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Abstract. This paper is the second of a two-part series by the author devoted to the following
fundamental problem in the theory of algebraic curves in projective space: Which reducible
curves arise as limits of smooth curves of general moduli? Special cases of this question
studied by Sernesi (Sernesi, Edoardo (1984) On the existence of certain families of curves.
Invent Math 75(1): 488 25-57 ), Ballico (Ballico, Edoardo (2012) Embeddings of general
curves in projective spaces: the range of the quadrics. Lith Math J 52(2): 134-137 ), and
others have been critical in the resolution of many problems in the theory of algebraic curves
over the past half century. In this paper, we give sharp bounds on this problem for space
curves, when the nodes are general points and the components are general in moduli.We also
systematically study a variant in projective spaces of arbitrary dimension when the nodes are
general in a hyperplane. The results given here significantly extend those cases established in
the previous paper in this series (Eric Larson, Constructing reducible Brill-Noether curves,
To appear in documentamathematica, arxiv:1603.02301), as well as those cases established
by Sernesi (Sernesi, Edoardo (1984) On the existence of certain families of curves. Invent
Math 75(1): 488 25-57 ), Ballico (Ballico, Edoardo (2012) Embeddings of general curves
in projective spaces: the range of the quadrics. Lith Math J 52(2): 134-137 ) , and others.
As explained in (Eric Larson, Degenerations of curves in projective space and the maximal
rank conjecture, arXiv:1809.05980), the reducible curves constructed in this paper also play
a critical role in the author’s proof of the maximal rank conjecture in a subsequent paper
(Eric Larson Degenerations of curves in projective space and the maximal rank conjecture,
arXiv:1809.05980).

1. Introduction

The goal of the present paper is continue the analysis in [9] of the following fun-
damental problem in the theory of algebraic curves in projective space:

Question If f : C1 ∪� C2 → P
r is a map from a reducible curve, under what

conditions can f be deformed to an immersion of a general smooth curve?
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Special cases of this question and variants have been critical in the resolution
of many problems in the theory of algebraic curves over the past half century;
examples include Sernesi’s proof of the existence of components of the Hilbert
scheme with the expected number of moduli when the Brill–Noether number is
negative [13], and various cases of the maximal rank conjecture by Ballico [2] and
Hirschowitz [7].

To fix notation:Write M̄g(P
r , d) for Kontsevich’s space of stablemapsC → P

r

of degree d, from a nodal curve C of genus g. There is a natural map M̄g(P
r , d) →

M̄g . As in [9], we define:

Definition 1.1. We refer to a stable map C → P
r as a Brill–Noether curve (BN-

curve) if it corresponds to a point in a component of M̄g(P
r , d) which both domi-

nates M̄g , and whose generic member is a nondegenerate map from a smooth curve,
which is an immersion if r ≥ 3, birational onto its image if r = 2, and finite if
r = 1.

Additionally, we say a stable map f : C → P
r is an interior curve if it lies in

a unique component of the corresponding space of stable maps.

The Brill–Noether theorem, proven by Griffiths and Harris [5], Gieseker [4],
Kleiman and Laksov [8], and others, asserts that BN-curves of degree d and genus
g in P

r exist if and only if the Brill–Noether number

ρ(d, g, r) := (r + 1)d − rg − r(r + 1) ≥ 0;
and that in this case, the locus of BN-curves forms an irreducible component of
M̄g(P

r , d).
Returning to our main question: In [9], we studied this problem when the nodes

were general points and the components were general in moduli. In this case the
natural conjecture is:

Conjecture. Let f : C1 ∪� C2 → P
r be a stable map from a reducible curve,

such that the f |Ci are BN-curves of degree di and genus gi , and f (�) is a general
set of n = #� points in P

r . Then f is a BN-curve if and only if it has nonnegative
Brill–Noether number.

However, in [9] we found some counterexamples to this conjecture, all of which
satisfied

(r + 1)d1 − (r − 3)(g1 − 1) = (r + 1)d2 − (r − 3)(g2 − 1) = (r − 1)n,

or equivalently such that both f |Ci admit no deformation passing through f (�).
This motivated us to introduce the following refined conjecture:
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Conjecture 1.2. Let f : C1 ∪� C2 → P
r be a stable map from a reducible curve,

such that the f |Ci are BN-curves of degree di and genus gi , and f (�) is a general
set of n = #� points in P

r . Then unless

(r + 1)d1 − (r − 3)(g1 − 1) = (r + 1)d2 − (r − 3)(g2 − 1) = (r − 1)n, (1)

we have that f is a BN-curve if and only if it has nonnegativeBrill–Noether number.

