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Abstract 17 

Motility is widely distributed across the tree of life and can be recognized by microscopy regardless of 18 

phylogenetic affiliation, biochemical composition, or mechanism. Microscopy has thus been proposed 19 

as a potential tool for detection of biosignatures for extraterrestrial life; however, traditional light 20 

microscopy is poorly suited for this purpose, as it requires sample preparation, involves fragile moving 21 

parts, and has a limited volume of view. Here, we deployed a field-portable digital holographic 22 

microscope (DHM) to explore microbial motility in Badwater Spring, a saline spring in Death Valley 23 

National Park, and complemented DHM imaging with 16S rRNA gene amplicon sequencing and 24 

shotgun metagenomics. The DHM identified diverse morphologies and distinguished run-reverse-flick 25 

and run-reverse types of flagellar motility. PICRUSt2- and literature-based predictions based on 16S 26 

rRNA gene amplicons were used to predict motility genotypes/phenotypes for 36.0 to 60.1 % of 27 

identified taxa, with the predicted motile taxa being dominated by members of Burkholderiaceae and 28 

Spirochaetota. A shotgun metagenome confirmed the abundance of genes encoding flagellar motility, 29 

and a Ralstonia metagenome-assembled genome encoded a full flagellar gene cluster. This study 30 

demonstrates the potential of DHM for planetary life detection, presents the first microbial census of 31 

Badwater Spring and brine pool, and confirms the abundance of mobile microbial taxa in an extreme 32 

environment.  33 

 34 

1 Introduction 35 

Extant life elsewhere in our solar system, if it exists, is likely to be entirely microbial. Although the 36 

invention of the light microscope led to the discovery of prokaryotic life on Earth (Leeuwenhoek, 37 

1677), standard light microscopes are of limited utility for in situ planetary life detection because they 38 

have many moving parts that are hard to miniaturize and ruggedize, and they can only inspect tiny 39 

volumes. Limits of detection for prokaryotes in typical light microscopy experiments are ~105 40 

cells/mL, which is higher than the cell density observed in many oligotrophic environments on Earth 41 

(Bedrossian et al., 2017). For this reason, and because of the ambiguity of morphology for life 42 

detection, there has traditionally been little interest in microscopy-based life detection (Ruiz et al., 43 

2004). A consensus is emerging, however, that microscopy can be a powerful tool for life detection, 44 

and that development of new microscopy techniques for in situ use is needed (Neveu et al., 2018). The 45 

Europa Science Definition Team specifically called for a microscope capable of detecting 46 

microorganisms down to 0.3 µm in diameter at densities down to 103 cells per mL (Hand et al., 2017). 47 



This represents the worst-case scenario of small cell size and sparsity and presents a formidable 48 

challenge to instrument developers. 49 

Digital holographic microscopy has the potential to meet this challenge. Digital holographic 50 

microscopes (DHMs) require no moving parts, compound objective lenses, or focusing (reviewed in 51 

Wu and Ozcan 2018). The volumetric nature of the images, which may be digitally dissected after 52 

collection, makes this approach ideal for autonomous operation. When a microscopic particle comes 53 

within the field of view of the camera of the DHM, it creates an interference pattern that is recorded as 54 

a hologram. The hologram is used to reconstruct the image of the particle based on a selected algorithm. 55 

The resulting instantaneous depth of field is at least one hundred times greater than for traditional light 56 

microscopy (Dubois et al., 1999; Kim, 2011). Capturing whole volumes with no moving parts allows 57 

DHM to be robust enough to survive deployment in harsh environments; user input for data acquisition 58 

is optional. The sample chamber can be emptied and refilled with new samples or by continuous flow. 59 

However, trade-offs between interrogated volume, flight worthiness, and optical performance must be 60 

made. Field-deployable DHM instruments lacking compound objectives have low resolution and are 61 

unable to resolve fine cellular structures required to definitively identify microbial life (Wallace et al., 62 

2015). Yet, at the present technical readiness level, fieldable DHMs are still useful for detecting life 63 

by detecting motile microorganisms, as microbial motility has characteristics that distinguish it from 64 

the passive movements of inanimate particles. The current study was enabled by the recent 65 

development of a field-deployable DHM (Lindensmith et al., 2016; Wallace et al., 2015) (Fig. 1 A, B, 66 

C), that uses 405 nm laser illumination to achieve ~0.8 µm resolution in a volume of view (XYZ) of 67 

0.365 x 0.365 x 1.0 mm. These parameters were chosen to optimize characterization of microbial 68 

swimming motility and to use only flight-compatible components.  69 

Motility is a widespread feature of microbial life on Earth. Not all bacteria, eukarya, and archaea are 70 

motile, but all three domains have many motile members (Miyata et al., 2020). Motility improves 71 

chances of survival as it enables active movement to sources of nutrients and away from toxins, instead 72 

of relying solely on diffusion (Stocker et al., 2008; Taylor & Buckling, 2013; Taylor & Stocker, 2012). 73 

The mechanisms of motility in different life forms vary drastically, from flagella in prokaryotes and 74 

flagellates, to cilia in ciliates, to propagating kinks in filamentous bacteria, to polysaccharide pili 75 

secretion in filamentous cyanobacteria and pennate diatoms, and many more (Bayless et al., 2019; 76 

Bondoc et al., 2016; Khayatan et al., 2015; Merz et al., 2000; Nakamura & Minamino, 2019; Palma et 77 

al., 2022; Shaevitz et al., 2005; Thornton et al., 2020). These mechanisms manifest in different forms 78 

of motility that are often characterized as swimming, sliding, gliding, twitching, and swarming 79 



