is equipped to enhance the communications.

It is assumed that each LED serves a single user in one

time slot, and multi-user interferences (MUI) will be caused

among different lamps. Without loss of generality, the user

locations and VLC channel state information (CSI) are known
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Fig. 1. Channel gain of the NLoS path.

at the system controller, which can be accomplished by VLC

positioning technologies [25] and various channel estimation

methods [26], respectively.

A. Channel Gain of LoS Paths

Suppose the k-th user is served by the l-th LED, its LoS

direct gain in VLC generally follows the Lambertian model,

which in mathematics is given by [3], [27]

h
(1)
k,l =

(m + 1)A

2πd2
k,l

cosm(θ)gof cos(φ)f(φ), (1)

where m = −1/ log2(cos(Θ1/2)) is the Lambertian index

with Θ1/2 the semi-angle at half illuminance of the LED,

A is the physical area of the photodetector (PD), dk,l is

the distance between the transceivers, and θ and φ are the

angles of irradiance and incidence, respectively. Then, gof is

the optical filter gain, and the optical concentrator gain f(φ)
with respect to field-of-view (FoV) Φ is given in [28]. For

simplicity, a generated matrix H(1) = [h
(1)
1 , h

(1)
2 , . . . , h

(1)
K ]T is

defined to represent the LoS channel gain, where each column

h
(1)
k = [h

(1)
k,1, h

(1)
k,2, . . . , h

(1)
k,L]T denotes the direct gain vector

between LEDs and the k-th user.

B. Channel Gain of NLoS Paths

In general, NLoS paths in wireless communications include

reflection paths, diffraction paths, scattering paths, and pene-

tration paths. Considering the extremely high penetration loss

of visible light, the penetration paths are commonly ignored in

VLC [9]. Then, the diffraction path is also negligible due to the

nanoscale of wavelength. According to the surface properties

of the reflector, the light reflection can be categorized into

two types: diffusely reflected link and specularly reflected link.

The channel gain of these two paths will be investigated and

compared in the sequel of this subsection.

1) Diffuse Reflection Path: When the surface is made of an

inhomogenous medium, the incident light will be reflected and

spread in all directions, which is known as diffuse reflection.

As shown in Fig. 1(a), the energy of the reflected light is

scattered on the surface of the reflector, and only the part

that in a specific direction can be received by the target PD.

Based on [29], the channel gain of the first reflected link by

the unit area of the reflector can be expressed as

h
(Diffuse)
k,n,l =

τ(m + 1)A

2πd2
n,ld

2
k,n

cosm(θ) cos(α1) cos(α2)

× gof cos(φ)f(φ), (2)

where τ is the reflection factor of the diffuse reflector, dn,l

is the distance between the l-th LED and the n-th IRS unit,

and dk,n is the distance between the n-th IRS unit and the

k-th user. Then, α1 and α2 are the angles of irradiance and

incidence based on the reflection plane, respectively. Notably,

Eq. (2) follows a “multiplicative” model, which is structurally

identical to the far field channel gain in RF IRS systems [30].

2) Specular Reflection Path: Specular reflection refers to the

situation that the energy loss mainly occurs in the medium

absorption, and the reflected light will travel in a unique

direction. The surface of the reflector in Fig. 1(b) should be

homogenous, including the planar mirror or the medium with

compact periodic microstructure. Geometrically, the angle of

irradiance equals the angle of incidence, which is also known

as Snell’s law of reflection [13]–[15]. An upper bound of

the irradiance level is derived in [15] under the point source

condition as

E
(Specular)
k,n,l =

δ(m + 1)p cosm(θ)

2π(dn,l + dk,n)2
cos(φ), (3)

where δ and p are the reflection factor and the emission

power, respectively. Eq. (3) demonstrates that the specular

reflection path can equivalently be regarded as an extended

path, consisting of the LED-to-IRS link and IRS-to-PD link.

On the other hand, considering the nanoscale wavelength

in VLC, the signal propagation distance is smaller than the

threshold as

L0 =
2D2

λ
, (4)

where D and λ represent the largest IRS dimension and the

wavelength, respectively [18]. Then, the near field assumption

is ensured in IRS-aided VLC, and therefore the path loss

follows an “additive” model as derived in (3).

To be clear, both diffuse and specular reflection paths

coexist in VLC. Nevertheless, the fact has been justified that

the path loss by the second diffuse reflections is nearly 25 dB

larger than that of LoS path, and even the gain of the one-hop

diffuse reflection path is 15 dB lower than the LoS one

[9], [28]. As a result, the specular reflection is generally

considered as the significant NLoS component in IRS-aided

VLC, while diffuse reflection is ignored [13], [15], [19], [24].

Based on (3), the NLoS channel gain can be rewritten as

h
(2)
k,n,l = δ

(m + 1)A

2π(dn,l + dk,n)2
cosm(θ)gof cos(φ)f(φ). (5)

Moreover, a matrix H(2) is defined to denote the

NLoS channel gain for simplicity. This matrix is three-

dimensional and consists of slices as H
(2)
k = diag(h

(2)T
k,1 ,

h
(2)T
k,2 , . . . , h

(2)T
k,L ) ∈ R

L×NL
+ , where each column h

(2)
k,l =

[h
(2)
k,1,l, h

(2)
k,2,l, . . . , h

(2)
k,N,l]

T denotes the NLoS direct gain vec-

tor between the l-th LED and the k-th user.
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C. Instantaneous Received Signal of IRS-Aided VLC

This subsection devotes to calculating the instantaneous

received signal in one time slot. To this end, a user association

matrix F and a power allocation matrix P are defined to

describe the behavior of transmitters, and then a discrete

matrix G is introduced to denote the IRS configuration

process. These three matrices are variables to be jointly

optimized later, and their descriptions are given in detail as

follows.

1) User Association: In a time slot of the TDMA system,

let L transmitters carry information symbols of K users,

which are denoted by the vector y = [y1, y2, . . . , yK ]T . Then,

suppose the emission signal on LEDs is defined as x =
[x1, x2, . . . , xL]T , a description of the association behavior

between the transceivers is given by

x = Fy, (6)

where F = [f1, f2, . . . , fK ] is a binary matrix with each column

fk ∈ R
L×1
+ indicating the projections of the information

symbol yk on all transmitters. More specifically, fl,k = 1 and

0 represent that the k-th user does or does not accept the

l-th LED’s service, respectively.

2) Emission Power: As a wireless communication technol-

ogy that takes into account both communication and illumina-

tion functions, both peak and total power constraints cannot

be ignored in VLC, and it has been demonstrated that VLC

performance gain can be achieved by properly allocating the

emission power among different transmitters [28]. In this

paper, a diagonal power matrix P = diag (P1, P2, . . . PL) is

defined to indicate the emission power on LEDs, and therefore

the transmit signal can be expressed as ex = Px. Based on (6),

the LoS received signal of the k-th user is formulated as

ŷ
(1)
k = ρkh

(1)T
k ex = ρkh

(1)T
k Pfkyk + ρk

KX

i=1,i6=k

h
(1)T
k Pfiyi,

(7)

where the two components denote the useful signal and the

MUIs, respectively.

3) IRS Configuration: Thirdly, an IRS coefficient matrix

G is defined to indicate the relationship between IRS units

and transmitters. Specifically, G = [g1, g2, . . . , gL] is a binary

matrix with column gl ∈ R
N×1
+ representing the indices of

the assigned units for the l-th transmitter, i.e., gn,l = 1 means

the n-th IRS unit belongs to the l-th LED. Considering the

channel model in indoor VLC is determined mainly by the

locations of the transceivers, any movement of the trans-

mitter/receiver/reflector may significantly change the channel

gain, resulting in the high spatial resolution of the VLC

channel. As shown in Fig. 1(b), the specular reflection path can

be considered as an extended path emitted from the imaging

LED. When an IRS unit is configured well so that the PD

can receive the light from LED 1, the reflection path of the

LED 2 points at a completely different direction according

to Snell’s law of reflection. The probability that any other

PD happens exactly to be here is (a.s.) 0 in mathematics,

which demonstrates that the interferences caused by specular

Fig. 2. IRS-aided VLC system model that denotes the process of joint
resource management.

reflection paths are negligible. Therefore, a single IRS unit

cannot serve more than one PDs simultaneously, and the NLoS

received signal of the k-th user can be expressed as

ŷ
(2)
k,l = ρk

NX

n=1

h
(2)
k,n,lgn,lPlxlfl,k = ρkh

(2)T
k,l glPlxlfl,k. (8)

