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A B S T R A C T

Spatio-temporal modeling of parcel-level land development dynamics is essential to maintain sustainable
urban growth. Modeling parcel-level urban development controlling contemporaneous and historical conditions
involve computational challenges since data sizes grow quickly beyond the capabilities of conventional
statistical-based spatial models. Machine Learning (ML) methods provide computationally feasible methods
for large-scale data sets. This paper introduces new ML applications using advanced algorithms and GPU
parallel processing to model large-scale urban land developments. Special attention is given to accelerating
the construction of spatial weight matrices and training ML models. Specifically, artificial neural networks and
random forests are applied to the state of Florida’s land-use data, which contains nearly 9 million parcels, to
predict parcels with changes in their land use based on historical and neighborhood data. The adaptive Hashing
algorithm coupled with GPU parallel processing accelerates the average processing time for identifying the
fixed number of nearest neighbors used for accounting spatial autocorrelation, by almost 16,000 times. Also,
ML model training times are shortened by 49–547 times using GPU. Further, our best ML model achieves
approximately 92% accuracy while outperforming some competing methods, including logistic regression.
Such a high prediction accuracy helps policymakers adjust budget allocations to meet local land-use change
projections.

1. Introduction

Rural and urban lands are constantly altered due to human activ-
ities and natural events. Some changes are irreversible. For example,
converting agricultural land into residential land causes the removal
of fertile soil on the ground, and the land cannot be easily reused
for agricultural purposes. Similarly, new land developments towards
environmentally sensitive areas such as forests, wetlands, and coastal
areas also adversely impact the ecological systems. Government agen-
cies responsible for growth management require long-term planning
and sufficient resources to reduce the potential impacts of urban ex-
pansions and maintain sustainable environments. Predicting future land
developments is challenging due to various uncertainties and complex
dynamics. Land-use change models are used to mimic human activi-
ties using proxy information. However, current modeling approaches
have three main limitations to achieving high accuracy: (1) account-
ing for dynamic relationships (spatial and temporal), (2) controlling
non-linear relationships among features, and (3) constructing regional
high-resolution models.
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In recent years, factors influencing land-use changes have been
investigated by various researchers from Planning, Geography, Eco-
nomics, and Environmental Science (Bhat et al., 2015; Carrion-Flores
& Irwin, 2004; Chomitz & Gray, 1996; Deng & Srinivasan, 2016;
Nahuelhual et al., 2012; Verburg et al., 2004). Some studies indicate
the significance of incorporating contemporaneous and historical land
developments to achieve accurate models (Bhat et al., 2015; Huang
et al., 2009; Irwin et al., 2003; Tepe & Guldmann, 2017, 2020). Also,
two studies show the importance of modeling an entire county at the
parcel level to achieve even higher model accuracy (Tepe & Guldmann,
2017, 2020). Land developments are affected by investments nearby
and dynamics in the region. However, a statewide model accounting for
regional dynamics requires computationally feasible methodologies and
high-resolution spatial data sets. The increasing availability of spatially
explicit data offers new opportunities for large-scale modeling (Cressie
& Wikle, 2011; Hefley et al., 2017; Wikle & Hooten, 2010). Compu-
tational advantages of supervised Ensemble Learning methods, such as
Random Forest (RF) and Artificial Neural Networks (ANN), can be con-
sidered for analyzing such big spatial data sets (Bahadori et al., 2014;
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Ceci et al., 2017; Delasalles et al., 2019; Ren & Wu, 2014; Supinie et al.,
2009). Also, these methods provide highly accurate predictions due to
incorporating non-linear relations. However, the existing approaches to
incorporate spatial dependencies are computationally infeasible when
the data sets exceed 100 K spatial observations due to the required
excessive computation power and computer memory.

The main goal of this study is to introduce a computationally
feasible ML-based spatio-temporal land-use change (LUC) modeling
framework using advanced programming algorithms and GPU parallel
processing. The introduced modeling framework is suitable for devel-
oping statewide LUC models. Statewide models can simulate the future
impacts of many planning policies, such as the decentralization of city
centers in the post-pandemic period or future land developments in
coastal areas at the risk of rising sea levels. In addition to its appli-
cation in planning, the developed computationally feasible modeling
approaches can be easily applied to a broad spectrum of research areas,
including hedonic pricing, traffic forecasting, urban energy consump-
tion, ecological systems, disease spread, trade relations, and business
networks. For instance, historical traffic volume data have a similar
data generation process.

In this research, the introduced modeling framework is applied to
the Florida Parcel Database, published by UF GeoPlan Center (Par,
2019), consisting of almost 9 million unique parcels. The database
contains information about parcel geometry, actual construction year
of buildings, land use, sale record, and the number of buildings. His-
torical land development conditions can be generated using the exact
construction year information, and essential parcel and neighborhood
characteristics can be retrieved from the data set. Historical records
can be traced back to 1650; the most recent year is 2019. All model
training and parameter estimations are completed using UF HiPerGator
3.0 supercomputer.

In this study, significant accelerations are achieved in construct-
ing spatial weight matrix nearly 16,000 times and training ML-based
models by 49–547 times utilizing the developed adaptive Hashing algo-
rithm and GPU parallel processing. Such computational advancements
allow growth management agencies to perform multiple simulations
where such tasks would take years to complete without solving com-
putational challenges. Our research also highlights the importance of
spatio-temporal components in land-use change modeling to achieve
accurate predictions.