(Henrichsen, 1972; Wadhwa & Berg, 2022). Each motility form can display sets of unique motility 80 

patterns; for example, studied swimming patterns include run-tumble, run-pause, run-reverse-flick, and 81 

run-reverse, which describe motions that alternatingly propel cells forward and then actively or 82 

passively reorient them (Berg, 2004; Hintsche et al., 2017; Son et al., 2013). Distinguishing these 83 

active forms of motility from drift and Brownian motion is mathematically straightforward (Rouzie et 84 

al., 2021). Drift can be calculated by taking the average of uniform motion, which may then be 85 

subtracted. Brownian motion may be distinguished from swimming as it shows root mean square 86 

displacements that scale as the square root of time. While we can quantitatively characterize swimming 87 

patterns and distinguish motility from passive motion, it is much easier and still unambiguous to 88 

identify extant microbial life through qualitative observation, as was done by Leeuwenhoek when 89 

prokaryotes were first discovered (Leeuwenhoek, 1677).  90 

A separate approach for life detection that has been widely discussed is the detection and study of 91 

macromolecules that are universal in known Earth life (Neveu et al., 2018). On Earth, the availability 92 

of low-cost, rapid DNA sequencing technologies has led to a shift from culture- and microscopy-based 93 

approaches to studies of community DNA sequence data, based on either amplicons or shotgun 94 

metagenomes. Such cultivation-independent approaches have paid huge dividends in the study of 95 

microbial life on Earth because they have greatly expanded our view of microbial diversity and 96 

supported hypothesis testing about the functions of yet-uncultivated microorganisms that dominate 97 

most biomes (Jiao et al., 2020; Nayfach et al., 2021). While these DNA-based approaches are extremely 98 

informative and can effectively complement more incisive experimentation on microbial activities that 99 

are important for growth and survival in situ (i.e., phenotypes), the success of DNA-based approaches 100 

for life detection depends on a similar biochemistry; therefore, the scope of DNA-based life detection 101 

approaches beyond Earth is inherently limited.  102 

The goal of this study was to complement the results obtained from in situ microscopy via DHM with 103 

community DNA sequencing in an extreme environment to guide development of instrument suites for 104 

missions. Our study focused on Badwater Spring and brine pool, a hypersaline environment that is 105 

analogous to cryovolcanoes on Europa (Steinbrügge et al., 2020) and recurrent slope lineae on Mars 106 

(Chevrier & Rivera-Valentin, 2012), and which is teeming with microbial life. We identify distinct 107 

patterns of motility both in situ and in the laboratory with returned samples and validate the 108 

microscopic observations with observations of the high incidence of prokaryotes predicted to encode 109 

flagellar genes based on 16S rRNA genes and the construction of a complete flagellar gene cluster in 110 

a metagenome-assembled genome (MAG) from one of the most abundant bacteria in the spring.  111 



 112 

2 Materials and Methods 113 

2.1 Study site and physicochemical measurements 114 

To quantify the incidence of motility via microscopy and molecular techniques, we sampled water and 115 

benthic microbial communities in Badwater Spring, CA, which is sourced from the Amargosa River 116 

and discharges at the lowest point in North America in Badwater Basin within Death Valley National 117 

Park (Fig. 1D). pH, water temperature, dissolved oxygen, and specific conductance were recorded on 118 

site with a YSI Professional Plus (Quatro) multiparameter probe. Spring water was collected for 119 

hydrogeochemical measurements directly from the source of Badwater Spring with a Geopump 120 

peristaltic pump (Geotech, Denver, CO) using autoclaved Masterflex platinum-cured silicone tubing 121 

(Cole-Parmer, Vernon Hills, IL) and filtered using 0.2 μm polyethersulfone membrane Sterivex-GP 122 

pressure filters (Millipore Sigma, Burlington, MA). Filtered water was collected in pre-rinsed 250 mL 123 

high-density polyethylene bottles and refrigerated until being sent to the New Mexico Bureau of 124 

Geology and Mineral Resources Chemistry Lab for analysis of major cations and anions, alkalinity, 125 

and total dissolved solids. Cations were measured using inductively coupled plasma optical emission 126 

spectrometry in accordance with EPA 200.7; anions were measured using ion chromatography in 127 

accordance with EPA 300.0. For every tenth sample, a duplicate was run. Alkalinity was measured by 128 

titration in accordance with EPA 310.1. Physicochemical data and reporting limits are shown 129 

(Supplementary Table S1).  130 

2.2 Microscopy and data processing 131 

A field-portable DHM was used on April 10th through 12th, 2017, in coordination with sampling for 132 

16S rRNA gene surveys and metagenomics, described below. A water sample (DHM1) and two benthic 133 

samples (DHM2, DHM3) for DHM were collected near the site labeled BW.B3. Sample DHM2 was 134 

composed mostly of sediment and water (i.e., sediment slurry) with little mat material. Sample DHM3 135 

was composed of fluffy orange mat similar to that in Fig. 1E with water (i.e., mat slurry).  136 

The DHM used is a common-path off-axis holographic microscope with illumination at 405 nm and 137 

lateral spatial resolution of ~0.8 µm. The sample chamber consists of two parallel channels, an empty 138 

reference and a sample channel, with a volume of view of 365 µm x 365 µm x 0.8 mm. 2048 x 2048-139 

pixel images were generated using an Allied Prosilica GT camera with an acquisition speed of 15 140 

frames per second.  141 



Data processing and analysis workflows aimed to reconstruct holograms, apply filters, identify 142 

particles, and link particles into tracks. Holograms were reconstructed into amplitude and phase images 143 

using the angular spectrum method with our FIJI plug-in described previously (Cohoe et al., 2019). 144 

