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ABSTRACT ARTICLE HISTORY
Randomized clinical trials (RCTs) have often been considered as the gold Received 27 May 2021
standard in drug development, but they may not be fully powered due to Accepted 19 November 2021
limited patient population and can even lead to ethical concerns in rare KEYWORDS

disease studies. In situations like this, real-world data (RWD)/historical data Data augmentation;

can be utilized to augment or possibly serve as the control arm for the historical control; matching;
current trial. If a subset of subjects from the RWD/historical trial could be propensity score; dynamic
matched to the concurrent control arm subjects and they are deemed borrowing

comparable following certain criteria, then pooling the matched subjects

from the historical control arm and the concurrent control arm can boost the

power. In this paper, we propose two matching methods of borrowing

historical control data that not only balance key observed baseline covariates

but also ensure the comparability of responses between the historical and

concurrent controls. Close similarity in response variables among controls

reduces Type | error inflation and provides further protection against unmea-

sured confounding bias, which is a major challenge in using RWD. Simulation

studies are conducted to evaluate the empirical performance of the two

matching methods in terms of Type | error rate and power, and an illustrative

description of a planned study is presented.

1. Introduction

Randomized clinical trials (RCTs) have been considered as the gold standard in drug development —
well-executed randomized trials can reduce population bias and balance on unmeasured confounding
factors so that the treatment difference observed in the trial is mainly attributable to the effectiveness
of the experimental intervention. Despite this well-known advantage, RCT can be very costly in terms
of time and resource, and sometimes can result in feasibility issues and even lead to ethical concerns
(Yang and Yu 2021). In the event that a randomized clinical trial is not feasible or not fully powered,
especially for treating a serious rare disease with a high mortality rate and a limited disease population,
scientists may consider utilizing real-world data (RWD)/historical data to fully replace the concurrent
control or augment the control arm for the current trial (Li et al. 2021; Lin et al. 2018). However,
improper use of RWD/historical data can undermine the interpretability of the study result, resulting
in a biased treatment effect estimate, an inflated Type I error rate, and a potential reduction in power.
In the ICH E10 “Choice of Control Group and Related Issues in Clinical Trials” guidance, FDA
highlighted that the suitability of designs with external controls is restricted by the inability to control
bias and should be limited to situations where “the effect of treatment is dramatic and the usual course
of the disease highly predictable” and “the endpoints are objective and the impact of baseline and
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treatment variables on the endpoint is well characterized” (2001). Ghadessi et al. (2020) provided
a summary of confirmatory clinical trials using historical controls (HCs) in a recent paper entitled “a
roadmap to using historical controls in clinical trials - by Drug Information Association Adaptive
Design Scientific Working Group (DIA-ADSWG)” and found that the majority of them have indica-
tions in rare diseases and other common applications for HC in the confirmatory settings include
medical devices, label expansion, pediatric indications, and small populations.

To minimize the potential biases caused by using historical data in clinical trials, both frequentist
and Bayesian approaches have been developed to enhance the comparability of historical and current
data. An intuitive frequentist approach to avoid pooling concurrent control with historical data when
they appear to be different is “Test-then-pool” (Viele et al. 2014). The similarity of historical and
concurrent control data is compared at a significance level of a and pooling only occurs if the null
hypothesis of equality is not rejected. Unlike “test-then-pool” that aims to borrow all information from
historical control when deemed appropriate, a variety of propensity score (PS) methods based on the
propensity scores originally defined by Rosenbaum and Rubin (1983) provide more flexibility in ways
that historical data can be utilized. Propensity score matching selects a subset of historical control
subjects who share similar baseline characteristics as those subjects in the current trial. Propensity
scores can also be used as a stratification factor (stratification by PS) or a weighting variable (inverse
probability treatment weighting), and such methods include all propensity-score-evaluable subjects
from the historical control. Because of its versatility, the propensity-score-based methods are one of
the most popular frequentist approaches used by researchers to balance baseline characteristics when
individual patient data (IPD) is available (Li et al. 2020). However, it is also common with real-world
and historical data that access to only aggregate data and summary information on the covariate
distribution is available. In such an event that IPD is not available for the historical/external data, the
robust indirect comparison methods including the matching-adjusted indirect comparisons (MAIC)
method proposed by Signorovitch et al. (2010) and the simulated treatment comparison (STC)
method by Ishak et al. (2015) could be used to balance on observed confounders between studies.

