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Abstract: We explore the e↵ective field theory of a vector field X
µ that has a Stückelberg

mass. The absence of a gauge symmetry for X
µ implies Lorentz-invariant operators are

constructed directly from X
µ. Beyond the kinetic and mass terms, allowed interactions at

the renormalizable level include XµX
µ
H

†
H, (XµX

µ)2, and Xµj
µ, where jµ is a global current

of the SM or of a hidden sector. We show that all of these interactions lead to scattering

amplitudes that grow with powers of
p
s/mX , except for the case of Xµj

µ where j
µ is a

nonanomalous global current. The latter is well-known when X is identified as a dark photon

coupled to the electromagnetic current, often written equivalently as kinetic mixing between

X and the photon. The power counting for the energy growth of the scattering amplitudes is

facilitated by isolating the longitudinal enhancement. We examine in detail the interaction

with an anomalous global vector current Xµj
µ
anom, carefully isolating the finite contribution to

the fermion triangle diagram. We calculate the longitudinally-enhanced observables Z ! X�

(when mX < mZ), ff̄ ! X�, and Z� ! Z� when X couples to the baryon number current.

Introducing a “fake” gauge-invariance by writing X
µ = A

µ
� @

µ
⇡/mX , the would-be gauge

anomaly associated with Aµj
µ
anom is canceled by j

µ
anom@µ⇡/mX ; this is the four-dimensional

Green–Schwarz anomaly-cancellation mechanism at work. Our analysis suggests there is

no “free lunch” by appealing to Stückelberg for the mass of a vector field: the price paid

for avoiding a dark Higgs sector (with its fine tunings and additional dark Higgs boson

interactions) is replaced by the non-generic set of interactions that the Stückelberg vector

field must have to avoid amplitudes that grow with energy.
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1 Introduction

New massive vector bosons are ubiquitous in beyond the Standard Model (SM) physics.

At masses large compared with collider energies, they provide UV completions of higher

dimensional operators [1]. At intermediate masses, of order collider energies, they yield

resonances that are targeted by many searches [2]. At somewhat smaller masses, they can be

produced, decay, and be observed in high intensity experiments [3–5], typically when coupled

to charged leptons (for reviews, see [6, 7]). Also at smaller masses, they can act as mediators

to permit light dark matter to interact with the SM [8–10], underpinning the viability of a

large class of light dark matter detection experiments [7]. At exceptionally small masses,

vector bosons can even serve as dark matter itself [11–17].

One of the attractions of a single new massive vector boson is that a simple model [18]

exists: the massive U(1) dark photon A
µ (see [19] for a review),

Ldark � = �
1

4
FA,µ⌫F

µ⌫

A
+

1

2
m

2
XAµA

µ
� ✏FA,µ⌫F

µ⌫

Y
, (1.1)

that involves just two parametersmX and ✏, respectively the mass of the U(1) dark photon and

its kinetic mixing to hypercharge. The simplicity of this extension hinges on the existence of

a Stückelberg mass (see [20] for a review) for the dark photon. In particular, by not specifying

a Higgs mechanism for the dark photon, one is able to avoid the consideration of additional

interactions of the dark Higgs field �X . In particular, one does not need to address the new

fine tunings from the “dark hierarchy problem” that are inevitable with a dark Higgs field

or how to avoid the respective destabilization of the dark and/or SM Higgs sectors through

renormalizable interactions such as �†
X
�XH

†
H.

One of the reasons the dark photon Lagrangian seems simple is how the longitudinal

mode is packaged in A
µ. We can introduce the longitudinal mode ⇡ such that, under a gauge

transformation A
µ
! A

µ+@µ↵(x), the longitudinal mode shifts ⇡ ! ⇡+mX↵(x). Using the

equation of motion (EOM) for the hypercharge gauge boson, @µF
µ⌫

Y
= gY j

⌫

Y
in terms of the

SM hypercharge current j⌫
Y
, the dark photon Lagrangian can be rewritten as:

Ldark � = �
1

4
FX,µ⌫F

µ⌫

X
+

1

2
m

2
XXµX

µ
� ✏gY Xµj

µ

Y
(1.2)

in terms of Xµ
⌘ A

µ

X
� @

µ
⇡/mX – the Stückelberg vector field – a vector boson without a

corresponding U(1) gauge invariance. The lack of gauge invariance is obvious because X
µ

remains invariant under the simultaneous gauge transformations of Aµ and ⇡. This form of

the dark photon Lagrangian makes it clear that a Lagrangian with a Stückelberg mass for a

vector field is best expressed in terms of Xµ; the use of the field strength F
µ⌫

X
for the kinetic

term (or kinetic mixing with the SM) has nothing to do with gauge invariance, and instead

simply ensures there are only three propagating degrees of freedom (DOF) in X
µ.1

1
Contrast this with a spin-one gauge field, such as hypercharge Bµ

, which only appears in the field strength

Fµ⌫
B and covariant derivatives.
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This naturally leads to the question of the e↵ective field theory involving a Stückelberg

vector field X
µ — what are all possible interactions of Xµ, and what are their consequences?