We used a reference hologram during reconstruction of phase images to reduce noise (Colomb et al., 145 

2006) and a median subtraction filter via another FIJI plug-in to reduce noise in amplitude. Amplitude 146 

and phase datasets represent all four dimensions of spacetime. The z-spacing, 2.5 µm, is a discrete 147 

value chosen to reflect the values of the cells in the sample and is also the theoretical axial resolution 148 

of the instrument (Wallace et al., 2015). After reconstruction and filtering, identification of particles 149 

was performed manually to characterize the particles that were likely microbes, and describe their 150 

concentration, size distribution, and morphology. Taking advantage of the Gouy phase anomaly to 151 

localize particles in z, we applied a z-derivative to the pixel values in the phase images (Gibson et al., 152 

2021). With these images we applied a threshold filter that increased the signal to noise ratio by 153 

isolating specific swimming microbes while removing all other pixel values from the images. Particle 154 

and motile organism identification and tracking were then performed using FIJI. Two organisms were 155 

classified as moving with distinct swimming patterns. The rest of the motile organisms were 156 

qualitatively determined to be extant lifeforms. The instantaneous speed of tracked particles in one 157 

dimension was calculated by applying Eq. 1. The speed of the particles in two dimensions in the XY-158 

plane was calculated using Eq. 2.  159 

 160 

𝑣𝑥  =  
𝑥𝑖+1−𝑥𝑖

𝑡𝑖+1−𝑡𝑖
    Eq. 1 161 

𝑣𝑥𝑦 = √𝑣𝑥
2 + 𝑣𝑦

2    Eq. 2 162 

 163 

Data summarizing all particles are shown in Supplementary Table S2. Laboratory microscopy was also 164 

conducted on an Olympus BX51 phase-contrast microscope to document major morphologies and 165 

modes of motility in selected samples.  166 

2.3 Microbial sample collection, DNA extraction, 16S rRNA gene amplicon Illumina 167 

sequencing, and taxonomy  168 

Microbial community samples for 16S rRNA gene amplicon sequencing were collected on April 12, 169 

2017. A single sample of the microbial community in the water was sampled by pumping bulk spring 170 

water (>2 L total) with a Geopump peristaltic pump (Geotech, Denver, CO) using autoclaved 171 



Masterflex platinum-cured silicone tubing (Cole-Parmer, Vernon Hills, IL) onto 0.2 µm 172 

polyethersulfone membrane Sterivex-GP pressure filters. Before sample storage, excess water was 173 

cleared from each filter using a sterile syringe. In addition, four benthic microbial communities were 174 

sampled by collecting the upper ~1 cm of microbial mat or sediment using a sterile shovel. The 175 

sampling locations of the benthic samples were chosen based on the substrate diversity to maximize 176 

the sampling of unique benthic habitats within the spring. Sampling locations within Badwater Spring 177 

are shown in Fig. 1E. Briefly, sample BW.B1 consisted of a fluffy orange benthic mat, representative 178 

of the dominant benthic morphology in the spring at the time of sampling (Fig. 1F); sample BW.B2 179 

consisted of a fluffy orange benthic mat, similar to BW.B1, but with an overlying gelatinous layer, 180 

possibly composed of decaying organic matter; BW.B3 consisted of fluffy phototrophic growth and a 181 

lower green gelatinous layer; BW.B4 consisted of, from top to bottom, fluffy phototrophic growth, a 182 

lower green gelatinous layer, and a lower red layer.   183 

After collection, all samples were frozen immediately on dry ice in the field and kept frozen in a -80 184 

°C freezer until DNA extraction. DNA was extracted using the FastDNA™ SPIN Kit for Soil (MP 185 

Biomedicals, Santa Ana, CA) with two modifications to the manufacturer’s instructions. First, the 186 

samples were homogenized three times total for 30 seconds each time at a speed setting of 4.5 using a 187 

FastPrep FP120 instrument (Thermo Fisher Scientific, Waltham, MA). Second, the supernatant from 188 

the Protein Precipitation Solution step was added to 500 µL of Binding Matrix suspension in a 1.5 mL 189 

tube.  190 

Microbial communities were characterized by sequencing the V4 region of the 16S rRNA gene using 191 

the updated Earth Microbiome Project (EMP) primers 515F (GTGYCAGCMGCCGCGGTAA) and 192 

806R (GGACTACNVGGGTWTCTAAT) (Apprill et al., 2015; Parada et al., 2016). Sequencing was 193 

performed using the Illumina MiSeq platform at Argonne National Laboratory. All sequence-based 194 

analyses were performed in QIIME 2-version-2019.10 (Bolyen et al., 2019). Raw Illumina reads were 195 

demultiplexed using sample-specific barcodes and denoised using the dada2-denoise-paired plugin to 196 

remove low-quality, chimeric, and artifactual sequences. Forward and reverse reads were truncated to 197 

150 bp and 140 bp, respectively; in addition, 13 bases were trimmed from the 5’ end of all reads during 198 

the denoising step. This resulted in a total of 176,627 high-quality sequences from the five samples 199 

from Badwater Spring and brine pool. These sequences were then dereplicated into 1,899 amplicon 200 

sequence variants (ASVs). Taxonomy was assigned to each ASV using QIIME’s feature-classifier 201 

plugin and the “Silva 132 99 % OTUs full-length sequences” database (Quast et al., 2013). ASVs 202 

assigned to mitochondria, chloroplasts, eukarya, or not otherwise identified as bacterial or archaeal 203 



were excluded from further analysis. Alpha diversity indices (Observed ASVs, Shannon H’, Gini-204 