Then the overall NLoS signal ŷ
(2)
k =

PL
l=1 ŷ

(2)
k,l is given by

ŷ
(2)
k = ρk

h
h

(2)T
k,1 g1P1x1, . . . , h

(2)T
k,L gLPLxL

i
fk

= ρk

h
h

(2)T
k,1 g1, . . . , h

(2)T
k,L gL

i
Pdiag(x)fk

= ρk

h
H

(2)
k vec(G)

iT
Pdiag(Fy)fk. (9)

Notably, the equation diag (Fy) fk = ykfk holds due to the

orthogonality among fk, and the above formula can be further

rewritten by replacing the last two multiplicators as

ŷ
(2)
k = ρk

h
H

(2)
k vec(G)

iT
Pfkyk. (10)

To sum up, the received signal of the k-th user is comprised

of the LoS component ŷ
(1)
k , the NLoS component ŷ

(2)
k , and the

noise wk at the receiver modeled by additive Gaussian white

noise (AWGN) [28]. The overall received signal ŷk can be

expressed as

ŷk = ŷ
(1)
k + ŷ

(2)
k + wk. (11)

A sketch map is provided in Fig. 2 to denote the sys-

tem model. Specifically, the communication or illumination

requirements of users are uploaded to the system controller,

which then jointly realizes the downlink resource manage-

ment by associating the relationship between LEDs and data

streams, allocating emission power on each LED, and config-

uring IRS coefficients by reverse lookup tables. The evaluation

indicator of the resource management is the overall SE, and

the proposed optimization algorithms and theoretical analyses

are provided in the next section.
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III. JOINT RESOURCE MANAGEMENT FOR SPECTRAL

EFFICIENCY MAXIMIZATION

Motivated by the aforementioned discussions, this section

formulates a combinatorial optimization problem, and an alter-

nating optimization algorithm is proposed to manage system

resources jointly. Specifically, the frozen variable algorithm

and the MM algorithm are utilized to solve the IRS config-

uration subproblem and the power allocation/user association

subproblems, respectively. Moreover, the discussions on the

optimization problems under extremely weak/severe interfer-

ences and the computational complexity analysis are also

carried out in this section.

A. Problem Formulation

The classic Shannon capacity formula cannot be utilized

to describe VLC channel capacity due to several unique

constraints, including the nonnegative and real-valued signal,

the illumination requirements, and the sensitivity to geometric

locations [28]. As a result, the VLC channel capacity has been

broadly investigated, and the achieved results reveal that the

optimal capacity-input distribution is discrete in VLC [4], [5].

Furthermore, a tight lower bound for dimmable VLC systems

is proposed in [6], where the capacity formula is in a contin-

uous form as

C =
1

2
W log2

�
1 + w

ρ2P 2

σ2

�
, (12)

where w = e/2π is a constant with e is the value of the base

of natural logarithms. W , ρ, P , and σ2 denote the modulation

bandwidth, the responsivity of the PD, the optical power, and

the variance of the Gaussian noise, respectively. Therefore, the

SE of the k-th user is given by

Rk =
1

2
log2 (1 + wγk) , (13)

where γk indicates the individual signal-to-interference-plus-

noise ratio (SINR) and can be expressed as

γk =

ρ2
k

	h
H

(2)
k vec(G) + h

(1)
k

iT
Pfk


2

σ2
k + ρ2

k

PK
i=1,i6=k

n
h

(1)T
k Pfi

o2

var (yi)
, (14)

where var(yi) = 1 denotes the variance of the interference

signal yi, and σ2
k ∈ R+ denotes the variance of wk. In the

end, the overall SE is formulated as

R =
KX

k=1

Rk (G, P, F) . (15)

Significantly, this paper focuses on maximizing the overall

SE by jointly optimizing the IRS coefficient matrix G, the

power allocation matrix P, and the user association matrix F.

For the sake of simplicity, the index sets of transmitters, IRS

units, and users are denoted by L, N , and K, respectively.

Therefore, the optimization problem is formulated as

(P) : max
G,P,F

R (16)

s.t. Rk ≥ Rmin,k, ∀k ∈ K, (17)

LX

l=1

Pl ≤ Ptotal, (18)

Pmin ≤ Pl ≤ Pmax, ∀l ∈ L, (19)

fl,k ∈ {0, 1}, ∀l ∈ L, k ∈ K, (20)

KX

k=1

fl,k ∈ {0, 1}, ∀l ∈ L, (21)

gn,l ∈ {0, 1}, ∀n ∈ N , l ∈ L, (22)

LX

l=1

gn,l ∈ {0, 1}, ∀n ∈ N . (23)

Here the constraint in (17) denotes the individual quality of

service (QoS) requirement. The constraint in (18) is the total

power limitation and the constraint in (19) is the individual

illumination requirement in VLC systems. Then, constraints

in (20) and (21) indicate that one transmitter cannot carry

information symbols for multiple users simultaneously, while

constraints in (22) and (23) result from the definition of the

IRS coefficient matrix. Moreover, CSI is denoted by matrices

H(1) and H(2), which are assumed known by VLC channel

estimation techniques.

Algorithm 1 Alternating Optimization Algorithm to Solve (P)

Input: CSI matrices H(1) and H(2), constant 
1.

Output: G, P, and F.

1: Init: iteration rounds i ← 0, G(0), P(0), and F(0) are a

random feasible solution to (P).

2: repeat

3: Given P(i) and F(i), solve (P1) by variable frozen method

and obtain IRS coefficient matrix G(i+1);

4: Given G(i+1) and F(i), solve (P2) by MM algorithm and

obtain power allocation matrix P(i+1);

5: Given G(i+1) and P(i+1), solve (P3) by heuristic MM

algorithm and obtain user association matrix F(i+1);

6: until |R(i+1)(G, P, F) − R(i)(G, P, F)| < 
1

Note that the IRS configuration subproblem is structurally

identical to the resource allocation problems in orthogonal

frequency division multiplexing (OFDM) systems, which is

proved to be typically non-deterministic polynomial (NP)-

hard [31]. Therefore, the complexity for pursuing the optimal

solution of (P) suffers an exponential explosion and it can only

search for a suboptimal solution. As a consequence, (P) is split

into three subproblems (P1)∼(P3) in Algorithm 1, which once

optimize a single variable while the other two variables are

fixed. Take IRS configuration process as an example, G(i+1) is

defined as argG max(R(G(i), P(i), F(i)), R(G(i)
∗ , P(i), F(i))),

namely the one with larger SE according to (15), where G(i)
∗ is

the optimized result of (P1). The above definition is extended

to other variables, and therefore, the monotonicity of the
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Algorithm 2 Frozen Variable Algorithm to Solve (P1)

Input: fixed matrices P, F and CSI matrices H(1) and H(2).

Output: optimal result G.

1: Init: n ← 1, G(0) is a feasible solution.

2: Construct indication matrices by H
(2)
k {supp (fk)};

3: Compare h
(2)
k,n,l in the n-th row of the indication matrix

and select the column index l∗ with the large value;

4: Freeze variables in other columns of G and aggregate

changeable elements into matrix eG;

5: Solve (P1-b) by PGD algorithm and obtain the global

optimal point eG†;

6: Recovery the relaxed result of (P1-a) G† with the informa-

tion of F, P, and H
(2)
k ;

7: repeat

8: l† ← arg min
l

gn,l;

9: gn,l† ←1 and gn,l 6=l† ←0;

10: n ← n + 1;

11: until n > N

algorithm in the i-th loop is warranted as

R



G(i), P(i), F(i)
�
≤ R



G(i+1), P(i), F(i)

�

≤ R



G(i+1), P(i+1), F(i)
�

≤ R



G(i+1), P(i+1), F(i+1)
�

. (24)

It is noted that the overall SE will not decrease in each

step since the worse result is discarded. Moreover, the SE

is also upper-bounded due to the power constraints in (18)

and (19) and row sum constraints in (21) and (23), resulting

in its convergence with the progress of iterations.

B. Frozen Variable Algorithm for (P1)

The IRS configuration subproblem is investigated in this

part, and the frozen variable algorithm is proposed in

Algorithm 2 to optimize G. To start with, when the power

allocation matrix P and the user association matrix F are fixed,

the original problem (P) is simplified into

(P1) : max
G:(17),(22),(23)

KX

k=1

Rk(G), (25)

which is an integer programming problem and NP-hard to

solve [31]. To find a suboptimal but effective algorithm,

we relax the constraint in (22) to

0 ≤ gn,l ≤ 1, (26)

and rename (P1) as (P1-a). Then, the relaxed problem (P1-a)

will be optimized firstly, after which the result can be utilized

to obtain the suboptimal point of (P) expediently. A property is

derived in the following lemma to simplify the constraint (23).