The remainder of the paper is organized as follows. Section 2
critically reviews the relevant literature, while Section 3 summarizes
machine learning methods applied to our parcel data set and com-
putational improvements to deal with extensive spatial data. A brief
introduction to the Florida statewide parcel data is provided in Sec-
tion 4, while model results and performance measures are presented
in Section 5. Section 6 discusses the research findings. Finally, some
concluding remarks and future research directions are discussed in
Section 7.

2. Literature review

Different methodological approaches for modeling land-use changes
at various geographical scales have been proposed over the last two
decades by a diverse group of researchers with backgrounds in eco-
nomics, urban planning, natural sciences, and geography. The main
focus of these studies is on the driving factors of land-use changes in
urban environments (Bhat et al., 2015; Carrion-Flores & Irwin, 2004;
Chomitz & Gray, 1996; Deng & Srinivasan, 2016; Huang et al., 2009;
Nahuelhual et al., 2012; Tepe & Guldmann, 2017, 2020; Verburg et al.,
2004). This literature review aims to critically review LUC models
incorporating spatial and temporal dynamics, Cellular Automata (CA)
applications, and new approaches using ML methods.

Decision-making processes involved in land-use changes depend
on various demographic, socio-economic, and spatial characteristics.
Modeling these complexities provides researchers, practitioners, and

policy-makers insights into land development dynamics. In land devel-
opment dynamics, we expect that an investment decision on a given
property depends on investment decisions on neighboring properties.
Neglecting such dynamics in models provide poor results. Previous
studies ignoring the spatial dependencies and implementing random
cross-validation in ML applications to spatial data sets have provided
underestimated residuals due to the autocorrelation in the data (Bahn
& McGill, 2013; Gasch et al., 2015; Gudmundsson & Seneviratne,
2015; Juel et al., 2015; Meyer et al., 2018, 2019; Micheletti et al.,
2014; Roberts et al., 2017). Nahuelhual et al. (2012) highlight that
spatio-temporal dynamics play an essential role in timber plantation
expansion in south-central Chile over two separate periods (1975–
1990, 1990–2007) using an autologistic regression model while Huang
et al. (2009) account for spatial and temporal dynamics when modeling
land-use changes in New Castle County, Delaware, over three sepa-
rate periods (1984–1992, 1992–1997, 1997–2002). Similarly, Ferdous
and Bhat (2013) explicitly control spatial interactions and temporal
lags by implementing a spatial panel ordered-response probit model.
Finally, Tepe and Guldmann (2017, 2020) formalize spatio-temporal
binary and multinomial spatio-temporal autologistic regression models
to model land-use changes at the parcel level in Delaware county, Ohio.

Accounting for spatial dependencies in LUC models is necessary to
control spatial heterogeneity in land development dynamics, while tem-
poral dynamics are required to achieve accurate models. Incorporating
spatial components explicitly in LUC modeling results in computational
challenges. Recent statistical models included a form of the explicit
spatial part that has less than 3000 sample size due to computational
difficulties (Bhat et al., 2015; Deng & Srinivasan, 2016; Ferdous & Bhat,
2013; Huang et al., 2009; Nahuelhual et al., 2012), while Tepe and
Guldmann (2017, 2020) introduce computational feasibility of model-
ing approach for LUC modeling. However, such a modeling approach
still requires improvements when the number of observations increases
substantially.

CA approach has been widely used in land use and land cover
change models (Guan et al., 2011; Herold et al., 2003; Jahanishakib
et al., 2018; Lau & Kam, 2005; Lu et al., 2020; Maria de Almeida et al.,
2003; Pan et al., 2010; Pinheiro et al., 2020; Stevens & Dragi¢evi¢,
2007; Ulloa-Espíndola & Martín-Fernández, 2021). In CA models, the
state of a cell is a function of the cell’s immediate proximity based on
predefined neighborhood rules. Therefore, this approach successfully
mimics local spatial relationships. Herold et al. (2003) apply the CA
approach to model spatial–temporal dynamics in Santa Barbara, Cali-
fornia, highlighting the importance of spatial metrics to achieve reliable
urban growth predictions. Similarly, Pinheiro et al. (2020) and Ulloa-
Espíndola and Martín-Fernández (2021) develop CA-based LUC models
in their studies. Some CA applications integrate the Markov Chain
approach to introduce temporal relationships in LUC models (Guan
et al., 2011; Jahanishakib et al., 2018; Yang et al., 2012). Many CA-
based LUC models use grid cells to reduce computational complexity. In
this approach, each grid cell must have a homogeneous state. However,
spatial structures are discontinuous and irregular in shape. Vector and
irregular grid-based CA models are introduced to overcome the spatial
scale dependency problem (Lu et al., 2020; Moreno et al., 2008; Stevens
& Dragi¢evi¢, 2007). Calibrations of CA models are critical to achieving
robust results. Pan et al. (2010) discuss the optimal cell size to achieve
accurate results. Maria de Almeida et al. (2003) stress the predefined
transition rules to successfully calibrate CA-based land use models. In
the CA approach, transition rules are given, whereas the primary goal in
LUC modeling is to estimate these transition rules. Therefore, statistical
models are mainly preferred as transition rules. Multiple hybrid models
combine statistical and CA models to achieve robust results (Berry
et al., 1996; Flamm & Turner, 1994; Hazen & Berry, 1997; Veldkamp
& Fresco, 1996).

