

1 **Microbial motility at the bottom of North America: Digital holographic**
2 **microscopy and genomic motility signatures in Badwater Spring, Death**
3 **Valley National Park**

4 **Carl Snyder¹, Jakob P. Centlivre², Shrikant Bhute², Gözde Shipman², Ariel D. Friel², Tomeu**
5 **Viver³, Marike Palmer², Konstantinos T. Konstantinidis⁴, Henry J. Sun⁵, Ramon Rossello-**
6 **Mora³, Jay Nadeau^{1*}, Brian P. Hedlund^{2,6*}**

7 ¹Department of Physics, Portland State University, Portland, USA

8 ² School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, USA

9 ³ Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean
10 Institute for Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain

11 ⁴ School of Civil and Environmental Engineering, Georgia Tech, Atlanta, USA

12 ⁵ Desert Research Institute, Las Vegas, USA

13 ⁶ Nevada Institute of Personalized Medicine, Las Vegas, USA

14 *** Correspondence:**

15 Jay Nadeau, nadeau@pdx.edu

16 Brian P. Hedlund, brian.hedlund@unlv.edu

17 **Abstract**

18 Motility is widely distributed across the tree of life and can be recognized by microscopy regardless of
19 phylogenetic affiliation, biochemical composition, or mechanism. Microscopy has thus been proposed
20 as a potential tool for detection of biosignatures for extraterrestrial life; however, traditional light
21 microscopy is poorly suited for this purpose, as it requires sample preparation, involves fragile moving
22 parts, and has a limited volume of view. Here, we deployed a field-portable digital holographic
23 microscope (DHM) to explore microbial motility in Badwater Spring, a saline spring in Death Valley
24 National Park, and complemented DHM imaging with 16S rRNA gene amplicon sequencing and
25 shotgun metagenomics. The DHM identified diverse morphologies and distinguished run-reverse-flick
26 and run-reverse types of flagellar motility. PICRUSt2- and literature-based predictions based on 16S
27 rRNA gene amplicons were used to predict motility genotypes/phenotypes for 36.0 to 60.1 % of
28 identified taxa, with the predicted motile taxa being dominated by members of *Burkholderiaceae* and
29 *Spirochaetota*. A shotgun metagenome confirmed the abundance of genes encoding flagellar motility,
30 and a *Ralstonia* metagenome-assembled genome encoded a full flagellar gene cluster. This study
31 demonstrates the potential of DHM for planetary life detection, presents the first microbial census of
32 Badwater Spring and brine pool, and confirms the abundance of mobile microbial taxa in an extreme
33 environment.

34

35 **1 Introduction**

36 Extant life elsewhere in our solar system, if it exists, is likely to be entirely microbial. Although the
37 invention of the light microscope led to the discovery of prokaryotic life on Earth (Leeuwenhoek,
38 1677), standard light microscopes are of limited utility for *in situ* planetary life detection because they
39 have many moving parts that are hard to miniaturize and ruggedize, and they can only inspect tiny
40 volumes. Limits of detection for prokaryotes in typical light microscopy experiments are $\sim 10^5$
41 cells/mL, which is higher than the cell density observed in many oligotrophic environments on Earth
42 (Bedrossian *et al.*, 2017). For this reason, and because of the ambiguity of morphology for life
43 detection, there has traditionally been little interest in microscopy-based life detection (Ruiz *et al.*,
44 2004). A consensus is emerging, however, that microscopy can be a powerful tool for life detection,
45 and that development of new microscopy techniques for *in situ* use is needed (Neveu *et al.*, 2018). The
46 Europa Science Definition Team specifically called for a microscope capable of detecting
47 microorganisms down to 0.3 μm in diameter at densities down to 10^3 cells per mL (Hand *et al.*, 2017).

48 This represents the worst-case scenario of small cell size and sparsity and presents a formidable
49 challenge to instrument developers.

50 Digital holographic microscopy has the potential to meet this challenge. Digital holographic
51 microscopes (DHMs) require no moving parts, compound objective lenses, or focusing (reviewed in
52 Wu and Ozcan 2018). The volumetric nature of the images, which may be digitally dissected after
53 collection, makes this approach ideal for autonomous operation. When a microscopic particle comes
54 within the field of view of the camera of the DHM, it creates an interference pattern that is recorded as
55 a hologram. The hologram is used to reconstruct the image of the particle based on a selected algorithm.
56 The resulting instantaneous depth of field is at least one hundred times greater than for traditional light
57 microscopy (Dubois *et al.*, 1999; Kim, 2011). Capturing whole volumes with no moving parts allows
58 DHM to be robust enough to survive deployment in harsh environments; user input for data acquisition
59 is optional. The sample chamber can be emptied and refilled with new samples or by continuous flow.
60 However, trade-offs between interrogated volume, flight worthiness, and optical performance must be
61 made. Field-deployable DHM instruments lacking compound objectives have low resolution and are
62 unable to resolve fine cellular structures required to definitively identify microbial life (Wallace *et al.*,
63 2015). Yet, at the present technical readiness level, fieldable DHMs are still useful for detecting life
64 by detecting motile microorganisms, as microbial motility has characteristics that distinguish it from
65 the passive movements of inanimate particles. The current study was enabled by the recent
66 development of a field-deployable DHM (Lindensmith *et al.*, 2016; Wallace *et al.*, 2015) (Fig. 1 A, B,
67 C), that uses 405 nm laser illumination to achieve ~0.8 μm resolution in a volume of view (XYZ) of
68 0.365 x 0.365 x 1.0 mm. These parameters were chosen to optimize characterization of microbial
69 swimming motility and to use only flight-compatible components.

70 Motility is a widespread feature of microbial life on Earth. Not all bacteria, eukarya, and archaea are
71 motile, but all three domains have many motile members (Miyata *et al.*, 2020). Motility improves
72 chances of survival as it enables active movement to sources of nutrients and away from toxins, instead
73 of relying solely on diffusion (Stocker *et al.*, 2008; Taylor & Buckling, 2013; Taylor & Stocker, 2012).
74 The mechanisms of motility in different life forms vary drastically, from flagella in prokaryotes and
75 flagellates, to cilia in ciliates, to propagating kinks in filamentous bacteria, to polysaccharide pili
76 secretion in filamentous cyanobacteria and pennate diatoms, and many more (Bayless *et al.*, 2019;
77 Bondoc *et al.*, 2016; Khayatan *et al.*, 2015; Merz *et al.*, 2000; Nakamura & Minamino, 2019; Palma *et*
78 *al.*, 2022; Shaevitz *et al.*, 2005; Thornton *et al.*, 2020). These mechanisms manifest in different forms
79 of motility that are often characterized as swimming, sliding, gliding, twitching, and swarming

80 (Henrichsen, 1972; Wadhwa & Berg, 2022). Each motility form can display sets of unique motility
81 patterns; for example, studied swimming patterns include run-tumble, run-pause, run-reverse-flick, and
82 run-reverse, which describe motions that alternately propel cells forward and then actively or
83 passively reorient them (Berg, 2004; Hintsche *et al.*, 2017; Son *et al.*, 2013). Distinguishing these
84 active forms of motility from drift and Brownian motion is mathematically straightforward (Rouzie *et*
85 *al.*, 2021). Drift can be calculated by taking the average of uniform motion, which may then be
86 subtracted. Brownian motion may be distinguished from swimming as it shows root mean square
87 displacements that scale as the square root of time. While we can quantitatively characterize swimming
88 patterns and distinguish motility from passive motion, it is much easier and still unambiguous to
89 identify extant microbial life through qualitative observation, as was done by Leeuwenhoek when
90 prokaryotes were first discovered (Leeuwenhoek, 1677).

91 A separate approach for life detection that has been widely discussed is the detection and study of
92 macromolecules that are universal in known Earth life (Neveu *et al.*, 2018). On Earth, the availability
93 of low-cost, rapid DNA sequencing technologies has led to a shift from culture- and microscopy-based
94 approaches to studies of community DNA sequence data, based on either amplicons or shotgun
95 metagenomes. Such cultivation-independent approaches have paid huge dividends in the study of
96 microbial life on Earth because they have greatly expanded our view of microbial diversity and
97 supported hypothesis testing about the functions of yet-uncultivated microorganisms that dominate
98 most biomes (Jiao *et al.*, 2020; Nayfach *et al.*, 2021). While these DNA-based approaches are extremely
99 informative and can effectively complement more incisive experimentation on microbial activities that
100 are important for growth and survival *in situ* (i.e., phenotypes), the success of DNA-based approaches
101 for life detection depends on a similar biochemistry; therefore, the scope of DNA-based life detection
102 approaches beyond Earth is inherently limited.