Lemma 1: R(G) increases monotonically versus gn,l.

Proof: Considering the VLC channel gain is naturally

real and nonnegative, i.e., h
(2)
k,n,l ≥ 0, γk(G) is a monotone

increasing function versus gn,l. Therefore, R(G) also increases

Fig. 3. Three steps to generate �G from G: variables extraction, frozen, and
aggregation.

monotonically versus gn,l since it is a compound function of

γk(G) and Rk(γk).
Based on Lemma 1, the optimal result of (P1) and (P1-a)

must lie on the boundary of the constraint (23), which can be

rewritten as

LX

l=1

gn,l = 1. (27)

Till now, the relaxed problem (P1-a) can be solved by

abundant optimization algorithms, which are provided in the

CVX toolbox [32]. However, the scales of variables and

constraints in (P1-a) are proportional to N ×L, which heavily

increases the computational complexity when L and N are

large. Notably, one of the highlights of this paper is to freeze

partial variables in (P1-a), by which (P1-a) can be transformed

into an equivalent problem with much fewer variables and

constraints. As shown in Fig. 3, this transformation exploits the

discreteness and row features of matrices F and G to generate

a reduced variable eG, detailed discussions are given as follows.

• Extract: This step aims to select the corresponding vari-

ables for each user and divide them into K disjoint sets.

According to (8), the variable gn,l can make contributions

to Rk if and only if the index l lies in the space of

supp (fk). Therefore, the elements in G {supp (fk)} form

a variable set, which is disjoint with other sets due to the

orthogonality of fk.

• Freeze: In this step, some variables in the k-th set will be

fixed as zeros, while other ones remain changeable to be

optimized. Specifically, the location of the largest element

h
(2)
k,n,l in each row of H

(2)
k {supp (fk)} is selected, and

then the variable at the corresponding location remains

unfrozen. At the same time, other elements in that row of

G {supp (fk)} are to be zeros, which reduces the numbers

of variables and constraints together.

• Aggregate: After the above two processes, only N ele-

ments of each set are still changeable. To maintain the

structure of variables, this step vectorizes the variables in

different sets and aggregates them into a new matrix eG,

and its column rank is given by

rank(c)


eG
�

= min (K, L) . (28)

In this way, the dimensions of variables and constraints is

decreased from NL to N min(K, L), which significantly

reduces the computational complexity when K � L.
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These operations correspond to steps 2∼4 in Algorithm 2,

which perform as the basis of the frozen variable algorithm.

Then, (P1-a) is transformed into the following form

(P1-b) : max�G:(17),(26),(27)

KX

k=1

Rk



eG
�

. (29)

Proposition 1: The optimal result of problem (P1-a) is

equivalent to that of (P1-b).

Proof: Suppose the summation of
P

l∈supp(fk) gn,l is

limited by constant cn,k, the SINR can be rewritten as

γk≤

	PL
l=1 Plfl,kh

(1)
k,l +
PN

n=1 cn,k max
l∈supp(fk)



Plh

(2)
k,n,l

�
2

σ2
k/ρ2

k +
PK

i=1,i6=k{h
(1)T
k Pfi}2

,

(30)

where the equality holds under the condition gn,l† = cn,k with

l† = argmaxl∈supp(fk) Plh
(2)
k,n,l, and the other variables gn,l 6=l†

are zeros. Considering the orthogonality among the columns

of F as

fif
T
j = 0, ∀i 6= j, (31)

the sets supp (fk) are disjoint with each other and the process

of maximizing R(G) is independent among different users.

Therefore, the steps of extracting and freezing variables will

not lose optimal feasible solutions, which proves the suffi-

ciency of Proposition 1. On the other hand, when the optimal

result of (P1-b) is obtained, the corresponding optimal solution

to (P1-a) can be reconstructed conversely due to the linearity

of transformation in Fig. 3.

Briefly, the relationship between the optimal results of

(P1-a) and (P1-b) can be expressed by the following formula:

G∗
(P1-a)

F, P, H(2)

F, P, H(2)

eG∗

(P1-b). (32)

Proposition 2: The objective function in (P1-b) is concave

when γk � 2π/e, and the concavity of the subproblem holds

asymptotically with the increase of SINR.

Proof: To investigate the concavity of overall SE with

respect to eG, the concavity property of Rk(G) is studied

firstly and its general Hessian matrix expression is denoted by

H
(k)
G = [G

(k)
(n1,n2,l1,l2)

]NL×NL, where each element represents

the second-order derivative and can be expressed as

G
(k)
(n1,n2,l1,l2)

=
∂

∂gn2,l2





γk

2π/e+γk

Pl1fl1,kh
(2)
k,n1,l1

/ ln 2
h
H

(2)
k vec(G)+h

(1)
k

iT
Pfk





'
∂

∂gn2,l2





Pl1fl1,kh
(2)
k,n1,l1

/ ln 2
h
H

(2)
k vec(G) + h

(1)
k

iT
Pfk





=
−Pl1fl1,kh

(2)
k,n1,l1

Pl2fl2,kh
(2)
k,n2,l2	h

H
(2)
k vec(G) + h

(1)
k

iT
Pfk


2

ln 2

, (33)

where ' denotes the symbol of asymptotic equal and the rela-

tionship in the second line holds due to the general condition

γk � 2π/e in VLC. Given the structure of the formula in (33),

the Hessian matrix of the k-th user is written as

H
(k)
G =

−aaT

	h
H

(2)
k vec(G) + h

(1)
k

iT
Pfk


2

ln 2

, (34)

where the introduced vector a ∈ R
NL×1
+ is given by

a = ⊕L
l=1 (Plfl,kIN ) vec



h

(2)
k,1, h

(2)
k,2, . . . , h

(2)
k,L

�
. (35)

It is observed that the Hessian matrix is a rank-one matrix

and the inequality zT H
(k)
G z ≤ 0 ensures for any vector

z ∈ R
NL×1. When the condition γk � 2π/e holds, H

(k)
G

is negative semidefinite, and therefore R(G) is a concave

function. Considering eG lies in the subspace projected by

G, R(eG) is also concave under that condition, leading to the

fact that (P1-b) is asymptotically a convex problem with the

increase of SINR γk.

In this way, the relaxed problem (P1-a) is equivalently trans-

formed into an asymptotical convex problem (P1-b), with the

numbers of variables and constraints reduced to min(1, K/L)
times of those in (P1-a). Given the assumption K � L,

(P1-b) has far lower computational complexity than (P1-a)

to be solved in an instantaneous system. Typically, convex

problems can be optimized by directly solving Karush-Kuhn-

Tucker (KKT) equations [33]. The closed-form result can be

obtained in this algorithm, e.g., the water-filling algorithm and

algorithms in [33], providing low optimization complexity.

However, a strict requirement for the problem structure is

needed, which limits its popularity in problems with complex

structure and extensive inequality constraints. The gradient

descend algorithm can also be utilized to optimize (P1-b),

but its convergence time will be too long when the con-

dition number of the Hessian matrix is large [34]. This

section herein chooses the projected gradient descent (PGD)

algorithm, which is widely used in convex optimization to

accelerate convergence [35]. After obtaining the optimal result

of (P1-b), the solution to (P1-a) can be achieved according

to (32). This inverse transformation is linear and fast under

the given matrices F, P, and H
(2)
k . Finally, in steps 7∼11

of Algorithm 2, a greedy policy is adopted to recover the

discreteness of G and achieve the suboptimal result of (P1).

C. Minorization-Maximization Algorithm for (P2) and (P3)

1) Power Allocation Problem: When the IRS coefficient

matrix G and the user association matrix F are determined,

the original problem (P) can be reformulated as

(P2) : max
P:(17),(18),(19)

KX

k=1

Rk (P) , (36)

which is proved to be non-convex according to Appendix V

and is intractable to search for the optimal result. Generally,

a powerful tool to solve non-convex problems is the successive

convex approximation (SCA) method, which is realized by

optimizing a series of approximate convex problems [36].
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As one of the SCA methods, the MM algorithm has been

widely used in signal processing, communications and net-

working, and machine learning [37]. In this paper, we exploit

the MM algorithm to solve (P2), and more detailed discussions

are provided in the sequel.