ML methods such as Random Forest (RF), Deep Learning (DL), and
Support Vector Machine (SVM) are integrated into CA-based LUC mod-
els, where these ML methods are used for transition rules. Gounaridis



Sustainable Cities and Society 90 (2023) 104390

3

E. Tepe and A. Safikhani

et al. (2019) introduce a hybrid CA-based LUC model using the RF
approach for classifying detailed land-use categories accounting for
environmental, physical, accessibility, and socio-economic indicators in
Attica, Greece. Karimi et al. (2019) used the SVM approach to model
Guilford County’s urban expansions between 2001 and 2006. Their
LUC model incorporates site-specific, proximity, and neighborhood
characteristics to estimate a given cell’s status (vacant or built-up).
Their findings highlight the importance of spatial clustering patterns of
the same land use categories. Xing et al. (2020) integrate the DL method
into their CA-based spatio-temporal LUC model, where spatio-temporal
dynamics such as land cover proportion, site-specific, and proximity
measures are collected using Landsat images and road networks. Fi-
nally, Li et al. (2022) introduce a CA optimization method using the
firefly algorithm to predict future urban growth accurately.

There are also alternative approaches to CA-based LUC models.
Zhou et al. (2020) use Markov Chains in their CA model, where
land-use changes in Shanghai are investigated by incorporating site-
specific, proximity, and socio-economic characteristics and planning
guidelines. Fu et al. (2022) also introduce a dynamic modeling ap-
proach using the CA-based Markov model to analyze spatio-temporal
patterns of land-use changes in Mianzhu City, China, while Yu et al.
(2021) discuss the lack of sufficient historical information to cali-
brate CA-based LUC models. This study implements a Markov Chain
Monte Carlo approximation using Bayesian computation to calibrate
CA models. In addition, Okwuashi and Ndehedehe (2021) integrate
Markov chains with the SVM in their CA-based modeling of urban
changes. Alternatively, Lv et al. (2021) introduce a gravity-based ap-
proach in their RF-integrated CA-based model to account for spatial
interactions between cities. In this study, urban and non-urban land use
classifications are examined using a set of predictor variables consist-
ing of economic, social, educational characteristics and infrastructure,
and environmental conditions. Such gravitational model approaches
improve traditional CA-based models by accounting for travel costs.
Finally, Shafizadeh-Moghadam et al. (2021) implement a Forward Fea-
ture Selection algorithm for RF transition models in their CA-based LUC
models. Their study investigates a given grid’s status (urban growth
and non-urban persistence) based on a set of characteristics: slope,
altitude, and distances from roads, crops, greenery, urban, and barren.
Accounting for proximity factors in the absence of socio-economic
factors is highlighted.

A few recent studies implemented ML applications in their LUC
modeling. At the same time, these methods are used more often in
image processing and pattern recognition in the context of land cover
changes (Wang et al., 2022). Ron-Ferguson et al. (2021) model non-
linear relationships in land development dynamics using the RF ap-
proach accounting for a wide range of explanatory factors, including
socio-economic, built environment characteristics, and landscape met-
rics, while Talukdar et al. (2021) implement Bagging and RF meth-
ods to model spatio-temporal dynamics of land cover changes among
the water body, agricultural land, vegetation, sand bar, bare land,
and built-up area categories in Bangladesh, accounting for a set of
landscape metrics. The bagging model provides higher accurate esti-
mations because of higher levels of tree depths than the RF model.
The model successfully captures land cover fragmentation in the study
area. Soares-Filho et al. (2013) introduce a heuristic modeling approach
based on a Genetic Algorithm (GA) to improve the accuracy of LUC
models. Further, Zhai et al. (2020) implement a Convolution Neural
Network (CNN) approach in their Vector-based CA models at the parcel
level, where site-specific and proximity characteristics are incorporated
in their modeling. This novel approach mimics local neighborhood dy-
namics using the convolution kernel and local connectors. Finally, Kim
et al. (2022) introduce ML applications to model spatio-temporal dy-
namics of land-use changes at the block group level. Their study reveals
the significance of temporal lags of contemporaneous neighborhoods
for predicting future urban growth.

ML methods provide robust model results because of accounting
for non-linear relations (Bahadori et al., 2014; Delasalles et al., 2019).
Overall model accuracy of LUC models using ML approaches ranges
between 78% and 94% (Gounaridis et al., 2019; Karimi et al., 2019;
Lv et al., 2021; Ron-Ferguson et al., 2021; Xing et al., 2020). Basse
et al. (2014) discuss the benefit of integrating the ANN approach with
CA-based modeling to increase model accuracy. ML methods also allow
working with large data sets when spatial components are incorporated.
Among the recent works mentioned, Zhai et al. (2020) worked with
data consisting of approximately 125,000 spatial objects, while Tepe
and Guldmann (2017, 2020) introduced a computationally feasible
approach for spatio-temporal modeling of land-use changes using sta-
tistical methods where the data set consists of almost 73,000 parcels,
where all computations are conducted on a supercomputer. Finally,
CA models can successfully mimic local dynamic spatial structures.
However, this approach requires a robust transition rule to define the
next state of a given cell. ML and DL models incorporating spatial
dependencies can also account for more complex dynamic spatial re-
lationships while estimating accurate results due to their non-linear
structures and unbiased estimators.