Simpson Index, and InvSimpson) were calculated using unrarefied data in R packages phyloseq version 205 

1.28.0 (McMurdie and Holmes, 2013) and picante version 1.8 (Kembel et al., 2010). 206 

2.4 Prediction of flagellar motility based on mapping 16S rRNA gene sequences to the closest 207 

related genomes 208 

PICRUSt2 (Douglas et al., 2020) was used to assess the potential to synthesize a functional flagellum 209 

based on the most closely related sequenced genome. Briefly, the representative sequence for each 210 

ASV was inserted into a reference tree containing 20,000 16S rRNA gene sequences from genomes in 211 

the Integrated Microbial Genomes and Microbiomes (IMG/M) database. Next, a genome from the 212 

nearest genome-sequenced taxon for each ASV was identified and used to predict the gene families 213 

present in the ASV. The abundance of each gene family was normalized for each ASV in each sample 214 

based on the 16S rRNA gene copy number of the most closely related genome for each ASV. KEGG 215 

orthologs for each ASV were then assessed for 22 motility-associated genes and ASVs with ≥ 15 of 216 

those genes were predicted to be motile. Using this approach, the genomes had a bimodal distribution, 217 

with the majority of genomes with ≥ 15 or <5 motility-associated genes, supporting the basis for the 218 

cutoff based on ≥ 15 motility-associated genes (Supplementary Table S3). This cutoff was validated 219 

by searching ~100 ASVs assigned to cultivated and validly named taxa with each predicted motility 220 

assignment (motile or non-motile) against our literature searches (Supplementary Table S4), (described 221 

below), which revealed near-perfect (>95 %) agreement between genomically predicted flagellar 222 

motility with observed motility phenotypes as documented in the literature. As a conservative measure, 223 

figures were prepared only considering predictions for ASVs that could be assigned at the family or 224 

genus level.  225 

2.5 Motility prediction based on 16S rRNA gene classification and literature with precise 226 

taxonomy 227 

16S rRNA gene ASVs assigned to the family or genus level were also used as a basis for predicting 228 

motility based on the literature by using a hierarchical search strategy by two separate authors (GS and 229 

BPH). The search strategy consisted of: (i) searching for chapters within Bergey’s Manual of 230 

Systematics of Archaea and Bacteria; (ii) searching the List of Prokaryotic Names with Standing in 231 

Nomenclature (Parte et al., 2020), followed by searching the effective publications describing all 232 

correct child taxa (i.e., avoiding misassigned child taxa); and (iii) for Cyanobacteria, also searching 233 

AlgaeBase. If any species within the taxon were observed to be motile, the type of motility was noted 234 



and was considered feasible for the taxon. Cell morphology and size, where distinctive, were also 235 

noted. For the most abundant ASVs, modes of flagellar motility were also noted, where known. All 236 

information and supporting references are summarized in Supplementary Table S4.  237 

Initial searches revealed 89 % agreement between the two annotators. The 11 % of ASVs that were not 238 

initially agreed upon were reviewed by both annotators to resolve the differences. The resulting data 239 

file (Supplementary Table S4) contains the motility predictions, notes on morphology, and references 240 

for all literature used to support the predictions.  241 

2.6 Metagenomic DNA sequencing, assembly, and generation of MAGs 242 

DNA from benthic sample BW.B4 was also used for shotgun metagenome sequencing. DNA extraction 243 

was performed as detailed by Urdiain et al., 2008. DNA sequencing libraries were prepared using the 244 

Illumina Nextera Flex protocol and libraries were sequenced using a NextSeq 150PE (150 x 2 bp) 245 

instrument. 18 Gbp of raw reads were imported into KBase (Arkin et al., 2018) where they were 246 

trimmed with Trimmomatic (v0.36) using default settings and put through six assembly/binning 247 

pipelines, including two assembly methods and three binning methods. Assembly was conducted with 248 

both metaSPAdes (v3.13.0) (Nurk et al., 2017) and MEGAHIT, (sensitive, v1.2.9) (Li et al., 2015) 249 

using default settings and with a minimum contig length of 2 kb. The assembly size for metaSPAdes 250 

was 27.1 Mbp, and the assembly size of MEGAHIT assembly was 26.6 Mbp (Supplementary Table 251 

S5). The contigs from each assembly were then binned individually, using default settings, with the 252 

following: MetaBAT2 (v1.7 min contig 2.5 kb) (Kang et al., 2019), MaxBin2 (v2.2.4 min contig 2 kb) 253 

(Wu et al., 2016), and CONCOCT (v1.1 min contig 2.5 kb) (Alneberg et al., 2014). The resulting 254 

MAGs from the six assembly/binning pipelines (six combinations consisting of two assembly tools 255 

and three binning tools) were then checked for estimated completeness, contamination, and 256 

heterogeneity using CheckM (v1.018) (Parks et al., 2015) and their phylogenetic position was 257 

estimated using GTDB-tk (v1.1.0) (Chaumeil et al., 2019). MAGs with similar classifications between 258 

the different pipelines were compared with a pairwise average nucleotide identity (ANI) 259 

(http://jspecies.ribohost.com/jspeciesws) and the highest quality MAG from each species was selected 260 

for analysis, provided it was classified as high quality based on >90 % estimated completeness and <5 261 

% estimated contamination (Bowers et al., 2017). The MAG species representatives were also run 262 

through CheckM2, which has improved algorithms for reduced genomes (Chklovski et al., 2022). The 263 

initial CheckM statistics associated with the six assembly/binning pipelines are summarized in 264 

