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1 Introduction

Effective field theory (EFT) is a framework which allows one to extend the Standard Model
(SM) to include new physics effects. In EFT, higher dimensional operators encode our ig-
norance and also extends the theory up to a certain scale. There are many ways to form
higher dimension operators by adding fields and derivatives but not all of these operators
are independent. For example, within the Standard Model effective field theory it is difficult
to determine the minimal operator basis above dimension six due to several redundancies in
operator space [1]. However, in the past few years, Hilbert series techniques have provided
an illuminating framework within which one is able to quickly count the number of inde-
pendent operators at certain dimensions [2-16]. Several other methods, such as the on-shell
Young Tableau construction [17-24], also serve as complementary ways to give the number
and explicit form of these operators. Using these tools, a complete list of independent
dimension seven through nine operators can now be found in the literature [25-30].



Supersymmetry, as the largest spacetime symmetry compatible with an interacting
theory, is still a possible candidate for physics BSM. Higher derivative operators in su-
persymmetry have been studied in several articles [31-35] especially within the context of
supersymmetry breaking. Therefore determining the operator basis in supersymmetry may
be important, specially in order to avoid including operators that are related. However,
there are difficulties that arise when applying the above mentioned EFT counting methods
to a supersymmetric theory. The usual Hilbert series approach only works for Lorentz
invariant as well as gauge invariant operator spaces. Once we include supersymmetry, it
cannot directly give the correct counting, because the definition of integration by parts
changes due to the additional fermionic derivatives in supersymmetric theories.

In this paper we develop a method that allows one to build the operator basis of
all dimensions in a N = 1 supersymmetric theory with only chiral/antichiral superfields.!
Hilbert series and related group theory techniques are fundamental to tackle the problem in
hand, and together with the definition of correction spaces (vector spaces of redundancies),
provide a systematic way to remove all dependencies and get an operator basis. Using a
recursive derivation, we are able to derive all corrections explicitly.

This paper is organized as follows. In section 2 we introduce the Hilbert series approach
and how to apply it to form Lorentz invariants. Then we review N = 1 supersymmetry in
the language of superspace, and use Hilbert series tools to build the operator space we are
interested in. Section 3 deals with the two kinds of redundancies, namely EOM and IBP
relations. Specifically, in section 3.1 we show how to remove EOM. The method to remove
IBP relations in non-supersymmetric theory is introduced in section 3.2, leading to the
definition of correction space, which allows one to identify corrections in a systematic way.
We then generalize this idea and derive explicit corrections at each order in section 3.3,
where three examples that involve chiral superfields and antichiral superfields are given at
the end. Finally, in section 4 we give a brief summary and some possible future applications

of this approach. Proofs and character formulae are given in the appendices.?

2 Hilbert series and supersymmetry reviewed

2.1 Hilbert series and plethystic exponential

The Hilbert series [36-50] is a useful way to count the number of independent group
invariants. In a field theory consisting of N fields, the Hilbert series has the following form:

HDAba}) = D Criernhi' - o8 DF, (2.1)
r1,r NSk
where ¢,, ...y % is the number of independent invariants composed of (r1,- - -,7n) powers

of ¢1 - - - ¢n and k derivatives. Technically, the ¢1 - - - ¢y above are complex numbers to
label the content of fields, i.e. spurions, and similarly D is a complex number to label the

!The inclusion of vector superfields will be postponed to a forthcoming publication.
2Through out the paper we adopt the most-negative metric tensor in Minkowski space, i.e. " = 1y, =
diag(+1,—1,—1,—1). Totally antisymmetric tensor in two dimensions eap(A, B = 1,2) are defined to be

€12 = €' = 1; €21 = ¢'? = —1. In addition, a useful identity we will use is eapecp +eaceps +e€apesc = 0.



partial derivative. To count the number of independent operators now becomes the same
as calculating ¢, ... ry k-

One technique to calculate the Hilbert series is via the plethystic exponential (PE) [38,
42-44, 50]. The plethystic exponential generates all (symmetric or anti-symmetric) prod-
ucts of its arguments. For our purposes, the arguments are spurions representing each
field in the theory, multiplied by the character appropriate for that field’s representation
under the spacetime (Lorentz) and internal symmetries defining the theory. For a field ¢r
transforming under the representation R of a simple group G, the plethystic exponential is
defined as:

PEor] = exp { -~ (1" g ) (22)

n

where we assign +1 for bosons (symmetric products) and —1 for fermions (antisymmetric
products). The characters xg r can be expressed in terms of A unimodular complex
variables, where A is the rank of G. For example, SU(2) is rank 1, so all characters can
be written in terms of a single complex variable . We will sometimes list the complex
variables that make up the characters as arguments in the PE, e.g. PE|[¢;a] and refer to
them as ‘group parameters’. Some explicit examples for U(1) and SU(2) characters are
given in appendix A. A useful property of plethystic exponentials is:

PE[¢:1|PE[¢2] = PE[¢1 + ¢, (2.3)

which allows us to combine multiple fields into a single PE.

Expanded, the PE is a sum over all polynomials of its arguments (fields, for us), with
each term in the polynomial multiplied by some combination of characters. To project out
the polynomials that are net gauge/Lorentz invariants, we use character orthonormality:

/ dug Xg,1 Xg,J = 01, (2.4)

where dug is the Haar measure of the group G. The Haar measure can be treated as
the group volume/measure defined on the group G, and we give explictly its expression
for common Lie groups in appendix A. The above relation holds provided G is compact.
Specifically, integrating the PE times 1 — the character of the trivial representation —
over the Haar measure projects out G invariants and gives us the Hilbert series. For the
example of N fields ¢ in a theory defined by group G we get:

N
H = /dug PE lz DiX R,
=1

If the theory has multiple symmetries, the argument of the PE is the product of

(2.5)

the individual group characters, and the invariants are projected out by integrating over
all Haar measures. When considering the symmetries of a theory, we include all gauge
and internal global symmetries along with Lorentz symmetry. For the latter, we work
with representations of SU(2);, ® SU(2)r = SO(4) rather than SO(3,1) since the former is
compact and therefore its characters are orthonormal.? Since we have included the Lorentz

3We only care about counting the invariants and not about the dynamics.



group to the mix, we can add derivatives of fields to the PE, generating invariants of ¢g,
O0uor, etc. Naively, we can include fields with derivatives by adding them to the PE,
meaning we treat e.g. 0,¢,[¢ as an independent field species and add them to the PE
dressed with the appropriate characters. What this naive approach misses are redundancies
among operators with derivaives from integration by parts and the equations of motion.
These require special attention and will be addressed in detail shortly.

Forgetting about derivatives for the moment, let us calculate the (zero derivative)
Hilbert series for Q and L, two familiar left-handed fermions from the SM, as an example.
Both transform as (%,0) under SU(2);, ® SU(2)g, and Q = {3,2, %} L=1{1,2, —%} under
{SU(3)¢, SU(2)w, U(1)y}. The argument of the plethystic exponential is given by:

Z(Q,L;x,y,u,z1,22) = 3Q (m—i—i) (y—i—;) (zl—i-?—l-l) u'/5+3L (a:+ 1) (y—l—;) w2,

1 29 T

where z is the group parameter for SU(2)y, y is the group parameter for SU(2)z, u is the
group parameter for U(1)y and z1, z2 are group parameters for SU(3).. Notice that there is
an additional factor of 3, which represents the 3 generations. Plugging Z(Q, L; x, y, u, 21, 22)
into the plethystic exponential integrating over all Haar measures, we get [2, 25]

H= [ duPEIZ(@ Liz.y.u.z1,2)]
=14 57LQ° + 4818L%Q5 + - - -

2.7)

where du = dugus) (21, 22)dusu(e) () dusue) (x)d,u,U(l)(u).4 We can therefore easily read
out the number of operators from the expansion, i.e. 57 operators built from LQ? and 4818
operators built from L2Q°.

Having reviewed how to construct the (zero-derivative) Hilbert series for scalar and
spinor fields using the plethystic approach, in the next section we will generalize this tech-
nique to supersymmetry, where the non-supersymmetric fields are replaced by superfields.
Since our aim is to study the operator basis, we first need to know what kind of operators
a supersymmetric Lagrangian can contain.

2.2 N =1 supersymmetry

In this section we introduce the basic knowledge of N = 1 supersymmetry, restricting our-
selves to (anti-)chiral superfields. To define such superfields, we need two superderivatives
D., Dg, given by:®

0

Do = 5 0" 8%, (2.92)
— )
Dd = —% + i@aagda,“ (29b)

4We could include the Haar measure for SU(2)r into du as well, with group parameter w. However, as
none of the fields in the PE transform under SU(2)r, the integral is trivial.
5The 4-dimensional sigma matrices are defined to be:

ot .= (Low); 7P = (I, ~0v). (2.8)



where 6, and 9% are two-dimensional Grassmann numbers, and J, is the usual partial
derivative. From now on, we use d, and 04 to represent the two derivatives, i.e. 0o = D,
and 04 = Dg. They satisfy the following anticommutation relation:

{Oa, 0a} = 2i0",0,. (2.10)
The (anti)commutation relations
[0, {00, 0a}] = [04,{0a, Oa}] = 0. (2.11)

will also prove useful in later sections.
Chiral superfields ® and antichiral superfields ® are defined to satisfy the following
constraints:

D5® =0, 9,8" =0. (2.12)

They can be expanded in terms of component fields:

® = ¢(y) + V204 (y) + 06F (y), (2.13)
of = ¢*(y") + V204 (y") + 00 F* (y1), (2.14)

where y#* = z# — ifo"0 and y'* = z* + i0c"0 represent superspace coordinates, ¢ is a
complex scalar field, 1 a Weyl chiral fermion and F' an auxiliary field.
The supersymmetric action built from chiral and antichiral superfields is formed as [51]:

5= /d4:c[(W(<I>) LW @) £ 4+ K (®, D)), (2.15)

where W (®) and W*(®) are holomorphic functions (superpotential) of chiral and antichi-
ral superfields respectively, and K (®, @T) is a real scalar function of both ® and @, called
the Kéhler potential. The subscripts F, D represent F-term (d26 term) and D-term (d?0d*@
term) respectively. For example, the explicit renormalizable Lagrangian for a single chiral
superfield @ is given by:

L= [(1m¢'2 + 1g‘1>3) + h.c.] + (92")p, (2.16)
2 3 F

where the two functions are chosen to be W(®) = Im®? + 1g®® and K(®, ) = &1,

To build the Hilbert series for N = 1 supersymmetry with (anti)chiral superfields,
we first need to know their characters. Since a chiral superfield contains both bosons and
fermions, we choose the lowest component fields to represent ®, ®f — ¢ and ¢* respectively,
which transform as scalar fields under the Lorentz group.® If we were only interested
in superfield invariants without superderivatives, eq. (2.5) is sufficient. Operators with
superderivatives are where all the complications arise and will be the main focus of the
rest of this paper.

