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Accounting for matching structure in post-matching
analysis of observational studies

Yuyang Zhang and Bo Lu

Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA

ABSTRACT
Matching design is commonly used in social science and health
research with observational data, as it is robust to outcome model
misspecification and has the intuitive interpretation similar to
blocked randomization design. Estimate the population average
treatment effect with propensity score adjustment is very popular.
From a practical perspective, however, it is not clear whether the
post-matching analysis should adjust for the matching structure.
Analytical strategies with and without accounting for matching
design have appeared in literature. For continuous outcomes, the
implication is more on the variance estimation. But for binary out-
comes, the non-collapsibility problem for the odds ratio adds
another layer of complexity in choosing between estimation strat-
egies. We have conducted extensive simulation studies to compare
several matching estimators and the propensity score weighting esti-
mator for both continuous and binary outcomes. Especially, we con-
sider three measures for binary outcomes, risk difference, relative risk
and odds ratio. Our simulation results suggest that statistical meth-
ods accounting for matching structure are more advantageous and
among binary effect measures, odds ratio tends to have higher
power than other measures. We also apply different estimation strat-
egies to a U.S. trauma care database to examine mortality difference
between trauma centers and non-trauma centers.
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1. Introduction

In social science and health research, observational studies provide a rich source of data
for evaluating the impact of interventions or programs. Samples in observational studies
are usually more representative of the real population that the intervention is intended
to be applied. Matching is a commonly used design to balance the covariate distribu-
tion, hence to remove the confounding bias. Comparing to parametric modeling,
matching is robust to outcome model misspecification and has the intuitive interpret-
ation similar to blocked randomization designs. When there are only several covariates
to be balanced, direct matching on individual variables may be used. When there is a
large number of confounding variables, which is likely to be the case in practice,
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matching needs to be done based on some composite summary of the data, such as
Mahalanobis distance. To estimate the average causal effect, Rosenbaum and Rubin
(1983) showed that propensity score matching is an effective way of removing bias.
Propensity score can also be used in the form of stratification, weighting or covariance
adjustment (Lunceford and Davidian 2004).
To make valid causal inference, it requires more assumptions than merely estimating

the associatinal relationship. First, stable unit treatment value assumption (SUTVA) dic-
tates that the treatment applied to one subject does not affect the outcomes for other sub-
jects and there is only one version of the treatment. Second, no unmeasured confounding
assumption implies that adjusting for observed pretreatment covariates is sufficient to
remove all confounding bias. Third, common support assumption assures that the treated
and untreated groups are comparable in terms of observed covariates. The first assump-
tion is important for both randomized experiments and observational studies. The latter
two assumptions may be referred as strongly ignorable treatment assignment assumption
that is more relevant for observational studies. The common support assumption is more
relevant for matching design. If the covariates in two groups do not overlap well, it is very
difficult to create high quality matched pairs, which subsequently may bias the analysis.
Unlike modeling based strategies, matching has some unique design features (Stuart

2010). First, it needs a measure of closeness. When the dimension of covariates is high,
it is impossible to match exactly on every single one. A composite distance metric is
often used, i.e., Mahalanobis distance or propensity score based distance, etc. To further
improve the matching quality, caliper matching may be used, where the caliper refers to
additional constraints on the within-pair discrepancy of certain variables or the propen-
sity score. Second, it needs some special algorithm to implement matching. The popular
choices are nearest neighbor matching algorithm with caliper or optimal matching algo-
rithm. Third, there are different options for constructing the matched sets. Pair match-
ing is a special case of the 1 : k matching design, where it matches one treated to k
untreated subjects (k � 1). Full matching is known to minimize the discrepancy
between treated and untreated groups, but Rosenbaum (1991) mentioned that the post-
matching analysis is more complicated as not all matched sets have the same size.
Fourth, just like residual analysis for regression models, it is important to conduct post-
matching balance diagnostics. The purpose of matching is to create matched groups
that are comparable in terms of covariate distributions. In the sense, it recreates a ran-
domization-like scenario, which can be used to infer causal relationship without much
modeling. If the two groups of data, collected via an observational manner, cannot be
matched well. It is a warning signal that any effort to infer causal effect might be futile,
because the two groups of subjects are different in some important ways. This is a dis-
tinctive feature from the modeling based strategy, where one can always run models
regardless of the data overlap. But the resulting treatment effect estimates are likely just
speculations based on the model.
With a well-matched dataset, the post-matching inference can be straightforward.

One can just contrast the difference in outcomes between two groups without further
adjustment, as covariates are balanced by matching as a priori. Post-matching modeling
may be needed either as a means to reduce residual confounding in matched pairs or to
improve the efficiency of the estimate by taking advantage of predictive information
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from important covariates. Based on Rubin (1973)’s work, combining matching with
regression modeling is regarded as a more robust way of estimating causal effects.
However, it is less clear to the practitioners what is the most appropriate model to run
with matched data. To stick with the matching design, it seems natural to account for
the pairing structure in the analysis. This is referred as conditional modeling, which
requires more sophisticated statistical tools. If one views the matching as a pre-process-
ing step to create balanced covariate distributions at group level, a marginal modeling
strategy without adjusting for the pairing structure may be used. For continuous out-
comes, the implication is more on the variance estimation. But for binary outcomes, the
popular measure of odds ratio is known to have the non-collapsibility problem, which
adds another layer of complexity in choosing between marginal and conditional models.
In this paper, we try to fill the gap by providing practical advice on post-matching

analytical strategies, based on extensive simulation studies. In Sec. 2, we review both
conditional and marginal modeling methodologies for continuous and binary outcomes.
Secs. 3 and 4 present simulation setup and results for continuous and binary outcomes,
respectively. In Sec. 5, we apply various estimating strategies to a U.S. trauma care data-
base to examine mortality difference between trauma centers and non-trauma centers.
Section 6 discusses the findings and provides practical advices.