103 The goal of this study was to complement the results obtained from *in situ* microscopy via DHM with
104 community DNA sequencing in an extreme environment to guide development of instrument suites for
105 missions. Our study focused on Badwater Spring and brine pool, a hypersaline environment that is
106 analogous to cryovolcanoes on Europa (Steinbrügge *et al.*, 2020) and recurrent slope lineae on Mars
107 (Chevrier & Rivera-Valentin, 2012), and which is teeming with microbial life. We identify distinct
108 patterns of motility both *in situ* and in the laboratory with returned samples and validate the
109 microscopic observations with observations of the high incidence of prokaryotes predicted to encode
110 flagellar genes based on 16S rRNA genes and the construction of a complete flagellar gene cluster in
111 a metagenome-assembled genome (MAG) from one of the most abundant bacteria in the spring.

113 **2 Materials and Methods**114 **2.1 Study site and physicochemical measurements**

115 To quantify the incidence of motility via microscopy and molecular techniques, we sampled water and
116 benthic microbial communities in Badwater Spring, CA, which is sourced from the Amargosa River
117 and discharges at the lowest point in North America in Badwater Basin within Death Valley National
118 Park (Fig. 1D). pH, water temperature, dissolved oxygen, and specific conductance were recorded on
119 site with a YSI Professional Plus (Quatro) multiparameter probe. Spring water was collected for
120 hydrogeochemical measurements directly from the source of Badwater Spring with a Geopump
121 peristaltic pump (Geotech, Denver, CO) using autoclaved Masterflex platinum-cured silicone tubing
122 (Cole-Parmer, Vernon Hills, IL) and filtered using 0.2 μm polyethersulfone membrane Sterivex-GP
123 pressure filters (Millipore Sigma, Burlington, MA). Filtered water was collected in pre-rinsed 250 mL
124 high-density polyethylene bottles and refrigerated until being sent to the New Mexico Bureau of
125 Geology and Mineral Resources Chemistry Lab for analysis of major cations and anions, alkalinity,
126 and total dissolved solids. Cations were measured using inductively coupled plasma optical emission
127 spectrometry in accordance with EPA 200.7; anions were measured using ion chromatography in
128 accordance with EPA 300.0. For every tenth sample, a duplicate was run. Alkalinity was measured by
129 titration in accordance with EPA 310.1. Physicochemical data and reporting limits are shown
130 (Supplementary Table S1).

131 **2.2 Microscopy and data processing**

132 A field-portable DHM was used on April 10th through 12th, 2017, in coordination with sampling for
133 16S rRNA gene surveys and metagenomics, described below. A water sample (DHM1) and two benthic
134 samples (DHM2, DHM3) for DHM were collected near the site labeled BW.B3. Sample DHM2 was
135 composed mostly of sediment and water (i.e., sediment slurry) with little mat material. Sample DHM3
136 was composed of fluffy orange mat similar to that in Fig. 1E with water (i.e., mat slurry).

137 The DHM used is a common-path off-axis holographic microscope with illumination at 405 nm and
138 lateral spatial resolution of $\sim 0.8 \mu\text{m}$. The sample chamber consists of two parallel channels, an empty
139 reference and a sample channel, with a volume of view of $365 \mu\text{m} \times 365 \mu\text{m} \times 0.8 \text{ mm}$. 2048 x 2048-
140 pixel images were generated using an Allied Prosilica GT camera with an acquisition speed of 15
141 frames per second.

142 Data processing and analysis workflows aimed to reconstruct holograms, apply filters, identify
143 particles, and link particles into tracks. Holograms were reconstructed into amplitude and phase images
144 using the angular spectrum method with our FIJI plug-in described previously (Cohoe *et al.*, 2019).
145 We used a reference hologram during reconstruction of phase images to reduce noise (Colomb *et al.*,
146 2006) and a median subtraction filter via another FIJI plug-in to reduce noise in amplitude. Amplitude
147 and phase datasets represent all four dimensions of spacetime. The z-spacing, 2.5 μm , is a discrete
148 value chosen to reflect the values of the cells in the sample and is also the theoretical axial resolution
149 of the instrument (Wallace *et al.*, 2015). After reconstruction and filtering, identification of particles
150 was performed manually to characterize the particles that were likely microbes, and describe their
151 concentration, size distribution, and morphology. Taking advantage of the Gouy phase anomaly to
152 localize particles in z, we applied a z-derivative to the pixel values in the phase images (Gibson *et al.*,
153 2021). With these images we applied a threshold filter that increased the signal to noise ratio by
154 isolating specific swimming microbes while removing all other pixel values from the images. Particle
155 and motile organism identification and tracking were then performed using FIJI. Two organisms were
156 classified as moving with distinct swimming patterns. The rest of the motile organisms were
157 qualitatively determined to be extant lifeforms. The instantaneous speed of tracked particles in one
158 dimension was calculated by applying Eq. 1. The speed of the particles in two dimensions in the XY-
159 plane was calculated using Eq. 2.

160

161 $v_x = \frac{x_{i+1}-x_i}{t_{i+1}-t_i}$ Eq. 1

162 $v_{xy} = \sqrt{v_x^2 + v_y^2}$ Eq. 2

163

164 Data summarizing all particles are shown in Supplementary Table S2. Laboratory microscopy was also
165 conducted on an Olympus BX51 phase-contrast microscope to document major morphologies and
166 modes of motility in selected samples.

167 **2.3 Microbial sample collection, DNA extraction, 16S rRNA gene amplicon Illumina
168 sequencing, and taxonomy**

169 Microbial community samples for 16S rRNA gene amplicon sequencing were collected on April 12,
170 2017. A single sample of the microbial community in the water was sampled by pumping bulk spring
171 water (>2 L total) with a Geopump peristaltic pump (Geotech, Denver, CO) using autoclaved

172 Masterflex platinum-cured silicone tubing (Cole-Parmer, Vernon Hills, IL) onto 0.2 μ m
173 polyethersulfone membrane Sterivex-GP pressure filters. Before sample storage, excess water was
174 cleared from each filter using a sterile syringe. In addition, four benthic microbial communities were
175 sampled by collecting the upper ~1 cm of microbial mat or sediment using a sterile shovel. The
176 sampling locations of the benthic samples were chosen based on the substrate diversity to maximize
177 the sampling of unique benthic habitats within the spring. Sampling locations within Badwater Spring
178 are shown in Fig. 1E. Briefly, sample BW.B1 consisted of a fluffy orange benthic mat, representative
179 of the dominant benthic morphology in the spring at the time of sampling (Fig. 1F); sample BW.B2
180 consisted of a fluffy orange benthic mat, similar to BW.B1, but with an overlying gelatinous layer,
181 possibly composed of decaying organic matter; BW.B3 consisted of fluffy phototrophic growth and a
182 lower green gelatinous layer; BW.B4 consisted of, from top to bottom, fluffy phototrophic growth, a
183 lower green gelatinous layer, and a lower red layer.

184 After collection, all samples were frozen immediately on dry ice in the field and kept frozen in a -80
185 °C freezer until DNA extraction. DNA was extracted using the FastDNA™ SPIN Kit for Soil (MP
186 Biomedicals, Santa Ana, CA) with two modifications to the manufacturer's instructions. First, the
187 samples were homogenized three times total for 30 seconds each time at a speed setting of 4.5 using a
188 FastPrep FP120 instrument (Thermo Fisher Scientific, Waltham, MA). Second, the supernatant from
189 the Protein Precipitation Solution step was added to 500 μ L of Binding Matrix suspension in a 1.5 mL
190 tube.

191 Microbial communities were characterized by sequencing the V4 region of the 16S rRNA gene using
192 the updated Earth Microbiome Project (EMP) primers 515F (GTGYCAGCMGCCGCGTAA) and
193 806R (GGACTACNVGGGTWTCTAAT) (Apprill *et al.*, 2015; Parada *et al.*, 2016). Sequencing was
194 performed using the Illumina MiSeq platform at Argonne National Laboratory. All sequence-based
195 analyses were performed in QIIME 2-version-2019.10 (Bolyen *et al.*, 2019). Raw Illumina reads were
196 demultiplexed using sample-specific barcodes and denoised using the dada2-denoise-paired plugin to
197 remove low-quality, chimeric, and artifactual sequences. Forward and reverse reads were truncated to
198 150 bp and 140 bp, respectively; in addition, 13 bases were trimmed from the 5' end of all reads during
199 the denoising step. This resulted in a total of 176,627 high-quality sequences from the five samples
200 from Badwater Spring and brine pool. These sequences were then dereplicated into 1,899 amplicon
201 sequence variants (ASVs). Taxonomy was assigned to each ASV using QIIME's feature-classifier
202 plugin and the "Silva 132 99 % OTUs full-length sequences" database (Quast *et al.*, 2013). ASVs
203 assigned to mitochondria, chloroplasts, eukarya, or not otherwise identified as bacterial or archaeal

204 were excluded from further analysis. Alpha diversity indices (Observed ASVs, Shannon H', Gini-
205 Simpson Index, and InvSimpson) were calculated using unrarefied data in R packages phyloseq version
206 1.28.0 (McMurdie and Holmes, 2013) and picante version 1.8 (Kembel *et al.*, 2010).