Bayesian methods are often used in the context of dynamic borrowing, which discounts the
historical information based on levels of similarity between the historical control and concurrent
data. Power prior is an informative prior combining the noninformative initial prior and the like-
lihood of the parameters raised to a power y € [0, 1] given the historical data. The hyperparameter y
quantifies the heterogeneity between the historical data and the current data and is used as a method of
down-weighting historical information when the level of similarity is low. Nikolakopoulos et al. (2018)
suggested a method of estimating the power prior for the case when only one historical dataset is
available that can control Type I error rate and Wang et al. (2019)proposed to use the propensity score
methodology to pre-select and stratify patients from real-world data and apply the power prior to each
stratum to obtain the posterior distributions for Bayesian inference. In scenarios with multiple
imbalanced prognostic factors, the Bayesian hierarchical models have also been proposed to incorpo-
rate patient-level baseline covariates to enhance the appropriateness of the exchangeability assumption
between the current and historical control data (Han et al. 2017).

Unlike randomized trials, the treatment assignment mechanism is usually not under control in
observational studies. The covariate distributions may differ substantially between the treatment and
control groups, which may introduce confounding bias in the causal effect estimation. Matching is
a popular method in observational studies to ensure the covariate balance between groups, hence
reduce confounding bias (Rosenbaum 2010). Comparing to other adjustments in observational
studies, the matching design has the following advantages (Lu 2021): 1) It is more robust as it uses
a nonparametric way to balance covariate distributions, which does not rely on parametric outcome
models. 2) It resembles the randomization design, which is easily interpretable to clinicians and
patients. Moreover, such resemblance ensures the statistical inferential procedures following the
randomization design can be applied to the matched data, either parametric or nonparametric. 3) It
is more objective as the matching process does not involve the outcome and the causal effect
estimation is conducted separately after matching.
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In the drug development for severe rare diseases, especially for those diseases with a high mortality
rate in the pediatric population (for example, spinal muscular atrophy), it would become unethical to
randomize subjects to placebo in clinical trials after an efficacious drug is available on the market. For
clinical trials to evaluate a new dosing regimen or therapy, the pivotal trial of the approved regimen
naturally provides an option to borrow historical data for the purpose of demonstrating superiority. In
the new study, subjects may be randomized with a 2:1 or k:1 ratio between the experimental treatment
arm and the active control arm using the approved regimen. At the final analysis, a subset of subjects
from the RWD/historical trial could be matched to the concurrent control arm subjects and if they are
deemed to be comparable in the response of interest, then the concurrent control arm can be
augmented by those matched subjects from the historical control arm for a boost in power. In this
paper, we propose two novel matching methods of borrowing historical control data that not only
balance key observed baseline covariates, but also ensure the comparability of responses between the
historical and concurrent controls, hence provide some protection against unmeasured confounders.

The rest of the paper is organized as follows. In Section 2, we review the concept of propensity score
and matching design, introduce an algorithm for matching between a larger target group and a smaller
reference group and two matching methods to augment the control arm. In Section 3, we conduct
simulation studies and evaluate empirical performances of the two matching methods in different
scenarios, in terms of Type I error rate and power. An illustrative description of a planned study is
presented in Section 4 and Section 5 is devoted to discussions.

2. Method
2.1. Notation

The randomized population in the current study is indicated as RP with TA denoting the treatment/
experimental arm and CA denoting the control arm. For the current study, let Yr denote the vector of
primary outcomes and Wy denote the vector of intermediate/auxiliary outcomes, and the correlation
between the outcome variables Y and W is p. Let Xg be the ng x p matrix of observed baseline covariates
where 7y is the total number of subjects in the current study. Treatment assignment is denoted as T: T = 0
indicates the concurrent control arm and T = 1 represents the experimental arm in the current study. Let
r be the proportion of subjects randomized in the experimental arm and 1 — r be the proportion in the
concurrent control arm, e.g., ¥ = 0.5 for 1:1 randomization and r = 2/3 for 2:1 randomization.

For the historical data, let Yy denote the vector of primary outcomes, Wy denote the vector of
intermediate/auxiliary outcomes and Xy the ny x p matrix of observed baseline covariates with ny
indicating the total number of subjects from the external data who satisfy the key inclusion and
exclusion criteria of the current randomized study, i.e., the historical control population (HCP). We
assume that there is only one external data source and the same p baseline covariates are collected in
both the current study and the external study.

Propensity score e(X) is a balancing score such that conditional on the propensity score, the
baseline covariates in e(X) are expected to be balanced between the two treatment groups.

Let i denote the i subject.

Let Z; =1 if patient i is from the current study and 0 if patient i comes from the external data.

Let X; denote the vector of observed baseline covariates for subject i.