2. Post-matching inference strategies

Matching design in observational studies has received a lot of discussions, from the
matching algorithms, distance metrics to balance assessment in matched data. But, rela-
tively little attention has been paid to post-matching analysis in terms of whether the
matching structure should be accounted for. In practice, after matched sets are gener-
ated satisfactorily based on a certain criterion, researchers tend to pick a convenient
analytical strategy without too much thoughts on the matching structure. The analytical
strategy that accounts for the matching structure is referred as conditional modeling
and the strategy ignoring the matching structure is referred as marginal modeling. In
this section, we will review the two strategies and discuss their impacts on treatment
effect estimation in details when they are applied to continuous and binary outcomes.
To keep notations simple, we focus on pair matching design for the rest of the paper.

2.1. Two views on post-matching analysis

The conditional modeling strategy accounts for the pairing structure in the analysis by
using statistical methods such as the paired t-test, the McNemar’s test or the conditional
logistic regression, etc. It follows the matching design closely, which mimics a paired
randomization design. Under the assumption that matching has successfully removed
all observed confounding, Rosenbaum (2002) discussed a class of nonparametric test
statistics for matched pair data, namely sign-score statistics. It includes the commonly
used Wilcoxon’s signed rank statistic and McNemar’s statistic as special cases. It takes
advantage of the randomization distribution under the mull hypothesis of no treatment
effect. It does not rely on parametric modeling assumption on the outcomes, hence it is
robust to potential model misspecifications. If good information regarding the predictive
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relationship between the outcome and covariates is available, we may expand the frame-
work by including important predictors in outcome models. For continuous outcomes,
a natural choice is to use the linear mixed model to account for the pairing structure.
Another option is to model the pairwise difference using a linear regression model as
suggested by Imbens and Rubin (2015) for pairwise randomized experiments. It
becomes more complex for binary outcomes, as there are multiple ways of measuring
the treatment effect. Three commonly used measures are risk difference (RD), relative
risk (RR) and odds ratio (OR). Conditional logistic regression models are popular for
estimating conditional OR. Generalized linear mixed models with identity or logarithm
link function may be used for RD or RR, respectively. The generalized estimating equa-
tion (GEE) method is popular for correlated binary data, which can also be used to esti-
mate the marginal effect while accounting for correlation in pairs.
A different view of matching regards it as a nonparametric pre-processing step (Ho

et al. 2007). Matching is a simple way to eliminate or reduce the relationship between
observed covariates and the treatment indicator. With successfully matched data, covari-
ates and the treatment assignment are uncorrelated, which mimics a completely
randomized experiment. Such process may also eliminate an important source of model
dependence in the post-matching parametric analysis stemming from the functional
form misspecification. Ho et al. (2007) argued that matching does not require pairing
observations, as long as the resulting covariate distributions are close in treated and
untreated groups. In this sense, post-matching analysis does not necessarily need to
account for the matching structure. There could be the situation where the distributions
of an important covariate are very similar between different treatment groups, but
within some pairs, there are big difference in covariate values. For example, in matching
with multiple covariates, it is likely to have matched data with similar proportions of
males in both treated and untreated groups, but some pairs matching a treated male to
an untreated female and other pairs matching a treated female to an untreated male.
Without the need to account for the pairing structure, post-matching analysis would be
easier to implement.
Examples of real data analysis following either view point can be found in literature

(Austin and Mamdani 2006; Saposnik et al. 2012). For continuous outcomes, when esti-
mating the average treatment effect, the difference is in variance estimation. Because the
mean differences are the same with and without considering the paired structure, the
point estimates of treatment effects are the same using either conditional or marginal
models. For binary outcomes, it is more complicated as some popular measures, such as
odds ratio, suffer from the collapsibility problem, which dictates that the conditional
model and the marginal model will produce different results. Austin (2011a) compared
paired and non-paired inference methods for estimating risk difference in matched data
and recommended that statistical methods accounting for the paired structure should be
used. We will expand the investigation by including RR and OR, and evaluate their stat-
istical performance in terms of estimation bias, variance and power. The next two sub-
sections review the estimating strategies for continuous and binary outcomes,
respectively, with the following notations:

Y: observed outcome

T: treatment indicator (1 for treated and 0 for untreated)
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X: a vector of observed covariates

p: propensity score, p ¼ PðT ¼ 1jXÞ
m: index of matched pairs, m ¼ 1, :::,M

{mi}: index of subject i in matched pair m

2.2. Inference with continuous outcomes

It is easy to see that the post-matching point estimate of treatment effect is not affected
by the matching structure,