207 **2.4 Prediction of flagellar motility based on mapping 16S rRNA gene sequences to the closest
208 related genomes**

209 PICRUSt2 (Douglas *et al.*, 2020) was used to assess the potential to synthesize a functional flagellum
210 based on the most closely related sequenced genome. Briefly, the representative sequence for each
211 ASV was inserted into a reference tree containing 20,000 16S rRNA gene sequences from genomes in
212 the Integrated Microbial Genomes and Microbiomes (IMG/M) database. Next, a genome from the
213 nearest genome-sequenced taxon for each ASV was identified and used to predict the gene families
214 present in the ASV. The abundance of each gene family was normalized for each ASV in each sample
215 based on the 16S rRNA gene copy number of the most closely related genome for each ASV. KEGG
216 orthologs for each ASV were then assessed for 22 motility-associated genes and ASVs with ≥ 15 of
217 those genes were predicted to be motile. Using this approach, the genomes had a bimodal distribution,
218 with the majority of genomes with ≥ 15 or <5 motility-associated genes, supporting the basis for the
219 cutoff based on ≥ 15 motility-associated genes (Supplementary Table S3). This cutoff was validated
220 by searching ~ 100 ASVs assigned to cultivated and validly named taxa with each predicted motility
221 assignment (motile or non-motile) against our literature searches (Supplementary Table S4), (described
222 below), which revealed near-perfect ($>95\%$) agreement between genetically predicted flagellar
223 motility with observed motility phenotypes as documented in the literature. As a conservative measure,
224 figures were prepared only considering predictions for ASVs that could be assigned at the family or
225 genus level.

226 **2.5 Motility prediction based on 16S rRNA gene classification and literature with precise
227 taxonomy**

228 16S rRNA gene ASVs assigned to the family or genus level were also used as a basis for predicting
229 motility based on the literature by using a hierarchical search strategy by two separate authors (GS and
230 BPH). The search strategy consisted of: (i) searching for chapters within Bergey's Manual of
231 Systematics of Archaea and Bacteria; (ii) searching the List of Prokaryotic Names with Standing in
232 Nomenclature (Parte *et al.*, 2020), followed by searching the effective publications describing all
233 correct child taxa (i.e., avoiding misassigned child taxa); and (iii) for *Cyanobacteria*, also searching
234 AlgaeBase. If any species within the taxon were observed to be motile, the type of motility was noted

235 and was considered feasible for the taxon. Cell morphology and size, where distinctive, were also
236 noted. For the most abundant ASVs, modes of flagellar motility were also noted, where known. All
237 information and supporting references are summarized in Supplementary Table S4.

238 Initial searches revealed 89 % agreement between the two annotators. The 11 % of ASVs that were not
239 initially agreed upon were reviewed by both annotators to resolve the differences. The resulting data
240 file (Supplementary Table S4) contains the motility predictions, notes on morphology, and references
241 for all literature used to support the predictions.

242 **2.6 Metagenomic DNA sequencing, assembly, and generation of MAGs**

243 DNA from benthic sample BW.B4 was also used for shotgun metagenome sequencing. DNA extraction
244 was performed as detailed by Urdiain *et al.*, 2008. DNA sequencing libraries were prepared using the
245 Illumina Nextera Flex protocol and libraries were sequenced using a NextSeq 150PE (150 x 2 bp)
246 instrument. 18 Gbp of raw reads were imported into KBase (Arkin *et al.*, 2018) where they were
247 trimmed with Trimmomatic (v0.36) using default settings and put through six assembly/binning
248 pipelines, including two assembly methods and three binning methods. Assembly was conducted with
249 both metaSPAdes (v3.13.0) (Nurk *et al.*, 2017) and MEGAHIT, (sensitive, v1.2.9) (Li *et al.*, 2015)
250 using default settings and with a minimum contig length of 2 kb. The assembly size for metaSPAdes
251 was 27.1 Mbp, and the assembly size of MEGAHIT assembly was 26.6 Mbp (Supplementary Table
252 S5). The contigs from each assembly were then binned individually, using default settings, with the
253 following: MetaBAT2 (v1.7 min contig 2.5 kb) (Kang *et al.*, 2019), MaxBin2 (v2.2.4 min contig 2 kb)
254 (Wu *et al.*, 2016), and CONCOCT (v1.1 min contig 2.5 kb) (Alneberg *et al.*, 2014). The resulting
255 MAGs from the six assembly/binning pipelines (six combinations consisting of two assembly tools
256 and three binning tools) were then checked for estimated completeness, contamination, and
257 heterogeneity using CheckM (v1.018) (Parks *et al.*, 2015) and their phylogenetic position was
258 estimated using GTDB-tk (v1.1.0) (Chaumeil *et al.*, 2019). MAGs with similar classifications between
259 the different pipelines were compared with a pairwise average nucleotide identity (ANI)
260 (<http://jspecies.ribohost.com/jspeciesws>) and the highest quality MAG from each species was selected
261 for analysis, provided it was classified as high quality based on >90 % estimated completeness and <5
262 % estimated contamination (Bowers *et al.*, 2017). The MAG species representatives were also run
263 through CheckM2, which has improved algorithms for reduced genomes (Chklovski *et al.*, 2022). The
264 initial CheckM statistics associated with the six assembly/binning pipelines are summarized in
265 Supplementary Table S5 and CheckM2 statistics are included in the text in the Results section. ANI
266 results for the MAG groups are shown in Supplementary Table S6. Filtered reads from BW.B4 were

267 mapped to the selected MAGs using Bowtie 2 (Langmead and Salzberg 2012). Mapped reads were
268 then used to generate read recruitment plots using RecruitPlotEasy (Gerhardt *et al.* 2022).

269 **2.7 Prediction of flagellar motility in metagenomic contigs and MAGs**

270 Motility was independently assessed in the metagenomic contigs with and without binning. Unbinned
271 contigs from the metaSPAdes assembly and the individual MAGs were submitted to RASTtk (v1.073
272 genetic code 11, domain Bacteria) (Brettin *et al.*, 2015) within KBase for annotation. Unbinned
273 metagenomic contigs from the SEED functional categories motility and chemotaxis were analyzed
274 with BLASTN against the GenBank NR database to determine a potential taxonomy by using an E-
275 value of 10^{-50} (Supplementary Table S7). Annotations for MAGs classified with GTDB-tk were
276 examined against the 22 core flagellar gene set to assess possible flagellar motility.

277 **2.8 Nucleotide accession numbers**

278 Associated data files are available in the NCBI under BioProject ID PRJNA807719 for 16S rRNA
279 genes, metagenomic reads, and MAGs.

280

281 **3 Results**

282 **3.1 *In situ* and laboratory microscopy**

283 Analysis of three separate samples from Badwater Spring was performed on DHM recordings. These
284 samples consisted of water, sediment slurry, and mat slurry. We identified the total number of objects
285 consistent with size and morphology of bacteria or archaea at a single time point for each recording; a
286 total 698 of these objects were identified throughout all five recordings. The number of these objects
287 per recording ranged from 26-193 (120.7 ± 82.1 , mean \pm S.D.) (Supplementary Table S2).
288 (Supplementary Table S2). This equates roughly to a density of 960 prokaryotic cells per microliter.
289 Most objects in the field of view were consistent with microbes; occasionally objects with sharpened
290 edges and high-contrast artifacts were observed that appeared to likely be minerals. Of the 698 putative
291 prokaryotes, 18 were obviously motile. This analysis estimated ~ 25 motile prokaryotes per microliter,
292 or $\sim 2.6\%$ of the total cells. Two of the 18 motile prokaryotes, both in the sediment slurry sample
293 (DHM2), were identified as likely having distinct swimming patterns of run-reverse-flick and run-
294 reverse with swimming speeds of 54.8 ± 22.7 $\mu\text{m/s}$ and 61.4 ± 19.7 $\mu\text{m/s}$, respectively. Images of these
295 two organisms and their swimming patterns are shown (Fig. 2, 3). Considering all tracked motile
296 microbes, average swimming speeds ranged from 5.3 ± 3.3 $\mu\text{m/s}$ to 267.5 ± 60.6 $\mu\text{m/s}$. A histogram of
297 instantaneous speeds between time points is shown in Fig. S1A, B, C, D. The acquisition frame rate

298 used seemed well suited to capture turn angles indicative of reversal events for the two motile
299 organisms shown in Fig. 2 and 3. This is supported by comparing the number of reversal events in Fig.
300 2A and Fig. 3A with the number of turn angles above 120° in Fig. 2C and D and Fig. 3C and D,
301 respectively. Previous work indicates that the flick mode manifests as a broad distribution of turns
302 around 90 degrees (Xie et al., 2011). Here, the flicking mode was determined via qualitative assessment
303 of the overall tracks, but they rarely exceeded 60°. The qualitative assessment of flicks was done by
304 considering the angle between two path length vectors on either side of the moments where the turning
305 occurred. These path lengths would be associated with moments where the particle appears to be
306 traveling straight for at least several time points prior and post to the turning event. The other 16 motile
307 prokaryotes did not have clear swimming patterns, likely due to the short duration of the recordings,
308 hydrodynamics within the sample chambers, complex or incomplete swimming patterns, incomplete
309 understanding of microbial motility swimming patterns, or a combination of the aforementioned
310 reasons.