5Note that the full supermultiplet S(z,0, 5) can be built by acting supercharges on the lowest component
field A(z), i.e. S(z,0,0) = 99D A(zx), where Q and Q are group generators (supercharges) related to
N = 1 supersymmetry.



Fields with one derivative, 9,®, 95®' have a lowest component that is fermionic. They

1
'3
fermionic portion of the PE, meaning they enter the sum in eq. (2.2) with a minus sign.

carry Lorentz group representations (%,O), (0, 5) respectively, and must be added to the
As in non-supersymmetric theories, we can add operators with more superderivatives to
the PE, e.g. to generate even higher derivative operators. There are three differences with
respect to the non-supersymmetric case in this aspect. First, certain terms are zero because
of the chiral/antichiral nature of the ®, ®, e.g. 9,®, and should not be added. Second, we
have to keep track of the bosonic/fermionic nature of the higher derivative terms. This is
straightforward, as all terms with an even number of superderivatives acting on ®, ®f are
bosonic, while all terms with an odd number of superderivatives are fermionic. Finally, it
may seem that we need to study higher derivative extensions of the superpotential and Kéh-
ler potential separately, as they have different holomorphy properties. However, as we will
show, any F-term (superpotential term) containing superderivatives 0,04 can be trans-
formed into a D-term (Kéhler term). Therefore, to build our operator basis for (anti)chiral
superfields with superderivatives, we only need to find the set of independent D-terms.

To prove the last statement, let W = W(®;,035;), where ®; are chiral superfields
that satisfy the chiral constraints 0;®; = 0 and S; are general superfields. Since 82 =0
identically, 92S; are chiral superfields. As a result, W (®;,925;) constructed in this way is
chiral and we can choose its F-term to be part of the Lagrangian,

S5 / d W (D:,025,) 7 + hoc. (2.17)

There are two kinds of terms that exist in W(®;,925;), one is Wi = W7 (®;) and another
is Wy = (02S,)h(®;,02S;), where k = 1,2,3,- - -i labels one S field. By definition, W;
doesn’t carry any derivatives and we can simply drop such terms. The other term, W, is
the same as Wy = 03[S,h(®;, 035;)] since 94h(®;,025;) = 0 due to the chiral constraint.

As a result,
/d4$W2((I)i,ao%Si)]: = /d%{&i[Skh(@Z,@iSz)]}fN /d4x[Skh((I)i,8§Si)]p, (2.18)

where we drop total derivatives in z-spacetime when we go from the second line to third
line. We are then left to count the number of operators with an arbitrary number of
superderivatives that can form a real function, the most general Kéhler potential. To form
an invariant, we need to form a Lorentz scalar, and therefore the number of superderivatives
should be even to get fully contracted. In addition, due to the intrinsic existence of an
R-symmetry — a symmetry that transforms the §’s — we have to put another constraint.
We claim that an operator is R-invariant if it carries the same number of 0,’s and 04 ’s.
This is easily proved by noticing that each 9, reduces one degree of # (correspond to -1 to
the R-charge), while each 9, reduces one degree of § (correspond to +1 to the R-charge).
If we assign the R-charge 0 to (anti)chiral superfields,” the field 9,® carries R-charge -1
while the field 95®! carries R-charge 1. So the lowest dimensional R-invariant Lorentz
scalar we can form out of 9,®, 05" is (0,®)%(05®7)%. To incorporate R-symmetry into

"For multiple flavours, we should assign R-charges r; to chiral superfields ®; of different flavours.



the Hilbert series, we need an additional U(1) group as well as the related group parameter
z. Calculating the corresponding Hilbert series is straightforward by putting superfields
together with their characters into the plethystic exponential and then integrating over
the Haar measure. For example, suppose we want to form the Hilbert series with fields
o, ot 9,P, 0,7, whose representations are given by (0,0;0),(0,0;0),(%,0;—1), (O,%; 1)
respectively; the last number represents the R-charge. Then the Hilbert series is formed as:

[ auPEZ(®,@,0.9,0:81;0,5,2)) (2.19)

where «, 3, z represent the group parameters of SO(4) and U(1)z. The Haar measure in
this case is dp = dugy(2)()dusue) (B)dpy(1),(2), and the integrand in the PE is given by

ﬂ@@t%@&@ﬂmﬁgﬁzé+@#%%@<a+;>[4+@ﬂﬁ<B+;)z(2%)

Plugging (2.20) into (2.19) will generate all possible invariants constructed from these
superfields.

Once we include fields with superderivatives in the PE, as in the example above, the
Hilbert series generated by eq. (2.5) ((2.19) for the example just shown) is not the end of the
story. Operators must be independent (represent different contributions to the action) in an
operator basis, and we have not yet removed redundancies from the Hilbert series coming
from IBP or EOM relations. The first redundancy comes from the fact that two operators
differing by a total derivative gives the same action after integrating over the full space (as-
suming the boundary terms vanish). The second redundancy comes from field redefinition,
after which the original operator can be replaced with another operator with fewer deriva-
tives. We will discuss in detail how to eliminate these two relations in the next section.

3 Removing EOM and IBP

3.1 EOM relations

To remove EOM relations from the operator space, we first look at the equation of motion
of a free chiral superfield ®, given by:

D20 = mdT, (3.1)

where m is the mass of the superfield. One can verify this by expanding both sides in
component forms and then compare the lowest components:

where ¢ and ¢* are the lowest component fields of ® and ®f. As expected, this reduces to
the Klein-Gordon equation for a free complex scalar field. The equation of motion relations
allow one to “replace” Oé — ¢, dp — T, etc. within higher dimensional operators via
field redefinitions [52]. Extrapolating this logic to superfields, we can swap factors of 92®
for ®f, etc. within superfield operators.



The next question is how to enforce this in forming the Hilbert series, i.e. automatically
removing redundant operators by manipulating the plethystic exponential. We will proceed
as in non-supersymmetric theories, following ref. [4].

Specifically, using a scalar field theory as an example, we add 0,,¢, 0@, 83’V¢> to the PE
as separate terms. As the PE generates all possible polynomials of its arguments, this gets
us polynomials of d,¢,¢, 8511,@5 and so on. To account for the EOM, we simply exclude
¢ from the PE, as any operator containing [J¢ can be transformed by field redefinition
to an operator without the [J, and thus already included in the operator counting. By
the same logic, we drop 82@@, [0?¢ etc. from the PE. Omitting these terms, we are left
with only the symmetric derivatives at each order,® Ou®, a%/w}(b’ etc., where {---} indicates
traceless and symmetric pieces. In terms of characters, the PE argument for a scalar is

Z(p, Outy Dy - 0.3, D) = d+ Dy 1 1)+ Dy + )

) + D? X(1,1) + - ) (3.3)

)

N
N

Here, the characters refer to representations under SU(2);, x SU(2)g and D is the spurion
for the derivative, which we need to keep track of operator mass dimension; «, 3 are the
group parameters related to SU(2)z, and SU(2)g.

For fermions, the process is the same — we extend the PE to include derivatives, but
omit @) and its higher derivative counterparts. For example, for a left handed fermion 7,
the PE argument is

I($r, Opibr, 07,y ¥, 5, 8, D) = Yrixo) T DXL+ D? Xy T) (34)

While we will not consider field strengths in this paper, one can account for their EOM in
a similar fashion [2].

The infinite series of higher derivatives in eq. (3.3), (3.4) can be summed. The results
are, respectively, the characters for the scalar and fermion (here, (%,O) type)? conformal
group representations [53-55]. We’ll denote the conformal representations as X(0,0) and
X(1.0) 80 that eq. (3.3), (3.4) can be expressed concisely as

(¢, 8, D) = ¢ X0,0):  L(r; B, D) =YL X1 0y (3.5)

Taking « and (3 to be the group parameters for SU(2); and SU(2)g, the conformal char-
acters are explicitly given by

X(0,0) = P(Q,B,D)(l - Dz)

=)o) -2(s+3)
wp-rean((ed) o)) e

8 Antisymmetric combinations of derivatives are either zero (in the case of ordinary derivatives), or a

field strength X, (if ¢ is charged under a gauge symmetry and the derivatives are covariant derivatives).
In either case, the terms don’t appear as the building blocks in PE.

9Technically, and importantly for the approach in refs. [3, 5], the characters one gets by summing the
infinite series of derivatives are short representations of the conformal group.



where

P(a, 3, D) = ((1 _ DaB) (1 _ fﬁ) (1 _ D;) (1 _ llﬁ) ) . (3.7)

Notice that the conformal characters contain spurion D along with the Lorentz group
characters. The connection of the conformal group is not coincidental and has been used
in ref. [5] to analyze the Hilbert series for non-supersymmetric theories.