Supplementary Table S5 and CheckM2 statistics are included in the text in the Results section. ANI 265 

results for the MAG groups are shown in Supplementary Table S6. Filtered reads from BW.B4 were 266 

http://jspecies.ribohost.com/jspeciesws


mapped to the selected MAGs using Bowtie 2 (Langmead and Salzberg 2012). Mapped reads were 267 

then used to generate read recruitment plots using RecruitPlotEasy (Gerhardt et al. 2022). 268 

2.7 Prediction of flagellar motility in metagenomic contigs and MAGs 269 

Motility was independently assessed in the metagenomic contigs with and without binning. Unbinned 270 

contigs from the metaSPAdes assembly and the individual MAGs were submitted to RASTtk (v1.073 271 

genetic code 11, domain Bacteria) (Brettin et al., 2015) within KBase for annotation. Unbinned 272 

metagenomic contigs from the SEED functional categories motility and chemotaxis were analyzed 273 

with BLASTN against the GenBank NR database to determine a potential taxonomy by using an E-274 

value of 10-50 (Supplementary Table S7). Annotations for MAGs classified with GTDB-tk were 275 

examined against the 22 core flagellar gene set to assess possible flagellar motility.  276 

2.8 Nucleotide accession numbers 277 

Associated data files are available in the NCBI under BioProject ID PRJNA807719 for 16S rRNA 278 

genes, metagenomic reads, and MAGs.  279 

 280 

3 Results 281 

3.1 In situ and laboratory microscopy 282 

Analysis of three separate samples from Badwater Spring was performed on DHM recordings. These 283 

samples consisted of water, sediment slurry, and mat slurry. We identified the total number of objects 284 

consistent with size and morphology of bacteria or archaea at a single time point for each recording; a 285 

total 698 of these objects were identified throughout all five recordings. The number of these objects 286 

per recording ranged from 26-193 (120.7±82.1, mean ± S.D.) (Supplementary Table S2). 287 

(Supplementary Table S2). This equates roughly to a density of 960 prokaryotic cells per microliter. 288 

Most objects in the field of view were consistent with microbes; occasionally objects with sharpened 289 

edges and high-contrast artifacts were observed that appeared to likely be minerals. Of the 698 putative 290 

prokaryotes, 18 were obviously motile. This analysis estimated ~25 motile prokaryotes per microliter, 291 

or ~2.6 % of the total cells. Two of the 18 motile prokaryotes, both in the sediment slurry sample 292 

(DHM2), were identified as likely having distinct swimming patterns of run-reverse-flick and run-293 

reverse with swimming speeds of 54.8±22.7 μm/s and 61.4±19.7 μm/s, respectively. Images of these 294 

two organisms and their swimming patterns are shown (Fig. 2, 3). Considering all tracked motile 295 

microbes, average swimming speeds ranged from 5.3±3.3 μm/s to 267.5±60.6 μm/s. A histogram of 296 

instantaneous speeds between time points is shown in Fig. S1A, B, C, D. The acquisition frame rate 297 



used seemed well suited to capture turn angles indicative of reversal events for the two motile 298 

organisms shown in Fig. 2 and 3. This is supported by comparing the number of reversal events in Fig. 299 

2A and Fig. 3A with the number of turn angles above 120° in Fig. 2C and D and Fig. 3C and D, 300 

respectively. Previous work indicates that the flick mode manifests as a broad distribution of turns 301 

around 90 degrees (Xie et al., 2011). Here, the flicking mode was determined via qualitative assessment 302 

of the overall tracks, but they rarely exceeded 60°. The qualitative assessment of flicks was done by 303 

considering the angle between two path length vectors on either side of the moments where the turning 304 

occurred. These path lengths would be associated with moments where the particle appears to be 305 

traveling straight for at least several time points prior and post to the turning event. The other 16 motile 306 

prokaryotes did not have clear swimming patterns, likely due to the short duration of the recordings, 307 

hydrodynamics within the sample chambers, complex or incomplete swimming patterns, incomplete 308 

understanding of microbial motility swimming patterns, or a combination of the aforementioned 309 

reasons. 310 

The DHM used can also identify unique prokaryotic morphologies, such as diplococci and tetrads, as 311 

shown (Fig. S2). These unique morphologies can only be discerned when microbes are sufficiently 312 

elongated or above a diameter of ~1 μm. Therefore, the resolution limit of the microscope allowed the 313 

accurate distinction between two general morphology types. One type of particle that makes up ~95 % 314 

of the putative microbes present consists of round and slightly elongated morphologies. At the 315 

resolution provided by this DHM, these particles could be small cocci, bacilli, diplococci, or short 316 

spiral morphologies. Examples are shown in Fig. S2A and Fig. S2C. The other type, comprising the 317 

remaining 5 % of putative microbes present, consisted of elongated morphologies, which could be 318 

streptococci, filaments, or longer spiral morphologies, as seen in Fig. S2B. The two motile microbes 319 

characterized in Fig. 2 and Fig. 3 both appear to be rod-shaped prokaryotes. Videos of the DHM-320 

imaged cells with run-reverse-flick and run-reverse swimming patterns are shown in supplementary 321 

video files S1 and S2. Supplementary video file S3 shows DHM video of a motile eukaryote and several 322 

motile and non-motile prokaryotes. Supplementary video file S4 shows DHM video of motile 323 

prokaryotes and drift across the field of view. Representative examples of putative flagellar motility 324 

and spirochaetes in Badwater Spring samples captured by phase-contrast microscopy are shown in 325 

supplemental video files S5-S7 for reference. 326 

3.2 Prediction of motility based on 16S rRNA genes  327 

16S rRNA gene amplicons and shotgun metagenomic data were used to supplement microscopy to 328 

census the microbial community in Badwater Spring (Fig. S2 and Fig. S4). Two approaches to predict 329 



flagellar motility of the 1,899 ASVs yielded similar results (Fig. 4). The closest genome prediction and 330 

literature prediction approaches predicted flagellar motility in 41.6-60.1 % (51.3±7.2, mean ± S.D.) 331 

and 36.0-48.7 % (42.9±5.1, mean ± S.D.) of the ASVs, respectively. The higher percentage of motile 332 