In mathematics, the MM algorithm devotes to solving a

series of approximate convex problems iteratively, and its key

lies in the way of objective function approximation. For any

given point of the problem (P2), the MM algorithm requires

a lower bound function with as little gap as possible, i.e.,

a tangent function is the best. In the considered SE maximiza-

tion problem, this lower bound function has to be concave so

that convex optimization algorithms can be used. To this end,

we denote the SE function as T(1)(x) = 1/2 log2(1 +x) with

x the individual SINR, and a function named R(1)(x; x∗
1) is

given by [38]

R
(1) (x; x∗

1) = η (x∗
1) log2 (x) + ξ (x∗

1) , (37)

where x∗
1 is a parameter, η and ξ are two functions with respect

to x∗
1 as

η (x) =
x

2 (1 + x)
, (38)

ξ (x) =
1

2
log2 (1 + x) −

x

2 (1 + x)
log2 (x) . (39)

Then, the following properties are fulfilled for R(1)(x; x∗
1):

• It can be proved that the minimum value of T(1) (x) −
R

(1) (x; x∗
1) obtains at x = x∗

1, and the following inequal-

ity ensures for any x ∈ R+:

T
(1) (x) ≥ R

(1) (x; x∗
1) . (40)

• At the point of x∗
1, two functions have the same value as

T
(1) (x∗

1) = R
(1) (x∗

1; x
∗
1) . (41)

• The tangent slope of two functions can be obtained by

calculating the first derivatives as

∂T
(1) (x)

∂x
|x=x∗

1
=

∂R
(1) (x; x∗

1)

∂x
|x=x∗

1
. (42)

Consequently, the function T(1)(x) is tightly lower bounded

by R(1)(x; x∗
1) with x∗

1 the tangent point, and the SE function

Rk(P) = T(1)(wγk(P)) is bounded by the approximate

function R(1)(wγk(P); x∗
1), where x∗

1 = wγk(P(t)) denotes

the tangent point in the t-th loop. This approximate function is

renamed as f
(1)
k (P; P(t)) for simplicity. Unfortunately, it has

been proved to be non-convex in Appendix V, and therefore

the requirements of the MM algorithm is not met.

Nevertheless, making one more approximation is reasonable

here since the gap between the T(1)(x) and R(1)(x; x∗
1) is

extremely negligible, even if far from the tangent point [38].

Specifically, we further rewrite f
(1)
k (P; P(t)) by expanding the

numerator and denominator in the logarithmic function, and

an approximation function is introduced as

R
(2) (x; x∗

2) = log2 (x∗
2) + (x/x∗

2 − 1) / ln 2, (43)

which is the first-order Taylor expansion of the function

T(2)(x) = log2(x) with x∗
2 the tangent point [39]. Then, the

subtracted Logarithmic term in f
(1)
k (P; P(t)) can be substituted

by the Taylor expansion, leading to a much lower bound as

f
(2)
k



P; P(t)

�

= 2η (x∗
1) log2

�h
H

(2)
k vec(G) + h

(1)
k

iT
Pfk

�

+ ξ (x∗
1) − η (x∗

1)

×R
(2)



σ2
k + ρ2

k

KX

i=1,i6=k

n
h

(1)T
k Pfi

o2

; x∗
2





+ η (x∗
1) log2

(
wρ2

k

)
, (44)

where the tangent point is denoted by x∗
2 = σ2

k +

ρ2
k

PK
i=1,i6=k{h

(1)T
k P(t)fi}2. According to the characteristics

of the first-order Taylor expansion, the local and global prop-

erties similarly to (40)-(42) also hold for f
(2)
k (P; P(t)), and a

partial order relation is ensured as

f
(2)
k



P; P(t)

�
≤ f

(1)
k



P; P(t)

�
≤ Rk (P) . (45)

Lemma 2: f
(1)
k



P; P(t)

�
and f

(2)
k



P; P(t)

�
are non-

concave and concave functions, respectively.

Proof: The derivation is given in Appendix V.

By now, two lower bounds of the SE function Rk(P)
have been given, where the latter one is a concave function.

Considering requirements of the MM algorithm, the objective

in (P2) is replaced by f
(2)
k (P; P(t)), and the transformed

subproblem can be expressed as

(P2-a) : max
P:(18),(19)

f
(2)
k (P;P(t))≥Rmin,k

KX

k=1

f
(2)
k



P; P(t)

�
. (46)

Proposition 3: (P2-a) is a convex problem.

Proof: The constraint of the replaced QoS requirement is

convex due to Lemma 2, and the constraints in (18) and (19)

are linear. Moreover, the objective function is concave since

it is the summation of K concave functions, leading to the

convexity of the subproblem (P2-a).

As illustrated in Algorithm 3, the problem (P2) is solved

by optimizing a series of approximate convex problems iter-

atively. Taking the t-th loop as an example, (P2) is replaced

by (P2-a) firstly, which is proved to be a convex problem in

Proposition 3. Therefore, the KKT conditions of (P2-a) will

always be satisfied unless the feasible space is an empty set.

Then, the PGD algorithm can be utilized in step 4 to solve

the convex problem (P2-a) [35], where the optimal result is

denoted by P(t). Once the result P(t) is obtained, the tangent

points x
∗(t+1)
1 and x

∗(t+1)
2 and the related parameters can be

calculated. The iteration will continue until the convergence

condition kP(t+1) − P(t)kF < 
2 is met, where 
2 is a given

threshold.

2) User Association Problem: Given the IRS coefficient

matrix G and power allocation matrix P, the problem (P) is

transformed into user association problem, which is given by

(P3) : max
F:(17),(20),(21)

KX

k=1

Rk (F) . (47)
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Algorithm 3 MM Algorithm to Solve (P2)

Input: Fixed parameters F, G, and 
2, and CSI matrices H(1)

and H(2).

Output: suboptimal P.

1: Init: iteration rounds t ← 0, and x
∗(0)
1 , η(x

∗(0)
1 ), ξ(x

∗(0)
1 ),

x
∗(0)
2 are initialized, respectively.

2: repeat

3: t ← t + 1, k ← 1;

4: Solve (P2-a) by the PGD algorithm and find the power

allocation matrix P(t);

5: repeat

6: x
∗(t)
1 ← wγk(P(t));

7: η(x
∗(t)
1 ) is calculated based on (38);

8: ξ(x
∗(t)
1 ) is calculated based on (39);

9: x
∗(t)
2 ← σ2

k + ρ2
k

PK
i=1,i6=k{h

(1)T
k P(t)fi}2;

10: k ← k + 1;

11: until k > K
12: until kP(t+1) − P(t)kF < 
2

To start with, the constraint in (20) is relaxed as

0 ≤ fl,k ≤ 1, which can be regarded as the service proba-

bility of the k-th user provided by the l-th transmitter. Then,

according to the definition of the individual SINR in (14), the

objective function Rk(F) has a similar structure with Rk (P),
which indicates that the relaxed form of (P3) is also a non-

convex problem. Therefore, the MM algorithm is appropriate

to solve (P3), and the detailed process has been elaborated

in the power allocation problem (P2). Notably, the result of

the MM algorithm is a continuous variable. To maintain the

correctness of the constraint (20), we can directly force the

largest element in each row to 1 while other elements are

zeros. Considering the similarity of (P2) and (P3), the proof

of related properties and the descriptions of the algorithm are

ignored here.

D. Discussions on Extremely Weak/Severe Interferences

Though the proposed MM algorithm can deal with non-

convex problems well, the process of optimizing a series

of subproblems still suffers from considerable computational

complexity. In this subsection, we re-examine the power

allocation problem and Algorithm 3, aiming to simplify the

optimization processes in the extremely weak/severe interfer-

ence regimes.