1
M

XM
m¼1

Ym1 � Ym2½ � ¼ 1
M

XM
m¼1

Ym1 � 1
M

XM
m¼1

Ym2

¼ 1
M

X
i2fmatched, treatedg

Yi � 1
M

X
j2fmatched, untreatedg

Yj

where fm1g indexes the treated subject and fm2g indexes the untreated subject in
pair m.
Assuming Y follows a normal distribution, we consider four estimating strategies:

conditional model with no covariate adjustment (CON), conditional model with covari-
ate adjustment (CON_ADJ), marginal model with no covariate adjustment (MAR), and
marginal model with covariate adjustment (MAR_ADJ). CON and CON_ADJ use linear
mixed models to account for the pairing structure and the only difference is whether
the model adjusts for covariates. MAR and MAR_ADJ use regular linear regression
models and the difference is whether covariates are adjusted for. Since the GEE method
provides a marginal interpretation of the treatment effect while adjusting for the correl-
ation within pairs, we include it in the comparison under MAR and MAR_ADJ.
We focus on the variance estimation as we do not expect a difference in the point

estimates. Since there is no covariate adjustment, the variance of CON is smaller than
that of MAR if there is positive correlation within pairs, which is similar to comparing
a paired t-test to an independent t-test. With covariate adjustment, the difference
between the two methods becomes smaller since the inclusion of covariates accounts for
part of the variation observed in outcomes. This also depends on whether the outcome
model is correctly specified. In our simulation studies, we explore both situations when
the correct model is used and when an incorrect model is used. With misspecified mod-
els, statistical methods have been derived to adjust the variance estimate to make robust
inference such as Gail, Tan, and Piantadosi (1988) and Lin and Wei (1989)’s work.
Suppose the true parameter is h and the maximum likelihood estimator under the mis-
specified model is bh: Under some mild conditions, bh converges to h� with the asymp-
totic distribution:

bh � Nðh�, bAðbhÞ�1bBðbhÞbAðbhÞ�1Þ
where bAðbhÞ�1bBðbhÞbAðbhÞ�1 is the so-called sandwich estimator. For many misspecified
parametric models, the bias between h� and h becomes zero asymptotically (Gail,
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Wieand, and Piantadosi 1984). So using the sandwich estimator provides a more robust
inference strategy for the variance estimation.

2.3. Inference with binary outcomes

With binary outcomes, the marginal inference and the conditional inference may yield
quite different results. Among the three measures that we consider, OR is arguably the
most popular one in medical and health research and is known to have the noncollapsi-
bility problem, where the marginal OR does not equal to the conditional OR. Pang,
Kaufman, and Platt (2016) discussed extensively the noncollapsibility issue for OR in
presence of confounding bias. We are more interested in evaluating the estimation of
the three measures and comparing their performance in an observation study setup. In
this subsection, we review the inference under unadjusted marginal and conditional
models for each of three measures to provide some theoretical insights.
With Y being dichotomous, denote Y¼ 1 for a success and Y¼ 0 for a failure, where

success/failure are broadly defined for any event, i.e., the onset of a disease, etc.
Suppose the data are successfully matched with a paired design (one treated subject
matched to one untreated subject) and presented as Table 1 (there are n pairs):

It is easy to re-organize it as an independent table by ignoring the matching struc-
ture, shown in Table 2:
Denote p1 ¼ PðY ¼ 1jT ¼ 1Þ be the success probability in the treated group and

p0 ¼ PðY ¼ 1jT ¼ 0Þ be the success probability in the untreated group.
For RD, the marginal inference is straightforward as a two-sample independent pro-

portion comparison with following point and variance estimates (the subscript “.m” for
marginal):

bDRD:m ¼ bp1 � bp0 ¼ aþ c
n

� aþ b
n

¼ c� b
n

bV ðbDRD:mÞ ¼ ðaþ cÞðbþ dÞ
n3

þ ðaþ bÞðcþ dÞ
n3

The conditional inference for RD is more complicated. Based on Chen (1996)’s work,
the maximum likelihood estimation yields the following results (the subscript “.c” for
conditional):

Table 1. Paired design table.
T¼ 1

T ¼ 0 Y ¼ 1 Y ¼ 0 Total
Y ¼ 1 a b aþ b
Y ¼ 0 c d cþ d
Total aþ c bþ d n

Table 2. Independent design table.
Y¼ 1 Y¼ 0 Total

T ¼ 1 aþ c bþ d n
T ¼ 0 aþ b cþ d n
Total 2aþ b þ c bþ c þ 2d 2n
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bDRD:c ¼ c� b
n

bV ðbDRD:cÞ ¼ bþ c� ðb� cÞ2=n
n2

Since RD does not suffer from the noncollapsibility, both methods yield the same
point estimate. With the paired design, Agresti (2002) and Agresti and Min (2004)
showed that the covariance between p1 and p0 could be estimated by ðad � bcÞ=n3:
Assuming a positive correlation, i.e., ad � bc > 0, we have

bV ðbDRD:mÞ � bV ðbDRD:cÞ ¼ 2ðad � bcÞ
n

> 0

where it implies that the conditional model is more efficient than the marginal model.
For RR, we are interested in estimating, p1=p0 or log ðp1=p0Þ, where the latter is bet-

ter approximated by a Normal distribution. The marginal inference yields (Zou 2004):