In light of counterexamples for which both equalities in (1) hold, it is unsurpris-
ing that the difficulty of this conjecture is greatest when both equalities in (1) hold
approximately. To date the strongest results on this conjecture were obtained by the
author in [9], where we established this conjecture when one of the equalities in (1)
was at least 4 away from being an equality and the curves f |Ci were nonspecial.

In the present paper, we establish the first known sharp results on this problem
by proving Conjecture 1.2 for space curves:

Theorem 1.3. Conjecture 1.2 holds for space curves (r = 3).
In other words, let f : C1 ∪� C2 → P

3 be a stable map from a reducible curve,
such that the f |Ci are BN-curves of degree di and genus gi , and f (�) is a general
set of n = #� points in P

3. Then unless n = 2d1 = 2d2, we have that f is a
BN-curve if and only if it has nonnegative Brill–Noether number.

However, in many applications — including the results of Sernesi [13], Ballico
[2], and Hirschowitz [7] mentioned earlier — it is essential to consider reducible
curves where f (�) is not a general set of points in P

r , but is instead a general set
of points in a hyperplane H ⊂ P

r . The other goal of the present paper is thus to
consider a variant of this conjecture for stable maps f : C ∪� D → P

r , where
f |D factors as ι ◦ fD for fD : D → H � P

r−1 and ι : H ↪→ P
r the inclusion of

a hyperplane H ⊂ P
r , and f |C is transverse to H and of specified degree d ′ and

genus g′, and f (�) is a set of n general points in H .
We will systematically investigate when BN-curves of this form exist. Since

the genus of D and degree of fD are

g′′ = g + 1 − g′ − nandd ′′ = d − d ′,

the curveC∪� Dmust be connected, and the hyperplane section f (C)∩H contains
d ′ points (or fewer), such curves can only exist when

g′ ≥ 0,

g + 1 − g′ − n = g′′ ≥ 0,

(r + 1)d ′ − rg′ − r2 − r = ρ(d ′, g′, r) ≥ 0,

r(d − d ′) − (r − 1)(g − g′) + (r − 1)n − r2 + 1 = ρ(d ′′, g′′, r − 1) ≥ 0,

n − 1 ≥ 0,

d ′ − n ≥ 0.

In order to construct such reducible curvesC∪� D → P
r , we first need to know

when we can pass f |C and fD through a set � ⊂ H of n general points. In this
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paper, wewill focus on the case when results of [12] guarantee the existence of such
curves f |C and fD through �. Namely, Theorem 1.4 of [12] implies an hyperplane
section of f |C can pass through n general points subject to the inequality

(2r − 3)(d ′ + 1) − (r − 2)2(g′ − d ′ + n) − 2r2 + 3r − 9 ≥ 0. (2)

In addition, byTheorem1.2 of [12], fD passes throughn general points provided
that

(r − 2)n ≤ rd ′′ − (r − 4)(g′′ − 1) − 2r + 2;
or upon rearrangement,

r(d − d ′) − (r − 4)(g − g′) − 2n − 2r + 2 ≥ 0.

(The argument we give here is inductive but depends only on the general shape of
these inequalities, and not the exact coefficients. For example, if Theorem 1.4 of
[12] were known in slightly greater generality, say when the left-hand side of (2)
was at least −1, the same inductive argument would apply in this slightly more
general situation.)

When all of these inequalities are satisfied, we can construct such a curve
C ∪� D → P

r ; but a priori, this curve may not be a BN-curve — in fact, a priori,
it may not even lie in a component of the Kontsevich space whose generic member
is a map from a smooth curve. One can show, as in the proof of Corollary 4.3 of
[6] mutatis mutandis, that when f |C and fD are general, C ∪� D → P

r admits a
first-order smoothing if and only if

2n+d+g′−d ′−g−r−1 = n+d ′′−g′′−r = n−(dim H1(N f |D )+1) ≥ 0. (3)

In these terms, our first theorem shows that, if there exists an n satisfying these
inequalities, with (2) satisfied even when d ′ and n are decreased by 1 and (3) strict,
then for theminimal such n, the resulting curveC∪� D → P

r is in fact a BN-curve.
Namely:

Theorem 1.4. Let d, g, d ′, g′, and r be integers which satisfy:

g′ ≥ 0, (4)

(r + 1)d − rg − r2 − r ≥ 0, (5)

(r + 1)d ′ − rg′ − r2 − r ≥ 0. (6)