Propensity score is defined as the conditional probability of being assigned to treatment group
1 given the observed set of covariates X;, denoted as e(X;) = P(Z; = 1|X;). Rosenbaum and
Rubin (1983) proved that the treatment assignment and the observed covariates are conditionally
independent given the propensity score, i.e., X1 Z|e(X) and that if the treatment assignment is
strongly ignorable, then adjustment for e(X) or a balancing score b(X) finer than e(X) is sufficient
to produce an unbiased estimate of the average treatment effect. The propensity scores are often
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estimated through logistic regression using Z as the dependent variable and X as the independent
variables and the predicted probability P(Z; = 1|X;): e(X;) = l/(l + exp{—X,ﬁ}) is the esti-

mated propensity score for the i subject, where B is the estimate from the regression model.

2.2. Matching design

Matching refers to a class of methods that group subjects together according to a certain homogeneity
criterion with the goal to balance the covariates distribution. Broadly speaking, matching can be done
based on the values of propensity score, or any distance metric of covariates (X). For example, the
degree of homogeneity Hj; between any two subjects (i, j) can be defined using distance metric such as
(Stuart 2010)

Euclidean distance: H;; = (Xi — Xj)/(Xi -X )
Mahalanobis distance: H;j = (X; — Xj)/E_l (Xi — X;)

Propensity score distance: H;; = (e(X;) — e(Xj))2 or Hjj = |egX,-) —e(X;)|
Linear Propensity score distance: H;; = (logit(e;) — logit(e;))” or Hy = |logit(e;) — logit(e;)|

e o o o
<.

The Mahalanobis distance was originally developed for multivariate normal distribution with covar-
iance matrix 3. However, when certain covariate contains extreme outliers or has a long-tailed
distribution, the Mahalanobis distance will tend to ignore that covariate in matching due to its inflated
standard deviation. So robust/rank-based Mahalanobis distance was proposed as an alternative
measure by replacing the covariates with their ranks and using an adjusted covariance matrix
(Rosenbaum 2010).

In observational studies or clinical trials with a historical data borrowing design, researchers often
match external datasets (the reference group) of larger sizes with the current study (the target group)
with a smaller sample size. There are different matching designs that can be used to match the
reference group to the target group (Rosenbaum 2010).

e One-to-1 matching (pair matching) is the most commonly used design. In each matched set, there
is exactly one subject from the target group and one from the reference group. This design has
good matching quality but may not be very efficient in using the data for large reference groups.

e One-to-k matching can be more efficient in using the external data. In each matched set, there is
one subject from the target group and a fixed number of k> 1 subjects from the reference group.
However, the matching quality may be sacrificed if k is not appropriately selected.

e Variable matching is regarded as an intermediate step between pair matching and 1-to-k
matching. In each matched set, there is one subject from the target group and multiple but not
fixed number of subjects from the reference group. This matching design use the external data
efficiently, but each subject in the target group will carry different weights during testing, which
could lead to concerns in some clinical trial settings.

e Full matching makes use of every subject. In each matched set, there is one subject from one
group and multiple but not fixed number of subjects from another group. The full matching
design uses all available data without sacrificing the matching quality much and it can be viewed
as the finest way of stratification with at least one subject from each group.

2.3. An algorithm for matching with a larger target group and a smaller reference group

Generally, matching is conducted between a small target group (typically the treatment group) and
a large reference group (typically the control group). This is referred to as matched sampling
(Rosenbaum and Rubin 1985), since it is convenient to select a portion of subjects from the larger
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reference group to mimic the covariate distribution of a smaller target group. In the rare disease
setting, researchers might encounter challenges when the identified reference group (i.e., historical
control population) has a smaller sample size than the target group (i.e., current trial participants).
Therefore, existing matching algorithms cannot be applied directly. We propose an algorithm to suit
the need of matching the historical control population (HCP) of size ny with the randomized
population (RP) in the current study of size ng where ny <ng. The basic idea is to first draw
a small random sample from RP, then match HCP with this small sample using the conventional
matching algorithms to ensure that the distribution of the matched HCP subset mimics the distribu-
tion of RP. The process will be repeated a few times and the matched subset resembling RP the most is
selected. Let HC (Historical Control) represent the subset of HCP that is borrowed through the
matching with sample size nyc. The detailed algorithm is described below.

(1) Specify the number of subjects nyc < ny to be borrowed from HCP;

(2) Draw random samples of nyc subjects from RP for k times;

(3) Construct matched historical control candidate samples by matching HCP with each random
sample based on the key covariates;

(4) Compare the distances between RP and the k matched historical control candidate samples
using robust Mahalanobis distance (Pimentel 2016), and select the best match as the HC (the
one with the smallest distance).

