Speed limits on deterministic chaos and dissipation
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Uncertainty in the initial conditions of dynamical systems can cause exponentially fast divergence
of trajectories, a signature of deterministic chaos, or be suppressed by the dissipation of energy. Here,
we derive a classical uncertainty relation that sets a speed limit on the rates of local observables
underlying these behaviors. For systems with a time-invariant stability matrix, the speed limit
we derive simplifies to a classical analogue of the Mandelstam-Tamm versions of the time-energy
uncertainty relation. These classical bounds are set by fluctuations in the local stability of state
space. To measure these fluctuations, we introduce a definition of the Fisher information in terms
of Lyapunov vectors in tangent space, analogous to the quantum Fisher information defined in
terms of wavevectors in Hilbert space. This information sets an upper bound on the speed at
which classical, dynamical systems and their observables, instantaneous Lyapunov exponents and
dissipation, evolve. This speed limit applies to systems that are open or closed, conservative or
dissipative, actively driven or passively evolving, and directly connects the geometries of phase

space and information.

Introduction. Quantum speed limits are fundamental
constraints on the time evolution of quantum mechan-
ical systems and their observables [1]. A milestone in
their development is the Mandelstam-Tamm version of
the time-energy uncertainty relation, which sets a speed
limit on the observables of unitary quantum dynamics [2].
This and other bounds have been extended [3] to open
quantum systems [4-7] and applied to many-body dy-
namics [8, 9]. They have also been connected to param-
eter estimation [10-13] and information theory [14-16]
where they quantify the inherent limits on measurements
of dynamical quantities [17, 18]. It was recently discov-
ered that there are similar bounds on the evolution of
classical systems, the earliest of which largely rely on the
Hilbert space of the Liouville equation [19, 20], prompt-
ing a closer inspection of the classical nature of quan-
tum speed limits [21]. For purely classical stochastic
dynamics, there is now a growing number of thermo-
dynamic speed limits [22-26] on the flux of energy and
entropy between a system and external reservoirs. In-
cluded among them is a stochastic thermodynamic speed
limit [26] that, when combined with the Mandelstam-
Tamm bound, gives a more general speed limit on the
observables of open quantum systems [27]. Despite this
progress, all the currently known classical speed limits
are on statistical dynamics. Still open is the question of
whether there are speed limits on the underlying phase-
space dynamics, dynamics that are just as important
to statistical mechanics and often exhibit deterministic
chaos. We address this question here.

Although many deterministic systems do not have
stochastic fluctuations, they can be characterized by “un-
certainty” associated with their evolution that originates
from small disturbances in their initial conditions. This
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uncertainty is often analyzed through the linear stabil-
ity of the, potentially nonlinear, dynamics where the
local rates of convergence and divergence are intrinsic
timescales for the evolution of perturbations. When per-
turbations corresponding to initially close phase space
trajectories diverge [28], these intrinsic timescales are
also a characteristic of deterministic chaos. These mea-
sures of instability have given insights into the physi-
cal mechanisms of the jamming transition in granular
materials [29], self-organizing systems [30], evaporating
collections of nuclei, equilibrium and nonequilibrium flu-
ids [31-33], and critical phenomena [34]. The widespread
analysis of the linear stability of dynamical systems, and
the established connections between dynamical systems
theory and nonequilibrium statistical mechanics [28, 35],
suggest the possibility of classical speed limits on the in-
trinsic timescales of dynamical (in)stability that underlie
deterministic chaos and the dissipation of energy.

In this Letter, we derive classical bounds on the ob-
servables and the state space of deterministic systems
that parallel the Mandelstam-Tamm form of the time-
energy uncertainty relation in quantum mechanics. Man-
delstam and Tamm [2] considered isolated quantum sys-
tems evolving unitarily, proving that the rate of change
of the expectation value (O) of an arbitrary quantum
observable O is bounded, |d(0)/dt| < 2A0AH, by the
standard deviations of the observable and the Hamilto-
nian, H. Perhaps more well known is their result that
the minimum time 7 for a system to evolve between
two orthogonal states: 7+ > 7/(2AH). Here, we derive
purely classical analogues of both of these bounds for
dynamics that are not statistical. These bounds leverage
a density matrix theory for the linearized dynamics of
classical, deterministic systems. Within this theory, we
can define observables, such as Lyapunov exponents and
phase space contraction rates, and their intrinsic speeds.
Defining a new classical Fisher information, we derive a
speed limit on the evolution of these observables. We
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illustrate these bounds for local phase-space stretching
rates and the energy dissipation rate in several model
systems.

