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ABSTRACT
The deep learning revolution has been enabled in large part by
GPUs, and more recently accelerators, which make it possible to
carry out computationally demanding training and inference in ac-
ceptable times. As the size of machine learning networks and work-
loads continues to increase, multi-GPU machines have emerged as
an important platform offered on High Performance Computing
and cloud data centers. Since these machines are shared among
multiple users, it becomes increasingly important to protect ap-
plications against potential attacks. In this paper, we explore the
vulnerability of Nvidia’s DGX multi-GPU machines to covert and
side channel attacks. These machines consist of a number of discrete
GPUs that are interconnected through a combination of custom
interconnect (NVLink) and PCIe connections. We reverse engineer
the interconnected cache hierarchy and show that it is possible
for an attacker on one GPU to cause contention on the L2 cache
of another GPU. We use this observation to first develop a covert
channel attack across two GPUs, achieving the best bandwidth
of around 4 MB/s. We also develop a prime and probe attack on
a remote GPU allowing an attacker to recover the cache access
pattern of another workload. This access pattern can be used in any
number of side channel attacks: we demonstrate a proof of concept
attack that fingerprints the application running on the remote GPU,
with high accuracy. We also develop a proof of concept attack to
extract hyperparameters of a machine learning workload. Our work
establishes for the first time the vulnerability of these machines to
microarchitectural attacks and can guide future research to improve
their security.
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1 INTRODUCTION
GPUs have been an important computational platform enabling a
variety of data intensive workloads such as deep neural networks,
scientific kernels, cryptocurrency mining, and many others. The
size of these workloads continues to increase: for example, training
large deep networks often requires both computational andmemory
resources that far exceed those of a single GPU. In response to
these trends, Multi-GPU platforms have emerged that offer tightly
integrated GPUs, enabling applications that span multiple-GPU
with unified memory accesses supported by fast communication
fabrics. For example, the Nvidia DGX series [34] offers a number of
server-class GPUs that are interconnected through a combination
of proprietary high bandwidth interconnect (NVLink) and PCIe.

In this paper, we explore whether multi-GPU machines are vul-
nerable to both covert and side channel attacks. Given the impor-
tance of workloads that run on these machines, it is important
to understand their security properties. On multi-GPU machines,
multiple applications may concurrently execute to more effectively
use the available resources. Applications generally belong to differ-
ent mutually untrusting users. In our threat model, an application
either covertly communicates with another (covert channel) or
attempts to spy on them (side-channel). Covert and side channel
attacks have been demonstrated on a variety of CPU microarchitec-
tural structures [23, 27, 43, 51]. More recently, attacks have been
demonstrated on GPUs as well [16, 17, 29, 30, 32].

This work demonstrates for the first time that microarchitectural
covert and side channel attacks are also dangerous in the context
of multi-GPU systems. Specifically, we first reverse engineer the
caches in the context of multi-GPU systems, and discover that they
are shared in a Non-Uniform Memory Access (NUMA) configura-
tion: the L2 cache on each GPU caches the data for any memory
pages mapped to that GPU’s physical memory (even from a remote
GPU). We also evaluate the impact of the NVlink topology on the
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remote access delays. These observations enable us to create con-
tention on remote caches enabling the attacks. We build a covert
channel attack, where a sender (trojan) process is located on one
GPU transferring secret information to a receiver (spy) which is
located on another GPU. We are able to obtain a high bandwidth,
prime-and-probe covert channel, achieving a bandwidth of 3.95
MBps, with a low error rate of 1.3%. Using additional parallelism
(e.g., involving additional GPUs) can further improve bandwidth,
but we did not explore this in this paper. We believe that this type of
channel applies more generally to other multi-accelerator systems
that allow memory sharing across accelerators.

We also develop side channel attacks where an attacker process
spies on another application executing on the same multi-GPU
system.We demonstrate an application/kernel fingerprinting attack
where the attacker tries to infer which application is running on
a remote GPU. This attack will be useful as a first step in any
other attack to determine where the victim kernels are running. We
also demonstrate a simple model extraction attack that recovers
the number of neurons in a hidden layer of a machine learning
model [12, 30, 48].

Cross-GPU attacks offer the attacker a number of advantages
compared to prior attacks targeting GPUs. First, they relieve the
attacker from the issue of manipulating the scheduler on a single-
GPU to establish co-location of the attacker kernels with the victim
(e.g., on the same Streaming Multiprocessor (SM)) [30]. Also, in a
cross-GPU attack, any noise generated by the attack code itself is
isolated to the attacking GPU, which results in a higher-quality
channel. In addition, isolation-based mechanisms such as Nvidia
MIG [37] and partitioning-based [50] defense mechanisms that
can be enabled for processes running within a single GPU can not
protect against cross-GPU attacks (discussed in detail in Section 7).
The attacks are conducted entirely from the user level without any
special access (e.g. huge pages or flush instruction). As a result,
we believe this attack model challenges assumptions from prior
GPU-based attacks and significantly expands our understanding of
the threat model in Multi-GPU servers.

In summary, the contributions of the paper are as follows:
• We reverse engineer the cache hierarchy and timing proper-
ties of the distributed NVlink-connected shared L2 cache in
a multi-GPU environment from the user level.

• We demonstrate the first cross-GPU covert channel attack
between a sender and a receiver on two different GPUs.

• We demonstrate two side channel attacks: (1) fingerprint-
ing applications on the victim GPU; and (2) identifying the
number of neurons in a hidden layer of a machine learning
model.

2 BACKGROUND AND THREAT MODEL
In this section, we overview the organization of our attack tar-
get, the DGX-1 multi-GPU system from Nvidia. We also present
the threat model, defining the assumptions we make about the
attacker’s access and capabilities.