Suppose there exists an integer n satisfying:

(2r − 3)d ′ − (r − 2)2(g′ − d ′ + n) − 2r2 + 3r − 9 ≥ 0, (7)

g − g′ − n + 1 ≥ 0, (8)

r(d − d ′) − (r − 1)(g − g′) + (r − 1)n − r2 + 1 ≥ 0, (9)

n − 1 ≥ 0, (10)

d ′ − n ≥ 0, (11)

r(d − d ′) − (r − 4)(g − g′) − 2n − 2r + 2 ≥ 0, (12)

2n + d + g′ − d ′ − g − r − 2 ≥ 0; (13)
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let n be the minimal such integer. Then any curve f : C ∪� D → P
r of degree d

and genus g, so that f |C is a general BN-curve of degree d ′ and genus g′; and f |D
factors as ι ◦ fD, for ι : H ↪→ P

r the inclusion of a hyperplane H ⊂ P
r , and fD a

general BN-curve; and such that #� = n and f (�) is a general set of n points in
H, is an interior BN-curve.

Remark 1.5. If (2r −3)(d ′ +1)− (r −2)2g′ −2r2 +3r −9 ≥ 0, then Theorem 1.4
of [12] implies the hyperplane section of f |C is general. If r ≥ 4, this implies the
general such reducible curve is an immersion. So we get a curve in the boundary
of the component of the Hilbert scheme corresponding to BN-curves, as opposed
to just for the Kontsevich space.

In the course of proving Theorem 1.4, we also establish the following slight
variant (which yields the same conclusion subject to a slightly different system of
inequalities):

Theorem 1.6. Let d, g, d ′, g′, and r be integers which satisfy:

g′ ≥ 0, (4′)

(r + 1)d − rg − r2 − r ≥ 0, (5′)

(r + 1)d ′ − rg′ − r2 − r ≥ 0. (6′)

Suppose there exists an integer n satisfying:

(2r − 3)(d ′ + 1) − (r − 2)2(g′ − d ′ + n) − 2r2 + 3r − 9 ≥ 0, (7′)

g − g′ − n ≥ 0, (8′)

r(d − d ′) − (r − 1)(g − g′) + (r − 1)n − r2 ≥ 0, (9′)

n − 1 ≥ 0, (10′)

d ′ − n ≥ 0, (11′)

r(d − d ′) − (r − 4)(g − g′) − 2n − 2r − 2 ≥ 0, (12′)

2n + d + g′ − d ′ − g − r − 2 ≥ 0; (13′)
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let n be the minimal such integer. Then any curve f : C ∪� D → P
r of degree d

and genus g, so that f |C is a general BN-curve of degree d ′ and genus g′; and f |D
factors as ι ◦ fD, for ι : H ↪→ P

r the inclusion of a hyperplane H ⊂ P
r , and fD a

general BN-curve; and such that #� = n and f (�) is a general set of n points in
H, is an interior BN-curve.

Remark 1.7. The inequality (k) coincides with the inequality (k′) for k = 4, 5, 6,
10, 11, 13, and is slightly different for k = 7, 8, 9, 12.

Several cases of Theorems 1.4 and 1.6 are already known: The case n ≤ r + 2
follows from Theorem 1.9 of [9]; the cases r = 1 and r = 2 follow from classical
results on the irreducibility of the Hurwitz space (c.f. [3]) and of the Severi variety
(c.f. [14]). We will therefore assume for the proof of Theorems 1.4 and 1.6 that:

r ≥ 3 (14)

n ≥ r + 3. (15)

Since � is a general set of points, we may deform the curve f appearing in
Theorems 1.4 and 1.6 to assume that ( fD, �) is general in the component of
Mg′′,n(H, d ′′) corresponding to BN-curves, and that f |C is general in the com-
ponent of Mg′(Pr , d ′) corresponding to BN-curves (hence is transverse to H ).
Similarly, we may deform the curves fi appearing in Theorem 1.3 to assume that
the ( fi , �) are both general in the component of Mgi ,n(P

3, di ) corresponding to
BN-curves. In particular, by (14), we have that f is unramified in Theorems 1.4
and 1.6, and that both fi are unramified in Theorem 1.3.

To prove Theorems 1.3, 1.4, and 1.6, we employ the inductive strategy described
in detail in the introduction to the first paper of this sequence [9], and summarized
here in Section 2.