The goal of this paper is to show that the Lagrangian eq. (1.2) is a special case of a more

general set of interactions for X
µ. For instance, already at the renormalizable level we can

write (XµX
µ)2, XµX

µ
H

†
H, and Xµj

µ where j
µ is a global vector or axial current that may

or may not be (globally) anomaly-free.2 As we will see, most of these interactions have

couplings of the longitudinal mode with itself or the SM fields, and thus lead to scattering

amplitudes that grow with powers
p
s/mX . This is analogous to the energy growth that

arise in a Higgsless SM [22]. The range of validity of the e↵ective theory including X in

the spectrum relies on taking the coe�cients of longitudinally-enhanced interactions to be

(sometimes exceptionally) small. Only if there are exactly zero couplings of the longitudinal

mode with itself or with the SM can the cuto↵ scale of the EFT be taken arbitrarily large

relative to the mass of the Stückelberg vector field.

There is a host of related literature that we will only briefly mention. Numerous papers

have studied theories with a Stückelberg vector field in the context of field theory or string

theory [20, 21, 23–29]. There is also a huge literature on anomalous U(1) symmetries and their

implications for theory or phenomenology [27, 30–47]. The connections between anomalous

U(1) symmetries and the Green–Schwarz anomaly cancellation mechanism have also been

elucidated [27, 31, 33, 34, 41, 48]. While we have certainly benefited from this literature

and we do not claim to be the first or last word on this subject, our focus on a theory with

a Stückelberg mass for X
µ, a vector field without a corresponding gauge symmetry, lays a

foundation for a systematic approach to analyze the e↵ective field theory of Xµ in terms of

its leading self-interactions as well as its interactions with the SM.

The organization of this paper is as follows. First, in sec. 2, we review the Stückelberg

Lagrangian, (fake) gauge fixing, BRST, the external physical states, the propagator, and the

BRST current. In sec. 3 we consider tree-level interactions of the Stückelberg vector field

X
µ. We demonstrate that self-couplings as well as tree-level couplings of the longitudinal

mode with the SM lead to amplitudes that grow with energy above the mass of the Stück-

elberg vector field. While these interactions are not radiatively generated by a dark photon

Lagrangian that consists solely of a mass term and a coupling to a conserved vector current,

there are no symmetries that forbid these terms. Consequently, the dark photon Lagrangian

appears rather peculiar. In particular, we show that these interactions can be generated by

a dark Higgs mechanism for a dark U(1) gauge theory, and like the Higgs mechanism of the

SM, the dark Higgs boson renders the amplitudes finite above the dark Higgs mass. In sec. 4,

we consider the coupling of a Stückelberg vector field to an anomalous vector current. This

is motivated by Dror et al. [40], who showed that should an anomalous symmetry of the SM

(e.g., baryon number) be gauged, the couplings of the longitudinal mode lead to longitudinal

enhancements of the amplitudes involving the anomalous fermion triangle diagram. These

2
The phenomenological implications of the quartic interaction for the electromagnetic field was explored in

[21].
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longitudinal enhancements are critical in determining the viable range of parameter space in

the model [38]. The Stückelberg vector field theory would appear to be special, since there

is no gauge symmetry, and thus, no gauge anomalies. Nevertheless, we carefully consider

the one-loop triangle diagrams that arise because of an anomalous global symmetry of the

SM. We find that the Stückelberg vector field has couplings of its longitudinal mode to the

divergence of the anomalous global current. The observable predictions of a Stückelberg vec-

tor field coupled to, say, global baryon number of the SM are identical to the case in which

baryon number is gauged, so long as the “anomalons” needed to cancel the gauge anomaly

are taken to be heavy. In sec. 5, we demonstrate the importance of the one-loop couplings

of the longitudinal part of Xµ to an anomalous global current for several physical processes,

including Z ! X� and ff̄ ! X�, and Z� ! Z�, when X couples to baryon number. Finally,

in sec. 6, we discuss the implications of our results. The appendices contain technical details

of calculations relevant for results in sec. 4 and sec. 5.