3. Methodology

This section briefly introduces our approach to integrating spatio-
temporal dependencies into ML- and DL-based methods and our com-
putational improvements to deal with large spatial data. In this study,
we train models to classify two outcomes (change in land use status or
continuation of the current status). A binary response model like the
Logistic Regression (LR) framework can be considered as a potential
approach. Due to LR’s parametric structure, we can introduce the
spatial and temporal parameters in the systematic component. Eq. (1)
represents an LR framework accounting for spatio-temporal dynamics
in land-use changes:

ln

L
p(yi,txi,t, yj,t)

1 * p(yi,txi,t, yj,t)
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L…
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where yi,t is a status change (1 for change and 0 for no change) in
parcel i at time t; Logit (ln[p(.)_(1 * p(.))]) is the link function; p(.)
is conditional probability of change in status of parcel i at time t;
xi,t,k is the kth exogenous variable for parcel i at time t; �k is the kth
regression coefficient;Ni is set of the indices of the neighbors of parcel
i; j is the index of ith parcel’s neighbors; ⇢ is spatial autoregressive
coefficient; l is the index of spatio-temporal lags (1,… ,L); and ✓l is the
lth spatio-temporal autoregressive coefficient.

3.1. Machine learning models

In this section, RF and ANN methods are briefly introduced. These
methods are widely used in classification tasks and provide accurate
predictions due to their non-linear structures. In this research, based
on the given information, binary responses (change/no change in land
use status) are modeled using RF and ANN modeling approaches.

RF is a widely used ensemble learning method for classification
where the algorithm consists of many decision trees and bootstrap
samples in each decision tree (Breiman, 2001). The main procedure of
an RF model to classify land-use change status is illustrated in Fig. 1.
The first step in the RF classification procedure is to create bootstrap
samples from the training data set to grow trees from these bootstrap
samples. A randomly selected set of features is used in each tree node
to build the next node. Each RF tree identifies an output class (change
or no change in land use status) based on the tree structure. These
identified outputs from trees are also considered as votes. In the final
phase, the RF output is computed based on the majority voting, i.e., the
final output will be the dominantly identified output class.

ANN is also another recently implemented method for LUC mod-
eling. Fig. 2 presents a simple form of ANN (i.e., feed-forward NN)
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Fig. 1. Random forests.

Fig. 2. Artificial neural networks.

applied to LUC modeling, with three hidden layers and two potential
land-use categories. ANN is a mathematical formulation of the human-
brain process (Hastie et al., 2009). ANN comprises multiple layers,
including the input layer, one or multiple hidden layers, and the output
layer. Each layer has numerous nodes, which are interconnected with
nodes in other layers. A given node may be activated and obtains a
weight using a pre-defined activation function dedicated to each layer.
Sigmoid (see Eq. (2)) and Softmax (see Eq. (3)) activation functions are
used in this study. The forward propagation method uses the output
from a layer as input in the next layer. After obtaining outputs, the
ANN model is further trained by backpropagation to reduce bias and
improve prediction accuracy (Fan et al., 2019).

�(z) = 1
1 + e*z

, (2)

⌃(z)i =
e
z

i≥K

j=1 e
zj

, (3)

where z is the input value/vector, e is the standard exponential func-
tion, and K is the number of classes.

3.2. Computationally feasible approach

Spatial components are incorporated into RF and ANN models using
the Spatial Weight Matrix (W ) approach, widely used in spatial statis-
tical models (Anselin, 1988). This method allows us to conceptualize
spatial relationships using mathematical notations. In the matrix W ,

weights are assigned for all pairs of spatial objects in the data set based
on a pre-defined neighboring rule. These rules can be summarized
under three main groups: fixed distance-, fixed nearest neighbors-, and
contiguity-based rules. Combinations of these rules can also be used.

Computations of pairwise distances using the Euclidean distance
formula are necessary for constructing a W matrix. However, se-
rial processing leads to the quadratic computational complexity O(n2),
where n is the number of spatial units. To mitigate this issue, We
develop a computationally feasible algorithm to reduce the complexity
of computations required for constructing a W matrix, which is the
fundamental component to account for spatial dependencies explicitly
in ANN and RF models. Our algorithm utilizes Hashing Algorithm, an
effective technique to search for similarities in large-scale data sets, and
GPU parallel computing techniques (Keckler et al., 2011) to accelerate
the construction of these matrices.

Identifying the Kth nearest neighbors is computationally more chal-
lenging than the fixed distance-based rule. Therefore, this section in-
troduces our computational solution for this rule. Hashing Algorithm
allows one to search for potential neighbors using a subset of the
complete data set for a given spatial point instead of searching the
entire data. Since point densities vary over space, our algorithm starts
with an optimal hash size and expands the search region based on the
point density. Fig. 3 illustrates the adaptive search procedure using the
Hashing Algorithm. For a given point i, we start searching for neighbors
in the hash bin containing the point itself and this bin’s neighboring
hash bins. The initial search region is expanded by adding adjacent
hash bins of the hash bins surrounding the central bin until a sufficient
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Fig. 3. Adaptive searching using the Hashing Algorithm.

Fig. 4. GPU parallel processing.

Fig. 5. Flowchart of model training and evaluation using Adaptive Hashing and GPU processing.

number of potential neighbors are identified. Eq. (4) represents the
method used to compute the initial hash size:

r =
u

((maxX *minX) ù (max Y *min Y )) ù k

⇡ ù n
, (4)

where r is the initial radius for hash size; X is a vector of X (horizontal)
coordinates of vertices of spatial objects, Y is a vector of Y (vertical)
coordinates of vertices of spatial objects; k is the degree of nearest
neighbors; and n is the number of spatial objects.