2.1 Multi-GPU Systems
As neural networks grow deeper and training data sets become
larger, the computational demands to train substantially exceed the

Figure 1: Nvidia DGX-1 topology

capacity of a single GPU. Multi-GPU systems have emerged as an
important platform for these and other workloads; they overcome
the memory limitation of a single GPU and offer significant paral-
lelism and interconnect and memory bandwidth. For large language
models, often training takes hundreds of days on clusters with thou-
sands of GPUs [31]. Nvidia’s DGX series are being deployed in HPC
clusters (e.g., [21]), as well as on cloud systems [26, 35, 44]. Other
GPUmanufacturers are also starting to offer similar products; for ex-
ample, AMD’s crossfire allows the building of relatively inexpensive
multi-GPU configurations [4], and AMD’s CDNA 2 architecture [5]
is targeted towards HPC clusters [20]. It is likely that such systems
will continue to grow in terms of the performance of the compo-
nents (GPUs, interconnect, and memory) as well as in the number
of GPUs that can be supported on each machine.

We develop the attacks in this paper on Nvidia’s Pascal-based
DGX-1 system [34]. Figure 1 shows the organization and network
topology of this system. DGX-1 box consists of eight Tesla P100
GPUs, arranged in a hypercube fashion. DGX-1 also includes two
CPUs (connected through QuickPath Interconnect (QPI)) for boot,
storage management, and application coordination. The PCIe links
between the GPUs and CPUs enable access to the CPU’s bulk
DRAM memory to enable data streaming to and from the GPUs.
The GPUs are connected in a hybrid cube-mesh network topol-
ogy, using Nvidia’s proprietary NVLink interconnect. NVLink is an
energy-efficient, high-bandwidth interconnect that enables Nvidia
GPUs to connect to peer GPUs or other devices within a node
at a bidirectional bandwidth of 160 GB/s per GPU: roughly five
times that of current PCIe interconnections. The GPUs that are
connected by NVlink can access each other’s memories by using
Nvidia provided CUDA APIs.

GPUs in DGX-1 box are Nvidia’s Tesla P100 based on Pascal
architecture (as shown in Figure 2). It consists of 56 SMs with
a total of 3584 single-precision and 1792 double-precision units.
Each GPU comes with 16 GB of High Bandwidth Memory (HBM2)
stacked memory with 732 GB/s of bandwidth. There is a private
64KB shared memory per SM and a 4MB L2 cache shared across all
SMs.
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Figure 2: Pascal P100 GPU Architecture

2.2 Threat Model
In this paper, we develop Prime+Probe based microarchitectural
covert and side channel attacks across multiple GPUs on Nvidia’s
modern GPU servers. Previous microarchitectural attacks were
demonstrated on CPUs or on a single GPU. However, in our multi-
GPU threat model, our attacks span across multiple GPUs that are
connected via NVLink-V1(as shown in Figure 1). The sender or the
victim process is located on a GPU (e.g. GPU 0) and the receiver
process is located on another GPU (e.g. GPU 1). The involved GPUs
are required to be connected by NVLink allowing peer-to-peer
GPU memory access. Note that if both processes are located on the
same GPU, then prior covert/side channel attacks on GPUs may
be used [30]; however, in our threat model, the attacker does not
need to co-locate on the same GPU with the victim and does not
need to run a process on the victim GPU. Note that establishing
the co-location on a single GPU is more challenging, as it requires
reverse-engineering the scheduling processes, managing the noise,
etc.

The attacker does not have access to any specialized system
support or superuser privileges. They use experiments to reverse
engineer the cache (one time, offline) and to find conflict sets, groups
of addresses that hash to the same physical cache set, as a prelimi-
nary step of the attack. This step is necessary because caches are
physically indexed, and sometimes use index hashing, making it
difficult to determine the eventual set a virtual address will hash to.

3 REVERSE ENGINEERING CACHE
ORGANIZATION

In multi-GPU system, a GPU can allocate and access directly the
memory of a remote GPU that is connected via NVLink using
Nvidia provided APIs. Our attacks are cache based timing attacks.
However, the cache hierarchy and its properties are not well docu-
mented. For this reason, we reverse engineer the cache hierarchy,
architecture, and its timing characteristics in this section. We con-
ducted our timing experiments on two different DGX boxes, DGX-1
and DGX-2. Although both DGX boxes have the same topology

as shown in Fig. 1, they are equipped with different GPU archi-
tectures. DGX-1 is equipped with Pascal P100 GPUs and DGX-2
with Volta V100. Our reverse engineering experiments demonstrate
similar characteristics across the different architectures and DGX
machines.

3.1 Caching organization and timing properties
In the first set of experiments, our goal is to understand the overall
cache architectural details as well as the timing properties of differ-
ent access types (hits vs. misses, local and remote). The DGX boxes
offer a uniform address space, and virtual pages can be allocated to
physical pages that belong to any of the GPU HBM DRAMmemory
(i.e., a NUMA organization). Both Pascal and Volta GPUs have two
levels of data cache, L1 and L2. L1 cache is private to SM and L2 is
shared among all the SMs. CUDA PTX [38] provides several loading
primitives each with different caching properties.Loading primi-
tives like __ldca allows the data to get cached in both L1 and L2
cache levels. Whereas, using loading primitives like __ldcs caches
data with evict first policy and __ldcv loads data without caching
and re-fetches the cache line on each new load. We have to use a
loading primitive that caches the data at the L2 level only. A pro-
grammer can bypass L1 data caching by using specific data loading
primitive (specifically, __ldcg()). However, L2 data caching cannot
be bypassed and all data and instructions get cached in L2.