2 Review of quantization of massive vector fields

2.1 The Lagrangian and propagator for a massive spin-one field

A massive spin-one field X
µ has three propagating degrees of freedom (DOF). We see this

by decomposing the four components of the four-vector Xµ into the 1 � 3, or spin-zero and

spin-one, representations of the Lorentz group. The spin-zero component leads to a negative

energy density, and can be removed as a propagating DOF in the theory by imposing the

Lorenz condition

@⌫X
⌫ = 0 , (2.1)

together with writing the kinetic term for the four-vector as a function of the field-strength

tensor F
µ⌫

X
= @

µ
X
⌫
� @

⌫
X

µ [49]. The above two requirements are achieved by the Proca

Lagrangian

LP = �
1

4
FX,µ⌫F

µ⌫

X
+

1

2
m

2
XXµX

µ
, (2.2)

which yields the EOM and its derivative

@µF
µ⌫

X
+m

2
XX

⌫ = 0 ,

m
2
X@⌫X

⌫ = 0 .
(2.3)

For mX 6= 0, the Lorenz condition follows from the second line and therefore is not an

independent constraint. The Proca Lagrangian for X
µ is not gauge invariant: there is no

U(1) symmetry associated with X
µ since there is no redundancy in its description—all three

of its propagating DOF are physical.

The propagator for X
µ can be derived directly from inverting the Proca Lagrangian,

which is textbook material [49, 50]

hX
µ(p)X⌫(�p)i =

�i

p2 �m
2
X

✓
g
µ⌫
�

p
µ
p
⌫

m
2
X

◆
. (2.4)
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The propagator for Xµ is equivalent to the propagator of a Higgsed, massive U(1) theory in

unitary gauge; however, we emphasize that the result above is not in unitary gauge—there is

no gauge invariance. This also implies that the sum of the polarization states for an on-shell

X
µ coincides with that of a massive U(1) theory, i.e.,

X

�

✏
µ

�
(p)✏⌫

�

⇤(p) = �

✓
g
µ⌫
�

p
µ
p
⌫

m
2
X

◆
. (2.5)

This explicitly demonstrates the counting of the on-shell physical DOF: Xµ has three physical

polarizations.

2.2 Stückelberg formalism: introducing a fake gauge symmetry

The Stückelberg formalism expresses

X
µ
⌘ A

µ
�
@
µ
⇡

mX

, (2.6)

where A
µ is a “fake” U(1) gauge field and ⇡ is a scalar field that also transforms under this

“fake” U(1) gauge invariance:

A
µ
! A

µ + @
µ
↵(x) ,

⇡ ! ⇡ +mX↵(x) ,
(2.7)

where ↵(x) is the gauge parameter. The Proca Lagrangian becomes

Lg = �
1

4
FA,µ⌫F

µ⌫

A
+

1

2
m

2
X

✓
Aµ �

@µ⇡

mX

◆2

, (2.8)

purely in terms of the “fake” gauge field with its its field strength given by F
µ⌫

A
. While this

construction introduces one additional DOF ⇡, the “fake” U(1) gauge invariance removes one

DOF, leaving the same three of the massive vector field in the original Proca Lagrangian

[51, 52].

We use the term “fake” to describe the gauge invariance of Aµ since the physical conse-

quences of Xµ and its interactions can be determined entirely in terms of the vector-field X
µ

directly. The identification X
µ
⌘ A

µ
� @

µ
⇡/mX is exact, in the sense that renormalization

does not disrupt the size of the coe�cient of @µ⇡/mX relative to A
µ. This follows from

ensuring that the gauge transformations of Aµ and ⇡ leave the combination A
µ
� @

µ
⇡/mX

invariant.

The purpose of introducing the “fake” gauge invariance is to more easily uncover the

role of the longitudinal polarization of Xµ, namely X
µ

L
, which for a suitable choice of gauge,

can be fully captured by the interactions of the the scalar field ⇡. Hence, we will refer to

⇡ as the “longitudinal component” synonymously with X
µ

L
, though we emphasize that this

identification is only strictly true in Landau gauge, as we discuss below.
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2.3 BRST and R⇠ gauge fixing

Before we discuss the gauge fixing of eq. (2.8) and applying the BRST to the Stückel-

berg formalism, we briefly review the general gauge-fixing and quantization procedure using

BRST [53, 54]. The BRST transformations of the fields are equivalent to gauge transforma-

tions like those in eq. (2.7) with infinitesimal gauge parameter

↵(x) = ✓ !(x) , (2.9)

where ✓ is an infinitesimal Grassmann constant and ! is a real, Grassmann scalar field (ghost).

For the Stückelberg theory, we have the following BRST transformations of the fields:

�✓A = ✓ @! ,

�✓⇡ = mX✓ ! ,

�✓b = 0 ,

�✓! = 0 ,

�✓!
⇤ = ✓b ,

(2.10)

where !⇤ is a real, Grassmann scalar field (antighost) and b is a Nakanishi–Lautrup auxiliary

field [55, 56]. The action of a BRST operator s on a field ' is defined in terms of the

infinitesimal BRST transformation of a field ' by

�✓' = ✓ s' . (2.11)

For a product of fields,

�✓('1'2) = (�✓'1)'2 + '1(�✓'2) = ✓ [(s'1)'2 ± '1(s'2)] , (2.12)

where ± for whether '1 is bosonic or fermionic; i.e., s can be viewed as a fermionic operator.