The more subsamples from RP we generate, the more likely we get a matched HC resembling RP.
Although motivated by a rare disease application where the reference group size ny is smaller than the
target group size g, this algorithm can be easily applied to borrow an arbitrary number of subjects
from the historical control pool which is not proportional to ng.

2.4. Using matching to augment the control arm from external data

2.4.1. Conditional borrowing

Historical data has rarely been considered as reliable as the current randomized control, even if it was
generated from a historical trial done by the same organization as the current study, with largely the
same investigators and no apparent dissimilarity in other aspects of the study design (Han et al. 2017).
To minimize the concern for some unpredictable bias introduced by the historical data, conditional
borrowing can be used to passively control for unmeasured confounding. It is achieved by comparing
the primary response variable in the matched control samples based on a pre-specified closeness
criterion. If the responses differ substantially (after matching on the key baseline covariates), it is likely
due to some unmeasured confounders that are not controlled through matching. The conditional
borrowing approach is implemented in the following two steps:

(1) Match the historical data (HCP) with the current trial data (RP) based on the key baseline
covariates;

(2) Check the comparability of the matched historical control (HC) and the concurrent control
arm (CC) according to a pre-specified closeness criterion for the response variable.

If HC and CC are comparable, then pool subjects from the matched HC with CC and construct the
augmented control arm (CA = HC+CC). Otherwise, if HC and CC are deemed different, then
borrowing historical data will very likely introduce biases, so the control arm will contain only the
concurrent control without pooling any data from the historical control. Figure 1 helps illustrate the
conditional borrowing steps discribed above. A key step in the implementation is that the matching
process only involves baseline covariates. The response variable is involved after matching as
a measure to determine whether pooling is acceptable or not. The specific criterion on determining
closeness should be agreed upon among all stakeholders prior to conducting matching. For larger
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Treatment
Randomized Arm (TA)
Population (RP) ——
NS “ Concurrent
Control (CC)
Historical

>

Control (HC)

Figure 1. lllustration of conditional borrowing.

concurrent trials where it is safe to assume that the baseline covariates between the treatment arm
(TA) and the concurrent control arm (CC) are well-balanced through randomization, propensity
score matching in step one of the conditional borrowing approach could also done between HCP and
CC.

2.4.2. Intermediate outcome assisted borrowing

There could be cases where the decisions on borrowing - the subset of patients to construct the
historical control arm and/or whether borrowing would be feasible at final - need to be made before
the primary endpoint is available. In such situations, one way to control for unmeasured biases
without the primary endpoint is to use some intermediate outcome as one of the matching variables.
The intermediate outcomes could be the primary endpoint assessed at an earlier time point or other
biomarker or surrogate endpoint that has a moderate/high correlation with the primary endpoint and
reflects the treatment effect faster. This approach takes advantage of the early movement of these
intermediate outcome measures related to clinical benefit, actively controls for any unmeasured
confounding, and allows for accurate decision-making on borrowing before the primary endpoint is
available. One important note is that matching only occurs between historical and concurrent control
groups and no treatment group data are used, since the intermediate outcome is post-treatment. One
needs to carefully check the covariate balance after matching, especially the balance of the intermediate
outcome to ensure the comparability between the historical control and concurrent control arms. It
would also be helpful to pre-specify an acceptable balance criterion to ensure subjectivity.

2.5. Post-matching balance checking

After two groups have been matched, it is important to check the covariate balance. The two
commonly used statistical measures are the absolute standardized difference for mean (SDM) and
the log-ratio of standard deviations. For continuous and binary variables, the absolute standardized
differences for mean are defined as

)

Stz=1) + Sz-0)

100|X(Z:1) — X(Z:O)’/ 2 (1)
R R Pz—iy(1 = Pi—r)) +Piz—o) (1 = Pz0)
100‘1’(2:1) - P(z:o))/ ( ) 3 ( ) )
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where the means in the numerator are calculated from the matched samples and the variances in the
denominator are calculated from the pre-matching samples (Rosenbaum and Rubin 1985). The
absolute standardized difference should be less than or equal to 0.25 for good variable balance
(Stuart 2010) and a smaller threshold of 0.1 has also been used to impose a better balance (Austin
2009; Mamdani et al. 2005; Normand et al. 2001). The log ratio of standard deviations is defined as

log (SZ:I/SZ:0> and a threshold of 0.2 may be used as it implies that the corresponding variances are
within 50% (Rubin 2001).