1) Extremely Weak Interference: Generally, weak interfer-

ence refers to cases such as extreme low emission power or the

user is exactly under the LED. For both situations the inter-

lamp interferences for an individual user is faint, and therefore

the denominator term of (14) is dominated mainly by the

AWGN noise. Specifically, Rk is asymptotically rewritten as

R
(L)
k =

1

2
log2

�
1 +

wρ2
k

σ2
k

	h
H

(2)
k vec(G) + h

(1)
k

iT
Pfk


2
�

'
wρ2

k

2σ2
k ln 2

	h
H

(2)
k vec(G) + h

(1)
k

iT
Pfk


2

, (48)

where the approximation ensures by setting the tangent point

of (43) to 1. Based on (31), the SE functions R
(L)
k are

independent to each other, and these K objective functions

are related by power constraints in (18) and (19). Moreover,

the problem aims to maximize a convex function (48) in a

convex feasible space, which demonstrates that the optimal

point must be at the boundary of the feasible space, resulting

in the maximum of R
(L)
k as

R
(L)
k ≤R

(L)
max,k =

wρ2
k

2σ2
k ln 2

(
X

l∈supp(fk),

l 6=l
(k)
†



h

(2)T
k,l gl + h

(1)
k,l

�
Pmin

+ max

� X

l∈supp(fk)

Pl − (|supp(fk)| − 1)Pmin, Pmin

�

×

�
h

(2)T

k,l
(k)
†

g
l
(k)
†

+ h
(1)

k,l
(k)
†

�)2

, (49)

where l
(k)
† denotes the index of LED with the largest power,

and is given by

l
(k)
† = arg max

l∈supp(fk)



h

(2)T
k,l gl + h

(1)
k,l

�
. (50)

Then, the power allocation problem under weak interference

assumption can be expressed as

(P2-b) : max
P:(18),Pl≥Pmin

KX

k=1

R
(L)
max,k (P) , (51)

where the maximum illumination requirement Pl ≤ Pmax is

assumed satisfied in advance. Though (P2-b) is a non-convex

problem, the facts that the feasible space is a polyhedron and

the objective is convex simplify the problem dramatically, i.e.,

we can check and compare the function values at corners of

the polyhedron. By replacing each variable Pl with βl = Pl −
Pmin, the above problem is transformed equivalently as

(P2-c) : max
β: βl≥0,�L

l=1 βl≤Ptotal−LPmin

KX

k=1

R
(L)
max,k (β) . (52)

The corner of (P2-c) has a general form of βl = Ptotal −
LPmin for a specific l while other variables are zeros.

Conversely, the global optimal result of (P2-b) is P
l
(k)
†

=

Ptotal − (L − 1)Pmin for one user, and other emission power

are all Pmin. The number of comparisons equals the number

of corners of the polyhedron, i.e., the complexity is O(L).
2) Extremely Severe Interference: The severe interference

corresponds to the cases such as high emission power or the

user is located at the overlapping area of multiple LEDs.

In these circumstances, the noise power is negligible to the

inter-lamp interferences, and consequently the interference

term dominates the denominator of (14). More specifically,

the individual SINR of the k-th user can be expressed as

γ
(H)
k (P) '

	h
H

(2)
k vec(G) + h

(1)
k

iT
Pfk


2

PK
i=1,i6=k

n
h

(1)T
k Pfi

o2 . (53)
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Notably, it can be observed that the power allocation policy

among transmitters is important, while the absolute emission

power will not affect the achievable SE at all, i.e., γk (P) =
γk (aP) with any real and positive number a. This is because

the growth of emission power will increase the MUIs and the

power of effect signals simultaneously in the severe interfer-

ence regimes. Particularly, allocating all emission power with

Pmin will lead to the same overall SE as the case of Pmax,

namely γk (Pmin) = γk (Pmax), where Pmin and Pmax are

the results of identical matrices multiplied by Pmin and Pmax,

respectively.

E. Computational Complexity Analysis

This section discusses the computational complexity of the

proposed algorithms. The analysis is performed firstly on the

frozen variable algorithm and the MM algorithm, and then

the complexity of the overall algorithm is provided. To be

clear, an operation corresponds to one time of iteration, and

the content of each algorithm is split into segments.

1) The Frozen Variable Algorithm for (P1): The discussion

on the complexity of Algorithm 2 includes the following

aspects:

• Extract and freeze variables: Step 2 generates K
support sets according to the columns of F, lead-

ing to O (KL) operations. Then, steps 3∼4 compare

the elements in the indication matrix, which require

O (KN max (L − K, 0)) comparisons;

• Solve (P1-b) by the PGD algorithm: According to [35],

the number of iterations for PGD algorithm to converge

is O (1/
), where 
 is a given error threshold;

• Discreteness recovery: Steps 7∼11 require the operations

of O (NL).

2) The MM Algorithm for (P2) and (P3): The analysis on

the complexity of Algorithm 3 is provided as follows:

• Solve (P2-a) by the PGD algorithm: When the condition

2K ≥ L ensures, the Hessian matrix HP is full-rank and

the objective function is mo-strongly concave according

to (67). Then, the number of iterations to be converged

is O (log(1/
)) with 
 the error threshold. Neverthe-

less, we have rank (HP) < rank (P) when 2K < L,

leading to O (1/
) iterations for the PGD algorithm to

converge [35];

• Parameters update: The parameters of f
(2)
k



P; P(t)

�
are

updated in steps 5∼11, including x
∗(t)
1 , η(x

∗(t)
1 ), ξ(x

∗(t)
1 ),

x
∗(t)
2 , which require 4K operations;

• Function approximation: Assume the number of function

approximations is T , at least O (T log(1/
)) iterations are

needed for the PGD algorithm to converge and O (4TK)
operations are desired to update the parameters. As for

(P3), KL more operations are needed to force the relaxed

result to be discrete.s

3) Overall Algorithm for (P): Algorithm 1 is composed

of three main steps, namely the frozen variable algorithm for

(P1) and the MM algorithm for (P2) and (P3). As for the

former algorithm, though the objective function is not a strong

concave function, the variable freeze process reduces the num-

bers of elements and constraints from LN to Nmin(K, L).

TABLE II

SIMULATION PARAMETERS

Moreover, the PGD algorithm takes only once in (P1). On the

other hand, a series of convex approximation problems are

optimized in the MM algorithm. However, the strong concavity

of the objective function provides a faster convergence rate

when 2K > L, and therefore the computational complexity

has been balanced between step 3 and steps 4∼5 of the overall

algorithm.

IV. NUMERICAL RESULTS

The performance of the IRS-aided indoor multi-user VLC

system is evaluated in this section. Without loss of generality,

the room size is 8 m × 8 m × 3 m, and four LEDs are evenly

distributed on the roof with the locations at (2 m, 2 m, 3 m),

(2 m, 6 m, 3 m), (6 m, 2 m, 3 m), and (6 m, 6 m, 3 m).

All PDs are randomly distributed on the plane 1 m above the

ground, which is divided into 100 × 100 equidistant meshes.

Then, an IRS is deployed on one wall of the room, and all

units are evenly scattered within the rectangle area with (0 m,

1 m, 1.5 m) and (0 m, 7 m, 2.5 m) as corners. More detailed

parameters are shown in Table II, and they will not be changed

in the sequel without special instructions. In general, various

numerical simulations are carried out to show the effectiveness

of IRS-aided VLC, including the comparisons among the

proposed algorithms and other baselines, the influence of

several important parameters, and also the geometric factors

such as the room size and the locations of IRS.

A. Simulations on the Proposed Algorithms

In this subsection, the proposed Algorithm 2 and

Algorithm 3 that focus on the IRS configuration subproblem

and the power allocation subproblem are examined separately

by comparing with other baselines. To start with, the compar-

isons among different IRS configuration schemes are shown

in Fig. 4, where the irrelevant variables P and F of all

baselines are optimized in the same way as Algorithm 1. It is

supposed that the NLoS channel of each user is blocked by

a homogeneous media with a probability of 50%, which is

modeled by a multiplicative factor of 0.3. For comparison,

the result under the relaxed constraint (26) and the one
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Fig. 4. IRS configuration: the overall SE versus the average SNR (dB) with
different IRS configuration policies.

Fig. 5. Power allocation: the overall SE versus the Gaussian noise power
with different power allocation policies.

without IRS are chosen as the upper bound and lower bound,

respectively. Then, the distance greedy policy that allocates

each unit to the nearest transmitter and the random allocation

policy on G are also baselines. As shown in the results, the

SE of each policy converges to a value with the growth of the

average signal-to-noise ratio (SNR), and the proposed frozen

variable algorithm achieves more SE than other baselines,

e.g., more than 1 bps/Hz gain to the lower bound in the

high SNR regimes. Therefore, IRS can increase the overall

SE to mitigate the effects of occlusion in VLC, and the

proposed configuration algorithm achieves more gain than

other baselines.