Using the transformations in eq. (2.10), the gauge-fixing part of the Lagrangian can be written

as [23]

Lgf = s


!
⇤
✓
G +

⇠

2
b

◆�
= �!⇤ (sG) + bG +

⇠

2
b
2
, (2.13)

where G[A,⇡] is a gauge-fixing functional. Since b is an auxiliary field and does not propagate,

we can eliminate it using its EOM, yielding an alternate form for eq. (2.13),

Lgf = �!
⇤ (sG)�

1

2⇠
G
2
. (2.14)

The R⇠-like class of gauge-fixing choices is obtained by setting

G⇠ = @µA
µ + ⇠mX⇡ . (2.15)
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The general R⇠-gauge Lagrangian is the sum of eq. (2.8) and the gauge-fixing terms,

L⇠ = Lg + Lgf |G⇠

= �
1

4
FA,µ⌫F

µ⌫

A
+

1

2
m

2
X

✓
Aµ �

@µ⇡

mX

◆2

�
1

2⇠
(@µA

µ + ⇠mX⇡)
2
� !

⇤(@2 + ⇠m
2
X)!

= �
1

4
FA,µ⌫F

µ⌫

A
�

1

2⇠
(@µA

µ)2 +
1

2
mXAµA

µ +
1

2
@µ⇡@

µ
⇡ �

1

2
⇠m

2
X⇡

2
� !

⇤(@2 + ⇠m
2
X)! ,

(2.16)

which explicitly exhibits the decoupling of Aµ
, @

µ
⇡.3

From this, we see that the Proca Lagrangian corresponds to the choice ⇠ ! 0, where

the second term in the last line of eq. (2.16) decouples and ⇡ becomes a free, massless scalar

field. The Stückelberg Lagrangian is obtained from the choice of Stückelberg–Feynman gauge

⇠ = 1,

LSt = �
1

4
FA,µ⌫F

µ⌫

A
+

1

2
m

2
X

✓
Aµ �

@µ⇡

mX

◆2

�
1

2
(@µAµ +mX⇡)

2
. (2.17)

Note that the first two terms in eq. (2.17) are unchanged under the gauge transformation

eq. (2.7); however, invariance of the last term requires ⇡ to obey the EOM for a massive

scalar field, �
⇤+m

2
X

�
⇡ = 0 . (2.18)

2.4 Propagator in R⇠ gauge

The R⇠ gauge fixing removes the mixing terms of the form A
µ
@µ⇡ in the original Stückelberg

Lagrangian of eq. (2.17), leaving just the gauge-dependent two-point functions for Aµ and ⇡.

These have the standard R⇠-gauge forms:

hA
µ(p)A⌫(�p)i =

�i

p2 �m
2
X

✓
g
µ⌫
�

p
µ
p
⌫

p2 � ⇠m2
X

(1� ⇠)

◆
,

h⇡(p)⇡(�p)i =
i

p2 � ⇠m2
X

.

(2.19)

Using eq. (2.10) and the decomposition in eq. (2.6), the BRST transformation of Xµ is

�✓X
µ = �✓A

µ
�

1

mX

@
µ
�✓⇡ = ✓@

µ
! � @

µ (✓!) = 0 . (2.20)

3
Using R⇠ gauge fixing, the ghosts decouple in Abelian gauge theories because the ghost kinetic term

involves only partial derivatives (in Yang–Mills theories, these become covariant derivatives in the adjoint

representation). Hence, we omit them from the Lagrangian for the remainder of the paper.
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X
µ is annihilated by the BRST operator and corresponds to a physical external state. From

eq. (2.19), the X
µ two-point function can be reconstructed as

hX
µ(p)X⌫(�p)i = hAµ(p)A⌫(�p)i+

1

m
2
X

(ipµ)(�ip⌫)h⇡(p)⇡(�p)i

=
�i

p2 �m
2
X

✓
g
µ⌫
� (1� ⇠)

p
µ
p
⌫

p2 � ⇠m2
X

◆
+

i

m
2
X

p
µ
p
⌫

p2 � ⇠m2
X

=
�i

p2 �m
2
X

✓
g
µ⌫
�

p
µ
p
⌫

m
2
X

◆
,

(2.21)

which agrees with eq. (2.4). The absence of ⇠-dependence demonstrates that the propagator

for the physical state X
µ is, unsurprisingly, itself independent of the fake gauge symmetry.