3. Simulation study
3.1. Simulation setting

In this section, we conduct simulation studies to evaluate the empirical performances of the two
proposed matching methods: 1) conditional borrowing and 2) intermediate outcome assisted borrow-
ing. Let x1,x,,x3,x4 denote the key baseline covariates, where x;,x, follow independent binary
distributions and x3, x4 follow independent normal distributions. The binary indicator of the treat-
ment status is denoted as T, the primary outcome is denoted as Y and the intermediate/auxiliary
outcome is denoted as W.

The joint distribution of (Y, W) follows a bivariate normal distribution with correlation p:

Y - AMY O‘% PUYJW])
(A

It is assumed that the correlation between the primary and intermediate/auxiliary outcomes are the
same for the historical data and the current trial.

One historical control population (HCP) with 200 subjects will be simulated. The randomized
population (RP) contains 120 subjects randomized with 2:1 ratio to the treatment arm (TA) with nya =
80 and the concurrent control arm (CC) with ncc = 40. The goal is to identify a historical control (HC) of
40 subjects through matching to potentially augment the control arm for final analysis. For simplicity and
the purpose of fair comparison, the historical control pool (HCP) will be matched with the concurrent
control (CC) through pair matching. The population indicator Z = 1 represents the randomized popula-
tion RP in the current study and Z = 0 represents the historical control population HCP. For each choice of
ao(Z = 1), 1000 RPs will be simulated each under Hy with a5 = 0 and H, with a5 = 1.5, so that the
power without borrowing historical data is 72.5%.

Uy (Z=0) = ag(Z = 0) + a1x1 + axx2 + a3x3 + daxs

[/IW(Z = 0) ( = 0) + b1x1 + bzXz + b3X3 + b4X4

Uy(Z=1) =ao(Z = 1) + a1x1 + arx, + asx3 + asxs + asT
#w( 1) = bo(Z = 1) + bixy + byxy + bsxs + byxs + bsT

=

It is also assumed that the baseline covariates have the same effect on the response variables of the two
populations, with the intercepts ag(Z) and by (Z) representing any potential unmeasured confounding
effect on the responses.

In the simulation, ao(Z = 0) is fixed to be 2 and ao(Z = 1) = ao(Z = 0) + ¢, where c takes values
from —0.8 to 4.8 and represents the unknown distributional shift in mean response of the current trial
from the historical control under the same control regimen. The correlation p between Y and W is set
to be 0.2, 0.5 and 0.8 to represent low, medium, and high correlation. Three borrowing strategies were
evaluated:

(1) Pooling — match HCP with CC using x; ~x4 and pool matched HC with CC if the absolute
SDM of the propensity score distance is less than or equal to 0.1.
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(2) Conditional borrowing — match HCP with CC using x; ~x, and check the absolute SDM of the
propensity score distance and the response similarity between the matched HC and CC. Pool HC
with CC only when the absolute SDM of the propensity score distance is less than or equal to 0.1
and they are similar in response. The response similarity criterion is set up as

?CC c [?HC — L x SE(YHc), ?HC + L x SE(YH(;)] (3)

where L takes the values of 1, 1.5 and 2, indicating the number of standard errors the mean of
concurrent control arm needs to be from the historical control mean.

(3) Intermediate outcome assisted borrowing - match HCP with CC using x; ~x4, W and check the
balance of W and the propensity score distance using the standardized difference for mean. Pool
HC and CC only if the absolute SDMs of W and the propensity score distance are both less than
or equal to 0.1.

3.2. Simulation results

3.2.1. Pooling and conditional borrowing

Figure 2 presents the two-sided Type I error profiles of borrowing historical control data using pooling
and conditional borrowing. The pooling method corresponds to an extreme case of conditional
borrowing where L = oo (literally no restriction on mean similarity), denoted as “inf” in Figure 2.
The x-axis shows the population mean response of the concurrent control arm (CC) in the Type
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Figure 2. Type | error rate for pooling and conditional borrowing.
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I error plots, with the vertical dotted line indicating the mean response of the historical control
population (HCP). To illustrate the overall Type I error profile, the simulation results cover a wider
range of the current trial mean response than what is plausible to be observed in reality.