We discover that that memory locations are cached only in the
cache of the GPU where the memory is allocated as we show later
in this section. This is unlike, say multi-core systems, where data
is cached at the core that accesses it. We believe that this choice
is made to simplify cache coherence. However, as we show in the
next section, this enables a dangerous remote prime-and-probe
attack because the remote cache is shared. The attacker only needs
to allocate memory on the remote GPU without running on that
remote GPU. Remote memory allocation and remote memory ac-
cesses are supported in all multi-GPU systems to support Unified
Virtual Memory, enabling large scale applications to share the avail-
able memory across the connected GPUs. As an example, the spy
running on GPU 1 uses cudaSetDevice API to select GPU 0 as the
location where memory is allocated (using cudaMalloc API). In the
second step, another cudaSetDevice is called to change the current
device to GPU 1, and in the last step cudaDeviceEnablePeerAccess
is called to enable remote access from GPU 1 to 0. All these APIs
are called from the spy process running on GPU 1 without special
permissions.

To establish the timing properties, in the first experiment, we
allocate a buffer in the memory of the local GPU to measure local ac-
cess time. To measure remote access time, we allocate a buffer in the
memory of a remote GPU, and we use cudaDeviceEnablePeerAccess
to access the remote GPU’s memory. Note that remote buffer allo-
cation and accessing it does not create any context on the remote
GPU.

To find both the remote and local access time, we first populate
the L2 cache with the data from a buffer in DRAM with a stride of
128 bytes which is the L2 cache line size for our Pascal 100 GPU
architecture. We use the __ldcg() load primitive to load the data
which allows the data to get cached in the L2 cache only. Each data
access is followed by a dummy operation to make sure the access



ISCA ’23, June 17–21, 2023, Orlando, FL, USA Sankha Baran Dutta, Hoda Naghibijouybari, Arjun Gupta, Nael Abu-Ghazaleh, Andres Marquez, and Kevin Barker

is not optimized out by the compiler. The access time is measured
using the clock() function and is recorded in a buffer in the shared
(local) memory of SM to avoid any contention in the L2 cache as
the access path of the shared (local) memory is separate from the
main memory access path. This first cold access shows the DRAM
access time. We access the buffer again and measure the access
time which represents the L2 cache access time. Depending on the
location of the allocated buffer (local or remote) with respect to the
process launched, our reverse engineering process reveals the local
or remote L2 hit and miss time.

The local and remote GPU L2 and DRAM access latency of Pas-
cal P100 GPUs in the DGX-1 machine is shown in the histogram
in Figure 3. We have made 48 accesses in each loop to measure
both local and remote memory accesses. The X-axis specifies the
access delay of the data and the Y axis specifies the number of
bins in the histogram. As we can see in the figure, there are four
clusters of accesses with respect to the timing, varying from just
over 200 cycles to over 850 cycles. When examining the accesses,
the fastest accesses (green in the figure) occur to cached accesses
of the memory allocated and measurement kernel launched on the
same GPU. The next group of accesses corresponds to local cache
misses: DRAM accesses to the local HBM. The next two clusters
correspond to cache hits and misses of the memory that is allocated
on the remote GPU. It also provides us with timing thresholds to
distinguish between cache hits and misses, to both local and remote
GPU caches for different GPU architectures.

Figure 3: Local and remote GPU access time for DGX-1

We repeated the latency experiments from GPU 0 to the other
GPUs to which it has a direct NVLink connection (as shown Fig-
ure 1) and we observed similar timing characteristics (Figure 4).
Note that NVidia runtime API (cudaDeviceEnablePeerAccess) throws
an error if the GPUs are not connected via NVLink.

According to the best of our knowledge, we are first to demon-
strate the caching mechanism when the buffer and the kernel
launched are on two different GPUs connected via NVLink in a
multi-GPU setup. Thus, we understand the memory access path-
ways and caching as shown in Figure 5. When DRAM pages are
allocated in the local GPU memory, the data access path is straight-
forward: the first access is serviced from the local HBM DRAM and
subsequent accesses hit the L2 cache on the same device. On the
other hand, when the data is allocated on one GPU and accessed
from another, the request is routed through the NVLink connection
and the requested cache line is also sent back through NVLink.
Our experiment shows that this data accessed on the remote GPU

(a) DRAM Latency from GPU 0

(b) L2 Latency from GPU 0

Figure 4: Access Latency to different GPUs from GPU 0

Figure 5: Accessing a remote GPU’smemory throughNVLink

is cached on the remote GPU, rather than on the local L2 GPU.
Of course, caching the data locally would introduce cache coher-
ence issues since copies of the same data could exist in multiple L2
caches. In summary, our reverse engineering results demon-
strate that an access to the memory of a remote GPU through
NVLink is cached on the L2 cache of remote GPU, but not the
L2 cache of the local GPU.We use this shared remote L2 cache
in GPU-to-GPU communication to build microarchitectural covert
and side channel attacks. Figure 5 shows our threat model and the
data path to access a remote GPU’s memory through NVLink.

3.2 Determining Cache Eviction Sets
To conduct a successful Prime+Probe attack, an attacker needs to
find a set of addresses that index into the same cache set. The num-
ber of addresses in this set should at least match the associativity
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of the cache, such that access to the set replaces current entries in
that cache set; such a set is called an eviction set.