This yields a proof of Theorems 1.4 and 1.6 by simultaneous induction on n,
with Theorem 1.9 of [9] (which implies both theorems when n ≤ r + 2) serving as
the base case. Namely, we show first, in Section 3, that Theorem 1.4 for any given
value of n implies Theorem 1.6 for the same value of n; then, in Section 4, we show
that Theorems 1.4 and 1.6 for any given value of n imply Theorem 1.4 for n + 1.
For Theorem 1.3, our argument will also be by induction on n.

Note: Throughout this paper, we work over an algebraically closed field of
characteristic zero.

2. Preliminaries

In this section, we explain the basic inductive strategy we shall use to prove The-
orems 1.4, 1.6, and 1.3, and summarize the key results from [9] and [12] that we
shall need.

The basic inductive strategy is to use results of [12] to degenerate one compo-
nent, say C → P

r , to a union C◦ = C ′ ∪C ′′ → P
r , that still passes through �. To

conclude that C ∪ D is a BN-curve as desired, there are three basic steps:

1 Using results of [9], we show that C ′′ ∪ D → P
r is a BN-curve.
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2 Note that our specialization of C → P
r induces a specialization of f :

f ◦ : C ′ ∪ (C ′′ ∪ D) = (C ′ ∪ C ′′) ∪ D → P
r . (16)

Using our inductive hypothesis, we show that C ′ ∪ (C ′′ ∪ D) → P
r is a BN-

curve.
3 Using results of [9], we show that (16) is an interior curve.
(This implies that any deformation, including our original curve C ∪ D, is a
BN-curve as desired.)

We now summarize the key results from [9] and [12] that we shall need to
complete this program. To state these results, it is convenient to make the following
definition:

Definition 2.1. We say a curve is a WBN-curve if it is either a BN-curve, or a
(possibly degenerate) nonspecial curve.

To specialize C → P
r to a union C ′ ∪C ′′ → P

r that still passes through �, we
shall need the following results:

Theorem 2.2. (Theorem 1.2 of [12]) There exists a BN-curve of degree d and
genus g in P

r (with ρ(d, g, r) ≥ 0), passing through n general points, if

(r − 1)n ≤ (r + 1)d − (r − 3)(g − 1) − 2r.

Theorem 2.3. (Theorem 1.4 of [12]) The hyperplane section of a general BN-curve
of degree d and genus g in P

r contains n general points (with 0 ≤ n ≤ d) if

(2r − 3)(d + 1) − (r − 2)2(g − d + n) − 2r2 + 3r − 9 ≥ 0.

These results allow us to construct specializations via the following method,
which can be applied to f |C , or to fD if we replace P

r with H :
Method (*).

1 Partition � = �′ ∪ �′′.
2 Find a WBN-curve C ′ → P

r through �′, that is general in some component of
the space of WBN-curves passing through �′.
If �′ is not general, it spans a hyperplane; in this case, suppose C ′ → P

r is
transverse to this hyperplane.

3 Show that C ′ passes through a set � of general points.
4 Find a WBN-curve C ′′ → P

r through �′′ ∪ �, that is general.
Again, if�′′∪� is not general, supposeC ′′ → P

r is transverse to the hyperplane
spanned by �′′ ∪ �.

5 Construct the union C ′ ∪� C ′′ → P
r .

Next, we state the key result from [9] that we shall need to show that C ′′ ∪ D
is a BN-curve (our first step above).
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Theorem 2.4. (Theorem 1.6 of [9]) Let Ci → P
r (for i ∈ {1, 2}) be WBN-curves

of degree di and genus gi , which pass through a set � ⊂ P
r of n ≥ 1 general

points. Suppose that, for at least one i ∈ {1, 2}, we have
(r + 1)di − rgi + r ≥ rn.

Then C1 ∪� C2 → P
r is a WBN-curve.

For the third step above, we summarize results from [9] that give conditions to
guarantee that (16) is an interior curve. The key cohomological computation is:

Lemma 2.5. The twist down by � of the normal complex of a curve constructed
via Method (*) above has vanishing first hypercohomology:

H
1(NC ′∪�C ′′→Pr (−�)) = 0.

Proof. This follows from combining Lemmas 3.1, 3.2, and 3.3 of [9]. �

And the consequences of it that we shall need here are:

Lemma 2.6. Suppose we specialize Ci → P
3 in Theorem 1.3 viaMethod (*), while

leaving the other curve general. Then f ◦ is an interior curve.