Linearized dynamics. To derive these speed limits, we
start from the dynamical system, € = F|[x(t)], where x
represents a point x(t) := [z'(t), 2%(t),...,2"(t)]T in the
n-dimensional state space, M. Infinitesimal perturbation
vectors |6x(t)) = [d2'(t),02%(t),...,62"(t)]" € TM
represent uncertainty about the initial condition. For
a classical many-body system, these are perturbations of
positions and momenta, [5q(t),...,dp;(t),...]. Regard-
less of the state space, these vectors will generally stretch,
contract, and rotate over time under the linearized dy-
namics,

dy |62 (t)) = Alz(t)] [62(t)) , (1)

governed by the stability matrix, A := Alz(¢)] = VF
with elements (A); = 0i'(t)/027(t). In our use of
Dirac’s notation here, the ket (bra) represents a finite-
dimensional column (row) vector. While these linearized
dynamics are an established approach to analyze the sta-
bility of nonlinear dynamical systems, there are not yet
bounds on the time to transition between two classical
mechanical states. However, this equation of motion has
a formal similarity to the Schrédinger equation with the
stability matrix occupying the position of the Hamilto-
nian operator, which suggests they may be a starting
point for the derivation of classical speed limits.

One immediate challenge to setting limits on the dy-
namical evolution between two states is that these lim-
its typically require expectation values. To overcome
this challenge, we define a classical density matrix from
the perturbations |dz(t)). Once normalized, |du(t)) =
|02(t)/]|d(t)]]), these vectors have an outer product that
defines a projection operator (a classical density matrix),
o(t) = |du(t))ou(t)|, with the properties one expects of
a quantum-mechanical pure state [36]. The equation of
motion of this matrix,

dio=Ap+ A", (2)

is akin to the von Neumann equation in quantum dy-
namics, with A = A — Tr(Ap) playing the role of the
Hamiltonian (Supplemental Material, SM I [37]. These
norm-preserving dynamics hold regardless of whether the
dynamical system is Hamiltonian or dissipative, and they
enable a generalization of Liouville’s theorem and Liou-
ville’s equation on phase space volumes [36]. In fact, the
dynamics need not be mechanical; they could describe
the evolution of any deterministic system from chemical
reaction networks to power grids and biological popula-
tions [38].

Intrinsic speed of observables. Two well-known quan-
tities in statistical physics and dynamical systems the-
ory are averages over this density matrix. First, the in-
stantaneous Lyapunov exponent or local stretching rate
for the linearized dynamics is, r := r(t) = r[z(t)] =
dyIn||6z(t)|| = Tr(Aye) = (Ay), where Ay = L(A+

AT) is the symmetric part of A. Time averaging this
local rate gives the finite-time Lyapunov exponent [39].
Second, the dissipation is also an expectation value over
this density matrix. The local phase space dissipation
rate, A, is determined by the sum of stretching rates at
a given phase point, A = > " r;(t). For each perturba-
tion vector, one can use a Gram-Schmidt [40] or covariant
Lyapunov vector [41]. Here, we use the leading Lyapunov
vector that gives the largest Lyapunov exponent in the
asymptotic time limit [40].

These observables, and any other that is an expecta-
tion value over p, evolve in time. We can define the
intrinsic speed from the time evolution (O) of the ob-
servable O,

d;(0) = cov(0,2A7) + (d,0), (3)

as we show in SM II [37]. The covariance, cov(X,Y) =
(XY") — (X){YT), is composed of two pieces: the
mean anticommutator, cov(O,24;) = ({O,A.}) —
2(A1)(0), and the mean commutator, cov(O,2A_) =
([0, A_]). We will express it more compactly as: O :=
cov(0,2AT). This equation of motion is a determin-
istic analogue of the equation of motion for stochastic
thermodynamic observables [26] (where the covariance
could represent physical observables such as the heat
flux), Price’s equation in population biology [42], and
Ehrenfest’s theorem (Heisenberg’s equation) for quantum
mechanical observables [27, 43].