Although finding conflict sets is a standard component of prime
and probe attacks, deriving these sets in our context is somewhat
different. Many (but not all) CPU attacks benefit from additional fea-
tures such as huge pages which substantially simplify the conflict
set derivation. There are previous studies that explore the L2 cache
architecture in the recent GPU architectures. In general, their as-
sumptions are not compatible with our scenario where the attacker
is attempting to find the eviction sets on the fly. Specifically, Mei
et al. [28] explored different levels of memory hierarchy in GPUs.
However, we could not use their attack directly because their re-
verse engineering process requires storing all the timer values in
shared memory which significantly limits the number of samples
we are able to take. Jia et al. [15] explored different memory lev-
els of Volta and Pascal-based architectures. However, they did not
provide detailed information about the reverse engineering of L2
architecture (and none for the multi-GPU scenario). Jain et al. [14]
provided detailed information about the L2 reverse engineering
as well as the architectural details. However, they modified the
driver virtual to physical address translation to force consecutive
allocation in the physical address space. Of course, this property
does not hold under our threat model since modifying the driver
requires privileged access. We use a pointer chasing experiment
similar to traditional prime and probe attacks, but customized to
the GPU. Moreover, since our attack is remote, we are able to sub-
stantially accelerate the attack and reduce the noise. Specifically, all
memory used to store measurement values are on the attacker GPU,
and therefore they do not generate noise that interferes with the
target/remote victim cache. This enabled us to be more aggressive
in deriving the conflict sets.

We observed that the derived eviction sets remain valid over
application runs, saving us the cost of deriving them on the fly for
every run. Instead, we check if the mapping holds, and if not re-
derive conflict sets on the fly which occurred rarely. However, this
observation is surprising given that the cache is physically indexed
and the virtual to physical memory mapping is likely to change
across application runs.We conjecture that this may have to do with
the way the physical memory allocator works on these systems.
Specifically, the memory we allocate for the buffers to construct
the conflict set are large: if consecutive physical memory pages get
allocated, then the conflict sets in the virtual address space may re-
main the same but hash into different sets in the cache, keeping the
conflict sets valid. Another effect that favors consecutive allocation
is the use of coalescing TLBs [41]. Specifically, since the TLBs on
modern GPUs are known to use coalescing to increase their reach,
the allocator favors allocating aligned virtual addresses mapped to
a consecutive runs of physical addresses to support coalescing and
minimize the TLB pressure giving us the equivalent of huge pages,
without having to explicitly use them. We verified experimentally
that accesses within a single 32MByte buffer require only a single
TLB miss, confirming the large range of the coalesced TLB entry.

The cache line size is 128B and from our eviction set determina-
tion experiment, we also learn the associativity of the cache (16). We
observe that the target address is evicted after every 16th address
reliably. This implies that there are 16 cache lines in the cache set.

Table 1: L2 cache architecture

Cache Attribute Values
L2 cache size 4MB
Number of Sets 2048
Cache line size 128B

Cache lines per set 16
Replacement Policy LRU

Also, the eviction pattern shows that the replacement policy is LRU
(or pseudo-LRU) without randomization since the target address
is evicted consistently after the 16th address. However, we have
observed different caching patterns with different loading primi-
tives. Through our reverse engineering experiment, we identified
the loading primitive (__ldcg()) that allows the GPU L2 cache in
the desired fashion. Table 1 summarizes L2 cache parameters and
architecture derived from our reverse engineering experiments.

Figure 6: Validating the eviction set determination

Figure 6 shows an experiment we conduct for eviction set vali-
dation for two derived eviction sets on both the local and remote
GPUs. The X-axis is the number of cache lines from the conflict set
that have been accessed and the Y-axis is the access time in cycles.
We observed that there is an eviction (increase in access time) after
every 16th access. This behavior confirms the LRU-based replace-
ment policy with a deterministic replacement for the eviction set
access pattern.

The GPU L2 cache is physically indexed and the attacker does
not have the knowledge of data placement in the cache. As a result,
once we discover an eviction set, we are unsure whether it indexes
into a new cache set or a previously discovered one. If we do not
ensure that the eviction sets correspond to unique physical sets,
this aliasing will result in noise during the attack. Specifically, there
are two eviction sets determined by the malicious process that
happen to index to the same physical cache set, due to the lack of
knowledge of the address placement. If there are aliased cache sets
within the same process, then during the actual attack phase, the
eviction sets would cause interference due to self-eviction leading
to the detection of a cache miss and misinterpreting as victim’s
access even when there wasn’t one. Thus, it is important to test
each discovered new eviction set against already discovered ones.
If we notice misses when we combine more than 16 addresses from
the two sets, we conclude that the two sets correspond to the same
physical set and eliminate the newly discovered eviction set from
consideration.

At the conclusion of this process, each process has discovered a
collection of unique eviction sets ideally to cover the full cache. The
reverse engineering results also provide the attacker with timing
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thresholds to distinguish between cache hits and misses, both on
the local GPU as well as the remote GPU. With this information,
we are ready to develop the end-to-end covert channel attack in
the next section.

3.3 Other reverse engineering experiments

(a) Access latency from GPU 1 to 0 (b) Access latency from GPU 2 to 0

Figure 7: Reverse engineering locality of TLB

We also conduct another experiment to understand whether
the TLB is also vulnerable to similar attacks. We discover that the
page table entries, unlike data, are cached in the local TLB for each
GPU. We allocate a buffer on GPU 0 (Figure 1) and launch first a
kernel from GPU 1 and then another kernel from 2 sequentially.
The kernel on GPU 1 accesses three memory addresses within the
buffer: offset 0, offset 256 (a different cache line within the same
page), and offset 0 again. We see in Figure7a the measured time for
each access. The first access experiences a TLB miss and a cache
miss. The second access experiences a TLB hit and a cache miss,
while the final access experiences both a TLB and a cache hit. The
subsequent kernel launched from GPU 2 accesses offsets 512, 256
and then 128. If the TLBs are cached remotely at GPU 0 (as with
the data), then the first access would be TLB hit and a cache miss.
However, the results in Figure 7b show a similar time to the first
access from GPU 1 corresponding to a TLB miss and a cache miss.
The second access to address 256, results in both a TLB hit and a
cache hit since the data is cached at GPU 0 after it was accessed by
GPU 1.