311 The DHM used can also identify unique prokaryotic morphologies, such as diplococci and tetrads, as
312 shown (Fig. S2). These unique morphologies can only be discerned when microbes are sufficiently
313 elongated or above a diameter of ~1 μm . Therefore, the resolution limit of the microscope allowed the
314 accurate distinction between two general morphology types. One type of particle that makes up ~95 %
315 of the putative microbes present consists of round and slightly elongated morphologies. At the
316 resolution provided by this DHM, these particles could be small cocci, bacilli, diplococci, or short
317 spiral morphologies. Examples are shown in Fig. S2A and Fig. S2C. The other type, comprising the
318 remaining 5 % of putative microbes present, consisted of elongated morphologies, which could be
319 streptococci, filaments, or longer spiral morphologies, as seen in Fig. S2B. The two motile microbes
320 characterized in Fig. 2 and Fig. 3 both appear to be rod-shaped prokaryotes. Videos of the DHM-
321 imaged cells with run-reverse-flick and run-reverse swimming patterns are shown in supplementary
322 video files S1 and S2. Supplementary video file S3 shows DHM video of a motile eukaryote and several
323 motile and non-motile prokaryotes. Supplementary video file S4 shows DHM video of motile
324 prokaryotes and drift across the field of view. Representative examples of putative flagellar motility
325 and spirochaetes in Badwater Spring samples captured by phase-contrast microscopy are shown in
326 supplemental video files S5-S7 for reference.

327 **3.2 Prediction of motility based on 16S rRNA genes**

328 16S rRNA gene amplicons and shotgun metagenomic data were used to supplement microscopy to
329 census the microbial community in Badwater Spring (Fig. S2 and Fig. S4). Two approaches to predict

330 flagellar motility of the 1,899 ASVs yielded similar results (Fig. 4). The closest genome prediction and
331 literature prediction approaches predicted flagellar motility in 41.6-60.1 % (51.3 ± 7.2 , mean \pm S.D.)
332 and 36.0-48.7 % (42.9 ± 5.1 , mean \pm S.D.) of the ASVs, respectively. The higher percentage of motile
333 ASVs using the closest genome prediction approach may be due to the under-reporting of motility in
334 the literature and to genome-based predictions for taxa that are unavailable in culture. These effects
335 could be exacerbated for taxa that are poorly studied in the laboratory due to poor culturability.

336 In the water sample, both approaches predicted the most abundant taxa with flagellar motility within
337 the *Alteromonadaceae*, *Burkholderiaceae* (GKS98 freshwater group), *Litoricolaceae* (genus
338 *Litoricola*), and *Rhodobacteraceae*, with the latter including the genus *Roseivivax* and ASVs
339 unassigned at the genus level. The closest genome approach also predicted motility in the genus
340 *Luminiphilus*, although flagellar motility has not been described in the single cultivated strain of this
341 genus (Spring *et al.*, 2013). On the contrary, flagellar motility was considered feasible by the literature
342 prediction for *Microbacteriaceae* because flagellar motility has been observed in *Microbacterium* and
343 *Curtobacter* (Evtushenko and Takeuchi 2006), although abundant planktonic members of this family
344 have not been reported to be motile (Hahn 2009).

345 In the benthic samples, both approaches predicted the most abundant motile organisms as *Ralstonia*,
346 *Tistrella*, *Calditrichaceae*, *Desulfobacterium*, *Desulfovibrio*, *Spirochaeta*, *Leptospiraceae*,
347 *Sphingomonadaceae*, *Vermiphilaceae*, and the *Burkholderia*-*Caballeronia*-*Paraburkholderia*
348 complex, the latter of which is indistinguishable via 16S rRNA gene tags. In three of the benthic
349 samples, BW.B1, BW.B3, and BW.B4, *Ralstonia* was by far the most abundant motile taxon, as
350 predicted by one or both prediction approaches. The few differences in the predictions were again
351 justifiable based on poor culturability and thus differences between genomic data and phenotypic
352 observations. In BW.B2, the *Moduliflexaceae* was predicted to be motile based on the closest genome
353 prediction; however, no members of the family have been cultivated and *in situ*-studied
354 *Moduliflexaceae* in wastewater do not contain flagellar genes (Sekiguchi *et al.*, 2015). Similarly,
355 *Aquicella* was predicted to be motile based on the closest genome prediction, but flagella were not
356 observed in either of the two isolated species (Santos *et al.*, 2003).

357 3.3 Prediction of motility genotype based on metagenomic contigs and MAGs

358 Metagenomic contigs from the BW.B4 metagenome were annotated using RAST and those within
359 “motility” or “chemotaxis” SEED categories were taxonomically assigned using BlastN. All contigs
360 containing genes for flagellar biosynthesis or chemotaxis were assigned to the genus *Ralstonia* (53

genes) or had low-confidence taxonomic assignments (e-value $> 10^{-50}$; 7 genes), consistent with the high abundance of *Ralstonia* in the samples (Fig. 5a). Together, these genes account for the synthesis of MS, P, and L rings, MotA/B, hook, filament, and cap, and multiple methyl-accepting chemotaxis systems (Fig. 5b). Contigs containing the twitching motility genes *pilTGHJ* were also annotated for *Ralstonia*, consistent with its known twitching motility phenotype. Several contigs with chemotaxis (*cheR/B*), flagellar hook length (*fliK*), or gliding motility (e.g., *mglA*) genes with low-confidence taxonomic assignments were assigned to various members of the *Chloroflexi* likely deriving from *Candidatus Chlorothrix*.

Separately, the three MAGs assembled from the BW.B4 metagenome were annotated using RAST. A high-quality MAG [CheckM2 estimated completeness 99.98 % and contamination 2.16 %] assigned to *Ralstonia pickettii_B* per GTDB-tk was sequenced at 7x coverage and contained a full complement of flagellar genes and twitching motility genes (Supplementary Table S4) that corresponded 1:1 with *Ralstonia*-assigned genes from the analysis of unbinned metagenomic contigs. A high-quality MAG [CheckM2 estimated completeness 96.86 % and contamination 0.77 %] sequenced at 123x coverage was assigned to *Chloroflexaceae*, most likely representing *Ca. Chlorothrix*, and was not predicted to have flagellar motility, but was predicted to be capable of gliding motility via the same genes identified in the unbinned contig analysis. A MAG assigned to the *Patescibacteria* [CheckM2 estimated completeness 91.94 % and contamination 0.18 %] was sequenced at 5x coverage and was not predicted to be motile by any mechanism. At 95 % nucleotide identity, the percent of reads mapped to the *Ralstonia*, *Chloroflexaceae*, and *Patescibacteria* MAGs was 0.3 %, 3.4 % and 0.1 %. Recruitment plots for the MAGs are shown in Supplementary Figure S4, S5, and S6 respectively.

4 Discussion

To say that it is a challenge to detect microbial life on another planet is an understatement. This challenge may very well follow a similar trajectory to how microorganisms were first detected on Earth, though it is complicated by long spans of time between missions, limited sample access, and unknown biochemistry. On Earth, the discovery of microbes first took place by optical observation via the light microscope, followed by laboratory cultivation and, recently, molecular methods (Borgosian & Bourneuf, 2001; Emerson *et al.*, 2017; Leeuwenhoek, 1677). The presence of directed motion is a compelling biosignature that, combined with other methods such as chemical analysis by mass spectrometry, can provide unambiguous evidence not just of *life*, but of something *alive*, independent of evolutionary history or biochemistry.

392 The observation of motile microorganisms in most environments here on Earth supports the case that
393 microbial motility is a compelling biosignature target for future planetary exploration missions. In
394 every environment we have studied (Rogers *et al.*, 2010; Kühn *et al.*, 2014; Jericho *et al.*, 2010; Clarke
395 *et al.*, 2010; Snyder *et al.*, 2022), motile microorganisms are always present, albeit sometimes as a
396 small fraction. Here we combined DHM and genetic data to characterize the microbial community
397 inhabiting Badwater Spring and brine pool, located near the lowest elevation point in North America
398 and the highest ambient temperatures measured on Earth. We were able to obtain both phenotypic and
399 genotypic data on this community and demonstrate a proof of concept of the use of DHM for life
400 detection.