From this equation of motion, we can define the in-
trinsic speed of an observable and classical uncertainty
relations that set limits on these speeds. One measure
of the variation in O is the time it takes for the magni-
tude of this function O = [ Odt to have the value of one
standard deviation AO. If @ is constant, this time 7, is
approximately:

0] =

to+10 .
/ Odt‘ ~ |O|n = AO. (4)
to

This condition motivates the definition of the time re-
quired for the observable to evolve to by one standard
deviation. This observation motivates the definition of
an intrinsic speed for O,

1 g B |cov(0,2A47T)| (5)
To A0 AO ’

similar to definitions in quantum mechanics [27, 43] and
stochastic thermodynamics [26, 44]. Here, we will con-
sider observables for the exponential growth of uncer-
tainty in initial conditions, Lyapunov exponents, and ob-
servables for the energy dissipated.

Classical uncertainty relation and speed limit. Apply-
ing the Cauchy-Schwarz inequality to the covariance gives
our main result:

0% = cov(0,2A7)? < 4AO*AAT2. (6)
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Figure 1. Speed limit on the dissipation rate of the van der Pol
oscillator. (a) The Fisher information 77! = /ZIr = 2AAT
upper bounds (dashed black curve) the intrinsic speed T‘;l
of energy dissipation A = (V') with respect to a normalized
perturbation @ (solid blue): 77! > T‘;l. (b) The inequality
also sets a lower bound on the magnitude of dissipation |A| >
V7. Panel (b) shows |A| (solid blue curve) is bounded from
below by V7 (dashed black curve). The trajectory is on the
stable limit cycle with damping parameter p = 1.5. Shaded
regions mark regimes inaccessible to 7y, and |A|.

According to this classical uncertainty relation the un-
certainty in O and the stability matrix A with respect
to o are a bound on O. With the intrinsic speed, 7,
another form of this upper bound,
©AAT 23, (7)
is a time-stability uncertainty relation. From this re-
lation, the fluctuations in local stability over the state
space determines the speed at which observables, the in-
stantaneous Lyapunov exponents and energy dissipation,
evolve in time. For example, we the bound on energy dis-
sipation for the van der Pol oscillator is shown in Fig. 1.
This classical uncertainty relation has a mathematical
form that is strikingly similar to the Mandelstam-Tamm
version of the time-energy uncertainty relation. Because
of this similarity, this classical result can also be cast
as a speed limit. The Mandelstam-Tamm bound is of-
ten expressed as a quantum speed limit 7'51 < T(ile on

7'51 = AO~1d(O)/dt. For pure states, the limit is set by

the fluctuations in energy Tasr, = 7h/(2AH). Here, the
intrinsic speed 7 = 1/(2AA ") sets the limit on the speed
751 of the observable, 751 < 771, That is, fluctuations
in local stability, AA, related to the local curvature of
state space dictate the maximum rate of any observable
described by Eq. 4. This intrinsic feature of general dy-
namical systems bounds the local stretching rates that
are used to measure chaos (deterministic and transient)
and energy dissipation.

For certain observables, this classical speed limit can

even more closely resemble the time-energy uncertainty
relation [43] Recall that for an observable O of a closed
quantum system, the mean commutator ([O, H]) takes
the role of the covariance term in Eq. 5 and the term
(d;O) in the Ehrenfest equation vanishes. Here, the sta-
bility matrix is the generator of the evolution and plays
the role of the Hamiltonian in this analogy. In classical
dynamical systems, (d;O) does not necessarily vanish be-
cause the observable O is usually time dependent. How-
ever, if O is time independent, the second term in Eq. 3
vanishes, d;(O) = cov(O,2A"). Applying the Cauchy-
Schwarz inequality then leads to

di(0) < AOAL = 2A0AAT, (8)

another classical analogue of the Mandelstam-Tamm un-
certainty relation in quantum mechanics and the Cramér-
Rao bound in classical statistics. Similar restrictions on
the time-dependence of stochastic thermodynamic ob-
servables simplify a more general bound [26] for time-
independent observables to bounds based on the Cramér-
Raoinequality [23, 24]. In quantum mechanics [43], the
analogue of Eq. 3 was only recently derived and shown
to be a generalization of the Mandelstam-Tamm bound
for open quantum systems [27].

Following Mandelstam-Tamm [2], this speed limit can
put a bound on the time for a perturbation to evolve
to an orthogonal state in the phase space. Choosing
the observable to be the projection of the initial state
o(to) = |du(to))du(to)|, the time evolution of (g(ty)) is
lower bounded by (g(t)) > cos?’(AATt) in the time in-
terval 0 < t < 7/2AAT. (A similar result holds for the
quantum mechanical mean density operator (5(to))[45].)
This time interval also leads to a classical analogue of the
time-energy uncertainty relation,

TAAT > 72, (9)

which bounds the time 7+ it takes for the initial state
to evolve to an orthogonal state. Compared to our main
result, Eq. 7, this bound holds for the comparatively few
dynamical systems where A is time independent; two
examples are the harmonic oscillator and the model for
Chua’s circuit [46]. While many nonlinear systems will
violate this bound, they will satisfy more general bound,
Eq. 7, which holds regardless of the time-independence
of the observable.