Finally, to show that the attack generalizes beyond the DGX-1
machine, we repeated the reverse engineering experiment on the
DGX-2 with Volta V100 GPUs. The local and remote access time
have similar timing characteristics with different threshold values,
and therefore the attack is possible in this environment as well.

Figure 8: Local and remote GPU access time for DGX-2

4 COVERT CHANNEL ATTACK AND
CHALLENGES

Having established the caching organization and timing character-
istics, in this section, we develop a covert channel attack across
two GPUs. Previous GPU-based microarchitectural attacks were
demonstrated within a single GPU, and the majority use aggregate
measures of contention such as performance counters. Besides es-
tablishing this new threat model, the attack has advantages over a
single GPU attack: it bypasses defenses focused on a single GPU, it
reduces the noise, and it avoids having to work around the scheduler
to co-locate the two kernels within the GPU so that they can estab-
lish contention (e.g., on the same SM [29]). The attack is conducted
from user level and does not require any system level features such
as huge pages or flush instructions that are necessary for many
attacks.

As demonstrated in Fig. 5, the the sender of the covert channel
is located on a local GPU, GPU A, and the receiver is located on
the remote GPU, GPU B, and accesses the memory of the GPU A to
synchronize and receive information sent by sender process on GPU
A(the opposite is also possible). These two processes communicate
covertly over the shared L2 cache of GPU A. First, the receiver
primes a cache set. To communicate "1", the sender would access
its own data, evicts the receiver’s data, and fills up the cache set,
and to communicate "0", the sender process does nothing. The
receiver process keeps probing the same cache set and records the
access time. A high access time indicates a miss and interpreted
as "1" and a low access time indicates a hit and is interpreted as
"0". Although the overall attack process is similar to traditional
Prime+Probe attacks, there are several unique challenges that arise
due to the platform. We describe these challenges and our approach
to overcoming them next.

4.1 Aligning the cache sets
At this stage, the two processes are able to derive exclusive eviction
sets covering the L2 cache . However, all we are able to determine is
that each set hashes to the same physical cache set, but not to which
set. To be able to communicate, the processes have to use eviction
set pairs, one in each process, that hash to the same physical cache
set. We develop a protocol to enable the processes to discover and
agree on the sets to use for the signaling and communication as
shown in Figure 9.

Assume again that the sender process is located on GPU A and
the receiver process has been launched on GPU B and they are
connected via NVLink, shown in Fig. 5. Both processes allocated
their buffer on GPU A and share the L2 cache on that GPU. In this
scenario, the sender is a local process and the receiver is remote. In
a single run of the malicious applications, one sender eviction set
is checked with another eviction set of the receiver process. In Fig
9, we can see a local sender process eviction set TEA launched on
GPU A and the remote receiver process launched on GPU B have
three eviction sets SEA, SEB, and SEC. The eviction set of the local
sender process is checked against three eviction sets of the receiver
process that could be located in the same physical cache set X. The
set matching experiment reveals that the sender eviction set TEA
is not mapped to the receiver eviction set SEA and SEB shown by
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Figure 9: Eviction set alignment for multiple processes

dotted arrows. But the sender eviction set TEA is mapped to the
receiver eviction set SEC.

The eviction set mapping kernel is shown in Algorithm 1. The
eviction set is accessed from lines 5 - 12 and the number of access is
equivalent to the number of cache lines specified by numOfCache-
Lines (which is 16 in our case). A single eviction set is accessed
for numMainLoop number of times in 1. The actual access of the
data takes place in line 8 and the first index is specified in line 2
and gets initialized every time within the outer loop. The access
takes place in a pointer chase fashion within the inner loop. The
access cycles are measured and kept in a register variable timer1
which accumulates the single access of the eviction set. Another
register variable timer2 in line 13 accumulates the average access
time of a single access of the eviction set. Finally, all the accesses
over the outer loop are averaged in line 16. The kernel algorithm
is the same for both the sender and receiver processes. The only
difference between them is the number of outer loops that decides
how many times a cache set would be probed. The sender process
has faster access compared to the receiver process as the memory is
local to the sender process. So the value of numMainLoop is much
higher for the sender process compared to the receiver process. For
our work, we have selected a value of 400000 and 150000 for the
local sender and remote receiver process respectively. However,
these probing values can be reduced to optimize the execution time
of the set mapping process. The main target is to create a visible
contention in the L2 cache set and the loop boundary controls that
contention.

Note that this particular challenge is required in the covert chan-
nel only to communicate between two malicious processes. For side
channel, only finding the unique cache sets satisfies the purpose.

4.2 Putting it together: Covert channel
The sender process (launched on GPU A) allocates the data buffer
on the same GPU in step 1 and the receiver process gets launched
on another GPU (B), but allocates the buffer on the remote GPU A,
where the sender process is launched. The first access of both the
sender and the receiver process get the data from the off-chip GPU
DRAM and get cached in the L2 cache. The subsequent memory
accesses will be serviced from the L2 cache of GPU A.

The overall flow of the covert channel attack is shown in Figure
10. The sender is located on GPU A and the receiver is located on

Algorithm 1: Eviction set alignment across processes
1 for 𝑖 = 0; 𝑖 < 𝑛𝑢𝑚𝑀𝑎𝑖𝑛𝐿𝑜𝑜𝑝 ; 𝑖 = 𝑖 + 1 do
2 idxTemp = startIdx;
3 timer1 = 0;
4 dummy1 = 0;
5 for 𝑖 = 0; 𝑖 < 𝑛𝑢𝑚𝑂𝑓𝐶𝑎𝑐ℎ𝑒𝐿𝑖𝑛𝑒𝑠 ; 𝑖 = 𝑖 + 1 do
6 dataPtr = &mainBuff[idxTemp];
7 start = clock();
8 idxTemp = __ldcg(dataPtr);
9 dummy1+=idxTemp;

10 end = clock();
11 timer1+=(end-start);
12 end
13 timer2+=(timer1/numOfCacheLines);
14 dummy operation
15 end
16 timeBuffMain = (timer2/(numMainLoop));

GPUB. Steps 1 and 2 of the attack represent the determination of the
eviction sets of both processes. These are followed by the alignment
step (Step 3 in the figure) to map the sets on each side to the same
physical cache sets, which now enables them to communicate by
creating or withholding contention on these sets.