Proof. The argument given in Lemma 3.4 of [9] reduces the desired claim to the
conclusion of Lemma 2.5. �

Lemma 2.7. Suppose we specialize fD in Theorems 1.4 or 1.6 (while leaving f |C
general). Then f ◦ is an interior curve provided that

H1(( f ◦
D)∗OH (1)(�)) = 0. (17)

Proof. The argument given in Lemma 3.5 of [9] reduces the desired claim to the
conclusion of Lemma 2.5. �

Lemma 2.8. Suppose we specialize f |C in Theorems 1.4 or 1.6 (while leaving fD
general), so that f |C remains transverse to H along�′ ⊂ �. Then f ◦ is an interior
curve provided that

d ′′ ≥ g′′ + r − 1 − #�′.

Proof. The argument given in Lemma 3.7 of [9] reduces the desired claim to the
conclusion of Lemma 2.5. �


Finally, both to verify the cohomological condition (17), and to apply our induc-
tive hypothesis when we make such a degeneration, we shall use the following
lemma from [9]:

Lemma 2.9. (Lemma 6.2 of [9]) Let f : C ∪� D → P
r be an unramified map from

a reducible curve, such that f |D factors as a composition of a general BN-curve
fD : D → H of degree d and genus g with the inclusion of a hyperplane H ⊂ P

r ,
while f |C is general in some component of the space of WBN-curves transverse to
H along �. Let � be a set of general points on D, and �′ ⊂ f (C) ∩ H � �, such
that � ∪ �′ and � are general sets of points in H. Write n = #� and m = #�.

If d−g+n ≥ max(m, r −1), then H1( f |∗DOPr (1)(�)) = 0, and there exists a
deformation of f still passing through � ∪ �′, and transverse to H along � ∪ �′.
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3. Theorem 1.4 implies Theorem 1.6

In this section, we show that Theorem1.4 for a given value of n implies Theorem1.6
for the same value of n.

From (8′)xm8′, we have g′′ − 1 ≥ 0; and from (9′), we have ρ(d ′′ − 1, g′′ −
1, r − 1) ≥ 0. We may therefore (using Theorem 2.4) specialize fD to a map from
a reducible curve f ◦

D : D′ ∪{p,q} P
1, with D′ of genus g′′ − 1 and f ◦

D|D′ of degree
d ′′ − 1; and f ◦

D|P1 of degree 1; and {p, q} a set of two general points on D′. By
(12′)xm12′ and Theorem 2.2, f ◦

D|D′ can pass through n general points; in particular,
we may specialize so that � = �1 ∪ �2 is a set of n general points consisting of a
set �1 of 2 points on f ◦

D(D′), and a set �2 of n − 2 points on f ◦
D(D′). Note that

since �1 ∪ {p, q} is general, �1 and �2 are independently general.
By Lemma 2.7, it suffices to show the resulting curve f ◦ : C ∪�1∪�2 (D′ ∪{p,q}

P
1) → P

r is a BN-curve and H1(( f ◦
D)∗OPr (1)(�1+�2)) = 0. Moreover the exact

sequence

0 → f ◦
D|∗

P1
OPr (1)(�1 − p − q) � OP1(1)

→ ( f ◦
D)∗OPr (1)(�1 + �2) → f ◦

D|∗D′OPr (1)(�2) → 0

reduces the vanishing of H1(( f ◦
D)∗OPr (1)(�1+�2)) to the vanishing of H1( f ◦

D|∗D′
OPr (1)(�2)); this in turn from Lemma , together with (13′)xm13′ which becomes
upon rearrangement (using (14)):

(d ′′ − 1) − (g′′ − 1) + (n − 2) ≥ max(2, r − 1) = r − 1. (18)

It thus remains to show f ◦ is a BN-curve. For this, we write f ◦ as

f ◦ : (C ∪�1 P
1) ∪�2∪{p,q} D′ → P

r .

Note that each inequality (k′) for (d, g, d ′, g′, n) implies the corresponding
inequality (k) for (d, g, d ′ + 1, g′ + 1, n). Moreover, each inequality (k) for
(d, g, d ′ + 1, g′ + 1, n − 1) implies the inequality (k′) for (d, g, d ′, g′, n − 1),
except for k ∈ 4, 6, 11 when (k′) for (d, g, d ′, g′, n − 1) follows from (k′) for
(d, g, d ′, g′, n). Thus, (d, g, d ′ + 1, g′ + 1, n) satisfies the inequalities of Theo-
rem 1.4, and n is minimal with that property.