On the other hand, Fig. 5 verifies the effectiveness of

the proposed power allocation policy on optimizing P, and

every scheme adopts the same policy in Algorithm 1 to

obtain the unconcerned variables G and F. To this end, the

exhaustive search method and no IRS result are considered

as upper and lower bounds, respectively. More specifically,

the interval of emission power Pl ∈ (Pmin, Pmax) is divided

into 100 equal slices in the former case, and then all possible

power allocation combinations of four LEDs are checked to

Fig. 6. The overall SE versus the number of IRS units with different Gaussian
noise powers σ

2
= 10

−8, 10
−7, and 10

−6 W.

obtain the optimal result. Another two fixed power baselines

include the maximum power allocation and the minimum

power allocation schemes, which assign Ptotal/L and Pmin as

the emission power, respectively. Though (P2) is not a convex

problem, it is observed that the SE gap between the proposed

power allocation policy and the upper bound is limited, which

can attribute to the fact that the MM algorithm avoids falling

into the local optimal point. Secondly, the SE gain between the

no IRS scheme and the proposed algorithm exceeds 1.5 bps/Hz

when the noise power is 10−9, and even 0.7 bps/Hz can be

achieved for the minimum power allocation scheme. Finally,

the numerical results also show that two fixed power schemes

almost share the same SE performance in weak interference

conditions, which is consistent with the theoretical analysis

in Section III-D.

B. Simulations on Important Parameters

Next, we investigate the influence of some important para-

meters on the SE performance, where the optimizations of

G, P, and F are executed by Algorithm 1. Notably, the

NLoS channel gain in this paper is based on the point source

assumption, which requires a sufficiently large area for each

IRS unit. Considering the predefined area for IRS is 6 m × 1 m

and the unit area is 10 cm × 10 cm, the unit spacing is about

2.5 cm if the number of units is 300. As shown in Fig. 6,

the overall SE increases almost linearly versus the number

of IRS units when N ≤ 300. Moreover, once N increases

larger than 300, the point source assumption is violated and

the formula (5) is no longer right, which is beyond the scope

of this paper.

Then, the effect of reflection factor δ is shown in Fig. 7.

Specifically, the number of IRS units changes from 4 to 256,

and the no IRS result performs as the lower bound. It is

observed that the overall SE increases versus the reflection

factor in a linear form, where the slope depends heavily on

the number of IRS units. For example, it needs δ = 0.7 for

the N = 64 situation to achieve 4.6 bps/Hz while the only

δ = 0.2 is needed for the N = 256 situation. Therefore, the

number of IRS units and the reflection factor are two types
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Fig. 7. The overall SE versus the reflection factor with the different numbers
of IRS units.

Fig. 8. A two-dimensional geometrical diagram of IRS deployment.

of resources that need to be balanced, which provides a guide

for applications of VLC IRS.

C. Simulations on Geometric Factors of IRS

Considering that the indoor VLC channel gain highly

depends on the geometric factors of transceivers and reflectors,

this subsection validates these influences from three different

aspects, including the minimum area of PD, the deployment

height of IRS unit, and the size of room. To start with,

a two-dimensional diagram is provided in Fig. 8 with the

height of the IRS unit as x, and the size of the transmitter

is 10 cm. Without loss of generality, suppose parameters is b

= 1.5 m, c = 2.5 m and d = 1 m, the stretching factor of

triangle ABC and triangle ADE is 2/5. In this circumstance,

the minimum area is 4 cm × 4 cm, which enables the light

emitted from the imaging LED entirely propagates through the

unit.

Secondly, the influence of IRS height on the NLoS channel

gain is of great significance to be investigated. Based on the

Lambertian model, the received optical energy equals 0 when

the incidence angle is larger than the FoV [28], resulting in

the threshold height as

xminp
d2 + x2

min

= cosΦ, (54)

Fig. 9. NLoS channel gain versus the height of IRS unit with different
Lambertian index.

Fig. 10. SINR performance when the room size is 8 m × 8 m × 3 m, and
an IRS is deployed on one wall.

which can be calculated as xmin = d/ tanΦ. On the other

hand, the channel gain h
(2)
k,n,l = 0 when xmax = c, since

the cosine of the irradiance angle is 0. Within the interval of

(xmin, xmax), the gain h
(2)
k,n,l is real-valued and nonnegative,

and therefore there has an optimal x∗ to maximize h
(2)
k,n,l

according to the continuity of (5). Nevertheless, it is intractable

to search for the closed-form expression of x∗, and numerical

results are provided in Fig. 9 to show the NLoS channel gain

versus the IRS height x. Specifically, it can be observed that

h
(2)
k,n,l is larger when x is in the middle of the room height. The

results also indicate that x∗ decreases when the Lambertian

index grows from 1 to 5, which is reasonable since the half-

intensity radiation angle gets smaller.

To explore the effect of room size, the SINR perfor-

mance versus locations of a single user, which is simultane-

ously served by four transmitters, is evaluated. Specifically,

Fig. 10 denotes the individual SINR with the room size of

8 m × 8 m × 3 m, and Fig. 11 represents the result

when the room size is 12 m × 12 m × 3 m while other

conditions remain unchanged. In the latter case, the locations
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Fig. 11. SINR performance when the room size is 12 m × 12 m × 3 m,
and an IRS is deployed on one wall.

of LEDs are at (3 m, 3 m, 3 m), (3 m, 9 m, 3 m),

(9 m, 3 m, 3 m), and (9 m, 9 m, 3 m), and IRS units are evenly

in the rectangle with (0 m, 1 m, 1.5 m) and (0 m, 11 m, 2.5 m)

as corners. As shown in the results, the locations that are close

to four LEDs have a higher SINR than other places, and the

SINR decreases globally with the increase of the room size.

Then, the place close to the wall with IRS achieves higher

SINR performance compared to other room edges, and such

an improvement is negligible when the user is far away from

the IRS. To sum up, the numerical results here reveal that the

influence of IRS on VLC systems weakens in large rooms, and

therefore, IRS-aided VLC is more suitable to enhance short

range communications.

V. CONCLUSION

In this paper, both LoS and NLoS channel gains in IRS-

aided VLC systems are discussed under the point source

assumption, and the overall SE maximization process is for-

mulated into a combinatorial optimization problem. Then,

an alternating optimization algorithm is proposed to iteratively

optimize the resource management, where the frozen variable

algorithm deals with the IRS configuration, and the MM

algorithm is utilized for user association and power allocation.

Though the global optimal point is intractable to obtain for

such an NP-hard problem, the proposed algorithm offers a

complexity acceptable way to search for a suboptimal result,

and the computational complexity is even less when the

condition K < L holds. Numerical results demonstrate that the

proposed power allocation and IRS configuration policies per-

form superior to other baselines, and the overall SE increases

almost linear to the numbers of IRS units and reflection factor.

Furthermore, high path loss of the optical channel gain limits

the affected area of VLC IRS, which requires multiple IRSs

to facilitate communications in reality. Benefiting from the

reconfigurability and passivity, IRS can dramatically improve

the SE performance of VLC and ease the blockage problems in

optical wireless communications, and therefore the technology

of IRS-aided VLC shows great potential in enhancing future

wireless communication capabilities.

APPENDIX A

NON-CONCAVITY OF SE WITH RESPECT TO P AND F

To justify the non-concavity of SE function with respect

to the power allocation matrix P, a two-dimensional case is

considered and the expressions of individual SINR can be

expressed as

γ1 =
a2
1p

2
1

σ2
1 + a2

2p
2
2

, γ2 =
b2
2p

2
2

σ2
2 + b2

1p
2
1

, (55)

where a1, a2, b1, b2, σ1 and σ2 are the given parameters and

p1, p2 are the emission power on two LEDs. Then, the overall

SE can be formulated by R = [log2(1 + wγ1) + log2(1 +
wγ2)]/2 based on (15), and two functions f1(x) and f2(x)
are defined for the sake of convenience as

f1(x) = log2

(
1 + x2

)
, f2(x; a) = log2

�
1 +

1

x2 + a2

�
,

(56)

where a ∈ R+ is a parameter, and the second derivatives are

given by

∂2f1(x)

∂x2
=

2

ln 2

1 − x2

(1 + x2)2
, (57)

∂2f2(x)

∂x2
=

2

ln 2

3x4 + (1 + 2a2)x2 − a2(a2 + 1)

(x2 + a2)2(x2 + a2 + 1)2
. (58)

Particularly, when p2 is fixed as a constant, the overall SE

can be rewritten as

R(p1| p2) =
1

2

(
f1

�
p1

s
wa2

1

σ2
1 + a2

2p
2
2

�

+ f2

�
p1

s
b2
1

wb2
2p

2
2

�)
, (59)

where a = σ2/
p

wb2
2p

2
2. Afterwards, its second derivative is

calculated as

∂2R(p1| p2)

∂p2
1

=
wa2

1

2(σ2
1 + a2

2p
2
2)

∂2f1(x)

∂x2

"""
x=p1

�
wa2

1
σ2
1
+a2

2
p2
2

+
b2
1

2wb2
2p

2
2

∂2f2(x)

∂x2

"""
x=p1

�
b2
1

wb22p2
2

. (60)

When the parameters are given by a1 = a2 = b1 = b2 =
σ1 = σ2 = 1, two cases with P1 = 6, P2 = 3 and P1 = 5,

P2 = 2 lead to positive and negative second derivatives,

respectively, which indicates that the function R(p1|p2) has

uncertain concave-convex property. Therefore, the overall SE

function is a noncancave function with respect to variable P

since its projection function on p1 is nonconcave.