2.5 Current conservation

The decomposition X
µ
⌘ A

µ
� @

µ
⇡/mX allows us to study Stückelberg theories using tech-

niques familiar from gauge theories. In fact, the fake gauge field A
µ has the same form as

that of a massive gauge field arising from a Higgsed U(1) symmetry that is spontaneously

broken with mass mX = gv/2. However, for a Stückelberg vector field, we know that only

the combination A
µ
� @

µ
⇡/mX is physical and can represent an external state, while for a

gauge theory, the external state is of course just Aµ. How do we reconcile this di↵erence?

To understand when there is a distinction between the Stückelberg vector field and a

spontaneously broken massive gauge field A
µ, we examine the BRST current,

J
µ

BRST =
X

field '

�L

�✓@µ'
�✓' . (2.22)

To keep things simple, consider a scenario in which the spin-one fields have interactions with

a fermion current, i.e., g (Aµ � @µ⇡/mX)jµferm ⌘ gXµj
µ

ferm for a Stückelberg vector field and

gAµj
µ

ferm for a spontaneously broken, gauged U(1) vector field.

In the case where A
µ is a gauge field that is spontaneously broken, it is straightforward

to show that the divergence of the BRST current is

@µJ
µ

BRST = �! @µj
µ

ferm (for a massive gauge field A
µ) . (2.23)

Therefore, a conserved BRST charge requires the divergence of the fermion current to vanish.

In contrast, when the same BRST transformations are applied to the Stückelberg vector

field, we obtain

@µJ
µ

BRST = 0 (for a Stückelberg vector field X
µ = A

µ
� @

µ
⇡/mX) . (2.24)

A conserved BRST charge can always be formed since the divergence of the BRST current

vanishes independently of the conservation of the fermion current.

Once we enforce a conserved current (in what follows, a fermionic current), under the

decomposition X
µ = A

µ
� @

µ
⇡/mX the scalar field ⇡ decouples from this interaction leaving

X
µ and A

µ indistinguishable.
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3 Tree-level Couplings of a Stückelberg Vector Field

We now turn to considering the tree-level interactions of a Stückelberg vector field X
µ. As

we have emphasized, Xµ does not transform under a gauge symmetry. Hence, interactions

in the e↵ective theory will be built from powers of Xµ. The goal in this section is to enu-

merate the possible renormalizable tree-level interactions of Xµ and identify those that lead

to scattering amplitudes that grow with powers of
p
s/mX . These amplitudes arise from

couplings of the longitudinal mode X
µ

L
. The absence of a (gauge) symmetry under which X

µ

transforms implies that its mass does not signal spontaneous symmetry breaking (SSB) nor

the existence of Goldstone bosons. Nevertheless, the longitudinal mode, Xµ

L
, is physical. We

now state the longitudinal equivalence theorem: the leading interactions of the longitudinal

mode can be characterized either by working directly with X
µ

L
, or by using the fake gauge

invariance of eq. (2.7), choosing Landau gauge, and then associating X
µ

L
with the interactions

of the derivatively coupled longitudinal scalar field ⇡. This is the Stückelberg analogue of the

Goldstone boson equivalence theorem.

3.1 The generalized Ward identity and the longitudinal equivalence theorem

In a theory with an exact U(1) gauge symmetry, current conservation leads to the Ward

identity

k
µ
Mµ = 0 (3.1)

for an arbitrary amplitude M in momentum space. This implies that the longitudinal po-

larization of an external on-shell gauge boson decouples. For a spontaneously broken U(1)

gauge theory, in which a gauge field A
µ acquires a mass mX , the longitudinal polarization

of an external on-shell gauge boson has, of course, physical couplings. Again using current

conservation, a generalized Ward identity

k
µ

mX

Mµ(A) = iM(G0; ⇠ = 0) (3.2)

can be constructed that relates the momentum-contracted amplitude for an on-shell external

gauge boson A
µ with momentum k

µ with the same amplitude, M(G0; ⇠ = 0), for the Gold-

stone boson in Landau gauge. In the limit of large momentum |~k| � mX , ✏µ
L
(A) ' k

µ
/mX ,

giving the Goldstone boson equivalence theorem

✏
µ

L
(A)Mµ(A)

|~k|�mX
�! iM(G0; ⇠ = 0) (3.3)

for a single on-shell, longitudinally polarized gauge boson.

For the massive Stückelberg vector boson, there is no (generalized or other) Ward identity

since there is no gauge symmetry and thus no conserved local current associated with X
µ.

This means

k
µ

mX

Mµ(X) 6= 0 . (3.4)

– 10 –



At large momentum |~k|� mX , ✏µ
L
(X) ' k

µ
/mX , and so this is simply a statement that the

longitudinal mode of a Stückelberg vector field couples with a strength of kµ/mX .