Time-information uncertainty relation and tangent-
space Fisher information.  The Fisher information
(parametrized by time) is often used to express thermo-
dynamic and quantum speed limits because it is an in-
trinsic speed on the evolution of a system between neigh-
boring states [47, 48]. It has a geometric representa-
tion through the Fisher information matrix, a Rieman-
nian metric on statistical manifolds [13], and, through the
Cramér-Rao inequality, it is a lower bound on the vari-
ance of unbiased estimators of parameters, making it a
fundamental ingredient in optimal measurements of ran-
dom variables. However, neither the classical nor quan-



tum Fisher information are appropriate for the determin-
istic dynamics of the, potentially mechanical, systems we
consider here. Though we are without classical probabil-
ities, we can use the classical density matrix to define a
new classical Fisher information—what we will call the
tangent space Fisher information—to express the bounds
above.

To define this information, consider the logarithmic
derivative defined implicitly through dio = (oL +
L7 ) [49, 50]. The form of L,

L=2AT =2(A" — (A)), (10)

comes from a comparison with Eq. 2. The tangent-space
Fisher information is the variance of this classical loga-
rithmic derivative (for “pure” states),

Trp = AL? = (LL") = 4(AAT)?, (11)

and the expectation value of the Fisher information ma-
trix LLT. As a point of comparison, the quantum Fisher
information also derives from a logarithmic derivative
in quantum information theory [51]; for pure quantum
states evolving under a unitary dynamics, it is the vari-
ance in the energy Zp = 4AH?/h? [52].

With this classical Fisher information, Zr, Eq. 7 be-
comes the time-information uncertainty relation,

TO IF Z 1. (12)

That is, the Fisher information on the classical tangent
space is the intrinsic speed v/Zr = 77! that sets the
limit on the speed 75! of any observable, 75,1 < 771,
of the form in Eq. 7. When the observable is time
independent, (d;O) = 0, this uncertainty relation be-
comes, AO/d;(O) > 1/+/Tr, reminiscent of the Cramér-
Raobound. These forms of the speed limit suggest the
Fisher information on tangent space sets a fundamental
limit on our ability to determine the state of a system
given some classical uncertainty about its initial condi-
tion.

Model systems. The speed limit in Eq. 7 applies to any
continuous-time, differentiable, classical dynamical sys-
tem. Applying this bound, and those that follow from it,
to model systems illustrate their implications for differ-
ent physical observables. First, we consider the van-der
Pol oscillator [53] where the speed limit here bounds the
rate of energy dissipation. This oscillator is a 2D Liénard
system [54] given by & =y, § = —x — pu(a? — 1)y. It ex-
hibits self sustained oscillations with nonlinear damping
strength p > 0 and trajectories converge to a stable limit
cycle. The local energy dissipation rate can be found ex-
actly: A = —u(2? —1). To put a limit on the dissipation,
we take a tangent vector |§u) = (u,v)’ and construct
both an observable V' and the density matrix,

1 1 u? ww
V=4 (—1 1)’ e= (uv UQ)' (13)

We choose this matrix representation of the observable
because the dissipation rate A is the average (and stan-
dard deviation) of V over g. That is, (V) = Tr(V g) and

Figure 2. Speed limit on chaos. The instantaneous Lyapunov
exponent, r(t) = (Ay), for phase space orbits of (a) the
Lorenz-Fetter model and (b) the Hénon-Heiles model. Square
root of the tangent-space Fisher information (dashed black)
VIr = 2A AT upper bounds the speed T;i (solid red and
green). Shaded regions mark speeds not accessible to the
observable. The parameters of the Lorenz-Fetter model are:
o =10, B = 8/3, n = 22 (transient chaos). For the Hénon-
Heiles system, the chaotic trajectory corresponds to the en-
ergy E=1/6.

AV = |A| because Tr g = 1. The observable V is the
matrix-representation of dissipation that can be general-
ized to higher dimensional systems.