After identifying potential neighbors using the adaptive Hashing
Algorithm, Euclidean distances between the ith point and other points
in the search region are computed using GPU parallel processing (see
Fig. 4). After the distances are calculated, Kth nearest neighbors are
identified after the subset is sorted in ascending order based on distance
values. The pseudo-code of the proposed identification of K-nearest
neighbors is summarized in Algorithm 1 located in the supplementary
document. Fig. 5 summarizes steps in model training and evaluation
and shows tasks utilize Adaptive Hashing and GPU processing.

4. Data set

In this research, Florida is selected as the study area. Florida is one
of the fastest-growing states in the United States. With a population of
765,000 in 1910 (U.S. Census Bureau, 1910), Florida’s total population
has increased by more than 28 times over 110 years, to 21.5 million in
2019 (U.S. Census Bureau, 2019). Historical conditions of land devel-
opment were generated using the actual construction year information.
Historical records can be traced back to 1650; the most recent year is
2019. We focused on the most recent 110 years due to the significant
land developments in Florida during this period.

In the 2019 Florida Parcel Database, published by UF GeoPlan
Center (Par, 2019), there are 8,995,663 individual parcel records where
6,577,320 among these parcels changed their land-use status as a result
of human actions between 1910 and 2019. In this data, all urban and
rural land-use activities are included. Fig. 6 depicts annual changes in
parcel status in Florida between 1910 and 2019. The most considerable
change in parcels’ status was observed in 2006. The average number of
changes in parcel status was 60,892 over the period, which is less than
1% of the total parcels. In this study, annual parcel data is aggregated
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Fig. 6. Numbers of parcels changed status in Florida between 1910 and 2019.

to 10-year data to reduce the imbalance of binary categories where the
number of zeros is substantially larger than the number of ones. Further
descriptive statistics and details about spatial neighborhood structures
are presented in the supplementary document.

5. Main results

This section presents model results of LR-, RF- and ANN-based LUC
models. Models are constructed using the 10-year aggregated parcel
data. After the aggregation, there are 11-time points (1910–1919,
1920–1929, . . . , 2010–2019). The most recent time point (2010–2019)
is excluded from model training for evaluating the predictive ability
of the introduced model. Previous studies show the importance of
historical neighborhood characteristics in modeling land development
dynamics (Kim et al., 2022; Tepe & Guldmann, 2017, 2020). In this
study, lagged covariates account for delayed impacts of neighborhood
conditions on land development potentials. Also, a spatio-temporal
variable is incorporated to account for lagged spatial dependencies in
land development dynamics. We tested up to three temporal lags to
investigate the impact of temporal dependencies on land development
dynamics. However, we did not include spatial autocorrelation coeffi-
cient (i.e., ⇢ = 0) in the LR, RF, and ANN models since the goal is to
perform out-of-sample prediction.

Due to the considerable variation in parcel density across the state,
we preferred the K-nearest neighbors rule to conceptualize spatial
relationships, where each spatial object has the same number of neigh-
boring parcels. We tested 100th, 500th, and 1000th nearest neighbor
rules, including fixed effect and inverse distance weighted versions,
to find the best rule to represent the spatial relationships. All spa-
tial weight matrices are row-standardized to avoid the identification
problem. Table 1 summarizes the tested model settings. Table S3
summarizes important metrics and estimated coefficients for tested 18
LR-based land-use change models. Model 5 is considered the best model
based on the highest AUC (0.721), moderately high F1 (0.002), and
high overall accuracy (0.925) scores.

In the RF-based LUC modeling framework, 20% of the whole parcel
data is randomly selected and used for testing purposes. The remaining
80% of the data is included in model training. RF has hyper-parameters
that must be pre-defined. In the model training, the maximum tree
depth is set as 2000 to allow sufficient tree depth. RF estimators
between 10 and 100 with 10 increments are tested to optimize the
model. Table S4 represents important metrics for tested 18 RF-based
models where each model is trained using 10 different estimators.
Model 2 with 100 estimators is the best performing model based on
accuracy measure, where the overall model accuracy reaches 94.8%
utilizing the test data. Model 14 with 90 estimators is the best-fitting
model for the data based on the F1 score (0.576), while Model 4 with
100 estimators is the best-fitting model for the data based on AUC
metrics (0.931).

Table 1
Model settings.
Model Kth degree Standardization method for W Temporal

lags

Model 1 100 nearest neighbors Fixed effect 1 lag
Model 2 100 nearest neighbors Inverse distance weighting 1 lag
Model 3 500 nearest neighbors Fixed effect 1 lag
Model 4 500 nearest neighbors Inverse distance weighting 1 lag
Model 5 1000 nearest neighbors Fixed effect 1 lag
Model 6 1000 nearest neighbors Inverse distance weighting 1 lag
Model 7 100 nearest neighbors Fixed effect 2 lags
Model 8 100 nearest neighbors Inverse distance weighting 2 lags
Model 9 500 nearest neighbors Fixed effect 2 lags
Model 10 500 nearest neighbors Inverse distance weighting 2 lags
Model 11 1000 nearest neighbors Fixed effect 2 lags
Model 12 1000 nearest neighbors Inverse distance weighting 2 lags
Model 13 100 nearest neighbors Fixed effect 3 lags
Model 14 100 nearest neighbors Inverse distance weighting 3 lags
Model 15 500 nearest neighbors Fixed effect 3 lags
Model 16 500 nearest neighbors Inverse distance weighting 3 lags
Model 17 1000 nearest neighbors Fixed effect 3 lags
Model 18 1000 nearest neighbors Inverse distance weighting 3 lags