What if we follow sec. 2.2 and sec. 2.3 and decompose the Stückelberg vector field into a

fake gauge boson A
µ and scalar field ⇡ and use the fake gauge invariance and R⇠ gauge fixing

to remove the A
µ
@µ⇡ mixing terms? Here, the gauge redundancy of Aµ and ⇡ implies that

there is no gauge-independent identification of Xµ

L
with A

µ

L
and/or ⇡. Consider the two-point

functions eq. (2.19) and eq. (2.21). As we have discussed, the sum of the polarizations of

X
µ is gauge independent. We can match the sum of the polarizations of Xµ to that of a

massive gauge field A
µ by going to unitary gauge, ⇠ !1. In unitary gauge, ⇡ does not play

a dynamical role because m
2
⇡ = ⇠m

2
X
! 1, and so ✏µ

L
(X) = ✏

µ

L
(A; ⇠ ! 1). By contrast, in

Landau gauge (⇠ = 0) the sum of the polarizations of the two-point function of Aµ is purely

transverse, matching that of a massless gauge theory that has only two propagating DOF.

Hence, in Landau gauge, the longitudinal polarization X
µ

L
is fully captured by @µ⇡/mX . This

is the same result found in a spontaneously broken gauge theory in Landau gauge, where the

longitudinal polarization of a massive gauge field is fully captured by @µG0
/mX for the eaten

Goldstone scalar field.

Therefore, analogously to eq. (3.3) for a spontaneously broken theory, in Landau gauge

at large momentum |~k|� mX , we can identify

0 6= ✏
µ

L
(k)Mµ(X)

|~k|�mX
�!

k
µ

mX

Mµ(X) = iM(⇡; ⇠ = 0) . (3.5)

This is the longitudinal equivalence theorem: the leading behavior for on-shell, external Xµ

L

interactions can be found by replacing X
µ

L
with @µ⇡/mX . For Stückelberg theories, longitu-

dinal equivalence arises as a consequence of the invariance of Green’s functions under BRST

transformations (Slavnov–Taylor identities) carried out on the Aµ � @µ⇡/mX formulation.

Following eq. (2.24), BRST invariance holds for Stückelberg theories regardless of whether

Aµ�@µ⇡/mX couples to conserved currents. Goldstone equivalence in a Higgsed U(1) theory

can also be formulated from BRST invariance (assuming @µj
µ

ferm = 0); however, it is more

commonly derived using the generalized Ward identities from U(1) gauge invariance (gauge

fields coupling to conserved currents).4 Moreover, we can also identify the leading behavior

of the o↵-shell two-point function [59],

hX
µ(k)X⌫(�k)i

k
2�m

2
X

'
k
µ
k
⌫

m
2
X

h⇡(k)⇡(�k); ⇠ = 0i . (3.6)

The Stückelberg formalism makes clear that the large-momentum behavior found by

using eq. (3.5) and eq. (3.6) yields nonrenormalizable interactions of the longitudinal mode

⇡ suppressed by powers of mX . Below, we will utilize these results in our discussions of the

leading behavior of interactions and scattering amplitudes at large momentum. We note that

4
See refs. [57, 58] for more details on the relation between the BRST Slavnov-Taylor identities and the

generalized Ward identity in this regard.
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Lagrangians involving X
µ do not necessarily contain interactions of the longitudinal mode ⇡.

For example, one special case is the Proca Lagrangian eq. (2.2)

�
1

4
FX,µ⌫F

µ⌫

X
+

1

2
m

2
XXµX

µ
k
2�m

2
X

!
1

2
@µ⇡@

µ
⇡ , (3.7)

i.e., by the equivalence above, the Proca Lagrangian for a free massive Stückelberg vector

field becomes the Lagrangian for a free massless scalar field ⇡.

We now turn to considering interactions of Xµ with itself or with the SM, identifying

those interactions that couple to the longitudinal mode, and discussing the consequences for

the e↵ective field theory.

3.2 Conserved vector current

Consider the interaction

gXXµj
µ

V , (3.8)

in which the Stückelberg vector field couples to a conserved vector current jµV with strength

gX . For the purposes of this section, the current is assumed to be exactly conserved, @µj
µ

V = 0.

(The anomalous case that leads to one-loop couplings will be discussed in detail in sec. 4.)

Using the equivalence X
µ
⌘ A

µ
� @

µ
⇡/mX , it is clear that the longitudinal component ⇡

decouples from the conserved vector current, since under integration by parts (IBP)

1

mX

(@µ⇡)j
µ

V ! �
⇡

mX

@µj
µ

V ! 0 . (3.9)

This is the famous example of a dark photon kinetically mixed with electromagnetism, namely

j
µ

V = j
µ
em, with coupling strength gX = ✏ e [18]. This coupling is equivalent to a kinetically

mixed Stückelberg field with the electromagnetic field strength using the EOM j
µ
em = @⇢F

⇢µ
em

and IBP. In the electroweak theory, jµV = j
µ

Y
, with coupling strength gX = ✏g

0
/cW , where cW

is the cosine of the Weinberg angle. While j
µ

Y
is no longer a pure vector current, it of course

remains anomaly-free. (The couplings of X to the axial vector part of hypercharge will be

discussed in the next section.)