For the van der Pol oscillator (SM III [37]), the intrinsic
speed of dissipation is:

1 |eov(V,2AT)] -2 —4ury A
TV = T = |Tr A _9 of].

Averages here are over g, so that 7';1 = 2|Auv—2puxyu® —
1]. As shown in Fig. 1(a), the Fisher information Zr sets
an intrinsic speed limit on the local energy dissipation
rate of the van der Pol limit cycle: Zp = 771 > 7%
The inequality nearly saturates. Equation 5 further sug-
gests that the magnitude of |A| is lower bounded by the
product of the path observable V = |cov(V,2AT)| and
T

: Vv

Al >Vr=—. 14

Al =V Nirs (14)
Figure 1(b) shows that because this bound nearly satu-
rates, it sets a tight and finite lower bound on the energy
dissipation rate. This bound suggests that, for a given V),
lowering the dissipation rate requires more (Fisher) infor-
mation about the state relative to others infinitesimally
nearby.

The bounds we report here apply to non-Hamiltonian,
and even non-mechanical systems, such as chemical re-
action networks and population dynamics. If the dy-
namics exhibit deterministic chaos, we can consider these



bounds for the local rate of separation of chaotic tra-
jectories, (A;). The intrinsic speed of (A;), 771 =
|cov(A,,2AT)|/AA, has an upper bound set by /Zr =
2AAT. To illustrate this bound, we analyzed the Lorenz-
Fetter model [55]. We chose parameters (o,(,n) =
(10,8/3,22) for which this model exhibits transient
chaos [56]; the dynamics are asymptotically non-chaotic
but has a transient regime in which the oscillations are
chaotic. As shown in Fig. 2(a), the intrinsic speed of
(Ay) in the chaotic regime of one such trajectory is
bounded by +/Zr for . The bound holds well through
this transient regime and the decay regime, SM IV [37].

As an example of Hamiltonian dynamics, we analyze
the Hénon-Heiles system [57]. Figure 2(b) shows the
bound in Eq. 7 on local stretching rates on a chaotic
trajectory with energy £ = 1/6. For this energy, the
Hénon-Heiles system [57] has a non-uniform phase space
with algebraic decay of correlations and Poincaré recur-
rences [58]. This behavior is attributed to the existence
of partial barriers to transport in the phase space, which
leads to temporary trapping of orbits [59]. We note that
the bound in Eq. 7 continues to hold for chaotic orbits
visiting these so-called “sticky regimes” of a non-uniform
phase space. The Fisher information therefore sets local
upper bounds on the chaotic transport in Hamiltonian
systems.

Chaotic systems are known to have the property of
mixing characterized by relaxation or decay of correla-
tions in the phase space [60]. The decay rate or the rate
of mixing is determined by the leading Pollicott-Ruelle
resonance [61-63]. In some simple systems, these reso-
nances are related to the Lyapunov exponent [64]. For in-
stance, in the Hamiltonian flow of the inverted harmonic
potential with Hamiltonian H = Azy, the resonances are
integer multiples of the Lyapunov exponent A [65]. Here,

the intrinsic speed of the exponent A, which gives the
leading resonance for the inverted harmonic oscillator,
saturates the bound in Eq. 7, SM V [37].

Conclusions. Uncertainty relations are one of the most
prominent features of quantum mechanics. However,
classical systems can also have uncertainty in their initial
conditions, which can generate transient chaotic behav-
ior or be suppressed by the dissipation of energy. Here,
we show that for a broad class of dynamical systems,
this uncertainty and the sensitivity to initial conditions
also obey uncertainty relations. For deterministic, phys-
ical dynamics, we defined an intrinsic timescale, 7o, for
the mean of a given dynamical observable, O, to change
by the value of one initial standard deviation. Mirror-
ing the Mandelstam-Tamm bounds, we derive speed lim-
its on these observable timescales 70 AAT > % where
the stability matrix, A, plays the role of the Hamilto-
nian. As in quantum mechanics, this bounds also leads
to T AAT > 71/2, a classical analogue of the time-energy
uncertainty relation for the time 7+ it takes for an initial
perturbation to evolve to orthogonal state. We also re-
cast these results by defining first the Fisher information,
Ir, for classical deterministic dynamics, TovZp > 1.
These speed limits are on the underlying dynamics of
any classical system, be it open or closed, continuous or
many-body, dissipative or conservative, passively evolv-
ing or actively driven. All of these speed limits are model
independent and transform the longstanding statistical
feature of uncertainty relations into a mechanical frame-
work.
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