ASVs using the closest genome prediction approach may be due to the under-reporting of motility in 333 

the literature and to genome-based predictions for taxa that are unavailable in culture. These effects 334 

could be exacerbated for taxa that are poorly studied in the laboratory due to poor culturability.  335 

In the water sample, both approaches predicted the most abundant taxa with flagellar motility within 336 

the Alteromonadaceae, Burkholderiaceae (GKS98 freshwater group), Litoricolaceae (genus 337 

Litoricola), and Rhodobacteraceae, with the latter including the genus Roseivivax and ASVs 338 

unassigned at the genus level. The closest genome approach also predicted motility in the genus 339 

Luminiphilus, although flagellar motility has not been described in the single cultivated strain of this 340 

genus (Spring et al., 2013). On the contrary, flagellar motility was considered feasible by the literature 341 

prediction for Microbacteriaceae because flagellar motility has been observed in Microbacterium and 342 

Curtobacter (Evtushenko and Takeuchi 2006), although abundant planktonic members of this family 343 

have not been reported to be motile (Hahn 2009).  344 

In the benthic samples, both approaches predicted the most abundant motile organisms as Ralstonia, 345 

Tistrella, Calditrichaceae, Desulfobacterium, Desulfovibrio, Spirochaeta, Leptospiraceae, 346 

Sphingomonadaceae, Vermiphilaceae, and the Burkholderia−Caballeronia−Paraburkholderia 347 

complex, the latter of which is indistinguishable via 16S rRNA gene tags. In three of the benthic 348 

samples, BW.B1, BW.B3, and BW.B4, Ralstonia was by far the most abundant motile taxon, as 349 

predicted by one or both prediction approaches. The few differences in the predictions were again 350 

justifiable based on poor culturability and thus differences between genomic data and phenotypic 351 

observations. In BW.B2, the Moduliflexaceae was predicted to be motile based on the closest genome 352 

prediction; however, no members of the family have been cultivated and in situ-studied 353 

Moduliflexaceae in wastewater do not contain flagellar genes (Sekiguchi et al., 2015). Similarly, 354 

Aquicella was predicted to be motile based on the closest genome prediction, but flagella were not 355 

observed in either of the two isolated species (Santos et al., 2003).  356 

3.3 Prediction of motility genotype based on metagenomic contigs and MAGs 357 

Metagenomic contigs from the BW.B4 metagenome were annotated using RAST and those within 358 

“motility” or “chemotaxis” SEED categories were taxonomically assigned using BlastN. All contigs 359 

containing genes for flagellar biosynthesis or chemotaxis were assigned to the genus Ralstonia (53 360 



genes) or had low-confidence taxonomic assignments (e-value > 10-50; 7 genes), consistent with the 361 

high abundance of Ralstonia in the samples (Fig. 5a). Together, these genes account for the synthesis 362 

of MS, P, and L rings, MotA/B, hook, filament, and cap, and multiple methyl-accepting chemotaxis 363 

systems (Fig. 5b). Contigs containing the twitching motility genes pilTGHJ were also annotated for 364 

Ralstonia, consistent with its known twitching motility phenotype. Several contigs with chemotaxis 365 

(cheR/B), flagellar hook length (fliK), or gliding motility (e.g., mglA) genes with low-confidence 366 

taxonomic assignments were assigned to various members of the Chloroflexi likely deriving from 367 

Candidatus Chlorothrix. 368 

Separately, the three MAGs assembled from the BW.B4 metagenome were annotated using RAST. A 369 

high-quality MAG [CheckM2 estimated completeness 99.98 % and contamination 2.16 %] assigned 370 

to Ralstonia pickettii_B per GTDB-tk was sequenced at 7x coverage and contained a full complement 371 

of flagellar genes and twitching motility genes (Supplementary Table S4) that corresponded 1:1 with 372 

Ralstonia-assigned genes from the analysis of unbinned metagenomic contigs. A high-quality MAG 373 

[CheckM2 estimated completeness 96.86 % and contamination 0.77 %] sequenced at 123x coverage 374 

was assigned to Chloroflexaceae, most likely representing Ca. Chlorothrix, and was not predicted to 375 

have flagellar motility, but was predicted to be capable of gliding motility via the same genes identified 376 

in the unbinned contig analysis. A MAG assigned to the Patescibacteria [CheckM2 estimated 377 

completeness 91.94 % and contamination 0.18 %] was sequenced at 5x coverage and was not predicted 378 

to be motile by any mechanism. At 95 % nucleotide identity, the percent of reads mapped to the 379 

Ralstonia, Chloroflexaceae, and Patescibacteria MAGs was 0.3 %, 3.4 % and 0.1 %. Recruitment 380 

plots for the MAGs are shown in Supplementary Figure S4, S5, and S6 respectively. 381 

4 Discussion 382 

To say that it is a challenge to detect microbial life on another planet is an understatement. This chal-383 

lenge may very well follow a similar trajectory to how microorganisms were first detected on Earth, 384 

though it is complicated by long spans of time between missions, limited sample access, and unknown 385 

biochemistry. On Earth, the discovery of microbes first took place by optical observation via the light 386 

microscope, followed by laboratory cultivation and, recently, molecular methods (Borgosian & 387 