As for the concave/convex properties of R(F) under the

relaxed constraint 0 ≤ fl,k ≤ 1, we also consider a special

case with L = K = 2. By setting f1,2 = 0 and fixing f2,1

and f2,2 as constants, the expressions of SINR γ1(f1,1) and

γ2(f1,1) are structurally the same as (55), resulting in the non-

concavity of R(F) according to the derivation in the previous

discussions.
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APPENDIX B

PROOF ON THE CONCAVITY OF TWO

APPROXIMATE FUNCTIONS

1) The Function f
(1)
k (P; P

(t))

Consider the downlink communications of an IRS-aided

VLC system, where two users are served by two LEDs and an

IRS is deployed on the wall. To optimize the power allocation

behavior, an approximate function is given by

f
(1)
1 (P; P(t)) = 2η (x∗

1) log2 (p1) − η (x∗
1) log2

(
σ2

1 + a2
2p

2
2

)

+ η (x∗
1) log2

(
wa2

1

)
+ ξ (x∗

1) , (61)

where the Hessian matrix can be calculated as

#
∂2f

(1)
1 (P; P(t))

∂P1∂P2

$
= −

2η(x∗
1)

ln 2




1

p2
1

0

0
a2
2(σ

2
1 − a2

2p2)

(σ2
1 + a2

2p
2
2)

2


 ,

(62)

which is an indefinite matrix depending on the relation

between σ2
1 and a2

2p2. Therefore, since the concavity is no

longer maintained for the projection function, f
(1)
1 (P; P(t)) is

not a concave function neither.

2) The Function f
(2)
k (P; P

(t))

In general, the function f
(2)
k (P; P(t)) is formulated based

on (44). We define H
(k)
P = [P

(k)
(l1,l2)

]L×L is the Hessian matrix,

and each element P
(k)
(l1,l2)

is the second partial derivative as

P
(k)
(l1,l2)

=−



h

(2)T
k,l1

gl1 + h
(1)
k,l1

�

h

(2)T
k,l2

gl2 + h
(1)
k,l2

�
fl1,kfl2,k

ln 2

	h
H

(2)
k vec(G) + h

(1)
k

iT
Pfk


2

/ (2η (x∗
1))

−
2ρ2

kη(x∗
1)

x∗
2 ln 2

KX

i=1,i6=k

fl1,ifl2,ih
(1)
i,l1

h
(1)
i,l2

. (63)

Then, the Hessian matrix can be further rewritten as

H
(k)
P =

− (2η (x∗
1) / ln 2) bbT

	h
H

(2)
k vec(G) + h

(1)
k

iT
Pfk


2

−
2ρ2

kη (x∗
1)

x∗
2 ln 2

KX

i=1,i6=k

cic
T
i , (64)

where b ∈ R
L×1
+ and c ∈ R

L×1
+ are vectors as

b=
h
H

(2)
k vec(G)

i
� fk + h

(1)
k � fk, ci =h

(1)
i � fi. (65)

According to (64), the following inequality ensures for any

x ∈ R
L×1
+ that

xT H
(k)
P x ≤ 0, (66)

which indicates H
(k)
P is a negative semidefinite matrix, and

consequently, f
(2)
k (P; P(t)) is a concave function. Moreover,

the Hessian matrix of
PK

k=1 f
(2)
k (P; P(t)) can be formulated

as HP =
PK

k=1 H
(k)
P , which is also negative semidefinite.

Based on (64) and (65), the independent components of HP

include two forms of vectors: h
(1)
k � fk and [H

(2)
k vec(G)]� fk,

∀k ∈ K. Therefore, matrix H
(k)
P is full-rank when the con-

dition 2K ≥ L holds, which demonstrates that the objective

function in (P2-a) is a strong concave function with the

order as

mo = −λmax, (67)

where λmax is the largest eigenvalue of HP .

REFERENCES

[1] H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC:
Beyond point-to-point communication,” IEEE Commun. Mag., vol. 52,
no. 7, pp. 98–105, Jul. 2014.

[2] D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based
indoor visible light communications: State of the art,” IEEE Commun.

Surveys Tuts., vol. 17, no. 3, pp. 1649–1678, Aug. 2015.
[3] J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc.

IEEE, vol. 85, no. 2, pp. 265–298, Feb. 1997.
[4] B. Mamandipoor, K. Moshksar, and A. K. Khandani, “Capacity-

achieving distributions in Gaussian multiple access channel with
peak power constraints,” IEEE Trans. Inf. Theory, vol. 60, no. 10,
pp. 6080–6092, Oct. 2014.

[5] A. Elmoslimany and T. M. Duman, “On the discreteness of capacity-
achieving distributions for fading and signal-dependent noise channels
with amplitude-limited inputs,” IEEE Trans. Inf. Theory, vol. 64, no. 2,
pp. 1163–1177, Feb. 2018.

[6] J.-B. Wang, Q.-S. Hu, J. Wang, M. Chen, and J.-Y. Wang, “Tight
bounds on channel capacity for dimmable visible light communications,”
J. Lightw. Technol., vol. 31, no. 23, pp. 3771–3779, Dec. 1, 2013.

[7] K. Ying, H. Qian, R. J. Baxley, and S. Yao, “Joint optimization of
precoder and equalizer in MIMO VLC systems,” IEEE J. Sel. Areas

Commun., vol. 33, no. 9, pp. 1949–1958, Sep. 2015.
[8] T. Wang, F. Yang, J. Song, and Z. Han, “Dimming techniques of visible

light communications for human-centric illumination networks: State-of-
the-art, challenges, and trends,” IEEE Wireless Commun., vol. 27, no. 4,
pp. 88–95, Aug. 2020.

[9] L. Feng, H. Yang, R. Q. Hu, and J. Wang, “MmWave and VLC-based
indoor channel models in 5G wireless networks,” IEEE Wireless Com-

mun., vol. 25, no. 5, pp. 70–77, Aug. 2018.
[10] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless

network via joint active and passive beamforming,” IEEE Trans. Wireless

Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
[11] K. Feng, Q. Wang, X. Li, and C. Wen, “Deep reinforcement learning

based intelligent reflecting surface optimization for MISO communica-
tion systems,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 745–749,
May 2020.

[12] Z. Wang, L. Liu, and S. Cui, “Channel estimation for intelligent
reflecting surface assisted multiuser communications: Framework, algo-
rithms, and analysis,” IEEE Trans. Wireless Commun., vol. 19, no. 10,
pp. 6607–6620, Oct. 2020.

[13] M. Najafi, B. Schmauss, and R. Schober, “Intelligent reflecting surfaces
for free space optical communication systems,” IEEE Trans. Commun.,
vol. 69, no. 9, pp. 6134–6151, Sep. 2021.

[14] M. Najafi and R. Schober, “Intelligent reflecting surfaces for free
space optical communications,” in Proc. IEEE Global Commun. Conf.

(GLOBECOM), Waikoloa, HI, USA, Dec. 2019, pp. 1–7.
[15] A. M. Abdelhady, A. K. S. Salem, O. Amin, B. Shihada, and

M.-S. Alouini, “Visible light communications via intelligent reflecting
surfaces: Metasurfaces vs mirror arrays,” IEEE Open J. Commun. Soc.,
vol. 2, pp. 1–20, 2021.

[16] G. K. Shirmanesh, R. Sokhoyan, P. C. Wu, and H. A. Atwater, “Electro-
optically tunable multifunctional metasurfaces,” ACS Nano, vol. 14,
no. 6, pp. 6912–6920, Jun. 2020.