The non-supersymmetric approach to EOM redundancy can be imported almost as is
to the (chiral field) supersymmetric case. The complications are that i.) in supersymmetry
we always have bosonic and fermionic fields, and ii.) there are two types of derivative. Both
are easy to accommodate. For the two derivative types, we use P as the spurion for 9, and
Q for 04 — the connection between 0d,, 04 and 0, from eq. (2.10) implies PQ ~ D. For ®
and ®f, we add derivatives following eq. (3.3), simply substituting PQ for D.'* Ignoring
R symmetry for the moment,

(2,970, 8, P,Q) = (O + PPQX1 1+ ®P?Q%*x11 + - - -) + same for &
= ®x(0,0) <I>TX(o,o) (3.8)

where it is understood that the arguments of y for the supersymmetric case are P, Q) and
the group parameters a and (. For the fermionic fields 9, ®, 05®', we follow eq. (3.4),

Z(8a®, 059", 0, B, P,Q) = 9, ® PX(10)+ Oa o pP? QX(1,1) + 0a o P3Q)? X
+9a®" Q x(01 1)+ 0 <I>TPQ2 b+ 0a®T P2Q° x5 3y
= 04 <I>PX( 0)—1—8(1) Q@ X0, (3.9)

M

The extra factors of P and @ in the last line of eq. (3.9) account for the fact that the
fermionic fields 9,®,95®! already contain one superderivative. As there are two types
of derivative, it may not be obvious that only symmetric derivative combinations should
be included in the fermionic PE. To see why, consider the example 0,0;0%®, which is
the same as 2ic” 40,0%® when we anticommute the first two superderivatives and remove
the piece that contains 9%9,®. However, expanding 0,3,0%® in component form we get
ioh, O = mwg — exactly the Dirac equation.

Putting the pieces together for a single chiral superfield (and its hermitian conjugate)
and reinstating the R symmetry with R[®] = r, the full PE is

PE[Z(®,®";a, 8, P,Q)|PE[Z(3,®, 050", 8, P, Q)]
= PE[®2" Y(00) + ®' 27" X(0,0)] PE[0.® 2" ' P X1+ 0@ 21" Q X)) (3.10)

where z is the U(1)g group parameter. Replacing ® — >, ®; , the PE can be extended to
more R[®;] = r; chiral superfields. To account for fields with different R charges, the full
PE is the product over the individual R-charge sectors.

Integrating the PE over the Haar measure for the Lorentz group, U(1)g, and any
additional gauge/internal symmetry groups, the resulting Hilbert series includes derivatives

10The order of the two spurions P,Q doesn’t matter since they are not real quantum operators.



and accounts for EOM redundancies. IBP redundancies are more subtle, and will be
explored in detail in the next section.

Before moving on, it is worth noting that while the Hilbert series contains all invariants,
we are often only interested in invariants for a specific mass dimension. To address this, we
can weight each spurion in the PE (both fields and derivative spurions) by their canonical
mass dimension, e.g. ® — €®, 9, — €/20,P, etc. then expand the PE to the desired
€ order before integrating over the Haar measure. This not only allows us to organize
the invariants by mass dimension, but it simplifies the contour integration over the group
parameters greatly as the only residues after expanding in € are at the origin.

Finally, as most phenomenological applications of supersymmetry involve renormal-
izable operators only, it is worth spending a little more time on the meaning of higher
dimensional superfield operators. Theories with higher dimensional superfield operators
come about from integrating out fields fully supersymmetrically, and can be arrived at by
performing the path integral over heavy degrees of freedom [56-58|. If all operators (in-
cluding superderivatives) are maintained at a certain mass dimension in the expansion, the
theory in terms of superfield is guaranteed to be supersymmetric (up to even higher dimen-
sional effects). While convenient, superfields contain auxiliary fields, which seem confusing
at first when present in higher dimensional operators. However, within the basis selected
by the Hilbert series — where as many derivatives as possible are removed via EOM —
the auxiliary fields do not become dynamical. As such, if one wants to convert between
a higher dimensional superfield operators into its components, we can remove auxiliary
fields (again, up to even higher dimensional effects) by the component form of the EOM,
F =m¢* (if a mass term is allowed by the R charges).

3.2 IBP relations in non-supersymmetric theories

With the EOM relations taken care of, in this section we will study the IBP redundan-
cies. We begin by reviewing how IBP redundancies are handled in Hilbert series for non-
supersymmetric field theories. As we will show, the structure of the IBP corrections in the
non-supersymmetric case will guide us towards a generalization that works for supersym-
metry.

For non-supersymmetric field theories, IBP redundancies can be accounted for by
adding a factor to the Haar measure integrand, eq. (2.5) [25],

1
H = /duﬁ PE lZZ: ¢iXR,i] 7 (3.11)

where P is the same function of the derivative spurions and Lorentz group parameters «
and [ that we saw in the conformal characters (eq. (3.6)),

1

(1= Dap)(1—5)(1 - L)1 - £2)

P(D,a,p) =

(3.12)

To understand the how m incorporates IBP relations, let’s expand it. Grouped by

~10 -



powers of D, 1/P is the sum of five terms:

a2 (o) (- F) (%)

:1—D<a+;> <5+;> + D? Kl+a2+;2>+ (1+ﬁ2+/312>} (3.13)

- D? <a—|—i) <B+;>+D4.

Plugged into the Haar measure integral, character orthonormality will project out different
terms for each power of D. The first term, O(DP) , is the same as what we had without
the factor of 1/P — it is the number of invariant operators and therefore sits in the (0,0)

Lorentz representation. Going forward, we’ll refer to this set of operators as {X}. The
11
272
representation, therefore when we perform the Haar integral we’ll project out all operators

second term comes with a minus sign and accompanies the character for the (5, 5) Lorentz
that are invariant under any internal/gauge symmetries but are Lorentz four-vectors — the
operator set {X*}. By same logic, the O(D?) term projects out all (0,1) + (1,0) Lorentz
representations, etc.

What does this have to do with IBP? Imagine we are looking at a theory of a single
real scalar and care about counting invariant operators of the form O(9™¢"™). IBP relations
manifest here in the ways we can shuffle how the derivatives are sprinkled among the fields,
with two operators being equivalent if they differ only by a total derivative. The operators
projected out by the O(D) term in eq. (3.14) have the form O(0™ 1¢"). If we apply
one final derivative to any of the O(0™~1¢") operators, we have to get zero since it’s a
total derivative. At the same time, 9,[O(0™ 1¢™)] must yield combination of O(9™¢")
operators. So, for every O(0™~1¢") operator, we find some linear combination of O(9™¢")
operators that equals zero; and for each linear combination, we can solve for one of the
O(0™¢") operators in terms of the others, meaning it is not independent. For a more
general (non-supersymmetric) theory, we can express the IBP relation as

XM =" a; X;. (3.14)

As each X* operator implies one relation among {X} operators, the number of {X} op-
erators taking all relations into account is the dimension of {X} minus the dimension of
{ X"} space, exactly whats accomplished by the O(D") and O(D) terms in eq. (3.13).

The 1/P factor doesn’t stop at O(D) because the IBP relations defined by eq. (3.14)
are not always independent. To correct for this, higher order corrections need to be taken
into consideration. For example, if an operator in {X*} can be expressed as 0, X [k,
where the [ -] denotes antisymmetrization, then 9,0, { X1} = 0 identically. By the logic
above, this zero means each {X [’“’]} operator implies a linear dependent relation among
the previous 0,{ X"} equations:

0y 0, XM =" b (9, X4) = 0. (3.15)

Iterating, we see that the last two terms, which represent operator spaces {X [ p}} and
{Xmrol} correct the O(D?) and O(D?) terms respectively. The expansion terminates at
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D* because in four dimensions we cannot form a non-trivial operator with five or more to-
tally antisymmetric indices. Therefore no space can correct { X771} and the series ends.'!

Putting things together, the number of independent operators modulo IBP in the
non-supersymmetric case is given by

# operators including IBP = #{0} — #{X"} + #{XW ]} — g{xwely 4 gy xlmveoly

(3.16)

The above understanding of the m factor sheds light on how to find similar

factors in more general cases to remove IBP relations. For this purpose, we first give a

definition of what is a correction and then apply it in the non-supersymmetric case to

reproduce the m. Starting with a space O, we define the zeroth order equivalence
relations on O as follows:

U~L+ Y Lisi, LEO,s €S (3.17)

where Z; are maps that take elements from S? to O and the sum runs over all possible S?
and the dimension of each SZQ. The upper index 0 indicates that this is the zeroth-order
correction. The IBP relation for a non-supersymmetric theory fits right into this general
definition if we identify O as the space {X}, S® as the space {X*}, and 7 is 9.,

O; ~ 0+ 0,0k, 0;,0; € {X},0h € {X'}. (3.18)

For non-supersymmetric theories, there is only one class, or branch, of corrections, so there
is no i index on SY, however for more general setups there may be multiple SY.

Next, we identify the space S}, along with maps ’73 : SJ1 — S? . We call S} the first
order correction space if all elements in 8} satisfy the following conditions:

7;}3]‘ #0, and Zﬂ;}sj =0, (no sums over i),Vs; € S]1 (3.19)

From the definition, we see the superscript indicates the order of the correction (1, here),
while the subscript j,i respectively label which of the S' and S° spaces are connected
with the map. For a non-supersymmetric theory, again there is only one S' space — the
operator set {X (kv }} — thus the only map, T} = 9,, has i = j = 1. Clearly, all operators
in { X1} satisty

Ths =8,X £
TiThs = 8,0, XM =0 (3.20)

Higher-order corrections are defined in a similar way. A space §j s called the nth-order

correction to O if there exist maps 7,7 : 57 — S}nil), such that:

Tiisi #0, and 7?.717;?5]‘ =0,Vs; € S}, Vk, (3.21)

)

1 One can understand the termination of the series by realizing that any total derivative is itself a closed
but not exact d-forms [3, 5], where d is the dimension of spacetime. In 4 dimensions, one can at most has
a 4-form, whose basis is given by dw" A dw” A dw” A dw?, with a coefficient carrying antisymmetic indices
among f, v, p, 0.
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0 0, 0 0,

U v
(X} +—— (x¥} «— (X)) 4_{? (X [mrl} e—— (xluepaly

Figure 1. This is the diagram in the non-supersymmetric case. It terminates at order O(D?), as
explained in the text. The related maps are given by 0,,.

and is denoted as S?({Sf_l} — {8'"?}),n > 2. This notation allows us to keep track of
all corrections and maps, such that we can easily prove whether a given space (or spaces)
and related maps satisfy the definition. In our non-supersymmetric example, it is easy to
see that the spaces S = {XIWrl}, S = {X[wrol} and maps T3 = 9,, T3 = 0, satisfy
the criteria.