Figure 10: Cross GPU covert channel attack

From the previous step of cache set alignment, we have been able
to determine the cache sets that are mapped among the malicious
processes. This allows us to select the cache sets that would be used
during the covert channel communication process. For each cache
set, we have allocated a thread block that would be launched to
an SM in the GPUs. Hence, when the communication takes place
over a single cache set, a single thread block on both sender and
receiver sides would access their own eviction set whose mapping
was determined from the set aligning step. We leveraged the GPU
parallelism by increasing the number of thread blocks. Each thread
block, in both sender and receiver,would access different eviction
sets that are already mapped to have a faster communication. The
sender thread block consists of a single warp of threads (32 on our
machines). All 32 threads in a thread block of the sender process
are involved in probing the cache set. The 16 addresses referring to
the 16 cache lines in the eviction set are accessed through pointer
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chasing similar to the eviction set determination technique.The
receiver process essentially also has 32 threads that are active in the
attack; however, we use a significantly higher number of threads
(1024) and use the additional threads to help efficiently save the
recorded times from the buffer in shared memory to global memory
when it fills. Storing the access cycles temporarily on the shared
buffer and then copying to the main buffer reduces memory pres-
sure as well as increases the parallelism during the data copy. To
send a "1" the sender process accesses the cache set, replacing the
data placed there by the receiver,and does nothing to send a "0".
We have used controlling parameters that control the priming of
the cache set while sending a "1", and use computationally heavy
dummy instructions (e.g. trigonometric instructions) to wait during
transmitting "0" to the spy process. The spy process, however, con-
tinuously probes the cache set to receive the data from the sender
process.

4.3 Covert Channel Evaluation
In this section, we evaluate the multi-GPU covert channel attack.
All experiments use CUDA 10.0 with Nvidia driver version 410.79.
For the covert channel evaluation, we send a long message across
the GPUs using L2 cache sets. We send a message of size 1Mb across
the covert channel. We vary the number of cache sets we use in the
attack. Fig. 12 shows a demonstration of the transmission of the
first part of a message. Specifically, the X-axis of the figure is the
time progression and the Y axis is the access cycles. The message
shows the first line in the text,("Hello! How are you? ") in the long
message that has been transferred covertly. The y-axis shows the
timed access cycles measured from the remote receiver as it accesses
the cache set. We observe that the number of cycles is 630 while
sending ’0’ and 950 cycles while communicating ’1’. To synchronize
the communication, as the sender and the receiver processes are
located on different GPUs, we tune parameters on the sender side
that controls the cache access frequency to communicate the covert
message successfully to the spy side.

Figure 11: Bandwidth and Error rate in covert channel

The bandwidth and the error rate are shown in Fig. 11. We have
measured the bandwidth and error rate as we increase the number
of sets used for communication on the x-axis of the figure. The left
y-axis of the figure is the bandwidth corresponding to the blue line
in the figure which is displayed in MB/s. Similarly, the right y-axis
shows the error rate in percentage corresponding to the red line.
We measured the bandwidth and the error rate measured over 1000
runs of sending the message from sender to receiver.The bandwidth

Table 2: Bandwidth of prior covert channels

Shared Resource Error % Bandwidth
Wu et al. [49] CPU memory Bus N/A 38 Kbps
DRAMA [40] DRAM Row Buffer 4.1% 411 Kbps
Liu et al. [23] CPU Last-level cache 22% 1.2 Mbps

Gruss et al. [11] CPU Shared Memory 0.84 % 3.9 Mbps
Naghibi et al. [29] GPU L1 cache 0% 285 kbps
Ahn et al. [2] GPU NoC 0% 1 Mbps

Leaky buddies [9] CPU Last level cache 2% 120 Kbps
This work multi-GPU L2 cache 1.3% 3.95 MBps

increases as the number of cache sets increases since we are able to
communicate over multiple cache sets in parallel. However, as the
number of cache sets increases, the contention increases among
resources such as ports, introducing more variability in the tim-
ing, and increasing the error rate increases as well. The highest
bandwidth is 3.95 MB/s when using 4 cache sets, with an
average error rate of 1.3%measured over 1000 runs. Using ad-
ditional sets improves bandwidth but results in higher error
rates. Table 2 shows an error and bandwidth comparison between
previously demonstrated covert channels over various hardware
resources to show our channel’s significance. In fairness, we note
that it is difficult to compare these numbers directly since they
were obtained on different architectures (CPUs vs. GPUs, as well
as generation of each).

5 SIDE CHANNEL ATTACK
In this section, we demonstrate proof-of-concept side channel at-
tacks. The attacks start by probing a remote cache constructing a
memorygram of the accesses to the cache, which is a collection of
cache hits and misses for the different cache sets over time [45].
This access pattern correlates with the activity on the remote GPU,
allowing us to infer information about the applications running on
this GPU.

Attack 1: Application Fingerprinting: This attack identifies a
running application based on its memorygram. We envision this
attack to serve as a first step of future attacks where we identify
a target application running on a GPU and then infer information
about it. In our proof-of-concept attack, we used six different appli-
cations from the NVidia toolkit[36] as our victim applications. The
applications include common HPC workloads such as vectoradd,
histogram, blackscholes, matrix multiplication, quasirandom and
welshtransform. The memorygram results are shown in Fig. 13
which monitors 256 L2 cache sets over time priming and probing
each: the x-axis represents the time progression in probing itera-
tions and the y-axis is the cache set number. A yellow dot represent
a cache miss on the corresponding L2 cache set at the correspond-
ing time, indicating a likely victim application’s access. From the
images it is evident that each victim application leaves a unique
memory footprint. The memory footprint pattern remains fairly
similar across runs despite potential changes of virtual to physi-
cal mapping, which enables the classifier to accurately detect the
application.