log ð dRR:mÞ ¼ log ðbp1Þ � log ðbp0Þ ¼ log
ðaþ cÞ
ðaþ bÞ

bV ð log ð dRR:mÞÞ ¼ 1
aþ c

� 1
n
þ 1
aþ b

� 1
n

Chen (1996) presented that the maximum likelihood estimation for RR yields the fol-
lowing results:

log ðdRR:cÞ ¼ log
ðaþ cÞ
ðaþ bÞ

bV ð log ðdRR:cÞÞ ¼ ðbþ cÞ
ðaþ bÞðaþ cÞ

Since RR does not suffer from the noncollapsibility, both methods yield the same
point estimates. Assuming a positive correlation, i.e., ad � bc > 0, we have

bV ð log ð dRR:mÞÞ � bV ð log ðdRR:cÞÞ ¼ 2
ad � bc

ðaþ bÞðaþ cÞn > 0

where it implies that the conditional model is more efficient than the marginal model.
Because OR suffers from the noncollapsibility, the marginal and conditional models

do not estimate the same thing. We use the logarithm transformation of OR, as it is
better approximated by a Normal distribution. Based on a multinomial distribution,
Agresti and Min (2004) showed that the marginal inference yields the following results:

log ð dOR:mÞ ¼ log
ðaþ cÞðcþ dÞ
ðbþ dÞðaþ bÞ

bV ð log ð dOR:mÞÞ ¼ 1
aþ b

þ 1
aþ c

þ 1
cþ d

þ 1
bþ d

Based on a conditional likelihood approach, Agresti and Min (2004) derived the esti-
mates for conditional OR as below:

log ð dOR:cÞ ¼ log
c
b

bV ð log ð dOR:cÞÞ ¼ 1
b
þ 1

c
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There is no consensus which measure should be used to capture the treatment effect of a
dichotomous outcome. OR is often seen in medical and health research because the logis-
tic regression model is convenient with easy interpretation. But the downside is that it suf-
fers the noncollapsibility even without confounding (Pang, Kaufman, and Platt 2016).
Different designs or different covariate adjustment strategies would produce estimates that
are not directly comparable. Though RD and RR are collapsible, the outcome modeling
strategies are not as straightforward as the OR case. RD often involves an identity link in
generalized linear models, which is not that appropriate as it assumes a Normal distribu-
tion for the probability that should be always between 0 and 1. RR involves an logarithm
link in generalized linear models, which is also restrictive as the range of the predictive
component needs to be positive. In later sections, we conduct an extensive simulation
study to evaluate the performance of three measures in terms of estimation bias, accuracy,
and power. By summarizing our results, we try to provide some practical guidelines for
estimating treatment effects of binary outcomes with a paired design.

3. Simulation study: continuous outcomes

We simulate continuous outcomes from Normal distributions and the focus is on com-
paring the estimation efficiency. To assess the quality of matching on the inference, we
consider two distribution overlap scenarios – large overlap and moderate overlap, where
the latter is supposed to result in less well matched pairs. Along the same line, we also
consider three matching algorithms, optimal matching (OPTM), nearest neighbor
matching (NNM) with a caliper of 0.5 standard deviation of the estimated propensity
scores (NNM_0.5), NNM with a caliper of 0.2 standard deviation of the estimated pro-
pensity scores (NNM_0.2). OPTM and NNM are two popular algorithms used in
matching design. Unlike NNM, OPTM minimizes the the sum of pairwise distances
among all possible pairings. It is optimal in the global sense that results in a matched
set with smaller total distance than NNM (Hansen and Klopfer 2006). The resulting
number of pairs is different for the three algorithms. OPTM uses all the treated subjects
and an equal number of untreated ones. NNM_0.5 may discard treated subjects if they
cannot be matched with untreated ones within the caliper. NNM_0.2 tend to discard
more treated subjects to satisfy the more stringent caliper. To investigate the impact
due to misspecified outcome models, we consider two data generating models— simple
and complex, where the simple model only has linear covariate terms and the complex
model has exponential and quadratic terms. In the moderate overlap scenario, we con-
sider three covariates with the following distributions:

X1 � Nð2, 1Þ,X2 � Nð�3, 1:52Þ,X3 � Bernð0:4Þ:
The treatment assignment model is:

logit PðT ¼ 1Þ½ � ¼ 1:5þ log ð0:5Þx1 þ log ð1:3Þx2:
The true outcome generating models are Y � Nðl, 32Þ, where

- Simple model:

l ¼ �2þ 2T þ log ð10Þx1 � log ð3Þx2 þ log ð0:01Þx3,
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- Complex model:

l ¼ �2þ 2T � log ð1:5Þex1 þ log ð1:75Þx22 þ log ð0:15Þx3:
Various analytical strategies are applied to the simulated data. For the propensity score
matched data, the following models are considered:

- IND: A linear regression model ignoring the pairing structure, including T as the
only predictor.

- IND_ADJ: A linear regression model ignoring the pairing structure, including T
and all covariates X’s.

- PAR: A paired t-test analysis, without adjusting for any covariate.
- RBT: IND_ADJ using robust variance estimation for potentially misspeci-
fied models.

- CON: A linear mixed model preserving the pairing structure, including T as the
only predictor.

- CON_ADJ: A linear mixed model preserving the pairing structure, including T and
all covariates X’s.

- MAR: A GEE model (to account for the pair level correlation), including T as the
only predictor.