We can use diagrams to keep track of the corrections and spaces. Starting from the left,
we place the space O. Next comes S?, with arrows pointing from S? to O indicating the
maps Z;. The second column is S}, with arrows from S]1 to the SY representing the maps
Té Next comes 5]2 with its affiliated maps, then S?, and so on. For non-supersymmetric
theories, the diagram is shown below in figure 1. There is only one correction space at each
order (one S°, one S!, etc.), so the correction diagram is a single line; the leftmost space
is {X}, and the diagram ends with §3 = {X#rol},

Having defined the corrections, we are now able to calculate the number of independent

operators:

# of independent operators = #{O} — # Z{SZO} +#> (S -# Z{Sf} +---(3.22)

where the #{X} represents the number of operators in {X} space. The series of correc-
tions may terminate at some fixed order, as in the non-supersymmetric case, or it may
continue infinitely. To execute this counting within the Hilbert series, each of the S} need
to be dressed up with the appropriate Lorentz group characters — so the right spaces are
projected out by character orthonormality — and multiplied by spurions representing the
maps Z,7;7. In non-supersymmetric theories, the map spurions are all just D, and the
character/spurion dressed version of eq. (3.22) reproduces 1/P.

There is a subtlety that we should mention. For non-supersymmetric theories the
Hilbert series can be written as H = Ho + AH [5]. The procedure described above —
plethystic exponential, conformal characters, and 1/P factor — reproduces Hy. The AH
pieces is a correction stemming from the non-orthonormality of the characters for short rep-
resentations of the conformal group under the Haar measure for the SO(4) xSO(2) (maximal
compact subgroup of the conformal group). For scalars, spinors and field strengths in four
dimensions, AH only includes terms of dimension four or less. So, while it is needed for
full operator basis, AH plays no role if our interest is counting higher dimensional opera-
tors. Our approach for supersymmetric theories may also generate contributions to AH,
however, as in the non-supersymmetric scenario, AH will only include operators with mass
dimension < four. As such, we will ignore AH for the remainder of this work, focusing on
the (mass dimension > 4) terms contained in Hy.

Now we have everything we need to study the more complicated supersymmetric case.
As we will see in the next section, there are two independent IBP relations in supersym-
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metry, e.g. two spaces S? , and the maps 7;; take on a more complicated form. The net
result is a more interesting and subtle correction structure.

3.3 IBP relations in N = 1 supersymmetry

In a (N = 1) supersymmetric theory, there are three possibilities two Kéahler terms can
differ by a total derivative — the IBP relations,

K =K'+ 0, X"
K =K' +05X¢ (3.23)
K=K +9,X".

However, only two of these are independent. Use the defining anti-commutation relations
between the two superderivatives {0,,04} = 2’50Zaau = Oaa, We can rewrite the third
relation as:

K ~ K’ + 00(05X%Y) 4 04(05.X%%) (3.24)

which is a linear combination of the first two equations. Therefore there are only two
independent possibilities in N = 1 supersymmetry and we choose the first two to be the
IBP relations. The above also means we only need two of Jn, 04,0, to build operators.
Following our choice for IBP relations, we’ll keep 9, and 04; roughly speaking, the reader
looking to spot factors of J,, should look for combinations 0,04 or 050, (exactly which
depends on whether the object acted on by the derivatives is chiral, antichiral, or neither).

When two Kéhler terms differ by a total derivative, they will give the same action once
integrated over the superspace. For example, in the first case,

/ Az d*0K = / Az d*0(K' + 0, X)

_ / diz d*OK + / iz d400, X°
) (3.25)
_ / d'z d*OK" + / 'z 2007 X°

= / d*z d*OK’

where in the third line the integration goes from the full superspace to half superspace,
and in the fourth line the second term vanishes because 93 = 0. The fact that K and K’
give the same action means that we only need to take into account of one of them when
we form the Lagrangian.

From now on, we will use a slightly different notation to label different spaces. Let
p’ and ¢ represent the number of 9, and d, in each operator space, we define the space
{Xxoaz2-a162-1D4 to he the space spanned by the basis determined by the Hilbert Series,
where p = m — p’, ¢ = n — ¢ and m,n are the number of superderivatives of 04, 04
respectively in O, the operator space we are interested in; see table 1 for details. The
Xrazd1é2 ndjcates the spinorial structure of elements in that space. For example, if we
want to study the case O(9209202®12), then (0,®)%(05®1)? € {X}90 = O, (9,9)2(®7)? €
{X}02 92912 € {X}22 etc. This notation explicitly shows how many superderivatives a
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{X(alrxza_,) } 31‘0 b {X(alaz)d}fi.l b {Xa }5,2
S S,“ « S |

(o)1 2,0 h ; 4 Iy 1 4 '
{X iy } ;l — {X(m}3,l: < _{X}4%

e

S S,
1 / } 6
/ I S

.1\

{X(dfﬂz)}o;]z — {X‘ﬂfﬁ!}l‘-ﬂ3 — {X}2=4
Q) [ S5 Iy S5

{X(mfna;)}2534[__{Xa(alal)} 134 — {Xd} ff

Figure 2. This is the tree diagram to illustrate how corrections work. Arrows point from the
correction spaces to the spaces they correct. Maps above the arrows represent the maps: 0,, 0, for
the zeroth order maps, and [,,,[,, for higher orders. See the text for the explicit form of [, 1,.

space carries, making it easier for us to arrange and order different spaces. At times, we will
omit the «, & indices in { X} for brevity, though they can be reconstructed knowing p and gq.

Equations (3.25) and (3.23) motivate the following IBP equivalence relation
U+ Y 0o XY+ 0a X €0, (3.26)

which fits into the zeroth order correction master formula eq. (3.17) if we define two cor-
rection spaces SY = {X2}0 89 = {X%}1.0 with corresponding maps Z; = 0,, Zo = Oq.

Using (3.19) and (3.21), we can fill out the entire diagram of higher order corrections
spaces and maps. The result is shown below in figure 2. Arrows point from the correction
space to the space they correct, i.e. from S™ to S"~!. The zeroth order corrections lie in the
second column, S = {X}0 and SY = {X}''0 with maps 9, and J; connecting them to
O = {X}%0 as expected from eq. (3.26). The higher corrections are naturally divided into
six ‘branches’, three of which are oriented in the same direction as the Z; = 9, zeroth order
map and three which are oriented along the Zo = 05 map direction. For simplicity, we’ll
refer to these two groups as the ‘0,” and ‘04’ directions. They are symmetric under the
change o <+ ¢v. The expressions for the higher order maps, I,, and ,,, are more complicated
and will be given shortly. In addition to the multiple branches, another difference between
the supersymmetric and non-supersymmetric cases is that the branches in supersymmetric
theories do not terminate.

Notice that the number of spaces increases with the correction order: there are two S°,
four S*, five S2, etc. To check if these spaces and the maps that connect them satisfy our
map criteria eq. (3.19), we need to choose a labeling scheme. We choose (S = {X}19, 59 =
{X}91) for the zeroth order corrections, (S = {X}?9, 83 = {X}02 S} = {X}?1, 5] =
{X}12) for the first order, and (S? = {X}30,82 = {X}93 82 = {X}31 §% = {X}13, 52 =
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Corrections
Si XPa Representation | Character
{x}00 (0,0) 1
STz 1) | (e I I
S5 n>1) | {X(@a62dn)yon (0,2) nf(y )
S5 {xt2 (3,0) z
Si {xa}>! 0,3) y
Sj(n >2) | {Xelhderdnjlast | (g, ng) S
Sp(n>2) | {Xélaozran-nnitl | (a1 S
S2 {Xx}22 (0,0) 1
53 {x)24 (0,0) 1
S8 {X}42 (0,0) 1
Sp(nz4) | {X(@drdus)j2atl | (0 g) | sl 2)0.)
Spn>4) | {x@er-anayeniz | (g azy | slo20,)

Table 1. This table summarizes the representation of each space and the corresponding character.
The translation from X notation to S notation is also provided. Here, x and y are defined as
T =a+ é and y = 8+ %, where «, 8 are the SU(2),SU(2)g group parameters, and 2, , are
defined by z,y = 2 cos(Qy,y).

{X}%3} for second order.'? Each space has both an { X } name, which tells us the derivative
content of its operators, and an S name, which orients the map with respect to the original
space O, distinguishes between equidistant maps, and most compactly expresses the IBP
relations. Table 1 below shows both names of the spaces we are interested in, along with
their Lorentz group representation and characters.

The higher order corrections are best understood moving along the diagonal branches,
rather than thinking in columns. In the following sections we will study the three ‘0,
branches’ in detail.

3.3.1 First branch

The first branch we study is shown in figure 3, continues along the 9, direction and con-
tains the correction spaces {X}29 {X}30 ..

branch, are the most similar to the non-supersymmetric case. We will use that similar-

-. This branch, and its complex conjugate 0

ity to intuit the result, then prove that all maps and spaces satisfy the required criteria
(eq. (3.19)).