We train an image classifier to identify the different applications
based on inputmemorygram images (other approaches are possible).
Specifically, we run the attack many times against the different
applications to collect 1500 samples for each application. We split
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Figure 12: Cross GPU covert message received by spy process

Figure 13: Memorygram of 6 applications

Figure 14: Confusion Matrix. BS (Black Scholes), HG (His-
togram), MM (Matrix Multiplication), QR (Quasi Random),
VA (Vector Addition), WT (Walsh Transform)

the data into training and validation sets of 150 samples each and

Table 3: Average misses over all cache sets

Number of Neurons Average Number of Misses
64 5653
128 6846
256 8744
512 10197

isolate 1200 samples as the test or control set. Since there is no
class imbalance in the data set, keeping a sufficiently large test set
ensures that we evaluate the generalization capabilities with good
confidence.

The classifier achieved an overall accuracy of 99.91% on the
test set of 7200 samples spanning six classes. Black Schole, Matrix
Multiplication, Quasi Random Generator, and Vector Addition were
classified with a perfect accuracy score of 100% while Histogram
and Welsh Transform scored 99.75% and 99.91% respectively. The
confusion matrix depicting the classification results is shown in
Figure 14. We believe the formulation can be readily extended to
classify a larger number of applications, and eventually extended to
identify specific kernels within an application. This will enable us to
use this attack as a first step to locate the kernels of a long running
application and then carry out side channel attacks targeting them
individually.

Attack 2: Attacking a Deep Learning Application: Machine
learning training and inference is perhaps the primary application
envisioned for multi-GPU machines. We demonstrate a preliminary
side channel targeting extraction of model information from a
machine learning model as it executes.

Our victim application is a Multi-layer Perceptron (MLP) model
with 1 hidden layer built using PyTorch [39]. The application trains
theMLP using theMNIST digit recognition data set[7].We used four
different network configurations varying the number of neurons
in the hidden layers; the attack’s goal is to identify this number of
neurons. We monitored 1024 unique L2 cache sets in the remote
GPU. We chose this number to balance sampling coverage and the
speed of the attack (how often we can sample each set). A histogram
of the number of misses for each of the monitored cache sets is
shown in Fig. 15. Visually, we can see that the intensity of misses
increases as the size of the hidden layer increases, reflecting the
additional computations during training.
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Figure 15: Cache misses per set

(a) 128 neurons (b) 512 neurons

Figure 16: Memorygram of the MLP application

Table 3 shows the average number of cache set misses; we see sep-
aration which allows us to infer the configuration. Figures 16a and
16b show the memorygram with 128 and 512 neurons respectively.
Memorygram data is richer, showing the pattern of misses over time.
For example, the model was configured to run two epochs which
we are able to infer visually in Figure 17. We also verified that the
spy is able to obtain the memorygram for an application launched
through OpenCL; although we did not construct an end-to-end at-
tack on OpenCL, we believe extracting sensitive information from
the memorygram is possible as we have demonstrated for CUDA
workloads so far.

6 NOISE MITIGATION
We developed our attacks in a quiet environment. However, in real
scenarios, there will potentially be other concurrent applications
running on GPUs, accessing the L2 cache, and as a result, adding
noise to the covert or side channel attacks.

For mitigating noise, we propose to leverage concurrency limita-
tions of GPUs using similar approaches as prior work [29] to force
exclusive execution of receiver or sender on GPUs. Based on the
leftover policy for GPU multiprogramming, thread blocks of the
first process are assigned to different SMs and if there are leftover
intra-SM resources for other applications, they can get launched on
the same SM concurrently. These resources include shared mem-
ory, register, and the maximum number of thread blocks per SM.
For example, in covert channel attacks, if we control the resource
demand of our sender on GPU A and receiver on GPU B to saturate

the intra-SM resources, no other concurrent application can be as-
signed to those SMs on two GPUs during the covert communication.
Of course, this approach is more difficult for side channels, but it
is likely that we would be able to customize a kernel to block out
additional noise from the GPU with knowledge of the resources
needed by the target victim application. The attack uses one thread

Figure 17: Memorygram for a two-epoch experiment

block per SM. However, each thread block can only allocate 32Kb
of shared memory on Pascal, which is half the size of the available
shared memory per SM. To consume the shared memory and block
other applications, we launch idle thread blocks to use the leftover
shared memory without interfering with the attack (they do not
access the global memory during the communication). Therefore,
we can ensure the exclusive execution of receiver (or sender) on
GPU reducing noise.

7 POTENTIAL MITIGATIONS
A variety of microarchitectural covert and side channel defense
mechanisms have been studied on CPU-based systems [8, 19, 22,
47] and recently within a single GPU [50]. A possible defense to
prevent such attacks is the isolation of concurrent processes into
different security domains. The security domains can be defined
by partitioning of resources which eliminates the interference of
applications on shared hardware and mitigates these attacks.