As shown in Figure 2, with both methods, Type I error rate is controlled at the two-sided 0.05
significance level when the CC mean is the same as the HCP mean and starts to inflate when the CC
mean shifts away from the HCP mean. Without mean similarity check, the Type I error rate of the
pooling method goes up to one when there is a substantial difference in the mean response between the
current trial and the historical data resulted from some unmeasured confounding variable. However,
with the additional mean similarity check on the response variable, for conditional borrowing, the
Type I error rate is bounded. The stringency of the L-criterion determines both the magnitude of Type
I error inflation and the position where the maximum Type I error rate occurs — the amount of
inflation resulted from a looser criterion of L = 2 doubles the amount from a strict criterion of L = 1.
Moreover, with a more stringent criterion, the maximum Type I error rate is reached with a smaller
CC mean deviation from the HCP mean. With a two-sided test, the Type I error rate is also inflated
when the CC mean is less than the HCP mean, but it can be avoided with a one-sided test.

In addition to the Type I error rates, Figures 3 and 4 present the borrowing rate (empirical
probability of borrowing), power, and treatment effect estimation % bias defined as (a5 — as)/as of
the conditional borrowing method with different standard error thresholds. The borrowing rate is the
highest when the CC mean equals to the HCP mean, resulting in a boost in power of almost 10% even
with the strict criterion of L = 1, and the empirical probability of borrowing drops down to zero when
the CC mean deviates from the HCP mean. These results suggest that the conditional borrowing
method provides a decent amount of power increase with no Type I error inflation when the
distribution of the current control data is the same as the historical data, and it is capable of detecting
the overall distributional shift of CC from HCP and adjust the probability of borrowing accordingly.
Due to the relatively high borrowing rate when the CC mean is slightly higher than the HCP mean,
further power increase can be obtained at the cost of minimal Type I error inflation. Even if the CC
mean is slightly lower than the HCP mean, borrowing from historical data still provides some power
gain because the loss in mean difference can be offset by the gain in smaller pooled SD with a high
borrowing rate. However, if the CC mean is much lower than the HCP mean, borrowing from the
historical data would result in power loss. The estimation bias curves are similar in shape as the Type
I error curves with the maximum bias achieved when the CC mean is moderately different from the
HCP mean and there is still over 40% of borrowing from the HC.
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Figure 3. Type | error rate and borrowing rate for conditional borrowing.
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Figure 4. Power and estimation bias for conditional borrowing.

3.2.2. Intermediate outcome assisted borrowing
Figure 5 shows the Type I error inflation and borrowing rate using the intermediate outcome assisted
borrowing method with the absolute standardized mean difference (SDM) threshold of 0.1 for post
matching balance check. With the absence of primary endpoint, using an intermediate outcome as one
of the propensity score matching variables and assuring good balance between HC and CC results in
bounded Type I error inflation. However, the maximum inflation is highly dependent on the strength
of correlation between the intermediate and primary outcome, and the Type I error rate is only under
reasonable control when the correlation is high. Based on the borrowing rate curves on the right panel,
a higher correlation means better sensitivity to the overall distributional shift of CC from HCP and an
earlier drop in the probability of borrowing when the CC mean shifts away from the HCP mean.
Figure 6 demonstrates the power and treatment effect estimation bias for the intermediate
outcome assisted borrowing method with different correlation assumptions. The power curve
under the higher correlation scenario of 0.8 is similar in shape as those of the conditional
borrowing method above, with a decent power boost of 7.5% when the CC mean is the same as
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Figure 6. Power and estimation for intermediate outcome assisted borrowing with SDM threshold of 0.1.

the HCP mean. Thus, if the primary endpoint is not available at the time when the decision on
borrowing needs to be made and an intermediate endpoint highly correlated with the primary
endpoint is available, this outcome assisted borrowing method could shed some light on the
similarity between the historical data and the concurrent control data and result in a more
informed decision.

3.2.3. Matching a larger target group with a smaller reference group

To demonstrate the performance of the proposed method for matching with a larger target
group and a smaller reference group, a second historical control population (HCP) with ny =
60 subjects is simulated. The 1000 simulated randomized populations (RP) with ng = 120
subjects remains the same as those in the previous simulation setting. The goal is to identify
a historical control (HC) of size nyc = 40 through matching HCP with RP using covariates
x1~x4. The number of random draws (k) from the randomized population is set to be 10 and
50 respectively, and similar conditional borrowing method as demonstrated in Section 3.1
strategy (2) is used - pool HC with CC only when the absolute SDM of the propensity score
distance is less than or equal to 0.1 and they are similar in response as defined in Equation 3.
Figure 7 presents the Type I error rate, probability of borrowing and power for this method
with different choices of k.