Bourneuf, 2001; Emerson et al., 2017; Leeuwenhoek, 1677). The presence of directed motion is a 388 

compelling biosignature that, combined with other methods such as chemical analysis by mass spec-389 

trometry, can provide unambiguous evidence not just of life, but of something alive, independent of 390 

evolutionary history or biochemistry. 391 



The observation of motile microorganisms in most environments here on Earth supports the case that 392 

microbial motility is a compelling biosignature target for future planetary exploration missions. In 393 

every environment we have studied (Rogers et al., 2010; Kühn et al., 2014; Jericho et al., 2010; Clarke 394 

et al., 2010; Snyder et al., 2022), motile microorganisms are always present, albeit sometimes as a 395 

small fraction. Here we combined DHM and genetic data to characterize the microbial community 396 

inhabiting Badwater Spring and brine pool, located near the lowest elevation point in North America 397 

and the highest ambient temperatures measured on Earth. We were able to obtain both phenotypic and 398 

genotypic data on this community and demonstrate a proof of concept of the use of DHM for life 399 

detection.  400 

In this environment, DHM identified a small minority of motile cells in situ, only ~2.6 % of the total 401 

cells, similar to the lowest estimates of motility in a coastal marine system (Grossart et al., 2001). No 402 

evidence of other modes of motility (e.g., twitching or gliding) were noted, although they require solid 403 

surfaces and are more difficult to unambiguously distinguish from Brownian motion or directional 404 

movement due to hydrodynamic flow compared with flagellar motility (Henrichsen, 1972). The ~2.6 405 

% of swimming cells identified by the DHM is a lower boundary for the actual percent of swimming 406 

cells in situ due to our limited ability to accurately distinguish living prokaryotic cells from dead cells 407 

and abiotic particles, which would lead us to over count the total number of cells in situ. This gap could 408 

be bridged in future studies by correcting total DHM particle counts with data from fluorescence mi-409 

croscopy or fluorescence-activated cell sorting that include viability estimates based on live/dead 410 

stains.  411 

We also performed one of the first comparisons of observed in situ motility with genetic indicators of 412 

flagella. Biosynthesis of complexes required for flagellar motility and their regulation requires many 413 

genes that are best characterized for Gram-negative bacteria such as Escherichia coli and Salmonella 414 

typhimurium (Soutourina and Bertin, 2003). Interestingly, we found that there was a clear separation 415 

of genomes into those with fewer than five flagellar motility-related genes versus those with more than 416 

15. Despite this dichotomy, finding literature confirmation of motility in the identified families/genera 417 

that were predicted to be motile based on genomic databases was not always consistent, likely due to 418 

limitations in genomic coverage and cultivability. The closest genome and literature-predicted ap-419 

proaches used here estimated flagellar motility in 36.0-60.1 % of the total ASVs. Adjusted for abun-420 

dance, these account for 14.2-57.1 % of the cells present, which is considerably higher than the ~2.6 421 

% of motile microbes identified by DHM in situ.  422 



The ability to predict genotypes or phenotypes from amplicon sequence data is notoriously difficult 423 

due to the incomplete genomic coverage across the prokaryotic tree of life, the incomplete and uneven 424 

distribution of cultivated and phenotypically characterized microorganisms, and the dynamic nature of 425 

microbial pangenomes. The closest-genome approach employed PICRUSt2 and resulted in the highest 426 

estimates of flagellar motility genotypes, with abundance-weighted estimates of 23 to 57 % with fla-427 

gellar motility genotypes. In comparison, our literature-based approach yielded abundance-weighted 428 

estimates of flagellar motility phenotypes of 14.1 to 29.3 %. It is worthwhile to note that PICRUSt2 429 

does not rely on taxonomic assignments because ASVs are placed onto a phylogeny, whereas our lit-430 

erature-based approach did rely on taxonomic assignments called by Silva. Thus, our literature-based 431 

approach could suffer somewhat by lack of accuracy of taxonomic assignments, although this is likely 432 

to be only a minor problem because we only considered high-confidence taxonomic assignments to 433 

families that contain cultivated organisms. Additional factors that could lead to differences between 434 

the PICRUSt2 and literature-based estimates include: i) PICRUSt2 adjusts for rRNA copy number 435 

whereas our literature-based approach did not; ii) PICRUSt2 only considers genotypes whereas our 436 

literature-based approach only considered phenotypes; and iii) PICRUSt2 only considers the single 437 

most closely related genome whereas our literature-based approach considered motility phenotypes 438 

feasible if observed in any member of the family. Ultimately, the ability to predict traits from ASV 439 

data derived from diverse and poorly characterized natural microbial communities remains a formida-440 

ble task. 441 

A more definitive but less sensitive approach to identify genotypes is through shotgun metagenomics, 442 

particularly for traits with well-characterized systems like flagellar motility. Here, all flagellar genes 443 

in a single shotgun metagenome from benthic sample BW.B4 mapped to the genus Ralstonia. These 444 

same genes were also contained within a single high-quality MAG encoding a full flagellar gene clus-445 

ter. However, reads mapping to this MAG accounted for only 0.3 % of the total quality-filtered reads, 446 

which is slightly lower than ~2.6 % of motile microbes observed by DHM. Ultimately, the accuracy 447 

of any prediction of in situ motility based on genomic potential is prone to overestimation because 448 

motility is expensive and therefore tightly regulated. In E. coli, the expression of flagellar motility is 449 

complex and may occur under nutrient-rich or nutrient-poor conditions (Honda et al., 2022; Thomason 450 

et al., 2012); on the other hand, swarming motility phenotypes are only expressed under high-nutrient 451 

conditions in many microorganisms (Kearns, 2010). These responses pose an interesting opportunity 452 

to increase the likelihood of observing motile organisms by altering the local environment to stimulate 453 

motility, which may prove critical for the success of future life-detection missions. Stimuli such as 454 



heat, light, and chemicals are good candidates for such missions because terran microorganisms show 455 

tactic responses to these physical and chemical factors. Stimuli deployed in such a manner may be non-456 