Recall the counting formula given in (3.16). There, each space carries totally antisym-
metric indices, and as a result vanishes when acting on two (commuting) partial derivatives.
In four dimensions, the maximal number of fully antisymmetric indices is four, and there-

12For a different labeling, the only change would be in the Ti; indices. While the space of corrections in in-
finite, we have only listed the explicit labeling scheme for the spaces needed to prove the relations in the text.
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Ly

Figure 3. The bold text shows the first IBP branch for supersymmetric theories. It ex-
tends to infinity, unlike what happens in non-supersymmetric theories; {X (“1“2“'““)}"’0 corrects
{X(arezan-1)1n=10 and the map is given by 0,.

fore the series terminates at {X [k pol }. Let’s try the same trick in the supersymmetry case.
As all superderivatives are fermionic, i.e. anti-commuting, acting two of them on an opera-
tor that carries totally symmetric indices will vanish identically, i.e. 9,03X (@8) = 0. Each
vanishing combinations implies a relation among operators and is thus a correction, just as
in the non-supersymmetric case. However, the spacetime dimension places no restriction
on operators with symmetric SU(2) (Lorentz) indices an operator can carry. Therefore, in
the supersymmetry case, this type of correction does not terminate at a fixed derivative
order. In parallel with (3.16), we expect the counting formula for supersymmetric theories
coming from this branch is given by:

# comes from the frist branch = —#{X 1} 4 #{X(@192)} _ .4 (_1)ng{x(az-an)y

(3.27)
Now we will prove this formula using the definition and give one example of the existence
of higher order corrections.

It is clear that we can get #{X }** relations among {X }*? operators from acting d,
on each term in {X}'0. However, just as in the non-supersymmetric case, these relations
may not be independent. For example, acting 0, on dg®X (@B) and PO X (@B) gives the
same relations, even though they come from different terms. The reason is because of the
fact that 0,0p(®X (@8)) ~ 0 identically. It’s not difficult to extend this to general n. We
claim that SP = {X(®102ant1)} corrects ST~ = {X(@azen)} where (- - -) represents
fully symmetrization of the indices. Any element s} in ST transforms under (5!, 0) and
the proof is straightforward as follows:

ThsT £ 0, and TR VTST = O, 0, X (1027 0n+1) — ), (3.28)
The second equation vanishes because of the antisymmetric property of superderivatives.

3.3.2 Second branch

In this section, we will study the second branch, shown in figure 4. The second branch is a
new feature in supersymmetry, arising from the fact that the theory has two superderiva-
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Figure 4. {X(e102an—2)a1nl (n > 9) represents the second branch and each term corrects two
spaces as can be read from the diagram. The green loop represents the first example, while the
purple loop and red straight line illustrate the second example, as explained in the text. The maps
l, are given in the text.

tives as well as one ordinary partial derivative. Although they are not independent, two of
them survive after removing one of them using the defining anticommutation relation (2.10).
To see how the second branch comes about, let’s look at two examples at low dimensions,
and then we give the general result and proof for arbitrary dimensions.

Suppose we want to build the operator basis for {X}%0 = 0(9202®2®"). Then
we know that we can get the following IBP relations from {X}'0 = 0(9,02®%®") and
{X}01 = 0920592 01):

04 (0PI PIDT) ~ 205,0,P0° DD ~ 0, (3.29a)
04 (0, PDIIDT) ~ 930, DPPI*O*DT ~ 0, (3.29b)
Do (%0 DD BT) ~ 20Dy DI DT 4 20D DI, 05 DT ~ 0. (3.29¢)

where we have dropped all EOM terms, e.g. 92® or 0%9;,0,® when acting with the final
derivative; it is also important to remember that 0,, d; are Grassmann objects with indices
raised /lowered with e. It’s clear that (¢) = 3(a)-+(b), so only two of the above three relations
are independent. The reason for the connection is that 9, ®9*®I*®! and 9,PPo*O* DT
can all be obtained from an operator with even fewer derivatives, ®29,®" € {X}?!. Specif-
ically, 0,®0°®0Y®T and 9, PPI*0*®T both are generated by applying (94)? to 20,1,
while 9%90“®P0,; P is generated from (2050% + 0%04) D205 P = 1o(D20,®T). As the three
‘daughters’ 0,P0®0®t, 9,PP0*0 P! and 0*0*PPO,PT share a single ‘mother’, the
relations they imply ((a) through (c¢)) are interconnected.

Let us verify that these maps do indeed satisfy eq. (3.19). This will better illustrate
how to unpack eq. (3.19), as well as provide some more physical insight into the relations.
Referring to table 1, S3 = {X}21, 8¢ = {X}10, 80 = {X}%! and we have already identified
the zeroth order correction maps 71 = 0n, Zo = 05. What remains are the maps taking us
from {X}?! to {X}10 and {X}%!. In the S notation, the maps take Si to S¥ and S9, so
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Tis, Toy- From the discussion above, we see T3 = lo and T55 = 02, where [y is defined as:
(lo)g = 2050% + 0%0y. (330)

For future reference we also introduce the definition of I; acting on X% to give X (®192);

ad

; 2 .
(l)ag 2 X% = — (3a3cr + 3303a> (1P 72 4 e22P 71 )¢, X0 (3.31)
For these corrections, eq. (3.19) becomes:

(Z1 Tis + 12 T33)S5 = (Dalo + 0a03) S5
= 20,040% 4+ 0,004 + 050,0"
= 20,050% — ({0%{0n, 0a} — 0%0404) + {04, Oa } O — 00,040
= 20,040% — 0°{Ba; 0a} — 00050% + {04, 00} 0% — 000a0°
= [{04,04},0°] =0 (3.32)

where the sign flips in the second and third lines come from changing the order of
raised /lowered indices with €2, etc. and the last equality comes from eq. (2.11). Using
{04, 00} ~ 0y, we can get some intuition for the physics of the second correction. Starting
from an operator in {X}%!, we can get to {X}% either by applying a partial derivative
0y, first and then J, or by applying 9, first and then J,,. However, the connection between
Oa, O and 0, tells us these operations commute and the corrections are not independent.

Tracing through the above steps in figure 4 in green, we see the two paths (0, then 0,
or vice versa) form a closed loop. The correspondence of the loops in the diagram with the
commutation relation [{Og4, 0}, 0%] = 0 will help us identify other second order corrections
directly from figure 2.

As a second example, consider the correction from the space {X}>! = S2. This space
corrects {X}*! = S and {X}?° = S}, both of which correct {X}0 = S§). Additionally
{X}3! = S1 also corrects {X}%! = &Y. Using the notation introduced after eq. (3.21),
we can express this compound correction structure as S3(Siz; — S, 53 — 85). The
maps required are 753 (connecting S — S3), T3 (connecting S5 to Si), Ti; (connecting
S — 89, T4 (connecting Si to 8Y) and Ty; (connecting S3 — S39). From our previous
example, we know Ty = 92, T = lp and T} = 0. If we make the identification 753 = Oa,
T3 = (0,0% + %8‘“8,51) = [y, the maps satisfy ’773_17;?5 =0,Vs € 5 for all k:

Ty TAS532 = 0 920, {X5"} = 0
(TATE + TT2)S3 = 0 6 (9aly + 10da) (X7} = 0 (3.33)

The first equation is trivial since 32 = 0. The second equation is more subtle, but can be
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proven as follows:
(1000 + Bal1 ) { X7}

(204,0° +0°05)045%Y — Dy (adaa + gaaad> sP4—a, (adaﬁ + gaﬂad) 54

(20,050° +20,0°04 — 9°04,0.) — (aaadaa + gaaaaad) 0 — (avadaﬁ + gavaﬁadﬂ §74
(05040" — 06,05,0%05 — 0,0,0°)s™*
0

(3.34)

In the first line, the 0,1 piece turns into two terms, while [0, does not. This difference
comes from the index structure of the intermediate maps. Specifically, {X (0‘10‘2)}270 = 5]
is symmetric in the undotted indices, so we need to symmetrize the indices of [; acting on
{x2a}3:1 The intermediate space on the lod, path, {X%}*! has no such symmetrization
requirement. Notice that the commutation of 0, and Js with 0, eq. (2.11), makes an
appearance again in the third and fourth lines. One can refer to the purple loop in figure 4
for illustration.

In these two examples, we’ve shown how to use eq. (3.21) and seen the connection
between the corrections and relations among the superderivatives and ordinary derivative.
However, we provided the maps lg and /1. To understand the structure of [y, [; in terms of
0, and 04 and to extrapolate to more general scenarios, let us derive the map I, defined
to map the space { X} 2! — {X}n+1.013,14

In terms of Lorentz group representations, an element of {X}"*2! lies in the (3, %)
representation (an operator X (0& 10[2”.%)) while an element of {X}" ™10 lies in the (”TH, 0)
representation (an operator X(a1a2~~an +1) ). A map between these spaces must contract
the & index in X&la?“an)
remaining (n — 1) «;. The most general way of doing this, is by contracting over a dummy
set (the a; below) of indices and symmetrize the free indices (the 3; below):

and one of the a; indices, maintaining the symmetry of the

() roean e fn) xa o (anBadz + badgda) Pz o BB ) b
(3.35)
where a,, and b,, are constants and e(X@102an)(78182+6n) ig defined to be the fully sym-
metrization permutations of its indices, e.g. e(@102)(F182) — ¢afrcaafa 4 coafreanfa We can

solve for a,, b, by requiring that [,, satisfy the generalized version of eq. (3.34),

(8ﬂn(ln)(a1a2---Oznfl)(ﬂ@lﬁ?“ﬁn) + (ln_l)(.011012"'Oénf1)(75152'"&171)80471) X(a.alagnun) =0 (336)

« e
The details of this exercise are shown in appendix B.1, yielding:

2 2

an = (" b= G

(3.37)

With [, determined, it is easy to see that the corrections from an arbitrary space
{X}™! n > 4 on the second branch satisfy the required equations. We used the ‘loop’

“Recall, lp mapped {X}*" — {X}" while l; maps {X}>! — {X}*°.
14The barred maps lo, . . .1, can be derived from l, ...}, by swapping da > da.