While kinetic mixing ✏FX,µ⌫F
µ⌫

V
is equivalent to ✏gV Xµj

µ

V
, it is worth emphasizing that

the inverse need not be true. The Stückelberg vector field X
µ can be coupled to a conserved

current that is purely global and not gauged. For example, in the SM the global current jµ
B�L

is exactly conserved5, and so the interaction

gXXµj
µ

B�L
(3.10)

can be written without explicitly gauging B�L. This has fascinating consequences when one

imagines Xµ coupling to a linear combination of both j
µ
em and j

µ

B�L
[60].

5
The global U(1)

3
B�L and U(1)B�L(grav)

2
anomalies vanish in the presence of three right-handed neutrinos,

though this is not critical to our argument.
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(a) (b) (c)

Figure 1. Diagrams for 2–2 scattering amplitudes with two fermions and two gauge bosons: (a)
XX ! ff̄ ; (b) ff̄ ! XX; (c) fX ! fX. [We have omitted the u-channel diagrams for (a), (b).]
When @µj

µ
A 6= 0 due to the explicit violation of the global axial current by the fermion mass, the

amplitudes for the longitudinally-polarized X field grow with energy proportional to mf
p
s/m

2
X .

These statements also hold for Stückelberg vector fields coupled to currents of hidden

(dark) fermions, which are commonly found in the literature. In this scenario, it is often

assumed that Xµ is the gauge boson of a new U(1) and that the hidden fermions are charged

under this symmetry. However, provided the hidden current coupling to X
µ is vector-like and

conserved, this need not be the case—the interaction is indistinguishable from a Stückelberg

vector field coupled to a global (hidden fermion) current.

3.3 Axial-vector current

Next, consider an interaction of Xµ with an axial current,

gXXµj
µ

A . (3.11)

Unlike the case of the global vector current, the global axial-vector current is not, in general,

conserved already at tree-level. This is simply because an axial-vector current is explicitly

violated by fermion masses (within the SM or beyond).

The consequences of the axial-vector current violation by fermion mass is most easily seen

by focusing on the longitudinal component of the Stückelberg vector field, Xµ

L
, or equivalently

�@
µ
⇡/mX following eq. (2.6). For an axial current of fermions j

µ

A = f�
µ
�5f , the ⇡ field is

derivatively coupled, so the longitudinal part of eq. (3.11) becomes

gXXL,µj
µ

A ! �
gX

mX

@µ⇡ (f̄�
µ
�5f) !

gX

mX

⇡ @µ(f̄�
µ
�5f) =

2 i gX mf

mX

⇡ (f̄�5f) , (3.12)

proportional to the fermion mass.

We can use this result to illustrate the high energy behavior of Xµ in several scattering

processes that have axial-vector couplings including ff ! XX, XX ! ff , and fX ! fX

as shown in Fig. 1.

The full expression for the scattering amplitude follows by using the vector-boson polar-

ization tensor for the external boson X
µ. Since we are interested in the high-energy behavior
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of the amplitude, we can focus on just the longitudinal part using eq. (3.12). Using this e↵ec-

tive interaction, and taking the limit of s � m
2
X
,m

2
f
with t fixed in the amplitude squared,

we find that XLXL ! f̄f is

|M|
2 =

32 g4
X
m

4
f
s

m
4
X
(m2

f
� t)

+ · · · (3.13)

where · · · stands for terms with subdominant energy growth. We see that the amplitude

grows with energy proportional to mf

p
s/m

2
X
.

We can obtain a crude estimate of the scale at which perturbative unitarity is violated

by setting t! 0 (forward scattering) and |M|
2 = 1,

p
smax ⇠

1

4
p
2

m
2
X

g
2
X
mf

. (3.14)

The e↵ective theory for a Stückelberg vector field has a cuto↵ scale that is parametrically

above mX only when mf ⌧ mX . This is fully equivalent to the Appelquist–Chanowitz bound

on scattering amplitudes involving longitudinal electroweak gauge bosons and SM fermions

when the Higgs is decoupled from the SM [61].

If instead the fermions are much heavier than the scattering energy, m2
f
� s � m

2
X
,

the fermions can be integrated out, generating an e↵ective (XµX
µ)2 quartic interaction at

one-loop order that will also lead to amplitudes that grow with energy. This is investigated

below in sec. 3.5.