In LUC modeling based on the ANN framework, 20% of the entire
parcel data is randomly selected and used for testing purposes. The
remaining 80% of the data is used to train ANN models, while 20%
of the training data is dedicated to validation purposes used in back-
propagation processes during the training. Multiple hidden dense layers
account for non-linear relationships (Nair & Hinton, 2010; Nwankpa
et al., 2018). The introduced ANN model has three dense hidden
layers. The activation functions and parameters are a softmax function
with 300 parameters, another softmax function with 100 parameters,
and a sigmoid function with 1 parameter. We tested a higher number
of parameters for the softmax function. However, the trained models
resulted in the over-fitting issue. Therefore, we reduced the number of
parameters used in the function. Further, 100 Epochs were used during
training for ANN models where the batch size was 1024. The opti-
mizer ‘‘Adam’’ was used to estimate neuron weights, while the binary
cross-entropy was used as the loss function. Adam is a gradient-based
optimization algorithm for stochastic objective functions (Kingma &
Ba, 2014). Essential metrics for training, validation, and test data are
presented for tested 18 ANN-based LUC models in Table S5. We use an
alternative metric for the F1 score in ANN models because the Keras
library does not provide an F1 score option in model training. Alter-
natively, we calculated the Precision–Recall Curve (PRC). However,
F1 scores are computed for evaluating ANN model performance using
the test data. Model 1 is the best-fitting model based on test accuracy
(92.6%). In contrast, Model 7 is considered the best-performing model
based on the PRC (0.122), and Model 15 is the best model based on
AUC metrics (0.597). Further comparisons of identified best models
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are discussed in Section 5.1. Overall, the RF-based LUC models provide
higher accuracy for the minority category than LR and ANN models.

5.1. Model comparisons

The best models identified based on metrics are further investigated
in this section. ANN-based models are further trained to calibrate
hyperparameters (see the Supplementary document Section S3.1). Ta-
ble S6 in the supplementary document presents the identified 9 best
model results. Model metrics like Accuracy, F1 score, and AUC are
included to compare these models. The confusion matrices for 9 best
models are provided in the supplementary document. Because of the
excessive number of zeros in the data set, the overall accuracy measure
may provide false confidence in the model. Alternatively, accurate
prediction of no change in land use status is as important as predicting
a change in land use status. RF-based models 2 & 4 (see Figures S7d &
S7e) correctly predict the significant majority of no land-use changes
(nearly 99% accuracy for this category) and the most status changes in
land use (slightly over 40% for the category) compared to other model
results. Therefore, in the next section, these models are used to evaluate
the predictive ability of the introduced modeling framework.

We also computed feature importance for each model parameter
using an appropriate method to investigate the impacts of included
parameters. Since LR is considered a linear model and provides coef-
ficients for parameters, we computed model coefficients based on the
standardized training data. For RF-based models, feature importance
is computed as the mean and standard deviation of accumulation of
the impurity decrease within each tree (further details can be found
in Breiman (2001)). Eq. (5) shows the Gini impurity calculation for a
classification task. Finally, the importance of jth feature in ANN models
is computed using Eq. (6). The value of the difference (�j) indicates the
importance of feature j (please see Wei et al. (2015) for more details).

Gini Impurity =
C…
i=1

fi(1 * fi), (5)

�j =
ÛÛÛ�

< * 1
M

M…
i=1

�i,j

ÛÛÛ, (6)

where fi is the frequency of class i and C is the number of unique
classes. �j is the importance of feature j; �< is the base model accuracy;
�i,j is the model accuracy for jth feature at mth trial; M is the number
of trials.

Feature importance is summarized in Fig. 7. Share of single-family
residential lands within a 2-mile radius is the most significant feature
in 7 out of 9 models. It is identified as the essential second variable
in the remaining two models. The share of vacant lands is the second
most important feature. Small multi-family residential lands and one-
story store lands are essential features in these best models. Irwin
et al. (2003) and Tepe and Guldmann (2020) highlight the importance
of residential shares in land development. Shares of agricultural and
institutional lands are also identified as significant features (Carrion-
Flores & Irwin, 2004; Deng & Srinivasan, 2016; Irwin et al., 2003; Liao
& Wei, 2014). Finally, these models’ first and second spatio-temporal
lags are other powerful features. Many previous studies also support the
importance of spatio-temporal lags in LUC modeling (Ferdous & Bhat,
2013; Nahuelhual et al., 2012; Tepe & Guldmann, 2017, 2020).

5.2. Predictive ability of the model

In this research, we performed two types of predictions. In the
previous section, we conducted a spatial out-of-sample prediction using
the models trained 80% of the data covering the periods between 1910
and 2009. Such prediction allows us to estimate the parcel status for
an unknown location, similar to the Kriging method. Since we also
have temporal lags in our modeling framework, we can also perform

temporal out-of-sample predictions. Fig. 8 illustrates the conceptual
framework for predicting future changes in parcel status using a trained
model, where only one spatio-temporal lag is included to simplify the
illustration. Change in parcel status at time t+1 depends on the lagged
covariates and spatio-temporal variable at time t. The spatio-temporal
variable consists of the spatial weight matrix and changes in parcel
status at time t. Once changes in parcel status at time t+1 are estimated,
the spatio-temporal variable is updated using the predicted values and
estimations of changes in parcel status at time t+2 is dependent on the
lagged covariates (at time t) and the updated spatio-temporal variable
(at time t + 1).