- MAR_ADJ: A GEE model (to account for the pair level correlation), including T
and all covariates X’s.

To compare with other methods commonly seen in literature, we apply the following
models to the full dataset:

- NAI: A linear model, including T as the only predictor.
- NAI_ADJ: A linear model, including T and all covariates X’s.
- IPTW: A linear model weighted by the inverse of the estimated propensity scores,
including T as the only predictor.

- IPTW_ADJ: A linear model weighted by the inverse of the estimated propensity
scores, including T and all covariates X’s.

- RAN: A linear model applied to the dataset with a randomly assigned treatment,
including T as the only predictor.

- RAN_ADJ: A linear model applied to the dataset with a randomly assigned treat-
ment, including T and all covariates X’s.

In addition to the unadjusted analysis, we also run adjusted analysis that includes all
three covariates in each of the above outcome models.
In practice, the true propensity scores are not known and need to be estimated. It is

not a simple task to guess the correct functional form of the propensity score model. So
we also consider two scenarios of propensity score modeling – a correct model and a
misspecified model. For the moderate overlap case, the misspecified model only includes
X1. Each dataset contains 1000 simulated observations and the simulation is repeated
for 2000 times for all scenarios.
Figure 1 depicts the results for unadjusted and adjusted analyses under the moderate

overlap scenario. The two plots on the left panel present the percentage of bias for each
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estimator, i.e., ðbb � 2Þ=2� 100%: The two plots on the right panel present the average
standard deviation (SD) estimates under different methods. Results under the simple
data generation are shown with the dark color and results under the complex data gen-
eration are shown with the red color. The results for unadjusted analyses are plotted in
the top panel. In the upper left plot, the first two columns of points show the results
for simple two-group comparison when the treatment is randomly assigned (RAN) and
when the treatment is not randomly assigned (NAI). It is easy to see that the two-group
comparison under random assignment is unbiased and the naive analysis introduces
substantial biases as the assignment is not random. The remaining four columns repre-
sent different estimation strategies for non-randomized data when the correct propen-
sity score model is used (solid point) and when the misspecified propensity score model
is used (hollow point). Three different types of matching and the weighting method are
compared. Consistent with Austin (2011b)’s findings, NNM_0.2 tends to yield the least
bias because it obtains the best matching quality with a smaller caliper. In the upper
right plot, with the correct propensity score model, the conditional methods (PAR and
CON) produce smaller variance estimates than the marginal methods (IND and MAR).
The main reason that matching with caliper methods produce large variance is because
they use a much smaller subset of observations than the optimal matching (see the foot-
note). IPTW yields unbiased point estimates with moderate to large variance, because
the correct propensity score model is used. With the misspecified propensity score
model, all methods present biased point estimates, which is expected due to the model
misspecification. The biases are big for the IPTW method as the doubly robust property
does not hold when there is no model adjustment and incorrect propensity score model
is used. The variance estimate pattern is similar to matching scenarios with conditional
methods having smaller variance than marginal methods.

Figure 1. Results for continuous outcome.
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The results for adjusted analyses are plotted in the bottom panel. For model
adjusted analyses, we consider robust variance estimation method (RBT) for potential
model misspecification. There is no bias for randomized studies. For the non-random-
ized study, NAI shows no bias with model adjustment under the simple data gener-
ation because the true outcome model is used for adjustment. It presents some
moderate bias under the complex data generation because the outcome model is mis-
specified. When the correct propensity score model is used, all matching methods pre-
sent no bias under the simple data generation. The biases are slightly larger under the
complex generation, but comparable to IPTW results. With model adjustment, the
variance estimates are close with the linear mixed model having the smallest values.
The variance estimates under robust estimation and GEE model are almost identical
because both methods use sandwich type of estimator. Using the misspecified propen-
sity score model, the model adjustment also improve the estimates. Under the simple
data generation, all methods are unbiased. Under the complex data generation, all
methods show more bias than the simple case and matching methods tend to perform
slightly better than IPTW.
Due to the space limit, we only present results for the moderate overlap scenario

as it is more practically relevant. The simulation results for the large overlap scen-
ario are included in the online supplementary document. The findings are similar to
the moderate overlap scenario except that the IPTW method tends to perform a bit
better than matching methods overall. This is likely due to the fact that, with large
covariate distribution overlap, the estimated propensity score values are more regular
(further away from 0’s or 1’s). Therefore, there are no extreme weights and IPTW
tends to do better.

4. Simulation study: binary outcomes

We simulate binary outcomes using the approach described in Austin (2010)’s study,
where the data are simulated for a pre-specified risk difference through an iterative pro-
cess. Similar to the simulation study of continuous outcomes, we consider two covariate
overlap scenarios (moderate and large), three matching algorithms (OPTM, NNM_0.5,
NNM_0.2), two outcome generating models (simple and complex), two propensity score
scenarios (correctly and incorrectly specified propensity score models). Results for large
overlap and moderate overlap with simple generation are included in the online supple-
mentary document for space consideration.
In the moderate overlap scenario, we consider three covariates with the same distri-

butions and the same assignment probability model as the continuous case. The true
outcome generating models are:

- Simple model:

logit PðY ¼ 1Þ½ � ¼ 1þ bt � T þ log ð3Þx1 þ log ð1:5Þx2 þ log ð1:5Þx3,
where bt is determined iteratively for a pre-specified risk difference by evaluating mar-
ginal risk differences using Monte Carlo integration. For example, RD ¼ 0:1 corre-
sponds to RR ¼ 1:798 and a marginal OR ¼ 2:030:
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- Complex model:

logit PðY ¼ 1Þ½ � ¼ �7þ bt � T þ log ð0:5Þ � ex1 þ log ð1:5Þ � x22 þ log ð1:5Þ � x3:

where bt is determined in the same way as above. For example, RD ¼ 0:1 corresponds
to RR ¼ 1:422 and a marginal OR ¼ 1:636:
Various analytical strategies can be applied to binary data. Because RD and RR are

collapsible, both marginal and conditional modeling strategies yield the same point esti-
mate. For marginal models, we consider generalized linear models (GLM) with appro-
priate links ignoring the matching structure. We also use GEE models accounting for
the correlation due to matching. For conditional models, generalized linear mixed mod-
els (GLMM) are often used to account for the matching structure. However, Greenland,
Robins, and Pearl (1999) discussed OR is non-collasible, which implies that the mar-
ginal and conditional models would yield different results. To compare all three meas-
ures on the same ground, we choose to only use marginal models, which carry the
interpretation of the average effect of the study population. Specifically, the following
models are consider for the propensity score matched data:

- GLM: A generalized linear regression model ignoring the pairing structure, includ-
ing T as the only predictor. An identify link is used for RD estimation, a log link is
used for RR estimation and a logit link is used for OR estimation (same for the
models below).

- GLM_ADJ: A generalized linear regression model with appropriate link functions
ignoring the pairing structure, including T and all covariates X’s.

- GEE: A GEE model (to account for the pair level correlation) with appropriate link
functions, including T as the only predictor.

- GEE_ADJ: A GEE model with appropriate link functions (to account for the pair
level correlation), including T and all covariates X’s.

To compare with other commonly used methods, we also apply the following models
to the full dataset:

- NAI: A generalized linear model with appropriate link functions, including T as the
only predictor.

- NAI_ADJ: A generalized linear model with appropriate link functions, including T
and all covariates X’s.

- IPTW: A generalized linear model with appropriate link functions, weighted by the
inverse of the estimated propensity scores, including T as the only predictor.

- IPTW_ADJ: A generalized linear model with appropriate link functions, weighted
by the inverse of the estimated propensity scores, including T and all covari-
ates X’s.

- RAN: A generalized linear model with appropriate link functions applied to the
dataset with a randomly assigned treatment, including T as the only predictor.

- RAN_ADJ: A generalized linear model with appropriate link functions applied
to the dataset with a randomly assigned treatment, including T and all covariates
X’s.
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In addition to the unadjusted analysis, we also run adjusted analysis that includes all
three covariates in each of the above outcome models.
Figure 2 depicts the results for adjusted and unadjusted analyses under the moderate

overlap and complex generation scenario. The plots are arranged in a similar way as in
Figure 1. For the unadjusted analyses (top panel), with correctly specified propensity
scores, the estimation bias of matching methods are similar for all three measures and
IPTW yields the least biased estimates. With misspecified propensity scores, the estima-
tion bias of matching methods are similar for all three measures and IPTW yields the
most biased results. Among different matching algorithms, NNM_0.2 tends to produce
less biased estimates and this is likely due to the more stringent matching criteria. GLM
and GEE variance estimates are close except for RR, where GEE estimates are much
smaller. With covariate adjustment (bottom panel), the estimation biases are generally
smaller than those without adjustment. With the true propensity score model (solid
point), IPTW has the best overall result, thanks to the doubly robust property. But
when the propensity score model is misspecified (hollow point), IPTW produces the
worst results. Among the three effect measures, OR estimates tend to be less biased
than RD and RR estimates. GLM and GEE variance estimates are close except for RR,
where GEE estimates are much smaller. It is interesting that the naive regression ana-
lysis performs better than IPTW when the incorrect propensity score model is used.
This is consistent with the findings in Kang and Schafer (2007)’s study that IPTW may
perform poorly if both the propensity score and the outcome models are misspecified.
To gain more insights on the statistical performance of using each measure, we fur-

ther examine the powers of detecting pre-specified risk differences. For a series of risk

Figure 2. Results for binary outcome.
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difference values (RD ¼ 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1), we simulate 2000 datasets
with 1000 sample in each dataset. Then we calculate the power of detecting a significant
effect for RD, RR and OR, with and without covariate adjustment. Results are reported
in Table 3. The column of “RD ¼ 0” literally shows the type-I error estimates. The
unadjusted analyses have type-I errors less than 5%, while the covariate adjusted analy-
ses tend to inflate type-I errors to slightly larger than 5%. Overall, OR has the best
power results, while RR has the lowest power. The matching method tends to produce
better power than the corresponding weighting method.