401 In this environment, DHM identified a small minority of motile cells *in situ*, only ~2.6 % of the total
402 cells, similar to the lowest estimates of motility in a coastal marine system (Grossart *et al.*, 2001). No
403 evidence of other modes of motility (e.g., twitching or gliding) were noted, although they require solid
404 surfaces and are more difficult to unambiguously distinguish from Brownian motion or directional
405 movement due to hydrodynamic flow compared with flagellar motility (Henrichsen, 1972). The ~2.6
406 % of swimming cells identified by the DHM is a lower boundary for the actual percent of swimming
407 cells *in situ* due to our limited ability to accurately distinguish living prokaryotic cells from dead cells
408 and abiotic particles, which would lead us to over count the total number of cells *in situ*. This gap could
409 be bridged in future studies by correcting total DHM particle counts with data from fluorescence mi-
410 croscopy or fluorescence-activated cell sorting that include viability estimates based on live/dead
411 stains.

412 We also performed one of the first comparisons of observed *in situ* motility with genetic indicators of
413 flagella. Biosynthesis of complexes required for flagellar motility and their regulation requires many
414 genes that are best characterized for Gram-negative bacteria such as *Escherichia coli* and *Salmonella*
415 *typhimurium* (Soutourina and Bertin, 2003). Interestingly, we found that there was a clear separation
416 of genomes into those with fewer than five flagellar motility-related genes versus those with more than
417 15. Despite this dichotomy, finding literature confirmation of motility in the identified families/genera
418 that were predicted to be motile based on genomic databases was not always consistent, likely due to
419 limitations in genomic coverage and cultivability. The closest genome and literature-predicted ap-
420 proaches used here estimated flagellar motility in 36.0-60.1 % of the total ASVs. Adjusted for abun-
421 dance, these account for 14.2-57.1 % of the cells present, which is considerably higher than the ~2.6
422 % of motile microbes identified by DHM *in situ*.

423 The ability to predict genotypes or phenotypes from amplicon sequence data is notoriously difficult
424 due to the incomplete genomic coverage across the prokaryotic tree of life, the incomplete and uneven
425 distribution of cultivated and phenotypically characterized microorganisms, and the dynamic nature of
426 microbial pangenomes. The closest-genome approach employed PICRUSt2 and resulted in the highest
427 estimates of flagellar motility genotypes, with abundance-weighted estimates of 23 to 57 % with fla-
428 gellar motility genotypes. In comparison, our literature-based approach yielded abundance-weighted
429 estimates of flagellar motility phenotypes of 14.1 to 29.3 %. It is worthwhile to note that PICRUSt2
430 does not rely on taxonomic assignments because ASVs are placed onto a phylogeny, whereas our lit-
431 erature-based approach did rely on taxonomic assignments called by Silva. Thus, our literature-based
432 approach could suffer somewhat by lack of accuracy of taxonomic assignments, although this is likely
433 to be only a minor problem because we only considered high-confidence taxonomic assignments to
434 families that contain cultivated organisms. Additional factors that could lead to differences between
435 the PICRUSt2 and literature-based estimates include: i) PICRUSt2 adjusts for rRNA copy number
436 whereas our literature-based approach did not; ii) PICRUSt2 only considers genotypes whereas our
437 literature-based approach only considered phenotypes; and iii) PICRUSt2 only considers the single
438 most closely related genome whereas our literature-based approach considered motility phenotypes
439 feasible if observed in any member of the family. Ultimately, the ability to predict traits from ASV
440 data derived from diverse and poorly characterized natural microbial communities remains a formida-
441 ble task.

442 A more definitive but less sensitive approach to identify genotypes is through shotgun metagenomics,
443 particularly for traits with well-characterized systems like flagellar motility. Here, all flagellar genes
444 in a single shotgun metagenome from benthic sample BW.B4 mapped to the genus *Ralstonia*. These
445 same genes were also contained within a single high-quality MAG encoding a full flagellar gene clus-
446 ter. However, reads mapping to this MAG accounted for only 0.3 % of the total quality-filtered reads,
447 which is slightly lower than ~2.6 % of motile microbes observed by DHM. Ultimately, the accuracy
448 of any prediction of *in situ* motility based on genomic potential is prone to overestimation because
449 motility is expensive and therefore tightly regulated. In *E. coli*, the expression of flagellar motility is
450 complex and may occur under nutrient-rich or nutrient-poor conditions (Honda *et al.*, 2022; Thomason
451 *et al.*, 2012); on the other hand, swarming motility phenotypes are only expressed under high-nutrient
452 conditions in many microorganisms (Kearns, 2010). These responses pose an interesting opportunity
453 to increase the likelihood of observing motile organisms by altering the local environment to stimulate
454 motility, which may prove critical for the success of future life-detection missions. Stimuli such as

455 heat, light, and chemicals are good candidates for such missions because terran microorganisms show
456 tactic responses to these physical and chemical factors. Stimuli deployed in such a manner may be non-
457 Earth-centric. For example, in the case of water-based worlds, a panel of L- and D-amino acids could
458 be used to try to stimulate motility and identify possible taxis behaviors because extraterrestrial bio-
459 chemistry would be expected to be chiral as is Earth life (Sun *et al.*, 2009; Zhang and Sun 2014; Zhang
460 *et al.*, 2021).

461 Future work will develop onboard ecological experiments designed to relate microbial motility to the
462 natural environment and ecology. This will involve development of specialized sample chambers for
463 delivery of stimuli and identification of taxis and could be coupled with metagenomics, as done here,
464 or with metatranscriptomics or metaproteomics to provide tighter links between motility phenotypes
465 identified by the DHM to the identity of specific organisms and motility systems. On Earth, DHM has
466 been used to study chemotaxis, biofilm formation, and predator/prey interactions (Wang *et al.*, 2020;
467 Yuan *et al.*, 2021; Qi *et al.*, 2017). The development of experiments to observe complex microbial
468 behaviors on other worlds would provide not only biosignatures, but possible insights into the biology
469 of the organisms discovered. Ultimately, because this DHM instrument can identify submicron motile
470 organisms throughout the volume of view of the instrument without sample preparation or fragile mov-
471 ing parts, we contend that the large-scale deployment of DHMs would be an excellent strategy to detect
472 extant microbial life in any aqueous setting, particularly on water worlds. Such devices could be pro-
473 grammed to record and send video feeds when mathematically defined (Rouzie *et al.*, 2021) motile
474 organisms are detected. This technology should be advanced and benchmarked in aquatic environments
475 on Earth as a prelude to exploration of aquatic microorganisms across the solar system.

476

477 5 Conflict of Interest

478 The authors declare that the research was conducted in the absence of any commercial or financial
479 relationships that could be construed as a potential conflict of interest.

480

481 6 Authors' Contributions

482 JN, ADF, and BPH participated in the design of the study. JN, ADF, and BPH conducted field work.
483 CS, ADF, and TV performed all wet lab experiments and processed data. ADF, JPC, and SB conducted
484 bioinformatic analyses. GS and BPH performed literature searches on microbial motility to support
485 literature predictions. TV and RRM performed metagenomic sequencing. JPC and KK aligned,

486 annotated, and curated metagenomic data and MAGs. JN and BPH wrote the initial drafts of the
487 manuscript. All authors edited and critically revised the manuscript.

488

489 **7 Funding**

490 This research was supported by the NASA EPSCoR program (Award 80NSSC18M0027) and the
491 National Science Foundation (EAR 15-16680 and EAR 2038420).

492

493 **8 Acknowledgments**

494 We also thank Josh Hoines, Genne Nelson, Kevin Wilson, and David West from the US National Park
495 Service for permission and guidance to conduct sampling at Badwater Spring. Sampling was conducted
496 under permits DEVA-2017-SCI-0023 and DEVA-2016-SCI-0039. RRM research was supported by
497 the Spanish Ministry of Science, Innovation and Universities projects PGC2018-096956-B-C41 and
498 PRX18/00048, both also supported with European Regional Development Fund (FEDER) funds.

499

500 **9 References**

501 Alneberg J, Bjarnason BS, de Brujin I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson
502 AF, Quince C. Binning Metagenomic Contigs by Coverage and Composition. *Nat Methods* 2014;
503 11(11):1144-6. doi: 10.1038/nmeth.3103.

504 Apprill A, McNally S, Parsons R, et al. Minor Revision to V4 Region SSU rRNA 806R Gene Primer
505 Greatly Increases Detection of SAR11 Bacterioplankton. *Aquat Microb Ecol* 2015;75(2):129–137; doi:
506 [10.3354/ame01753](https://doi.org/10.3354/ame01753).

507 Arkin AP, Cottingham RW, Henry CS, et al. KBase: The United States Department of Energy Systems
508 Biology Knowledgebase. *Nat Biotechnol* 2018;36(7):566–569; doi: [10.1038/nbt.4163](https://doi.org/10.1038/nbt.4163).

509 Bayless BA, Navarro FM and Winey M. Motile Cilia: Innovation and Insight From Ciliate Model
510 Organisms. *Frontiers in Cell and Developmental Biology* 2019;7.

511 Bedrossian M, Barr C, Lindensmith CA, et al. Quantifying Microorganisms at Low Concentrations
512 Using Digital Holographic Microscopy (DHM). *J Vis Exp* 2017;(129); doi: [10.3791/56343](https://doi.org/10.3791/56343).