Note that f ◦|C∪�1P
1 is a BN-curve by Theorem 2.4. Showing that f ◦ is a BN-

curve thus follows from Theorem 1.4 (with the same value of n), since f ◦|C∪�1P
1

admits a deformation still passing through �2 ∪ {p, q} which is transverse to H
along �2 ∪ {p, q} by Lemma together with (18).

4. Proof of Theorem 1.4

In this section, we show that Theorems 1.4 and 1.6 for n−1 imply Theorem 1.4 for
n. Together with the inductive argument in the previous section, this will complete
the proofs of both Theorems 1.4 and 1.6.

Since by assumption, n is minimal subject to the system of inequalities in
Theorem 1.4, one of these inequalities must cease to hold when n is replaced by
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n − 1. Note that all inequalities except for (9), (10), and (13) are nonincreasing in
n, and that (10) continues to hold when n is replaced by n − 1 by (15). We must
therefore be in one of two cases:

Case 1: (13) ceases to hold when n is replaced by n − 1: In other words, we
have

2(n − 1) + d + g′ − d ′ − g − r − 2 ≤ −1.

Subtracting r times this inequality from (9), we obtain upon rearrangement

g − g′ − n + 1 ≥ r(n − 3). (19)

In particular, combining this with (15), the genus g′′ = g − g′ − n + 1 satisfies

g − g′ − n + 1 ≥ r. (20)

As (9′) implies ρ(d ′′ − r + 1, g′′ − r, r − 1) ≥ 0, we may therefore (using Theo-
rem 2.4) specialize fD to a map from a reducible curve f ◦

D : D′ ∪� P
1, with D′ of

genus g′′ − r and f ◦
D|D′ of degree d ′′ − r + 1; and f ◦

D|P1 of degree r − 1; and � a
set of r + 1 points.

By Theorem 2.2, f ◦
D|D′ can pass through n − 1 general points provided that

(r − 2)(n − 1) ≤ r(d ′′ − r + 1) − (r − 4)(g′′ − r − 1) − 2(r − 1);
or substituting in d ′′ = d − d ′ and g′′ = g − g′ − n + 1 and rearranging, provided
that

r(d − d ′) − (r − 4)(g − g′) − 2n − 4r ≥ 0, (21)

which follows by adding (9) + 3 · (19) + (2r + 2) · (15) to 3r2 − 5r + 2 ≥ 0.
Note that f ◦

D|D′ can always pass through r + 1 general points in H , since
r +1 ≤ n−1 by (15), and that f ◦

D|P1 can pass through r +2 general points in H by
Corollary 1.4 of [1]. We may therefore degenerate so that f ◦

D still passes through a
set � = �′ ∪ {p} of general points in H , with #�′ = n − 1 > 0, such that f ◦

D|D′
passes through �′ and f ◦

D|P1 passes through p, and such that � ∪ {p} is a general
set of r + 2 points in H .

By Lemma 2.7, it suffices to show the resulting curve f ◦ : C ∪�′∪{p} (D′ ∪�

P
1) → P

r is a BN-curve and H1(( f ◦
D)∗OPr (1)(�′ + p)) = 0. Moreover the exact

sequence

0 → f ◦
D|∗

P1
OPr (1)(p − �) � OP1(−1)

→ ( f ◦
D)∗OPr (1)(�

′ + p) → f ◦
D|∗D′OPr (1)(�

′) → 0

reduces the vanishing of H1(( f ◦
D)∗OPr (1)(�′ + p)) to the vanishing of H1( f ◦

D|∗D′
OPr (1)(�′)); this follows in turn from Lemma 2.9, together with (13) which
becomes upon rearrangement

(d ′′ − r + 1) − (g′′ − r) + (n − 1) ≥ max(r + 1, r − 1) = r + 1. (22)

It thus remains to show f ◦ is a BN-curve. For this, we write f ◦ as

f ◦ : (C ∪�′ D′) ∪�∪{p} P
1 → P

r .



Constructing Reducible...

Next, note that each inequality (k) for (d, g, d ′, g′, n) implies the same inequal-
ity (k) for (d − r + 1, g − r − 1, d ′, g′, n − 1) — except for k = 8 when (8) for
(d − r + 1, g − r − 1, d ′, g′, n − 1) follows from (20), for k = 10 when (10) for
(d − r +1, g− r −1, d ′, g′, n−1) follows from (15), and for k = 12 when (12) for
(d − r + 1, g − r − 1, d ′, g′, n − 1) follows from (21). Moreover, each inequality
(k) for (d − r + 1, g − r − 1, d ′, g′, n − 2) implies the same inequality (k) for
(d, g, d ′, g′, n−1), except for k ∈ 5, 7, 11 when (k) for (d, g, d ′, g′, n−1) follows
from (k) for (d, g, d ′, g′, n)). Thus, (d − r + 1, g − r − 1, d ′, g′, n − 1) satisfies
the inequalities of Theorem 1.4, and n is minimal with that property.