It can be observed that the overall shapes of all the curves have the same pattern as those
presented in Section 3.2.1 — Type I error inflation is bounded, and the power boost is meaningful
when the population mean of the concurrent control arm is the same as that of the historical
control pool. Due to the fact that the historical control pool is small, with the restriction on the
absolute SDM of the propensity score distance to ensure matching quality, borrowing rate is
generally lower. Comparing the left and right panel, one can observe that the performances for
k =10 is very similar to that for k = 50. Thus, it is safe to conclude that in small sample size
setting, if the goal is to select a relatively big historical control arm from the historical control
pool, it does not require a large number of random draws. Although motivated by a rare disease
application where the reference group size ny is smaller than the target group size ng, this
algorithm can be easily applied to borrow an arbitrary number of subjects from the historical
control pool, which is not proportional to ng.
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Figure 7. Type | error rate, borrowing rate and power for k = 10 and 50.

4. An illustrative description of a planned study

To illustrate the implementation of our proposed methodology, we consider a randomized study of
relapsed systemic anaplastic large cell lymphomas (sALCL) with a design feature to potentially borrow
from RWD. Anaplastic large cell lymphoma (ALCL) is a very rare disease that accounts for approxi-
mately 3% of the cases of adult non-Hodgkin lymphoma (NHL). Unlike standard ALCL, sALCL is not
localized and thus required systemic therapy. Due to the rare lymphomas type and ethical considera-
tions, it is difficult to conduct a large randomized phase 3 clinical trial. After clinical, statistical, and
trial feasibility evaluations, a smaller randomized study that has the potential to borrow RWD to
augment the control arm is considered.
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The primary endpoint is progression-free-survival (PFS), which is defined as the time from the start
of study treatment to the first documentation of objective tumor progression or to death due to any
cause, whichever comes first. The secondary endpoint is objective response rate (ORR), which is
defined as the proportion of patients with complete remission (CR) or partial remission (PR)
according to the International Working Group (IWG) Revised Response Criteria for Malignant
Lymphoma (Cheson 2007). At the design stage, appropriate RWD sources and seven important
baseline covariates are identified through literature review, which includes age, gender, race, anaplastic
lymphoma kinase (ALK) status, baseline B Symptoms, ECOG performance status (a scale developed
by the Eastern Cooperative Oncology Group), and prior line of treatment. Assuming an exponential
distribution of PFS, 115 events will be required to detect a hazard ratio of 0.6 with approximately 80%
power using the two-sided o level of 0.05. However, due to the limited patient population and slow
recruitment rate, only 90 subjects are expected to be recruited in this randomized clinical trial, which is
less than the event size needed to achieve sufficient power. Therefore, the study team decide to
randomize 90 patients in 2:1 (treated: SOC) fashion, and potentially borrow additional 30 patients
from historical data to augment the control group and increase the overall power. Based on the
similarly of inclusion and exclusion criteria, prior treatment, cancer types and endpoint availability,
a total of 100 patients are identified from the RWD database.

For conditional borrowing, the median progression-free survival time were used to check response
similarity: if the median progression-free survival time of the concurrent control is within the 68%
confidence interval of the median progression-free survival time of the historical control after
matching, then it is deemed feasible to borrow. Note that this is equivalent to the similarity criterion
of L = 1 in the continuous response variable case. Since ORR is directly attributable to drug effect, it
has been the most commonly used surrogate endpoint in support of accelerated approval in oncology
clinical trials (FDA 2018). Based on the fact that ORR is highly correlated with the primary survival
endpoint and can be observed earlier in time, it is used as the intermediate outcome W for the
outcome assisted borrowing.

At the final analysis, the effect of the treatment comparing to the SOC was estimated by the hazard
ratio (HR). Figure 8 is the Kaplan—Meier curves for the current study of 90 subjects and the historical
control pool of 100 subjects. Without borrowing from the historical control pool, the hazard ratio is
0.65 with a p-value of 0.061. However, if conditional borrowing method is used, the median progres-
sion-free survival time of the two control arms satisfy the pre-specified similarity criteria and the
resulted HR between the treatment arm and the augmented control arm of SOC is 0.69
(p-value = 0.048). If the intermediate outcome assisted borrowing method is applied, the post-
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Figure 8. Kaplan meier curves for the current study (Treatment am and concurrent control) and the historical control pool.
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Figure 9. Kaplan meier curves after borrowing from historical data.

matching absolute SDMs of the ORR and the overall propensity score distance are both less than 0.1.
In fact, further similarity check on the primary time-to-progression endpoint shows that the median
progression-free survival time of the concurrent control is within the 68% C.I. of the historical control,
thus satisfying the conditional borrowing criteria as well. The resulted HR between the treatment arm
and the augmented control arm of SOC is 0.64 with a significant p-value of 0.019. Figure 9 presents the
Kaplan-Meier curves after borrowing from historical data. This example shows that if a study is
underpowered, borrowing from historical data that is similar to the concurrent control could help
increase the probability of trial success.