513 Berg HC. *E. coli* in Motion. Microorganisms-Motility. Springer: New York, NY; 2004.

514 Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, Interactive, Scalable and Extensible
515 Microbiome Data Science Using QIIME 2. *Nat Biotechnol* 2019;37(8):852–857; doi: [10.1038/s41587-019-0209-9](https://doi.org/10.1038/s41587-019-0209-9).

517 Bondoc KGV, Heuschele J, Gillard J, et al. Selective Silicate-Directed Motility in Diatoms. *Nat*
518 *Commun* 2016;7(1):10540; doi: [10.1038/ncomms10540](https://doi.org/10.1038/ncomms10540).

519 Borgosian G and Bournneuf EV. A Matter of Bacterial Life and Death. *EMBO reports* 2001;2(9):770–
520 774; doi: [10.1093/embo-reports/kve182](https://doi.org/10.1093/embo-reports/kve182).

521 Bowers RM, Kyrpides NC, Stepanauskas R, et al. Minimum Information about a Single Amplified
522 Genome (MISAG) and a Metagenome-Assembled Genome (MIMAG) of Bacteria and Archaea. *Nat*
523 *Biotechnol* 2017;35(8):725–731; doi: [10.1038/nbt.3893](https://doi.org/10.1038/nbt.3893).

524 Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch
525 GD, Shukla M, Thomason JA 3rd, Stevens R, Vonstein V, Wattam AR, Xia F. RASTtk: A Modular
526 and Extensible Implementation of the RAST Algorithm for Building Custom Annotation Pipelines and
527 Annotating Batches of Genomes. *Sci Rep* 2015;5:8365. doi: 10.1038/srep08365.

528 Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: A Toolkit to Classify Genomes with
529 the Genome Taxonomy Database. *Bioinformatics*. 2019;36(6):1925–7. doi:
530 [10.1093/bioinformatics/btz848](https://doi.org/10.1093/bioinformatics/btz848).

531 Chevrier VF and Rivera-Valentin EG. Formation of Recurring Slope Lineae by Liquid Brines on
532 Present-Day Mars. *Geophysical Research Letters* 2012;39(21); doi: [10.1029/2012GL054119](https://doi.org/10.1029/2012GL054119).

533 Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: A Rapid, Scalable and Accurate Tool
534 for Assessing Microbial Genome Quality Using Machine Learning. *bioRxiv* doi:
535 [10.1101/2022.07.11.499243](https://doi.org/10.1101/2022.07.11.499243)

536 Clarke S, Mielke RE, Neal A, et al. Bacterial and Mineral Elements in an Arctic Biofilm: A Correlative
537 Study Using Fluorescence and Electron Microscopy. *Microscopy and Microanalysis* 2010;16(2):153–
538 165; doi: [10.1017/S1431927609991334](https://doi.org/10.1017/S1431927609991334).

539 Cohoe D, Hanczarek I, Wallace JK, et al. Multiwavelength Digital Holographic Imaging and Phase
540 Unwrapping of Protozoa Using Custom Fiji Plug-Ins. *Frontiers in Physics* 2019;7.

541 Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for Prediction of Metagenome Functions. *Nat*
542 *Biotechnol* 2020;38(6):685–688; doi: [10.1038/s41587-020-0548-6](https://doi.org/10.1038/s41587-020-0548-6).

543 Dubois F, Joannes L and Legros J-C. Improved Three-Dimensional Imaging with a Digital Holography
544 Microscope with a Source of Partial Spatial Coherence. *Appl Opt, AO* 1999;38(34):7085–7094; doi:
545 [10.1364/AO.38.007085](https://doi.org/10.1364/AO.38.007085).

546 Emerson JB, Adams RI, Román CMB, et al. Schrödinger’s Microbes: Tools for Distinguishing the
547 Living from the Dead in Microbial Ecosystems. *Microbiome* 2017;5(1):86; doi: [10.1186/s40168-017-0285-3](https://doi.org/10.1186/s40168-017-0285-3).

549 Evtushenko LI and Takeuchi M. The Family Microbacteriaceae. In: The Prokaryotes: Volume 3:
550 Archaea. Bacteria: Firmicutes, Actinomycetes. (Dworkin M, Falkow S, Rosenberg E, et al. eds)
551 Springer: New York, NY; 2006; pp. 1020–1098; doi: [10.1007/0-387-30743-5_43](https://doi.org/10.1007/0-387-30743-5_43).

552 Gerhardt K, Ruiz-Perez CA, Rodriguez-R LM, et al. RecruitPlotEasy: An Advanced Read Recruitment
553 Plot Tool for Assessing Metagenomic Population Abundance and Genetic Diversity. *Front Bioinform*
554 1 2022;826701; doi: [10.3389/fbinf.2021.826701](https://doi.org/10.3389/fbinf.2021.826701)

555 Gibson T, Bedrossian M, Serabyn E, et al. Using the Gouy Phase Anomaly to Localize and Track
556 Bacteria in Digital Holographic Microscopy 4D Images. *J Opt Soc Am A, JOSAA* 2021;38(2):A11–
557 A18; doi: [10.1364/JOSAA.404004](https://doi.org/10.1364/JOSAA.404004).

558 Grossart H, Riemann L and Azam F. Bacterial Motility in the Sea and Its Ecological Implications.
559 *Aquat Microb Ecol* 2001;25:247–258; doi: [10.3354/ame025247](https://doi.org/10.3354/ame025247).

560 Hahn MW. Description of Seven Candidate Species Affiliated with the Phylum Actinobacteria,
561 Representing Planktonic Freshwater Bacteria. *Int J Syst Evol Microbiol* 2009;59(Pt 1):112–117; doi:
562 [10.1099/ijss.0.001743-0](https://doi.org/10.1099/ijss.0.001743-0).

563 Hand, K.P., Murray, A.E., Garvin, J.B., et al. Europa Lander Study 2016 Report. NASA - JPL; 2017.

564 Henrichsen J. Bacterial Surface Translocation: A Survey and a Classification. *Bacteriol Rev*
565 1972;36(4):478–503.

566 Hintsche M, Waljor V, Großmann R, et al. A Polar Bundle of Flagella Can Drive Bacterial Swimming
567 by Pushing, Pulling, or Coiling around the Cell Body. *Sci Rep* 2017;7:16771; doi: [10.1038/s41598-017-16428-9](https://doi.org/10.1038/s41598-017-16428-9).

569 Honda T, Cremer J, Mancini L, Zhang Z, Pilizota T, Hwa T. Coordination of Gene Expression with
570 Cell Size Enables *Escherichia coli* to Efficiently Maintain Motility Across Conditions. *Proc Natl Acad
571 Sci U S A*. 2022 Sep 13;119(37):e2110342119. doi: [10.1073/pnas.2110342119](https://doi.org/10.1073/pnas.2110342119). Jericho SK, Klages P,
572 Nadeau J, et al. In-Line Digital Holographic Microscopy for Terrestrial and Exobiological Research.
573 *Planetary and Space Science* 2010;58(4):701–705; doi: [10.1016/j.pss.2009.07.012](https://doi.org/10.1016/j.pss.2009.07.012).

574 Jiao JY, Liu L, Hua ZS, Fang BZ, Zhou EM, Salam N, Hedlund BP, Li WJ. Microbial Dark Matter
575 Coming to Light: Challenges and Opportunities. *Natl Sci Rev* 2020;8(3):nwaa280. doi:
576 10.1093/nsr/nwaa280.

577 Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. MetaBAT 2: An Adaptive Binning
578 Algorithm for Robust and Efficient Genome Reconstruction from Metagenome Assemblies. *PeerJ*
579 2019; 7:e7359. doi: 10.7717/peerj.7359.

580 Kearns DB. A Field Guide to Bacterial Swarming Motility. *Nat Rev Microbiol*. 2010;8(9):634–44. doi:
581 [10.1038/nrmicro2405](https://doi.org/10.1038/nrmicro2405).

582 Khayatan B, Meeks JC and Risser DD. Evidence That a Modified Type IV Pilus-like System Powers
583 Gliding Motility and Polysaccharide Secretion in Filamentous Cyanobacteria. *Molecular Microbiology*
584 2015;98(6):1021–1036; doi: [10.1111/mmi.13205](https://doi.org/10.1111/mmi.13205).

585 Kim MK. Digital Holographic Microscopy. In: Digital Holographic Microscopy: Principles,
586 Techniques, and Applications. (Kim MK. ed). Springer Series in Optical Sciences Springer: New York,
587 NY; 2011; pp. 149–190; doi: [10.1007/978-1-4419-7793-9_11](https://doi.org/10.1007/978-1-4419-7793-9_11).

588 Kühn J, Niraula B, Liewer K, et al. A Mach-Zender Digital Holographic Microscope with Sub-
589 Micrometer Resolution for Imaging and Tracking of Marine Micro-Organisms. *Review of Scientific*
590 *Instruments* 2014;85(12):123113; doi: [10.1063/1.4904449](https://doi.org/10.1063/1.4904449).