—90 —



relation (Oalyn + ln—104) to derive [,, so that is automatically satisfied. The only other
relation is 0,05{ X (@1920n)&} _ the analog of the first equation in eq. (3.33) — but this
vanishes as the Grassman derivatives must be antisymmetrized.

It is natural to ask why the second branch starts from {X}?!, not some other spaces.
Naively one would imagine that the nearest spaces should give the corrections to {X}0,
in this case are {X}?? and {X}!'1.15 We give a heuristic proof in appendix B.2.

3.3.3 Third branch

In this section, we will study the third branch. From our experience with the second
branch, the consistency equations show up graphically as compound maps between two
spaces separated by two ‘steps’. All third branch spaces are connected to three (hence the
name) spaces via compound maps. For example, {X}%2 is two steps away from {X}%2,
{X131 and {X}?0. The connection between {X}%? and {X}?? is two steps along the J,
direction, while the connection between {X }>? and {X }*>! has the loop form (9411 +1p0s)
— both of which are familiar from the second branch and can be shown to satisfy eq. (3.21)
using the same logic as there. The new feature of the third branch is the ‘horizontal’
compound map, which takes {X}>? — {X}3Y or, more generally, {X}"? — {X}"~20,
To prove this satisfies the criteria, we need

Iy Ly X (erezan—1) — (3.38)

The proof of this equation is given in appendix B.1. We have no freedom in this proof, as
l,, have been fixed by the requirement (94l + (ln—1)0s) = 0. Interestingly, the final step
of the proof involves

1

EESICESIR (339

which vanishes as ordinary partial derivatives commute. The intuitive way to understand
this is by noticing that we are acting a composite antisymmetric operator, and the only
choice in this case is 0,0, — 0,0,. For example, the composite /1ly takes element from
{X1%2 to {X}%0, which effectively takes the representation from (0,0) to (1,0) by acting
the composite map [0, 0], identically vanishes. The same argument works for higher-order
correction spaces.

Before summarizing the results, let’s pause for the moment and answer the following
question: are there any other correction spaces in additional to the three branches (plus
the other three accounting for the o — &)? We will prove by contradiction that these six
branches are the only corrections that meet the criteria.

Suppose there exists another correction branch, farther to the right in figure 2. This
branch must begin with some initial space, just as the first branch began with {X}', the
second with {X}?! and the third with {X}?2. Initial spaces can be identified because all
of their maps connect to lower branches (e.g. {X}*! connects to {X}'? and {X}%!). Let

15{X}"! is the usual X* space in the SMEFT case, and this space is removed because we write partial
derivative in terms of the 2 superderivatives. As a result, {X}l’1 plays no role when we construct correction
spaces and doesn’t appear in any diagrams.
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Figure 5. {X(eezan-—a)in2 (n > 2) represents the third branch and each term corrects two

spaces as can be read from the diagram. The maps [,, are given in the text.

Figure 6. If there exist maps G;, then either green loops or the red lines should be satisfied such
that {X}P¢ meets the criteria of being a correction space.

us call this initial space { X }P4. To be a correction space,{ X }""? must satisfy the criteria of
eq. (3.21); namely it must have a nontrivial map to one of the spaces on the third branch,
but all two-step maps must give zero. The possible two-step maps differ depending on
whether or not p = q.

If p = q, the only spaces { X }PP can initially map to are {X}>* and {X}*2, so, calling
the maps Gi,Go, we have G {X}PP — {X}*2 G{X}PP — {X}?>* To understand why
these are the only possibilities, recall that the maps are combinations of products of d,, 94,
and the composition of the initial space (a, &) indices with the map («, &) indices must
match the target space, so GIP{X}PP — {X}Ptertb  For any space except {X}%* and
{X}*2 this composition will lead to |a — b| > 3, a difference between the number of J,
and J4 in G of three or more. However, 93 = 93 = 0 by Fermi statistics, so any map with
la — b|] > 3 is zero.
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Restricted to {X}*? and {X}%?2, the possible compound maps we can form are:
Lo {X}>% = 1p G1{X}PP, it’s complex conjugate (swapping G; <+ Ga, lg <+ lg), and the loop
running through {X}>2, (92{X}*? + 93{X}>1) = (02G1 + 92G2){X}PP. All three com-
pound maps must vanish if { X }PP is a correction space. To see that this cannot occur, apply
{04, 0a}, 0% to Gi{X }PP. This vanishes, by eq. (2.11). Rewriting [{04, 0a}, 0] G1 { X }PP
using eq. (3.32) makes this (9alo + 0502)G1{X}PP = 0. Now, if we take lg Gi{X}PP = 0
to satisfy the correction criteria, then 8d8§g1 {X}PP = (0. As a result, we can conclude
02G1{X}P? must be chiral, as it is annihilated by 95 — but it must also be antichiral as
93G1{X PP = 0. The analogous logic holds for Gy { X}, swapping ly <> lp. As only a
constant field be both chiral and antichiral, {X }P cannot be a correction space.

If p # q, { X }P? can initially map onto spaces higher up on the third branch. Assuming
without loss of generality that this space is on the ‘0, side, and calling the initial map Gs,
we have G3{X}P? — {X}™2 for n > 4. From {X}"™? there are two compound maps we
can form, a horizontal map to {X}" 1! via I,,_3, or a map in the 9, direction taking us
to {X}"~12. For both to vanish we need:

0o X} = 0, G3{X}P1 =0
L 3{X}™? =1, 3G3{X}P? =0

The first of these conditions requires G3{X }»? to be antichiral. The second requires
G3{X}P? to be chiral, which we can see by expanding l,,—3 = (a0as + b0sqa) for con-
stants a,b (see eq. (3.37)), and applying it to an antichiral G3{X}??. We are left with
006 G3{X}PY = 0 — implying Gz{X }? must also be chiral. Thus, {X}?9 p # ¢ also
cannot satisfy the correction requirements and we conclude that the three branches (plus
their complex conjugates) are the only possible correction spaces.

3.3.4 Summing the corrections

Changing all dotted indices to undotted (and vice versa) on the three correction branches
studied above gets us the three ‘0’ branches, making the full set of corrections six branches.
To summarize, the corrections are given by:

(i) 0*" order corrections: {X}10 {X}0.1.
(i) 1%t order corrections: {X}2 {X}2!1 {X}102 [X}20
(iii) 2°¢ order corrections: {X}13, {X}>1 {X}03 {X}30 {X}22

(iv) (n > 3)™ order corrections: {X}'ntl {X}ntLl Lx10n+l fxn+l0 0 £ xn+12
{X}Qﬂ’b-i-l.

While the correction branches theoretically extend ‘to infinity’, in practice they are limited
by the number of derivatives in the original O operator. For example, consider an operator
with two d, and two J4. As each correction space involves terms with one fewer derivative,
this operator can only have zeroth and first order corrections. So, while the corrections
terminate at four derivatives for an operator in a non-supersymmetric theory regardless of
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how many derivatives that operator has, the correction order to an operator in a super-
symmetric theory match the derivative order, e.g. an O(970%) operator will have n'! order
corrections. Fermi statistics can also come into play when determining which spaces are
populated, as we will see in the second example in next section.

Combining these corrections into eq. (3.22), the number of independent operators
including all IBP corrections is given by:

# of independent operators = #{ X}V (3.40)
—#({XF XG0
P (X2 (X)02 4 (X)20)
= #{XPH P X0 (X0 {X29)
HHAXI O {0 XX {0

Using the character formulae of the spaces { X }"? summarized in table. 1 and making use
of (3.22), the total dressed prefactor is'6

o0

1= (=D)™{S s

n=0
=D (DI POPPQIy
=1
— (Pz + Qy)
+ (PQ*x + P?Qy+ P*(z” — 1) + Q*(v* — 1))
— (PQ%zy + P°Quy + P*(¢” — 22) + Q°(y° — 2y) + P*Q°)

(3.41)

Formally we can calculate the sum of this infinite series, and the results are given in (B.16).
When R-symmetry is considered, one should replace P — P/ = Pz~ ! and Q — Q' = Q=.

We want to encode this into the Hilbert series, which then automatically projects
out the number of operators in each space. The easiest way to do it is by adding the
corresponding character of each space into the integrand (2.5). Putting everything together,
our master formula is:

H(PaQa{(I)i}):/d,uLorentdegaugedMU(l)R [Z(_l)f(p’q)(Pz_l)p(Qz)qXXP;Q} PE [Z¢i>2R,i] )

(3.42)
where X ; contains Lorentz, gauge and R-symmetry characters. One should keep in mind
that we are actually working with superfields, not non-supersymmetric fields in this paper.

N

Therefore the ) ®;X 5 ; should be understood as the sum over both lowest component fields
i=1 '

and the next-order terms with one more derivative, which represent the bosonic (fermionic)

16The function f®% is defined such that even order correction spaces, i.e. S?*, carry minus signs, as we
see in (3.22). Table 1 provides the translation rule from S7* to {X??}.
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superpartners of the lowest component fields. For example, for a chiral superfield ®, the
argument in the PE is given by the sum ®x o) + P(ID)Z( 1.0)- This is a manifestation of
supersymmetry in the sense that one bosonic degree of freedom is related to one fermionic
degree of freedom, and vice versa.

3.4 Examples

In this section, we will first go through an example to demonstrate the general procedure
to count the operators, then we’ll look at two other examples with non-vanishing higher
representations.