Earth-centric. For example, in the case of water-based worlds, a panel of L- and D-amino acids could 457 

be used to try to stimulate motility and identify possible taxis behaviors because extraterrestrial bio-458 

chemistry would be expected to be chiral as is Earth life (Sun et al., 2009; Zhang and Sun 2014; Zhang 459 

et al., 2021).  460 

Future work will develop onboard ecological experiments designed to relate microbial motility to the 461 

natural environment and ecology. This will involve development of specialized sample chambers for 462 

delivery of stimuli and identification of taxis and could be coupled with metagenomics, as done here, 463 

or with metatranscriptomics or metaproteomics to provide tighter links between motility phenotypes 464 

identified by the DHM to the identity of specific organisms and motility systems. On Earth, DHM has 465 

been used to study chemotaxis, biofilm formation, and predator/prey interactions (Wang et al., 2020; 466 

Yuan et al., 2021; Qi et al., 2017). The development of experiments to observe complex microbial 467 

behaviors on other worlds would provide not only biosignatures, but possible insights into the biology 468 

of the organisms discovered. Ultimately, because this DHM instrument can identify submicron motile 469 

organisms throughout the volume of view of the instrument without sample preparation or fragile mov-470 

ing parts, we contend that the large-scale deployment of DHMs would be an excellent strategy to detect 471 

extant microbial life in any aqueous setting, particularly on water worlds. Such devices could be pro-472 

grammed to record and send video feeds when mathematically defined (Rouzie et al., 2021) motile 473 

organisms are detected. This technology should be advanced and benchmarked in aquatic environments 474 

on Earth as a prelude to exploration of aquatic microorganisms across the solar system.  475 
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Figure Legends 714 

FIG 1. DHM instrument, Badwater Spring, and sampling locations. (A) Diagram showing the main 715 

optical components of the DHM instrument (i.e., light source, collimating lens, sample, objectives, 716 

relay lens, and camera). (B) Photograph of the field instrument with the internal components exposed 717 

and labeled. When the front plate is properly secured this case provides durable waterproof protection 718 

to the DHM, electronics, and computer. (C) Photograph of Dr. Jay Nadeau next to the field instrument 719 

recording data of samples from Badwater Spring. (D) Location of Badwater Spring near the lowest 720 

point in North America, Death Valley National Park. (E) Sampling locations within Badwater Spring. 721 

BW.Water denotes the single water sample collected; other samples denote locations from which 722 

benthic samples were collected. DHM was conducted on samples from the area denoted BW.B3. Pool 723 

width, ~5 m. (F) Photo of typical benthic mat with fluffy orange material taken near the BW.B1 sample 724 

location. Width of view in foreground ~20 cm. 725 

 726 

FIG 2. Cell with run-reverse-flick flagellar motility. (A) Tracks based on in situ DHM minimum pixel 727 

projections over several z-planes around the planes where the microbe was located over a time series. 728 

The track shows the microbe at each frame all superimposed onto one image. In (A-C) magenta squares 729 

indicate likely reversal events while green circles indicate likely flick events. (B) 3-dimensional 730 

projection of the motile cell. (C) Turn angle frequencies over a time series, showing five distinct 731 

reversal events and possible linked flicks. (D) Histogram of the turn angles. Brackets and labels 732 

indicate the range within which reversal events and flicks occur on the histogram plot. 733 

 734 

FIG 3.  Cell with run-reverse motility. (A) Tracks based on in situ DHM minimum pixel projections 735 

over several z-planes around the planes where the microbe was located over a time series. The track 736 

shows the microbe at each frame all superimposed onto one image. In (A, C) magenta squares indicate 737 

likely reversal events. (B) 3-dimensional projection of the motile cell. Magenta squares indicating 738 

reversal events were excluded to avoid overcrowded data. (C) Turn angle frequencies over a time 739 

series, showing eighteen distinct reversal events. (D) Histogram of the turn angles. Bracket and label 740 

indicate the range within which reversal events occur on the histogram plot.  741 

 742 

FIG 4. Flagellar motility predictions based on 16S rRNA gene data. (A) Closest Genome Prediction 743 

was based on matching 16S rRNA genes to the most closely related annotated genome via PICRUSt2. 744 



(B) Literature Prediction was based on matching the 16S rRNA gene taxonomy to reports of motility 745 

phenotypes in the literature. Pie charts denote the percentage of predicted motile and non-motile taxa. 746 

Bars denote abundance-weighted taxonomic assignments for motile taxa.  747 

 748 

FIG 5. Motility predictions based on full metagenome and MAG approaches. (A) Motility genes 749 

distributed at the genus level found within the metagenome. Out of 63 motility genes annotated by 750 

RAST, 53 were assigned to Ralstonia by BLAST (plum), six were assigned to Chloroflexi (green), and 751 

four were from other groups (grey). (B) A schematic of a bacterial flagellum. Flagellar subunits, 752 

chaperones, and regulators annotated by RAST from the GTDB-tk assigned to the Ralstonia MAG are 753 

highlighted in purple.  754 