5. Real data analysis: trauma care evaluation

Injury is the leading cause of death among young Americans aged 1-44 (source: CDC
https://www.cdc.gov/injury/wisqars/LeadingCauses.html). Trauma centers provide speci-
alized medical services and resources to patients suffering from traumatic injuries.
Hospitals in the US are categorized as Trauma Centers (TC) and Non-Trauma Centers
(NTC), according to resources and expertise. Admitting patients to TC or NTC is not a
random process, which depends on various factors, including severity of the injury, geo-
graphical locations or other patient characteristics. The observational nature of the data
presents challenges in evaluating care quality at different trauma centers. Using
2006–2010 NEDS data (Agency for Healthcare Research and Quality 2016), we plan to
assess the performance of two levels of trauma care (NTC vs. TC) with respect to a key
outcome, emergency department (ED) mortality. We consider trauma patients, aged 18-
64, characterized by a severe trauma (injury severity score greater or equal to 25). Shi
et al. (2016) described the detail of the data.
The binary exposure variable of interest is the admission to NTC and the binary out-

come is ED mortality. The primary research question is “would the mortality of patients
treated at a NTC be different if these patients had been treated at a TC?” A matching

Table 3. Power for binary outcomes with moderate overlap and complex generation.
RD ¼ 0 RD ¼ 0.01 RD ¼ 0.03 RD ¼ 0.05 RD ¼ 0.07 RD ¼ 0.09 RD ¼ 0.10
OPTM

rd:glm:no� 0.045 0.084 0.319 0.600 0.871 0.970 0.987
rd.gee.no 0.045 0.090 0.329 0.612 0.876 0.972 0.988
rd:glm:yes† 0.069 0.101 0.372 0.685 0.926 0.986 0.999
rd.gee.yes 0.070 0.106 0.379 0.696 0.930 0.988 0.999
rr.glm.no 0.019 0.043 0.176 0.428 0.740 0.919 0.967
rr.gee.no 0.044 0.089 0.321 0.605 0.874 0.969 0.987
rr.glm.yes 0.019 0.026 0.112 0.277 0.552 0.782 0.865
rr.gee.yes 0.067 0.091 0.280 0.543 0.796 0.935 0.975
or.glm.no 0.045 0.083 0.318 0.599 0.871 0.970 0.987
or.gee.no 0.044 0.090 0.325 0.608 0.875 0.972 0.988
or.glm.yes 0.057 0.101 0.427 0.785 0.967 0.998 1.000
or.gee.yes 0.061 0.108 0.442 0.799 0.969 0.998 1.000

IPTW

rd.no 0.017 0.028 0.134 0.395 0.693 0.905 0.957
rd.yes 0.052 0.080 0.274 0.620 0.882 0.980 0.991
rr.no 0.016 0.027 0.128 0.385 0.675 0.898 0.952
rr.yes 0.065 0.078 0.216 0.465 0.728 0.905 0.953
or.no 0.016 0.027 0.130 0.388 0.684 0.901 0.953
or.yes 0.049 0.080 0.325 0.709 0.932 0.992 0.999
�: “.no” means no covariate adjustment; † : “.yes” means with covariate adjustment.
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design is appropriate to evaluate this causal effect, which corresponds to the exposure
effect on the exposed. Our analytical dataset consists of 21,855 patients, of whom 5,314
(24.3%) and 16,541 (75.7%) patients were admitted to NTC and TC, respectively.
The propensity score of being admitted to NTC is estimated with a logistic regression

model including 16 important covariates identified by content experts. They include
age, sex, injury severity score, comorbidity of chronic conditions, multiple injuries,
median household income by zip code, expected primary insurance payer, and urban
rural designation for patient’s county of residence. Matching are conducted with three
algorithms (NNM without caliper, NNM_0.5, NNM_0.2) based on the estimated pro-
pensity scores. We do not use the optimal matching algorithm because the sample size
of trauma data exceeds the limit of the R package used in our simulation study.
Figure 3 presents the absolute standardized differences (ASD) for each covariate before
and after matching as a means of checking balance. Usually, ASD < 10% is considered
a good balance. Matching tends to obtain well matched pairs on all covariates, except
the multiple injury indicator. The distributions of the multiple injury variable are very
imbalanced in the original dataset, where the prevalence is 8% in NTC group and 33%
in TC group. To achieve the best balance, we have to discard more observations. So
NNM with 0.2 SD caliper produces the ideal result, which results in 3436 pairs. In con-
trast, NNM without caliper has 5314 pairs and NNM with 0.5 SD caliper has 4542 pairs.
In addition to checking ASD, we also examine the variance ratios after matching as sug-
gested by Rubin (2001) All post-matching variance ratios are less than 1.5 with NNM
with 0.2 SD caliper showing the best balance (results not shown). Therefore, we believe
that matching methods have produced well matched pairs and we can proceed with the
outcome analysis.
We apply both unadjusted and adjusted analyses to the matched data. For compari-

son purpose, IPTW approach using full data is included. The top panel of Table 4
presents the unadjusted analysis. The treatment effect estimates are significant for all
three measures, indicating a beneficial effect of being treated at trauma centers. For RD,