Consider the single flavor case with two chiral superfields and two anti-chiral super-
fields, i.e. ®2®2. We want to find the operator basis for operator spaces in the form of
onor®2®12 where n is the number of superderivatives 9, and d4. The first non-trivial
space generated by operator in this form is the 9202®2®12 at dimension 6 when n = 2.
It’s not difficult to see that there are 6 operators in the space modulo EOM, namely:

(0a®)(07®)(02®") (0" 1) (040a0)(00°®)(D1)?
%(0,0,07) (00" ®T) PDT (950, D) (0% DT
BT (9D)(840,P)(0°®T) B(99DT) (9,051 (0VDT). (3.43)

However, not all of them are independent under IBP relations. For example, the
equation

0a[D(0°®)(95DT) (07 T)] ~ (0a0)(9*®) (02 ®T) (9 DT) + 20(0,®) (907 T)(0,0T) (3.44)

indicates that the two terms on the right hand side are not independent, and as a result
only one of them should exist in the operator space. Notice that terms like ®(92®)(9,®1)?
are dropped due to the EOM relations in the above equation. Since there are (3+ 3) terms
in {X}5% and {X}0 spaces, we can derive six IBP relations:

Da[®(07®) (D) (07®T)] ~ (020)(0°D)(05®1) (0 DT) — 20(0, @) (00" ®T)(9a®),
Da[®%(0a®1)(8%0°DT)] ~ 20(9,D)(9%0°DT) (05 DT) 4+ B%(0005PT) (9%0%DT),
Do [P(DYDD) DT (95 DT)] ~ (8%0YD) (00 ®) DT (D5 ®T) + (DY D) DT (9,04PT),  (3.45)
0a[(0a®)(0®) BT (9YRT)] ~ (022)(0°®)(05®1)(0°DT) + 2(0400P) (07 @) DT (9% ®T),
%] ~ (940a
]

~

2

D4 [(0a®) (0Y0YD)DT?] ~ (050, D) (00 D) BT — 2(9,D)(9*0°D)PT(D5dT),
04 [® (80 ®) BT (00D ~ D(030,P)DT (00 ®T) — B(90®) (0“0 DT) (85 PT).

2

A brute force way to find the number of independent operators is to apply matrix
rank approach, as in ref. [4]. Specifically, we label each different element as z; and each
relation provides an equation Zj ajr; = 0, where x; are the elements in each relation. For
example the previous six relations can be transformed into a set of equations: x1 — 2z9 =
0, 200+ 23 =0, x4 +25 =0, 1 +2x4 = 0, g — 224 = 0, x5 — 220 = 0. What’s
left is to find the solution to this set of equations and the easiest way is to use a matrix
solution. The rank of the matrix then gives the independent number of z;’s. Rather than
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Figure 7. These two tree diagrams represent the number in each space of 9292®2®? and
O(0§8§¢1@2¢I). Null spaces are not shown here.

directly calculate the rank of the matrix relations for this example, we will proceed more
methodically and check how the existence of previous (meaning fewer derivatives, so to the
right in figure 2) spaces imply dependancies among the relations at each step along the way.

Applied to the case at hand, it seems like that the six relations will remove all six terms
in the {X}%0. However, this is not true because the six relations are not independent, and
therefore we need higher order corrections coming from {X*}12 and {X%}?!. The relations
we get from these two spaces are:

Oa[®(00®)(0a®")?] + 200 [P(0500®) DT (05DT)] ~ 04[(0a®)* T (9a®T)]
+ 204 [(02®)? DT (8501)]
0a[(0a®)*®T(04P7)] + 204[(0a®)*®T(0a®T)] ~ 0 [P(0a®)(Da®')’]
+ 20, [®(850,P) DT (8501)]

Clearly, the above relations are the same, so we should add 1 back instead of 2. The reason
comes from the fact that the L.h.s. of the above two equations comes from the term in
{X122 and therefore are corrected by {X}?2:

190 [D?D1?] ~ (0,)204 @201,
_ (3.46)
10042 D] ~ (94)%0a [@2D1?).

Finally we add up the numbers: 6 —3 -3+ 1+ 1—1 = 1, which gives the correct
number of independent operators. The tree diagram is given on the left in figure 7.

Since there are only four superderivatives in this example, spaces transforming under
larger representations are automatically null. However, once we consider operators with
more superderivatives, those spaces must be taken into account. Non-vanishing larger
representations are very common especially when we deal with multiple flavors, since in
that case the constraints from Fermi statistics is weaker.

To illustrate this point, let’s take a look at the second example, involving two flavors
and eight superderivatives, O(9291®, @2@}). We will not go into details to write down all
orders of corrections, instead, we will compare the results we get from brute force way and
our approach.
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The tree diagram is shown on the right in figure 7. From IBP relations we get the
following equations:

D109998 Py ] — 0,5 <I>1aw55c1>28 ol
0,0°980,0%0] +a 58109 0,0, 0]
D107 P00}

$10°°0,0°7D] - 9, 810%° 2,0, B}

0a(0,55@10°PD3®])  ~ 04055
949 q»laaﬁ%za o) ~

Oé

05,(0 @185%2awqﬁ

Of

( Osapp

( 0
94(0,5 <I>18°‘“<I>2855<I>

(

(

2

dafp

~

1)
)
)
)

af aaﬁ,@
060,45 ®10° @209 D]) ~ 0, 3,010° D207 D] — 9, 5,810,020 D]
04(8,55P1920°P7 D)) ~ 8, 5, ®1020° ] (3.47)
0(0°°PP019,820550]) ~ 0P D1 050 B2055®] — 0 D19,D20, 53]
00550100920 BBty ~ 03501050920 P 0
0%(3035 @10 B20° D) ~ 85, 55810°PD20°®] + 8, 5,010 D207 B]
00305210207 ®])  ~ 0551020 B] 4 9,501 820°0 D]

0% (D45 D10, D20 B]) ~ 0% 3810, ©20°0D] + 9;5910, 220 ]

where Ogpe... is understood as 9,00, - -, a,b, ¢ € {a,c, 3, 5}. We only list half of the 22
relations and the other 11 can be found by exchanging ®; <> ®5. Once one writes down all
22 relations, it becomes easy to calculate the rank of the giant matrix to find the number
of independent terms. Plugged this into any math software, we find 0, exactly the same
result you get by applying (3.42): 12—-16—-6+44+10+4—-5—-4+1=0.

A third example is given in figure 8, where in this case we have four superfields and
eight superderivatives. It is expected that as the dimension increases, the number of non-
vanishing spaces increases, and the related tree diagram extends further. In this example,
you can see that if one tries to find the number of independent operators, the dimension of
the matrix is 30 x24. As we add more and more superfields and superderivatives, the matrix
becomes larger and is almost impossible for one to solve by brute force. Our approach
provides a more accessible way since you no longer need to really find the matrix, instead
you calculate the number of possible operators in each space, which can be easily done using
Hilbert series. In this case we find 24—15—15+14+14+7+7—2—6—241+1 = 2 invariants.

4 Conclusion and discussion

In this paper we have extended the technique of counting the number of independent
effective operators to a N = 1 supersymmetric theory with chiral superfields. Hilbert
series and the plethystic exponential provide a way to form the full operator spaces, while
EOM and IBP relations are removed by manipulating the characters and considering the
correction spaces.

We find that supersymmetry, and in particular the presence of two, anticommuting
derivatives, lead to interesting differences with respect to the non-supersymmetric case.
The two superderivatives give two initial (‘zeroth order’) IBP relations, and the structure
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Figure 8. This is the tree diagram for 9292 ®2®12 all null spaces are removed.

of the higher order IBP corrections becomes more complicated. We find the corrections
organize themselves into six branches, grouped into one set of three oriented in the 0d,
direction and a complex conjugate set oriented in the J, direction. All correction spaces
satisfy a master relation, eq. (3.21).

While a bit formal at first glance, we have seen that the interrelations among the maps
implied by eq. (3.21) are connected to relations between the two superderivatives 0, 04 and
the ‘normal’ (or ‘bosonic’) derivative d,. As the superderivatives are fermionic, corrections
spaces with multiple SU(2);, or SU(2)gr indices are required to be symmetric in those
indices. As there is no barrier to forming symmetric tensors of arbitrarily high dimension,
the correction branches formally extend infinitely, though in practice they are cut by the
number of derivatives in the operator we care about correcting. This can be contrasted with
correction spaces in non-supersymmetric spaces, which must be antisymmetric in Lorentz
indices and this truncate with {X }[##9] regardless of how many derivatives the operator
we want to correct has.

The full set of corrections can be resummed and turned into a prefactor, namely (3.41),
Z(—l)f (p.2) pPQay ypa, tO insert into the Haar measure integral along with the plethys-
tic exponential of the chiral/antichiral superfields of interest. This prefactor plays the
role of the 1/P factor [5] in non-supersymmetric theories, and enacts the subtraction of
IBP relations by projecting out and counting the appropriate correction spaces. For non-
supersymmetric theories, ref. [5] showed how the 1/P factor could be obtained by consid-
ering conformal symmetry as the organizing principle underlying how fields are combined,
rather than Lorentz symmetry. The non-orthonormality of the (non-compact) conformal
group characters, combined with integration over the dilatation portion of the Haar mea-
sure/Cartan subalgebra then yields 1/P. In that light, a natural question to ask is whether
a generalization using superconformal representations reproduces Y (—1)7 (p.a) prQay Xpoa-
Naively one would expect to identify the two superderivatives as a representation of the
supercharges — the additional fermionic generators in superconformal algebra — just as
one treats the usual partial derivative 0,, as a representation of the momentum generator
of the Poincare algebra. However, this identification fails: although the superderivatives
do satisfy the same anticommutation relations, they are not simply the representation of
supercharges. Recall the definition of superderivatives (2.9) and (2.10), from which we finds
that superderivatives contain the usual partial derivative pieces. Formally one can write
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D~ Q-+ P,D~ Q + P, where Q,Q are supercharges and P is the momentum generator.
This realization indicates that D and D are interwined with the usual partial derivatives,
which makes the superconformal approach much more complicated, and so far we have not
succeeded in using it as a starting point.