591 Langmead B, and Salzberg L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* 9.4 2012;357-
592 359; doi: [10.1038/nmeth.1923](https://doi.org/10.1038/nmeth.1923)

593 Leeuwenhoek AV. Observations, Communicated to the Publisher by Mr. Antony van Leeuwenhoeck,
594 in a Dutch Letter of the 9th Octob. 1676. Here English'd: Concerning Little Animals by Him Observed
595 in Rain-Well-Sea- and Snow Water; as Also in Water Wherein Pepper Had Lain Infused. *Philosophical*
596 *Transactions of the Royal Society of London* 1677;12(133):821–831; doi: [10.1098/rstl.1677.0003](https://doi.org/10.1098/rstl.1677.0003).

597 Li D, Liu C-M, Luo R, et al. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex
598 Metagenomics Assembly via Succinct de Bruijn Graph. *Bioinformatics* 2015;31(10):1674–1676; doi:
599 [10.1093/bioinformatics/btv033](https://doi.org/10.1093/bioinformatics/btv033).

600 Lindensmith CA, Rider S, Bedrossian M, et al. A Submersible, Off-Axis Holographic Microscope for
601 Detection of Microbial Motility and Morphology in Aqueous and Icy Environments. *PLoS One*
602 2016;11(1):e0147700; doi: [10.1371/journal.pone.0147700](https://doi.org/10.1371/journal.pone.0147700).

603 McMurdie PJ and Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis and
604 Graphics of Microbiome Census Data. *PLoS One* 2013;8(4):e61217; doi:
605 [10.1371/journal.pone.0061217](https://doi.org/10.1371/journal.pone.0061217).

606 Merz AJ, So M and Sheetz MP. Pilus Retraction Powers Bacterial Twitching Motility. *Nature*
607 2000;407(6800):98–102; doi: [10.1038/35024105](https://doi.org/10.1038/35024105).

608 Miyata M, Robinson RC, Uyeda TQP, Fukumori Y, Fukushima SI, Haruta S, Homma M, Inaba K, Ito
609 M, Kaito C, Kato K, Kenri T, Kinoshita Y, Kojima S, Minamino T, Mori H, Nakamura S, Nakane D,
610 Nakayama K, Nishiyama M, Shibata S, Shimabukuro K, Tamakoshi M, Taoka A, Tashiro Y, Tulum I,
611 Wada H, Wakabayashi KI. Tree of Motility - A Proposed History of Motility Systems in the Tree of
612 Life. *Genes Cells* 2020;25(1):6-21. doi: 10.1111/gtc.12737.

613 Nakamura S and Minamino T. Flagella-Driven Motility of Bacteria. *Biomolecules* 2019;9(7):279; doi:
614 [10.3390/biom9070279](https://doi.org/10.3390/biom9070279).

615 Nayfach S, Roux S, Seshadri R, Udwyar D, Varghese N, Schulz F, Wu D, Paez-Espino D, Chen IM,
616 Huntemann M, Palaniappan K, Ladau J, Mukherjee S, Reddy TBK, Nielsen T, Kirton E, Faria JP,
617 Edirisinghe JN, Henry CS, Jungbluth SP, Chivian D, Dehal P, Wood-Charlson EM, Arkin AP, Tringe
618 SG, Visel A; IMG/M Data Consortium, Woyke T, Mouncey NJ, Ivanova NN, Kyrpides NC, Eloe-
619 Fadros EA. A genomic catalog of Earth's microbiomes. *Nat Biotechnol* 2021;39(4):499-509. doi:
620 10.1038/s41587-020-0718-6.

621 Neveu, Marc, Hays, Lindsay E., Voytek MA, et al. The Ladder of Life Detection. *Astrobiology*
622 2018;18:1375–1402; doi: [10.1089/ast.2017.1773](https://doi.org/10.1089/ast.2017.1773).

623 Nurk S, Meleshko D, Korobeynikov A, et al. MetaSPAdes: A New Versatile Metagenomic Assembler.
624 *Genome Res* 2017;27(5):824–834; doi: [10.1101/gr.213959.116](https://doi.org/10.1101/gr.213959.116).

625 Palma V, Gutiérrez MS, Vargas O, et al. Methods to Evaluate Bacterial Motility and Its Role in
626 Bacterial–Host Interactions. *Microorganisms* 2022;10(3):563; doi: [10.3390/microorganisms10030563](https://doi.org/10.3390/microorganisms10030563).

627 Parada AE, Needham DM and Fuhrman JA. Every Base Matters: Assessing Small Subunit rRNA
628 Primers for Marine Microbiomes with Mock Communities, Time Series and Global Field Samples.
629 *Environ Microbiol* 2016;18(5):1403–1414; doi: [10.1111/1462-2920.13023](https://doi.org/10.1111/1462-2920.13023).

630 Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the Quality of
631 Microbial Genomes Recovered from Esolates, Single Cells, and Metagenomes. *Genome Res.*
632 2015;25(7):1043–55. doi: 10.1101/gr.186072.114.

633 Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, et al. List of Prokaryotic Names with Standing in
634 Nomenclature (LPSN) Moves to the DSMZ. *Int J Syst Evol Microbiol* 2020;70(11):5607–5612; doi:
635 [10.1099/ijsem.0.004332](https://doi.org/10.1099/ijsem.0.004332).

636 Qi M, Gong X, Wu B, et al. Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect
637 of Surface Properties. *Langmuir* 2017;33(14):3525–3533; doi: [10.1021/acs.langmuir.7b00439](https://doi.org/10.1021/acs.langmuir.7b00439).

638 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA
639 Ribosomal RNA Gene Database Project: Improved Data Processing and Web-based Tools. *Nucl.*
640 *Acids Res* 2020; 41(D1): D590–D596; doi: doi.org/10.1093/nar/gks1219.

641 Rogers JD, Perreault NN, Niederberger TD, et al. A Life Detection Problem in a High Arctic Microbial
642 Community. *Planetary and Space Science* 2010;58(4):623–630; doi: [10.1016/j.pss.2009.06.014](https://doi.org/10.1016/j.pss.2009.06.014).

643 Rouzie D, Lindensmith C and Nadeau J. Microscopic Object Classification through Passive Motion
644 Observations with Holographic Microscopy. *Life* 2021;11(8):793; doi: [10.3390/life11080793](https://doi.org/10.3390/life11080793).

645 Ruiz JMG, Carnerup A, Christy AG, et al. Morphology: An Ambiguous Indicator of Biogenicity.
646 research-article. Mary Ann Liebert, Inc.; 2004.; doi: [10.1089/153110702762027925](https://doi.org/10.1089/153110702762027925).

647 Santos P, Pinhal I, Rainey FA, et al. Gamma-Proteobacteria *Aquicella lusitana* Gen. Nov., Sp. Nov.,
648 and *Aquicella siphonis* Sp. Nov. Infect Protozoa and Require Activated Charcoal for Growth in
649 Laboratory Media. *Appl Environ Microbiol* 2003;69(11):6533–6540; doi: [10.1128/AEM.69.11.6533-6540.2003](https://doi.org/10.1128/AEM.69.11.6533-6540.2003).

651 Sekiguchi Y, Ohashi A, Parks DH, et al. First Genomic Insights into Members of a Candidate Bacterial
652 Phylum Responsible for Wastewater Bulking. *PeerJ* 2015;3:e740; doi: [10.7717/peerj.740](https://doi.org/10.7717/peerj.740).

653 Shaevitz JW, Lee JY and Fletcher DA. Spiroplasma Swim by a Processive Change in Body Helicity.
654 *Cell* 2005;122(6):941–945; doi: [10.1016/j.cell.2005.07.004](https://doi.org/10.1016/j.cell.2005.07.004).

655 Snyder C, Bedrossian M, Barr C, et al. Prevalence and Stimulation of Motility in Fresh Field Samples
656 from Diverse and Extreme Environments across North America. n.d.

657 Son K, Guasto JS and Stocker R. Bacteria Can Exploit a Flagellar Buckling Instability to Change
658 Direction. *Nature Phys* 2013;9(8):494–498; doi: [10.1038/nphys2676](https://doi.org/10.1038/nphys2676).

659 Soutourina OA and Bertin PN. Regulation Cascade of Flagellar Expression in Gram-Negative Bacteria.
660 *FEMS Microbiology Reviews* 2003;27(4):505–523; doi: [10.1016/S0168-6445\(03\)00064-0](https://doi.org/10.1016/S0168-6445(03)00064-0).

661 Spring S, Riedel T, Spröer C, et al. Taxonomy and Evolution of Bacteriochlorophyll A-Containing
662 Members of the OM60/NOR5 Clade of Marine Gammaproteobacteria: Description of *Luminiphilus*
663 *syltensis* Gen. Nov., Sp. Nov., Reclassification of *Haliea rubra* as *Pseudohaliea rubra* Gen. Nov.,
664 Comb. Nov., and Emendation of *Chromatocurvus halotolerans*. *BMC Microbiol* 2013;13:118; doi:
665 [10.1186/1471-2180-13-118](https://doi.org/10.1186/1471-2180-13-118).