As an example, Nvidia designed Multi-Instance GPU (MIG) Tech-
nology [37] in the latest generation GPUs (Ampere). In this de-
sign, GPU can be securely partitioned into separate GPU instances
for multiple users with an isolated path through the entire mem-
ory system. Although MIG was primarily introduced for perfor-
mance improvement, it can potentially be used for process isolation
against microarchitectural attacks. We explored whether MIG can
provide protection against our application fingerprinting attack
in multi-GPU systems. MIG isolates the contexts/processes that
are executing within a single GPU into several hardware instances
and supports several predefined options for slicing the compute
and memory resources of the device. In its current design, MIG
does not support Multi-GPU systems [37] (that is, it cannot even
be enabled) and even if it could, it is not able to separate remote
memory accesses originating from the contexts running on other
GPUs through direct interconnect such as NVLink. In addition,
even if it can be used, MIG is a static partitioning approach that
can significantly degrade the performance of multi-GPU systems.

Xu et al. [50] propose GPUGuard, a contention detection and
dynamic partitioning framework to defend against covert and side
channels in discrete GPUs. GPUGuard enables dynamic isolation of
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contending processes while ensuring fine-grained GPU sharing and
maximum utilization, providing a nice trade-off between perfor-
mance and security. However, similar to MIG, GPUGuard focuses
on applications running on a single GPU and is not compatible with
multi-GPU systems.

Current partitioning-based designs could potentially be extended
to support the efficient isolation of remote memory accesses of
other GPUs. Direct cache access in current multi-GPU systems
is offered to significantly increase the efficiency of GPU-to-GPU
communication for distributed and cooperative workloads. An
ideal partitioning-based defense for multi-GPU systems must have
minimal impact on the local and remote memory accesses of co-
operating processes, and at the same time eliminate the interference
of other contexts. This can limit or prevent interference between
mistrusting applications sharing the system, but a practical design
raises a number of issues which we hope to explore in future work.

A potential mitigation is to consider limiting remote memory
allocation. However, sharing memory across GPUs is essential to
the workloads enabled by multi-GPU systems where multiple GPUs
work together on a large problem such as machine learning or in-
ference. Allocating and accessing remote GPU memory is achieved
by Nvidia provided APIs at the user level, and are essential to uni-
fied virtual memory which is used in most large scale applications.
For example, Nvidia is executing machine learning benchmarks
like MLPerf [42] in the DGX A100 SuperPods [33] to harness the
multi-GPU capability and accelerate both training and inference.
Limiting memory to be used just on the GPU where it is allocated
breaks all but embarassingly parallel multi-GPU applications. Re-
searchers are also using multi-GPU servers to study and accelerate
graph anaytics [18, 52] applications. In addition, new system opti-
mizations are emerging to improve the performance of multi-GPU
systems that rely on remote GPU memory access. For example,
Choi et. al. [6] propose reclaiming memory available in multi-GPU
systems to allocate to applications that need them. Thus, we con-
sider such a mitigation to be impractical, although it is perhaps
interesting to explore whether policies can be developed to detect
and limit unusual allocation patterns.

8 RELATEDWORK
With the increasing support of multiprogramming on GPUs in re-
cent years, several works have studied microarchitectural covert
and side channel attacks on a single GPU. Naghibijouybari et al. [29]
characterize contention and construct covert channels on a variety
of resources on GPUs, including constant caches, different types
of functional units, and memory. Nayak et al. [32] develop a sim-
ilar microarchitectural covert channel on GPU’s shared last level
translation lookaside buffer(TLB). Ahn et al. [3] implement covert
channel attacks on shared on-chip interconnect on GPUs. In a com-
pletely different environment, Dutta et al. [9] developed covert
channel attacks between CPU and GPU through shared LLC and
ring bus in integrated CPU-GPU systems.

Another line of research times a GPU kernel from the CPU. GPU
kernels experience timing variations due to data-dependent mem-
ory coalescing [1, 16] or shared memory bank conflicts [17]. These
variations, measured through timing the kernel or by collecting
hardware performance counters [46], Electromagnetic traces [10,

12] or power consumption traces [25], can be used to infer se-
crets about the GPU kernel (typically an encryption key). GPU side
side channel attacks that use the performance counters were also
demonstrated to do, website fingerprinting, inter-keystroke timing
attack [30], workload fingerprinting [24, 53], or Neural Network
model extraction attacks [30, 48].

All of these attacks on discrete GPUs exploit the aggregate
measures of contention on GPUs. The attacks that we develop
in this paper, are the first Prime+Probe based timing attacks on
L2 cache on GPUs, which focus on a single set of cache, providing
high-resolution attacks by fine-grained access time measurements.
Our attacks also span multiple GPUs in multi-GPU systems, by-
passing possible partitioning based mechanisms within a single
GPU [37, 50].

Irazoquie et al. [13] explore cross core side channel leakage
in multi-core CPUs. Like our attacks, these span across different
processing units. The attack is substantially different than ours in
that it requires shared memory between the attack and the victim
and relies on the cache coherence protocol. Our paper may be
viewed to expand our understanding of cross processor attacks to
the case where the processors do not share a coherence domain.

9 CONCLUDING REMARKS
In this paper, we demonstrate for the first time a microarchitectural
attack on Multi-GPU systems. These systems are emerging and
increasingly important computational platforms, critical to contin-
uing to scale the performance of important applications such as
deep learning. They are already offered as cloud instances offering
opportunities for an attacker to spy on a co-located victim. We
reverse engineer the cache organization and sharing on an Nvidia
DGX-1 machine, showing that remote caches can be shared when
the attacker allocated memory on the memory banks of the remote
GPU. We reverse engineer the timing properties of both local and
remote accesses, as well as the cache replacement policy. We de-
velop both prime-and-probe based covert channel and side channel
attacks across different GPUs.

We believe that other attacks may be possible on multi-GPU
systems. Coarse-grain cache occupancy attacks [45] are possible
since even finer grained attacks are possible. We showed that TLBs
are not remotely cached and therefore are not vulnerable to our
attack model. We also conjecture that attacks that detect contention
on NVlink may be possible, perhaps assisted with access to per-
formance counters. We hope to study these attacks, as well as
mitigations in our future work.
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