Nonetheless, there is something we can learn from superconformal algebra, encoded in
five independent vanishing (anti)commutators:

{0a, 03} = {04, 03} = 0,
00, {98, 0a}] = [04, {0a, 05 }] = 0, (4.1)
[{aon ao'z}, {8B, 83}] =0.

The existence of the first branch makes use of the first identity, namely two consecutive su-
perderivatives acting on symmetric indices automatically vanishes. To prove the existence
of the second branch, we use the fact that superderivatives commutes with usual partial
derivative, leading to the proof shown in (3.32). The last identity is essential to prove the
maps [, indeed satisfy the requirement when we consider the third branch. To summarize,
the vanishing of these special combinations of superderivatives leads to the existence of
three correction branches, just as the fact that one branch exists in non-supersymmetric
theories can be connected to the single vanishing commutator [d,,,0,] = 0. Future studies
on the relation between the method we develop here and the superconformal algebra is
very promising and interesting.

We have only analyzed a N = 1 supersymmetry chiral theory so the technique we de-
veloped here should be easily generalized to other supersymmetric theories. In a forthcom-
ing publication we will apply what we learn to vector superfields, and postpone extended
supersymmetric theories to later studies.
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A Characters and Haar measures

Here we list a few characters in group U(1), SU(2) and SU(3) that are used in this paper.
And we also list the related Haar measure for each group. For further characters, please
refer to [43].

The characters are given by:

xuq) = €, (A.la)
1
XSU(@)fund = 2+ — (A.1b)
z 1
XSU(3)fund = 21 T 24 —, (A.1c)
Z1 z9
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where ), z, z1, zo are related group parameters. In addition, the character of representa-
tion (%,0) and (0, 5) are given by:

2 ’ 2
sin((n + 1)8)
X309 = " gna, (A.2a)
sin((n 4+ 1))
XOH = gng, (A.2b)

where €, , are defined through z,y = 2cos(£; ), and z,y are the related SU(2)z,SU(2)r
group parameters.
The Haar measures are given by:

1 dz

/dMU(l) = omi =1 P (A.3a)
1 dz

[ dnsve) =5 LS, (A.3b)

1 dzy dzo 22 z2
d = — — —(1— 1—— 1-—=1. A3
/ HSUG) = ()2 ffml - 7{z2|1 - ( 2122)< o - (A.3c)

B Proofs

B.1 Higher order corrections

In this appendix, we show the detailed derivation leads to the explict form of coefficients
in [,, and [,, given in (3.37). Recall the definition of /,, acting on a definite representation,
which is given by:

(ln)galcmman)(TﬁlBgmBn)Z&1a2---an) = (an0a0x + bnaxad)E(Xa1a2-~~om)(7,31/32~--6n)Zé:llaruan)’
(B.1)
where e(Xara2an)(76182+6n) ig defined to be the fully symmetrization permutations of its
indices. For example, e(@102)(8182) — canfiazfs | cazbranfz
These maps should satisfy the following equation such that the above correction spaces
obey the definition, i.e. {X}™! corrects {X}* 1! and {X"~ 19} with respect to {X}?~20
when n > 3:

95, (ln)(alaz..-an—l)(751ﬁ2---ﬁn) + (L )(Oz1az---an—1)(‘rﬁ1ﬁ2---ﬂn—1)8an]Zd —0 (B2

& & (a1az-am)

Expand it using (B.1) and we get
[(anaﬁnﬁdaX + bnaﬁn8X6d)E(quazman)(7,31/32...5n)
+ (an-10:0x0"" + bnflaxaaaa")E(qua2~~-ocn71)(76152-"57171)]ZO" =0

(12 am)

(B.3)

Use the identity [0%", {04, 0x}] = 0, we can rewrite the second term as:
(100X 87" +bn_laxadaan)E(Xal042"‘an—1)(751/82“‘ﬁn—1)

= [an-1(09"040x + 0" 0x0s) + (bp—1 — ap—1)0x050“"] (B.4)
* Z X Bi (craz--an—1)(TB182:Bn-1/Bi)

== [an-1(0°" 020" + 0°70%05) + (b1 — an—1)Dx 0™ ]el @102 m=1)(THL B2 Fna[B0),
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where (75152 - - - Bn—1/0i) denotes that the indices do not contain the 3; piece. We can
separate it into two parts and compare their coefficients and solve for a,, and b,,. The two
equations are given by

an0p 3a8XG(Xouom~~-an)(73162-~5n)
= Y (110 060% + (bnoy — 1) 960 el a0 an DB BB (B5)

and

bnf?g 8X8d6(Xa1a2---Oén)(T5152-"ﬁn) — Zan_laanaﬁi86[6(011012"-0%71)(7’5152"-&171/51) (B.6)
7
We can expand the e symbol using the identity especp + cacepp + €apepc = 0:
(Xaraz-—-an)(rB182-fn)

— Z(Exﬂneanﬁi + nGXﬁieanﬁn)6(041042"'047%1)(75152'"57171/51)

Z (B.7)
_ Z(Exaneﬁnﬁi +(n+ 1)€X,8i€an6n)€(a1a2"'anfl)(TﬁlﬂQ'”ﬁnfl/ﬁi)
i
Put this back into the first equation, we get:
andp 0,0 x e X razran)(7B152:Bn)
_ Z[anaﬁ@daan —(n+ 1)anaanadaﬁi]E(oqocz~~~an71)(7,81/32--67171//31-)
i (B.8)
- Z[anilaan&igﬂi + (bp—q — anil)aﬂiadaan]€(a1a2-~~an71)(75162~~-ﬁn71/6i)
i
from which we can solve for a,, and b,, recursively:
ap =bp—1 —apn—1, —(n+1)a, =an_1 (B.9)

The initial condition is given by ag = 2 and by = 1'7 in order to generate the same [y define

in section 3.3.2. . Then we can solve a,, and b,, for general n:
2 2

an= (" = O

(B.10)

We only make use of the first equation of (B.5) and (B.6). Now we need to prove that this
solution does satisfy the second one (B.6):

2
maﬁn8Xad€(XO“a2"'a")(Tﬂlﬂz“ﬁn)
2

(n+ 2)n!

Lh.s.=(=1)"

=(-1)" 8Bn8X8d Z(Exﬂneanﬁi + ,neXBieanlgn)6(041a2"'an71)(76152'“,8n71/52’)

)

2
= Z‘(—l)"Jrli(n ol (axaxadea”ﬁi + naanaﬁiad)e(aloQ"'an—1)(75152'“/8n—1/5i)

rh.s. — Z(_l)n—l (s)!804716/81'8d6(041052'“an—l)(76152“‘571—1/51') (B.11)

7In principle the choice is not unique and one can always multiply this solution by a common factor.
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l.h.s. = r.h.s. follows from the fact that Ox9Xe*Pi = 20 9B,
Futhermore, we require that I, 111, = 0,'® and the proof is straight forward.

(ln+1)d(5152---ﬁn+1)('yl’yz---’yn+2) (ln)d(ala2---an)(5152"'ﬁn+1)

1 o gx 1X.><1o‘< U d)
a(nwaaa +—0%0a) (0% + — v
)e(Yoqaz--~an)(5152"'5n+1)

*E(XB1B2 1) (Y172 Ynr2 (B.12)
1 1 1 : 1 .
= (——=0s0% aXa-> (aaa — aa>

(n+2a +n+3 “ n+1 Y+n+2ay
Y . By .

* Z(n + 2)€X’Y¢57j6(5152'"Bn+1/Bj)(“/172""7n+2/7j)6(a1a2 an)(B1B2-Bns1/B;5)

i#j
Therefore to prove the above expression is 0, it suffices to prove the following equation

1 1 1. 1 -

Expand the Lh.s. and terms involving dx 0y vanishes due to its antisymmetric property.
In addition, we use the defining anticommutator to rewrite 050x as Jsx — Ox 0. Finally
we are left with

(1adax + 16Xad) (18%/ T 8yad> +(X &Y)

n -+ 2 n—+3 n+1 n4+2
1 N .
= Gt (1 9) Peal0 95} + 0,510 0a)] (B.14)
1

= m[{@“,@g}, {6a78d}] = 07

which identically vanishes. This completes the proof of [, 11, = 0.

B.2 Starting space of second branch

Here we answer the question arised at the end of 3.3.2, where one may wonder why the
second branch starts from {X%}?!. The general solution to this problem is to consider the
nearest spaces and check if they can satisfy the definition. If not, we need to move to the
second nearest space and check again. Specifically, we know that {X®}10 gives the IBP
relations, and the nearest spaces are {X}?9 and {X*¥}L1. The first one already exists in
the first branch, while the second one cannot satisfy the definition. We can prove this by
looking at the equation

(00004 + b03,0a) X ** = 0. (B.15)

If the space {X*%}11 is indeed a correction, then we must find a nontrivial solution (a, b)
of the above equation. However this is impossible and therefore leads to contradiction.

Then we do the same for the second nearest spaces {X%}?! and we find that when it

1
)9 -
(1, %) is because in that case it leads to null space under the map 8028/3)( (@f)e — () and

transforms under (0, 5), it satisfies the definition. The reason it doesn’t transform under

therefore cannot be a correction. Now we have completed the proof why the second branch
starts from {X%}%1.

8This allows the horizontal composite maps to vanish by virtue of the definition of correction spaces.
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B.3 Infinite sum

The infinite sum is given by:

ZPquXXp,q =1 _P2Q2

+)_(=P)" A+ (—Q)"An)
n=1

+PQZ(Py(_P)nAn‘i'Qx(_Q)nKn)
n=0

= -~ (B.16)
+P2Q2Z(PZ(_P)nAn+Q2(_Q)nAn)
n=0
—_1 *P2Q2

+ 3 (=P)" A+ (=Q)"A) (14 PPQy+ PQ*z+ P'Q* + P*Q")
n=0

where A, and A, are the characters of (%,0) and (0, %) given in (A.2).
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