Consequently, f ◦|C∪�′ D′ is a BN-curve by our inductive hypothesis for Theo-
rem 1.4. Showing that f ◦ is a BN-curve thus follows from our inductive hypothesis,
since f ◦|C∪�′ D′ admits a deformation still passing through �∪ {p} which is trans-
verse to H along �′ ∪ {p} by Lemma 2.9 together with (22).

Case 2: (13) continues to hold when n is replaced by n − 1, but (9) ceases to
hold: Since (9) ceases to hold, we have

r(d − d ′) − (r − 1)(g − g′) + (r − 1)(n − 1) − r2 + 1 ≤ −1.

Subtracting (r + 1) times this equation from r · (5)+ (8) and adding r + 2 ≥ 0, we
obtain upon rearrangement

ρ(d ′ − 1, g′, r) = (r + 1)(d ′ − 1) − rg′ − r(r + 1) ≥ 0. (23)

Wemay therefore (using Theorem 2.4) specialize f |C to amap from a reducible
curve f |◦C : C ′ ∪{p} P

1, withC ′ of genus g′ and f |◦C |C ′ of degree d ′ −1; and f |◦C |P1
factoring through H of degree 1.

By Theorem 2.3 together with our assumption (7), the hyperplane section of
f |◦C |C ′ contains n − 1 general points; and by inspection, f |◦C |P1 passes through 2
general points in H . We may therefore degenerate so that f |◦C still passes through
a set � = �′ ∪ {q1, q2} of general points in H , with #�′ = n − 2 > 0 (c.f. (15)),
such that f |◦C |C ′ passes through �′ and f |◦C |P1 passes through {q1, q2}, and such
that �′ ∪ { f |◦C (p)} is a general set of n − 1 points in H .

By Lemma 2.8, it suffices to show f ◦ : (C ′ ∪{p} P
1) ∪�′∪{q1,q2} D → P

r is a
BN-curve and d ′′ ≥ g′′ + r − 1 − (n − 2) (which upon rearrangement is exactly
(13)).

It thus remains to show f ◦ is a BN-curve. For this, we write f ◦ as

f ◦ : C ′ ∪�′∪{p} (D ∪{q1,q2} P
1) → P

r .

Next, note that each inequality (k) for (d, g, d ′, g′, n) implies the correspond-
ing inequality (k′) for (d, g, d ′ − 1, g′, n − 1) — except for k = 6 when 6′xm6′
for (d, g, d ′ − 1, g′, n − 1) follows from (23), for k = 10 when (10′)xm10′ for
(d, g, d ′ − 1, g′, n − 1) follows from (15), and for k = 13 when ((13′)xm13′) for
(d, g, d ′ − 1, g′, n − 1) follows from (13) for (d, g, d ′, g′, n − 1). Moreover, each
inequality (k′) for (d, g, d ′ − 1, g′, n − 2) implies the corresponding inequality
(k) for (d, g, d ′, g′, n − 1), except for k = 12 when (12) for (d, g, d ′, g′, n − 1)
follows from (12) for (d, g, d ′, g′, n). Thus, (d, g, d ′ − 1, g′, n − 1) satisfies the
inequalities of Theorem 1.6, and n is minimal with that property.
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By Theorem 2.4, D ∪{q1,q2} P
1 → H is a BN-curve. Our inductive hypothesis

for Theorem 1.6 thus shows f ◦ is a BN-curve as desired.

5. Proof of Theorem 1.3

To prove Theorem 1.3, wewill argue by induction on n, and for fixed n by induction
on min(ρ1, ρ2) where ρi = 4di − 3gi − 12 denotes the Brill–Noether number of
fi .

Note that, since fi passes through n general points, we have from Theorem 1.1
of [15] that n ≤ 2di ; by assumption one of these inequalities is strict. Note also that
by assumption, 4(d1 + d2) − 3(g1 + g2 + n − 1) − 12 ≥ 0; upon rearrangement,
this becomes

n ≤ ρ1 + ρ2 + 15

3
. (24)

We will separately consider three cases:
when ρ1 ≥ 4 and n ≤ 2d1 − 1

Proof of Theorem 1.3. If n ≤ 2d2 − 1, then we may assume without loss of gener-
ality that ρ2 ≤ ρ1. On the other hand, if n ≥ 2d2, then 2d1 − 1 ≥ n ≥ 2d2, and so
d2 ≤ d1 − 1, which implies ρ2 ≤ ρ(d1 − 1, 0, 3) = 4d1 − 16. Either way, we have

ρ2 ≤ max(ρ1, 4d1 − 16).