[17] Y. Hu et al., “Electrically tunable multifunctional polarization-dependent
metasurfaces integrated with liquid crystals in the visible region,” Nano

Lett., vol. 21, no. 11, pp. 4554–4562, Jun. 2021.
[18] W. Tang et al., “Wireless communications with reconfigurable intelligent

surface: Path loss modeling and experimental measurement,” IEEE

Trans. Wireless Commun., vol. 20, no. 1, pp. 421–439, Jan. 2021.
[19] H. Wang et al., “Performance of wireless optical communication

with reconfigurable intelligent surfaces and random obstacles,” 2020,
arXiv:2001.05715.

Authorized licensed use limited to: University of Houston. Downloaded on July 02,2023 at 14:31:08 UTC from IEEE Xplore.  Restrictions apply. 



6522 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 8, AUGUST 2022

[20] H. Wang et al., “Performance analysis of multi-branch reconfigurable
intelligent surfaces-assisted optical wireless communication system in
environment with obstacles,” IEEE Trans. Veh. Technol., vol. 70, no. 10,
pp. 9986–10001, Oct. 2021.

[21] S. Sun, T. Wang, F. Yang, J. Song, and Z. Han, “Intelligent reflect-
ing surface-aided visible light communications: Potentials and chal-
lenges,” IEEE Veh. Technol. Mag., early access, Dec. 23, 2021, doi:
10.1109/MVT.2021.3127869.

[22] S. Sun, F. Yang, and J. Song, “Sum rate maximization for intelligent
reflecting surface-aided visible light communications,” IEEE Commun.

Lett., vol. 25, no. 11, pp. 3619–3623, Nov. 2021.
[23] S. Aboagye, T. M. N. Ngatched, O. A. Dobre, and A. R. Ndjiongue,

“Intelligent reflecting surface-aided indoor visible light communica-
tion systems,” IEEE Commun. Lett., vol. 25, no. 12, pp. 3913–3917,
Dec. 2021.

[24] L. Qian, X. Chi, L. Zhao, and A. Chaaban, “Secure visible light
communications via intelligent reflecting surfaces,” in Proc. IEEE Int.

Conf. Commun. (ICC), Montreal, QC, Canada, Jun. 2021, pp. 1–6.
[25] B. Lin, X. Tang, Z. Ghassemlooy, C. Lin, and Y. Li, “Experimental

demonstration of an indoor VLC positioning system based on OFDMA,”
IEEE Photon. J., vol. 9, no. 2, pp. 1–9, Apr. 2017.

[26] X. Chen and M. Jiang, “Adaptive statistical Bayesian MMSE chan-
nel estimation for visible light communication,” IEEE Trans. Signal

Process., vol. 65, no. 5, pp. 1287–1299, Mar. 2017.
[27] F. R. Gfeller and U. Bapst, “Wireless in-house data communication via

diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486,
Nov. 1979.

[28] M. Obeed, A. M. Salhab, M.-S. Alouini, and S. A. Zummo,
“On optimizing VLC networks for downlink multi-user transmission:
A survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2947–2976,
3rd Quart., 2019.

[29] T. Komine and M. Nakagawa, “Fundamental analysis for visible-light
communication system using LED lights,” IEEE Trans. Consum. Elec-

tron., vol. 50, no. 1, pp. 100–107, Feb. 2004.
[30] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:

Intelligent reflecting surface aided wireless network,” IEEE Commun.

Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.
[31] M. Bohge, J. Gross, A. Wolisz, and M. Meyer, “Dynamic resource

allocation in OFDM systems: An overview of cross-layer optimization
principles and techniques,” IEEE Netw., vol. 21, no. 1, pp. 53–59,
Feb. 2007.

[32] M. Grant, S. Boyd, and Y. Ye. (2009). CVX: Matlab Software for Disci-

plined Convex Programming. [Online]. Available: http://cvxr.com/cvx/
[33] J. Al-Khori, G. Nauryzbayev, M. M. Abdallah, and M. Hamdi, “Joint

beamforming design and power minimization for friendly jamming
relaying hybrid RF/VLC systems,” IEEE Photon. J., vol. 11, no. 2,
pp. 1–18, Apr. 2019.

[34] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[35] S. Bubeck, “Convex optimization: Algorithms and complexity,” Found.

Trends Mach. Learn., vol. 8, nos. 3–4, pp. 231–357, 2015.
[36] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” Amer.

Statist., vol. 58, no. 1, pp. 30–37, Feb. 2004.
[37] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algo-

rithms in signal processing, communications, and machine learning,”
IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.

[38] J. Papandriopoulos, S. Dey, and J. Evans, “Optimal and distributed
protocols for cross-layer design of physical and transport layers in
MANETs,” IEEE/ACM Trans. Netw., vol. 16, no. 6, pp. 1392–1405,
Dec. 2008.

[39] A. Wiesel, “Unified framework to regularized covariance estimation in
scaled Gaussian models,” IEEE Trans. Signal Process., vol. 60, no. 1,
pp. 29–38, Jan. 2012.

Shiyuan Sun received the B.S. degree from the
Department of Electronic Engineering, Tsinghua
University, Beijing, China, in 2020, where he is
currently pursuing the Ph.D. degree with the DTV
Technology Research and Development Center,
Department of Electronic Engineering. His research
interests are in the field of visible light commu-
nications, wireless communications, and intelligent
reflecting surface.

Fang Yang (Senior Member, IEEE) received the
B.S.E. and Ph.D. degrees in electronic engineer-
ing from Tsinghua University, Beijing, China, in
2005 and 2009, respectively. Currently, he is an
Associate Professor with the Department of Elec-
tronic Engineering, Tsinghua University. He has
published over 180 peer-reviewed journals and con-
ference papers. He holds over 50 Chinese patents
and two PCT patents. His research interests are
in the fields of power line communication, visible
light communication, and digital television terrestrial

broadcasting. He is a fellow of IET. He received the IEEE Scott Helt Memorial
Award (Best Paper Award in IEEE TRANSACTIONS ON BROADCASTING)
in 2015.

Jian Song (Fellow, IEEE) received the B.Eng.
and Ph.D. degrees in electrical engineering from
Tsinghua University, Beijing, China, in 1990 and
1995, respectively. Currently, he is the Director
of the Tsinghua DTV Technology Research and
Development Center. He has been working in quite
different areas of fiber-optic, satellite and wireless
communications, and the power-line communica-
tions. He has published more than 300 peer-reviewed
journals and conference papers. He holds two U.S.
and more than 80 Chinese patents. His current

research interest is in the area of digital TV broadcasting. He is a fellow
of IET.

Zhu Han (Fellow, IEEE) received the B.S. degree
in electronic engineering from Tsinghua Univer-
sity, Beijing, China, in 1997, and the M.S. and
Ph.D. degrees in electrical and computer engineering
from the University of Maryland, College Park, in
1999 and 2003, respectively. From 2000 to 2002,
he was a Research and Development Engineer at
JDSU, Germantown, Maryland. From 2003 to 2006,
he was a Research Associate with the University of
Maryland. From 2006 to 2008, he was an Assistant
Professor with Boise State University, Idaho. Cur-

rently, he is a John and Rebecca Moores Professor with the Electrical and
Computer Engineering Department and the Computer Science Department,
University of Houston, Texas. His research interests include wireless resource
allocation and management, wireless communications and networking, game
theory, big data analysis, security, and smart grid. He received the NSF Career
Award in 2010, the Fred W. Ellersick Prize of the IEEE Communication
Society in 2011, the EURASIP Best Paper Award for the Journal on Advances

in Signal Processing in 2015, the IEEE Leonard G. Abraham Prize in the
field of Communications Systems (Best Paper Award in IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS) in 2016, and several best paper
awards in IEEE conferences. He was an IEEE Communications Society Dis-
tinguished Lecturer from 2015 to 2018. He has been an ACM Distinguished
Member since 2019 and an AAAS Fellow since 2019. He has been a 1%
highly cited researcher since 2017 according to Web of Science. He is also
the Winner of the 2021 IEEE Kiyo Tomiyasu Award, for outstanding early
to mid-career contributions to technologies holding the promise of innovative
applications, with the following citation: “for contributions to game theory
and distributed management of autonomous communication networks.”

Authorized licensed use limited to: University of Houston. Downloaded on July 02,2023 at 14:31:08 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/MVT.2021.3127869