The recent time point (2010–2019) data were excluded from the
initial modeling training to evaluate our modeling frameworks’ tem-
poral out-of-sample prediction ability. When the best-fitting models
(Models 2, 4, and 14) are used to predict land-use changes between
2010 and 2019, the overall model accuracies are around 94%, where
the F1 score is very low (roughly 0.02). These models provided weak
performances for predicting changes in parcel status. Therefore, we
applied an alternative training strategy to improve temporal out-of-
sample prediction. Random splitting of training and test sets is not
suitable for temporal dynamics. Therefore, we applied a rolling cross-
validation approach to train our RF-based models (Nicholson et al.,
2017). In this method, models are trained using previous years’ data,
then evaluated using future time points. We split the data covering
between 1910 and 2009 into three consecutive data sets (1910–1949,
1950–1979, and 1980–2009). In addition, we introduce a new binary
variable that indicates the parcel change in status in previous years to
account for the land development rates in Florida over time. Further-
more, a set of site-specific, proximity, and socio-economic variables
is added to the covariate matrix to improve temporal out-of-sample
predictions because previous studies discussed in the literature review
section highlighted the importance of these variables (see Section S3.3
in the supplementary document for more details). The new training
method substantially improves the model accuracy measures. Such a
variable helps to increase the overall model prediction accuracy. Table
S7 in the supplementary document presents all tested models’ metrics.
In the table, Figure of Metric (FoM) scores are also computed for all
models (Martino et al., 2019).

The best-performing model is selected based on accuracy scores.
The RF-based LUC model 13 is based on the data covering the period
between 1980 and 2009 with three spatio-temporal lags where the fixed
effect is used for the spatial matrix, and the number of estimators is 5.
Model 7 is considered as the second best-performing model. Model 13
was used to predict new developments between 2010 and 2019. The
best-performing model accurately predicts 92.0% of the changes in land
use statuses, where the F1 score is 0.373, the AUC is 0.902, and the
FoM is 0.053. Fig. 9 illustrates the actual and predicted land-use status
changes in Florida at the parcel level between 2010 and 2019. Based on
the actual data, 544,845 parcels changed their land-use status between
2010 and 2019, while the model correctly identifies 39.5% of them. In
Florida, 8,450,818 parcels did not alter their land use status during the
same period. The model accurately predicts 95.7% of these no-status
change cases.

The proposed RF-based LUC modeling framework is further eval-
uated due to imbalanced data. The parcel-level data is divided into
balanced subgroups using random sampling. 10,000 equally-distributed
observations are drawn from the full data set for each time point, so a
sample data contains 30,000 parcels. We created ten balanced samples
to evaluate the consistency of accuracy scores. Table S8 shows the
average accuracy scores of all 18 models using the sets of ten equally-
sized samples, where standard deviations of these accuracy scores are
extremely small, indicating the stability of the proposed model with
different samples. Based on the four metrics presented in the Table,
Model 13 also provides the best results. Especially the model accurately
predicts both outcomes (change or no change in status).
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Fig. 7. Rankings of features among the best models based on feature importance.

Fig. 8. Predicting future changes in parcel status using a trained model.

Fig. 9. Parcel land use status between 2010 and 2019.
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Fig. 10. Processing time of spatial weight matrices.

5.3. Computational advancements

The computational challenges of constructing a spatial weight ma-
trix are presented in Section 3.2. Fig. 10 presents the processing
times of constructing spatial weight matrices based on a range of the
Kth nearest neighbor rule using our adaptive Hashing algorithm. All
tests are performed using HiPerGator NVIDIA DGX™ A100 nodes (Re-
search Computing, 2021). If the exact computation is completed using
serial processing, the estimated computation time is 167,075 h for
any number of Kth nearest neighbors. Our algorithm accelerates the
processing times substantially for small Kth values and slows down as
the Kth value increases. The average acceleration is 15,704 times in our
tests where Kth values range between 10 and 1000, with an increment
of 10.

Matrix multiplications of lagged changes in parcel status (Y t*1), and
the spatial weight matrix (W ) are performed using SciPy sparse matrix
functions to reduce excessive memory usage. We also use GPU parallel
processing to speed up model training, and all model computations
are performed using HiPerGator NVIDIA DGX™ A100 nodes. We used
cuML GPU machine learning algorithms introduced under the RAPID
project (Raschka et al., 2020) for LR and RF models and GPU-enabled
TensorFlow (Abadi et al., 2015) module for ANN models. Fig. 11 shows
the gained speed-up in model training for LR, RF, and ANN models
when GPU parallel processing is enabled. We performed benchmark
tests on a single supercomputer node using the same data set. For
LR, the maximum iterations are set as 1000. For RF, the maximum
tree depth is defined as 2000, where the number of estimators, bins,
and streams are 30, 15, and 8, respectively. For the ANN model,
we tested a sophisticated model with a total number of parameters
is 1,000,000, while the epoch is 10 to evaluate computational gain.
The most considerable acceleration is observed for LR training. GPU-
based processing accelerates LR model training approximately 527
times faster than CPU equivalents. We also significantly improve the
processing of RF model training by utilizing GPU parallel processing.
GPU-enabled process speeds up the training almost 122 times faster
than its CPU equivalent. Finally, ANN model training also benefits from
GPU parallel processing. Our benchmark test shows a 49 times speed-
up in the processing. The benefit of GPU parallel processing becomes
more significant as ANN models get more sophisticated. In other words,
acceleration rates increase as the number of model parameters rises.