Combining this with (24), we obtain

n ≤ ρ1 + ρ2 + 15

3
≤ ρ1 + max(ρ1, 4d1 − 16) + 15

3

= max(8d1 − 6g1 − 9, 8d1 − 3g1 − 13)

3
.

In particular, if (d1, g1) ∈ {(6, 2), (7, 4)}, then n ≤ 10. Thus,

n − 1 ≤
{
2(d1 − 1) if (d1 − 1, g1) /∈ {(5, 2), (6, 4)};
9 if (d1 − 1, g1) ∈ {(5, 2), (6, 4)}.

Since ρ(d1 − 1, g1, 3) = ρ1 − 4 ≥ 0, we may (using Theorem 2.4) specialize
f1 to a map from a reducible curve f ◦

1 : C ′
1 ∪p P

1 → P
3, with C ′

1 of genus g1, and
f ◦
1 |C ′

1
of degree d1 − 1, and f ◦

1 |P1 of degree 1. By the above inequality, we may do
this so f ◦

1 still passes through a set � = �′ ∪ {x, y} of n general points, such that
f ◦
1 |C ′

1
passes through �′, and f ◦

1 |P1 passes through {x, y}, and such that �′ ∪ {p}
is a general set of n − 1 points.

As in Lemma 2.6, it suffices to show (C ′
1 ∪{p} P

1) ∪�′∪{x,y} C2 → P
3 is a

BN-curve. For this, we simply rewrite this map as C ′
1 ∪�′∪{p} (P1 ∪{x,y}C2) → P

3,
which is a BN-curve by Theorem 2.4 and our inductive hypothesis. �


when ρ1 ≥ 4 and n = 2d1
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Proof of Theorem 1.3. From (24), we obtain

ρ2 ≥ 3n − 15 − ρ1 = ρ1

2
+ 3 + 9

2
g1 ≥ 4

2
+ 3 = 5 ≥ 4.

And since by assumption we do not have n = 2d1 = 2d2, we have n ≤ 2d2 − 1.
Exchanging indices, we are thus in the previous case. �


This completes the proof when ρ1 ≥ 4, and thus by symmetry when ρ2 ≥ 4.
Exchanging indices if necessary, it therefore remains to consider the case ρ1 ≤
ρ2 ≤ 3.

when ρ1 ≤ ρ2 ≤ 3

Proof of Theorem 1.3. In this case, we argue by induction on ρ1. If ρ1 = 0, then
using (24), the result follows from Theorem 2.4.

For the inductive step, we therefore suppose 1 ≤ ρ1 ≤ 3 (which forces d1 ≥ 4
and g1 ≥ 1). Note that (24) gives

n ≤ ρ1 + ρ2 + 15

3
≤ 3 + 3 + 15

3
= 7,

with equality only if ρ1 = 3 (which forces d1 ≥ 6). In particular,

n ≤
{
2(d1 − 1) if (d1 − 1, g1 − 1) /∈ {(5, 2), (6, 4)};
9 if (d1 − 1, g1 − 1) ∈ {(5, 2), (6, 4)}.

Since ρ(d1−1, g1−1, 3) = ρ1−1 ≥ 0, wemay (using Theorem 2.4) specialize
f1 to amap from a reducible curve f ◦

1 : C ′
1∪{p,q}P1 → P

3, withC ′
1 of genus g1−1,

and f ◦
1 |C ′

1
of degree d1 − 1, and f ◦

1 |P1 of degree 1. By the above inequality, we
may do this so f ◦

1 still passes through a set � = �′ ∪ {x, y} of n general points,
such that f ◦

1 |C ′
1
passes through �′, and f ◦

1 |P1 passes through {x, y}, and such that
�′ ∪ {p, q} is a general set of n points.

As in Lemma 2.6, it suffices to show (C ′
1∪{p,q} P

1)∪�′∪{x,y}C2 → P
3 is a BN-

curve. For this, we simply rewrite this map as C ′
1 ∪�′∪{p,q} (P1 ∪{x,y} C2) → P

3,
which is a BN-curve by Theorem 2.4, together with an application of our inductive
hypothesis. �
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