5. Discussion

This paper introduced two matching methods of borrowing RWD or historical data that not only
balance the key observed baseline covariates, but also ensure the comparability of responses between the
historical and concurrent controls. The latter is crucial in RWE. Due to the lack of randomization,
unmeasured confounding is a major threat to the validity of clinical findings. The conditional borrow-
ing method is a passive way of protecting against unmeasured confounders when the final efficacy
endpoint is available. On the other hand, if decisions on borrowing need to be made at the interim when
the primary endpoint is not yet available, the intermediate outcome assisted borrowing can be applied
to actively control for unmeasured confounding, given there exists a potential surrogate or intermediate
endpoint that is correlated with the primary endpoint. The intermediate endpoint can also be
a biomarker or the primary efficacy endpoint itself assessed at an earlier time point when the complete
data is available, but it is critical to select one that is highly correlated with the primary endpoint.

In the simulation study for outcome assisted borrowing in Section 3.2.2, for illustrative purposes,
the trial design is considered such that at the interim, the matched historical control arm and the
feasibility to borrow are determined using the intermediate endpoint and the final evaluation of
efficacy is fully based on this interim decision. In a real trial design, however, when the primary efficacy
endpoint becomes available at the end of the study, one may add a conditional borrowing step to
further check for response comparability before pooling the HC matched at the interim. Even if there
is no need for an interim decision on borrowing and the conditional borrowing method is used, when
the historical control population is large enough and there exists a surrogate endpoint (W) that is
known to be highly correlated with the primary endpoint (Y), it is still sensible to include this endpoint
(W) as a matching variable. Furthermore, the two proposed methods can be combined in an adaptive
design with the option of sample size increase:
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e At the interim, use the intermediate outcome as a variable in propensity score matching and
determine if the matched historical control data is similar to the concurrent control data through
covariate balance check;

e If the post-matching matching balance is reasonably well, then proceed with the original sample
size and pool the matched HC with CC for the final analysis;

e Otherwise, if after matching, the intermediate outcome or the overall propensity score distance
does not satisty the pre-specified closeness criteria, then increase sample size to achieve the
desired power. At the final analysis, use the conditional borrowing approach and attempt to
borrow from historical data with an increased sample size.

For the above adaptive design to be applied, further simulation studies need to be conducted to
understand the impact on the Type I error rate.

In recent years, Bayesian methods have gained increasing popularity in dynamic historical data
borrowing. Even though they have the ability to adaptively adjust the amount of information borrowed
from historical data, the proposed conditional borrowing method has the following advantages: 1) easy
to implement 2) flexible enough to be applied to any analytical approach for final analysis and any other
endpoints and 3) easy to be communicated with team members and clinicians. For clinical trials that
have missing data due to death and need to use some type of composite method to account for both
clinical function endpoint and survival, the conditional borrowing method can be easily extended to
ensure comparability for two or more response variables. Successful matching creates a randomization-
like scenario, and individual level data from matched subjects can be used. Therefore, any analytical
methods used for testing the primary endpoint in randomized trials can be applied to the post-matching
data. In fact, in the FDA guidance for industry “Amyotrophic Lateral Sclerosis: Developing Drugs for
Treatment” (2019), joint rank test (Berry et al. 2013) is specifically required as the single overall measure:

Sponsors should characterize an effect on mortality in all ALS development programs because it is important to
the consideration of the overall safety and effectiveness profiles. If patient function is intended to be assessed by
the primary outcome, mortality should be integrated into the primary outcome by an analysis method that
combines survival and function into a single overall measure, such as the joint rank test (see section III.B.4.b.,
Integrated assessment of function and survival).

Moreover, it is straightforward to perform further tests on all other secondary and exploratory
endpoints using the augmented data, whether they are continuous, binary or time-to-event. Thus,
for drug development especially in the rare disease setting where mortality needs to be characterized,
the proposed conditional borrowing approach has the capability to borrow additional RWD/historical
data, increase the probability of success for researchers and ethically reduce patient burden.

Although the proposed approaches show the potential to augment the traditional randomized
clinical trials with RWD, it is still important to pay additional attention to the practical considerations
of using the propensity score methods in the clinical development such as baseline covariates,
sensitivity analysis, practical implementation flow, etc (Li et al. 2020).
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