The introduced adaptive Hashing algorithm substantially reduces
computational challenges and necessary memory space when the num-
ber of neighbors or the size of fixed distance in neighborhood rules is

relatively small to the extent of data space. GPU parallel processing
significantly changes processing time when a sizeable Kth degree or
radius is used for constructing spatial weight matrices. The performance
of the proposed approach is also tested using multiple nodes and
GPUs using our statewide data. Our performance tests show a slight
improvement in computation time when multiple nodes and GPUs are
used. Therefore, our introduced approach can also run large spatial data
sets on personal computers, preferably with CUDA-enabled GPU cards.

6. Discussion

In recent years, spatial and temporal modeling methods have been
applied to various LUC models. Incorporating spatial and temporal
dynamics provides robust models with limited information because
land investment decisions depend on the other investors’ decisions in
the neighborhood (network) and past conditions. However, an explicit
involvement of spatial relationships in statistical and ML models is
computationally challenging due to the requirement of searching all
possible pairs in the data while constructing the spatial weight matrix.
In statistical methods, parameter estimations are also computation-
ally complex due to the computation of the inverse of spatial weight
matrices which are generally squared matrices. However, ML and DL
methods are computationally feasible alternatives, which can account
for non-linear dynamics required for mimicking actual dynamics in
models. However, accounting for spatial dynamics in ML/DL methods
has been recently introduced, and these methods generally require
large training data sets to achieve desired model accuracy levels.
Therefore, a feasible modeling approach is required. Our proposed
modeling framework successfully deals with the computational chal-
lenges in constructing spatial weight matrices and estimating necessary
model parameters. The best-fitted spatial and temporal out-of-sample
predictions reach around 94% and 92% overall accuracies, respectively.
As discussed in the literature section, controlling spatial and temporal
dependencies also provide more reliable accuracy measures. Such a
high accuracy using only neighborhood characteristics provides excel-
lent opportunities for further development of LUC models to predict
future land developments. Accurate expectations about future land
developments reduce many uncertainties for local governments and
enable them to make long-term investments confidently and use their
financial resources efficiently.

Our model results show that spatial and temporal dynamics at the
parcel level are essential factors in modeling land-use changes using
limited proxy information. Parcel-level data sets provide rich infor-
mation about heterogeneous land development dynamics. A statewide
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Fig. 11. Comparison of model training processing times using GPU parallel processing and GPU disabled.

model successfully captures many local and regional dynamics and
improves models’ spatial out-of-sample prediction accuracy powers.
We also concluded that the spatio-temporal models should be trained
differently to improve temporal out-of-sample prediction accuracy.
The rolling cross-validation method significantly improved the model
accuracy for the minority class. However, there are still possibilities to
improve the model’s accuracy. As we investigate historical dynamics,
our modeling framework did not capture some external impacts, such
as the financial crises and significant changes in demographics and
socio-economic structures. Demographic changes such as population
increase, median age, and household size should be included in LUC
models. In addition, certain socio-economic variables such as median
income, home values, education attainments, and employment ratio
would provide insightful information to LUC models. Therefore, model
prediction power will benefit from the involvement of more demo-
graphic and socio-economic variables where these variables summarize
overall macro and micro economic trends.

7. Conclusion

This paper introduced a computationally feasible spatio-temporal
LUC modeling framework using adaptive Hashing algorithms and GPU
parallel processing. The proposed modeling framework address the
three main limitations in LUC modeling; (1) accounting for spatial
and temporal relationships, (2) controlling non-linear dynamics among
features, and (3) constructing high-resolution models at the regional
scale. Based on our best knowledge, our modeling framework is the
first parcel-level statewide LUC model accounting for spatio-temporal
dynamics, where the data set contains information about nearly 9
million parcels between 1910 and 2019. We used UF HiPerGator 3.0
supercomputer to train LR, RF, and ANN models. We accelerated the
construction of the spatial weight matrix by almost 16,000 times using
our adaptive Hashing algorithm and GPU parallel processing. Also, we
gain substantial improvements in computation time for model training
using GPU parallel processing. Our computational advancements can
also benefit statistical and simulation-based LUC models such as CA.
In addition, the introduced computational improvements enable re-
searchers to complete many large-scale modeling tasks using preferably
GPU-enabled personal computers.

In the empirical model, 25 neighborhood characteristic variables
are incorporated. The model results provided accurate results only
using neighborhood characteristics and spatio-temporal components.
Including spatial and temporal dependencies significantly increases the
overall accuracy because these dynamics provide insights to model
unobserved information in land development dynamics. The best-fitting
model achieved almost 92% overall temporal out-of-sample accuracy.
Therefore, our modeling framework has many potentials for predicting
future land-use changes or evaluating future land developments based
on various scenarios. Also, our introduced computationally feasible
modeling approaches can be easily applied to a broad spectrum of re-
search areas, such as hedonic pricing, traffic forecasting, urban energy
consumption, ecological systems, disease spread, trade relations, and
business networks.

Among the advantages mentioned, the proposed method has two
limitations which are interesting future research questions: (1) mod-
eling multiple land use categories where the data will be highly im-
balanced; (2) incorporating contemporaneous spatial components for
out-of-sample predictions similar to spatial econometric models like
Spatial Autoregressive Model (Anselin, 1988).
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