666 Steinbrügge G, Voigt JRC, Wolfenbarger NS, et al. Brine Migration and Impact-Induced
667 Cryovolcanism on Europa. *Geophysical Research Letters* 2020;47(21):e2020GL090797; doi:
668 [10.1029/2020GL090797](https://doi.org/10.1029/2020GL090797).

669 Stocker R. Reverse and Flick: Hybrid Locomotion in Bacteria. *Proceedings of the National Academy
670 of Sciences* 2011;108(7):2635–2636; doi: [10.1073/pnas.1019199108](https://doi.org/10.1073/pnas.1019199108).

671 Stocker R, Seymour JR, Samadani A, et al. Rapid Chemotactic Response Enables Marine Bacteria to
672 Exploit Ephemeral Microscale Nutrient Patches. *Proceedings of the National Academy of Sciences*
673 2008;105(11):4209–4214; doi: [10.1073/pnas.0709765105](https://doi.org/10.1073/pnas.0709765105).

674 Sun HJ, Saccomanno V, Hedlund B, et al. Stereo-Specific Glucose Consumption May Be Used to
675 Distinguish between Chemical and Biological Reactivity on Mars: A Preliminary Test on Earth.
676 *Astrobiology* 2009;9(5):443–446; doi: [10.1089/ast.2008.0315](https://doi.org/10.1089/ast.2008.0315).

677 Taylor JR and Stocker R. Trade-Offs of Chemotactic Foraging in Turbulent Water. *Science*
678 2012;338(6107):675–679; doi: [10.1126/science.1219417](https://doi.org/10.1126/science.1219417).

679 Taylor TB and Buckling A. Bacterial Motility Confers Fitness Advantage in the Presence of Phages.
680 *Journal of Evolutionary Biology* 2013;26(10):2154–2160; doi: [10.1111/jeb.12214](https://doi.org/10.1111/jeb.12214).

681 Thomason MK, Fontaine F, De Lay N, Storz G. A Small RNA that Regulates Motility and Biofilm
682 Formation in Response to Changes in Nutrient Availability in *Escherichia coli*. *Mol Microbiol*.
683 2012;84(1):17-35. doi: [10.1111/j.1365-2958.2012.07965.x](https://doi.org/10.1111/j.1365-2958.2012.07965.x).

684 Thornton JL, Butler JK, Davis SJ, et al. Haloarchaea swim slowly for optimal chemotactic efficiency
685 in low nutrient environments. *Nature Communications* 2020; 11:4453. <https://doi.org/10.1038/s41467-020-18253-7>.

687 Wadhwa N and Berg HC. Bacterial Motility: Machinery and Mechanisms. *Nat Rev Microbiol*
688 2022;20(3):161–173; doi: [10.1038/s41579-021-00626-4](https://doi.org/10.1038/s41579-021-00626-4).

689 Wallace JK, Rider S, Serabyn E, et al. Robust, Compact Implementation of an off-Axis Digital
690 Holographic Microscope. *Opt Express, OE* 2015;23(13):17367–17378; doi: [10.1364/OE.23.017367](https://doi.org/10.1364/OE.23.017367).

691 Wang G, Huang G, Gong X, et al. Method for 3D Tracking Behaviors of Interplaying Bacteria
692 Individuals. *Opt Express, OE* 2020;28(19):28060–28071; doi: [10.1364/OE.401032](https://doi.org/10.1364/OE.401032).

693 Whitman WB et al., Bergey's Manual Trust. *Bergey's Manual of Systematics of Archaea and Bacteria*.
694 2015.

695 Wu Y, Ozcan A. Lensless Digital Holographic Microscopy and its Applications in Biomedicine and
696 Environmental Monitoring. *Methods* 2018;136:4-16. doi: [10.1016/j.ymeth.2017.08.013](https://doi.org/10.1016/j.ymeth.2017.08.013).

697 Wu YW, Simmons BA, Singer SW. MaxBin 2.0: An Automated Binning Algorithm to Recover
698 Genomes from Multiple Metagenomic Datasets. *Bioinformatics* 2016;32(4):605-7. doi:
699 10.1093/bioinformatics/btv638.

700 Xie L, Altindal T, Chattopadhyay S, et al. Bacterial Flagellum as a Propeller and as a Rudder for
701 Efficient Chemotaxis. *Proceedings of the National Academy of Sciences* 2011;108(6):2246-2251; doi:
702 [10.1073/pnas.1011953108](https://doi.org/10.1073/pnas.1011953108).

703 Yuan S, Qi M, Peng Q, et al. Adaptive Behaviors of Planktonic *Pseudomonas aeruginosa* in Response
704 to the Surface-Deposited Dead Siblings. *Colloids and Surfaces B: Biointerfaces* 2021;197:111408; doi:
705 [10.1016/j.colsurfb.2020.111408](https://doi.org/10.1016/j.colsurfb.2020.111408).

706 Zhang G and Sun HJ. Racemization in Reverse: Evidence that D-amino Acid Toxicity on Earth is
707 Controlled by Bacteria with Racemases. *PLoS One* 2014;9(3):e92101. doi:
708 [10.1371/journal.pone.0092101](https://doi.org/10.1371/journal.pone.0092101).

709

710 Zhang L, Zeng F, McKay CP, Navarro-González R, Sun, HJ. Optimizing Chiral Selectivity in Practical
711 Life-Detection Instruments. *Astrobiology* 2021; 21(5):505-510. [10.1089/ast.2020.2381](https://doi.org/10.1089/ast.2020.2381).

712

713

714 **Figure Legends**

715 **FIG 1.** DHM instrument, Badwater Spring, and sampling locations. (A) Diagram showing the main
716 optical components of the DHM instrument (i.e., light source, collimating lens, sample, objectives,
717 relay lens, and camera). (B) Photograph of the field instrument with the internal components exposed
718 and labeled. When the front plate is properly secured this case provides durable waterproof protection
719 to the DHM, electronics, and computer. (C) Photograph of Dr. Jay Nadeau next to the field instrument
720 recording data of samples from Badwater Spring. (D) Location of Badwater Spring near the lowest
721 point in North America, Death Valley National Park. (E) Sampling locations within Badwater Spring.
722 BW.Water denotes the single water sample collected; other samples denote locations from which
723 benthic samples were collected. DHM was conducted on samples from the area denoted BW.B3. Pool
724 width, ~5 m. (F) Photo of typical benthic mat with fluffy orange material taken near the BW.B1 sample
725 location. Width of view in foreground ~20 cm.

726

727 **FIG 2.** Cell with run-reverse-flick flagellar motility. (A) Tracks based on *in situ* DHM minimum pixel
728 projections over several z-planes around the planes where the microbe was located over a time series.
729 The track shows the microbe at each frame all superimposed onto one image. In (A-C) magenta squares
730 indicate likely reversal events while green circles indicate likely flick events. (B) 3-dimensional
731 projection of the motile cell. (C) Turn angle frequencies over a time series, showing five distinct
732 reversal events and possible linked flicks. (D) Histogram of the turn angles. Brackets and labels
733 indicate the range within which reversal events and flicks occur on the histogram plot.

734

735 **FIG 3.** Cell with run-reverse motility. (A) Tracks based on *in situ* DHM minimum pixel projections
736 over several z-planes around the planes where the microbe was located over a time series. The track
737 shows the microbe at each frame all superimposed onto one image. In (A, C) magenta squares indicate
738 likely reversal events. (B) 3-dimensional projection of the motile cell. Magenta squares indicating
739 reversal events were excluded to avoid overcrowded data. (C) Turn angle frequencies over a time
740 series, showing eighteen distinct reversal events. (D) Histogram of the turn angles. Bracket and label
741 indicate the range within which reversal events occur on the histogram plot.

742

743 **FIG 4.** Flagellar motility predictions based on 16S rRNA gene data. (A) Closest Genome Prediction
744 was based on matching 16S rRNA genes to the most closely related annotated genome via PICRUSt2.

745 (B) Literature Prediction was based on matching the 16S rRNA gene taxonomy to reports of motility
746 phenotypes in the literature. Pie charts denote the percentage of predicted motile and non-motile taxa.
747 Bars denote abundance-weighted taxonomic assignments for motile taxa.

748

749 **FIG 5.** Motility predictions based on full metagenome and MAG approaches. (A) Motility genes
750 distributed at the genus level found within the metagenome. Out of 63 motility genes annotated by
751 RAST, 53 were assigned to *Ralstonia* by BLAST (plum), six were assigned to *Chloroflexi* (green), and
752 four were from other groups (grey). (B) A schematic of a bacterial flagellum. Flagellar subunits,
753 chaperones, and regulators annotated by RAST from the GTDB-tk assigned to the *Ralstonia* MAG are
754 highlighted in purple.