Figure 3. Covariate balance before and after matching.
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all three matching designs yield very similar results, which show a bigger effect than the
IPTW approach. For RR, estimates from NNM and NNM with 0.5 SD caliper are close,
indicating that being treated at the non-trauma center may double the mortality risk.
NMM with 0.2 SD caliper yields a bigger effect, while IPTW yields a smaller effect. The
same pattern is observed for OR. In terms of efficiency, GEE models tend to provide
smaller variance estimates.
The bottom panel of Table 4 presents the adjusted analysis where we include all lin-

ear terms of covariates in the regression models. After covariate adjustment, treatment
effect sizes of matching methods become a bit smaller, while IPTW estimates do not
change much. Also, covariate adjustment has a small impact on reducing the vari-
ance estimates.
We observe some discrepancies on treatment effect estimates between matching and

weighting methods. This is likely due to the fact that the two methods are applied to
different patient populations and the treatment effects are heterogeneous in subpopula-
tions. Generally, matching methods work better when the two treatment groups have
quite different sample sizes, then a well-matched sample can be selected. So the match-
ing estimators are usually used for estimating the average treatment effect on the treated
population (ATT). On the other hand, the weighting estimators are used for the average
treatment effect on the entire population (ATE). In our simulation studies, we assume a
constant effect. So there is no difference between ATT and ATE estimates. In practice,
like our trauma center evaluation study, treatment effects are likely to be different in
subpopulations. It seems the treatment effect in the entire trauma patient population is
smaller than that in the NTC patient population.
There are also some small discrepancies on treatment effect estimates between

matching algorithms. NNM with 0.2 SD caliper yields larger effect estimates than
the other two algorithms. This is likely due to the matched sample differences.
NNM with 0.2 caliper has the smallest sample size with the prevalence difference of
multiple injury being 1.8%. The prevalence differences of multiple injury in other
matched samples are 8% and 6% respectively. It seems that impact due to such
imbalance can not be mitigated by using simple model adjustment as shown in the
bottom panel of Table 4. Using OR as the effect measure, we observe an increase of
189% in odds of death if the patient had been treated at NTC in the well matched
data. In the less well matched data, the increase in odds of death becomes 105%
(NNM with 0.5 SD caliper).

Table 4. Trauma data analysis without covariate adjustment.
RD RR OR

n Point Est. SD (GLM) SD (GEE) Point Est. SD (GLM) SD (GEE) Point Est. SD (GLM) SD (GEE)

Without covariate adjustment
NNM 10628 0.066 0.006 0.006 1.867 0.061 0.057 2.012 0.065 0.065
NNM_0.5 9084 0.061 0.006 0.006 2.018 0.074 0.071 2.159 0.077 0.077
NNM_0.2 6872 0.062 0.006 0.006 2.760 0.106 0.103 2.950 0.109 0.109
IPTW 21855 0.046 0.007 NA 1.474 0.063 NA 1.553 0.070 NA
With covariate adjustment
NNM 10628 0.053 0.006 0.006 1.634 0.062 0.057 1.825 0.069 0.068
NNM_0.5 9084 0.051 0.006 0.006 1.853 0.075 0.068 2.056 0.081 0.079
NNM_0.2 6872 0.058 0.006 0.006 2.613 0.106 0.101 2.893 0.111 0.110
IPTW 21855 0.044 0.007 NA 1.453 0.059 NA 1.600 0.072 NA
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6. Summary

We have compared various estimating strategies for matched observational data. In gen-
eral, matching with covariate adjustment modeling provides better results than weight-
ing methods when you are not sure about the propensity score model and the outcome
model. For continuous outcomes, statistical approaches accounting for matching struc-
ture provide smaller variance estimates, which are about 5% less than other methods.
For binary data, RD and RR are collapsible. Our simulation study shows that their per-
formance are close under different matching algorithms. GEE models produce smaller
variance than GLMs for RR, but the variance estimates are comparable for RD.
Conditional models, such as GLMM, can also be run for RD and RR. For RD, the vari-
ance estimates from GLMM are close to both GLM and GEE models. But we encoun-
tered non-convergences issue with R function “glmer” (in the package “lme4”) when we
ran covariate-adjusted GLMMs to estimate RR. So we do not report any GLMM results.
OR suffers the non-collapsibility, so we only consider marginal models in our simula-
tions. Overall, it has slightly less biased estimates than RD and RR. The variance esti-
mates of OR are similar under GLM and GEE models. In practice, researchers may
choose the appropriate measure suitable for their study. As far as power is concerned,
OR with matching and adjusted modeling yields better results over RD and RR.
For post-matching variance estimation, statistical methods accounting for the match-

ing structure are recommended. The gains are more noticeable for continuous outcome
and RR, while minimal for RD and OR. In comparison to IPTW method, the decision
needs more thoughts. If the researchers are very confident about correctly specifying
either the propensity score model or the outcome model, IPTW has an advantage. For
complex observational studies, this is less likely to be the case. Matching seems to be a
more robust method as long as good covariate balance is achieved. Another advantage
of matching is that, as a design based method, the propensity score values do not go
into the treatment effect estimation process, aside from matching. In this sense, we may
ignore the variability in estimating propensity scores as long as we use it as a design
tool to create well-matched pairs. On the contrary, the estimated propensity scores are
part of the estimating equations for the IPTW. So the variability in estimating propen-
sity scores should be accounted for, which adds another layer of complexity for
practitioners.
A final note on matching is that there are more sophisticated matching algorithms to

obtain better balance on covariates. As shown in our simulation, better covariate bal-
ance may improve the estimation accuracy. If the researchers prefer a high level balance
on some important variables, they could consider exact matching on certain variables in
addition to propensity score matching on other variables. Alternatively, fine balance
matching (Rosenbaum 2002) is a way that forces a nominal variable to be balanced, and
“rcbalance” is a R package for fine or near-fine balance (Pimentel et al. 2015).
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