The coupling of X
µ to an axial-vector current is equivalent to a dimension-4 Higgs-

derivative interaction with X
µ

iH
† !
D µHX

µ
, (3.15)

where we remind the reader that H
† !
D µH = H

†(DµH) � (DµH
†)H is a SM gauge singlet

with fully contracted SU(2)L ⇥ U(1)Y indices. Focusing on the longitudinal part,

iH
† !
D µHX

µ

L
! �iH

† !
D µH

@
µ
⇡

mX

. (3.16)

Using IBP, the longitudinal coupling becomes

i
⇡

mX

@
µ(H† !

D µH) = i
⇡

mX

h
H

†
D

2
H � (D2

H
†)H

i
. (3.17)

In the last line, we are free to promote the partial derivative to a covariant derivative since

the additional SM vector boson terms needed to covariantize the left-hand side of eq. (3.17)

vanish under
 !
D . Applying the EOM of the Higgs field, the Higgs mass and quartic will cancel,

leaving just the ⇡ coupling to a pseudoscalar current proportional to Yukawa couplings,

! �i
⇡

mX

⇡(f̄Lyf fR � f̄R y
†
f
fL)

(v + h)
p
2

. (3.18)
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For the leptons and one type of quark, we can diagonalize the Yukawas so their entries are

real and positive. In this case,

! �i yf
(v + h)
p
2

⇡

mX

(f̄�5f) . (3.19)

We can convert this into an axial current by using the EOM for the fermions and IBP once

more. Starting with eq. (3.17),

i
⇡

mX

⇣
�ēRy

†
e (H

†
L) + (L̄H) yeeR + · · ·

⌘

= i
⇡

mX

�
�ēRi /DeR + L̄i /DL+ · · ·

�

= �
@µ⇡

mX

�
ēR�

µ
eR � L̄�

µ
L+ · · ·

�

=
@µ⇡

mX

(f̄�µ�5f) . (3.20)

Hence, the Higgs-derivative interaction can be rewritten as axial-vector couplings of the SM

fermions with X
µ, and thus have the same energy growth in the amplitudes.

While Xµf�
µ
�5f and iH

† !
D µHX

µ separately lead to amplitudes that grow with energy,

a carefully chosen combination of the two terms will not. This is precisely what occurs for

X
µ coupling to the axial part of the hypercharge current. Explicitly,

Xµj
µ

A,Y
! i

X

f

yf (v + h)
p
2mX

⇣
(YfR � YfL)± YH

⌘
⇡ (f̄�5f) (3.21)

after carrying out the manipulations in eq. (3.12) to eq. (3.20) and focusing on the longitudinal

piece of Xµ. Here YfL , YfR are the hypercharges for fL and fR, respectively, YH is the Higgs

hypercharge, and the + (�) sign holds for leptons and down-type quarks (up-type quarks).

Inserting the hypercharges for SM matter, eq. (3.21) vanishes. Thus, Xµj
µ

A,Y
does not induce

any amplitudes that grow with energy.

3.4 Higgs portal

At the renormalizable level, there is one independent Higgs interaction with X
µ,

1

2
�2|H|

2
XµX

µ
. (3.22)

Inserting the Higgs vacuum expectation value (vev), this leads to an additional contribution

to the mass of Stückelberg vector field. The shifted mass is

m̃
2
X = m

2
X +

�2v
2

2
. (3.23)

The interactions of the longitudinal component are identified as

1

2
�2|H|

2
XµX

µ
!

1

2m̃2
X

�2|H|
2(@µ⇡@

µ
⇡) . (3.24)
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This yields dimension-5 and dimension-6 interactions of the longitudinal mode ⇡ with the

Higgs field
�2(2vh+ h

2)

2m̃2
X

(@µ⇡@
µ
⇡) (3.25)

that lead to scattering amplitudes that grow with powers of
p
s/mX . Explicitly, examining

the process XX ! hh and using |M|
2 = 1 as the criterion for the perturbative unitarity

limit, we find
p
smax ⇠

q
2
�2
m̃X .

If Xµ were to acquire its mass mostly through this interaction (i.e., m̃2
X
' �2v

2
/2), the

strength of the coupling �2 cancels out in eq. (3.25). In this case, the Stückelberg vector

boson amplitudes grow with energy above the electroweak-breaking scale independently of

the mass of the Stückelberg vector boson.

Finally, we note that this operator is familiar from the scenario of a U(1) gauge field

spontaneously broken by a complex scalar, in which case �2 would be identified with g
2, the

square of the U(1) gauge coupling. This suggests that �2 < 0 is highly suspect: in particular,

the positivity of �2 is mandatory in the case where the mass of the Stückelberg field is obtained

from this operator.

3.5 Quartic self-interaction

At the renormalizable level, there is one operator that leads to a self-interaction of the Stück-

elberg vector field:
1

4!
�4(XµX

µ)2 . (3.26)

For the longitudinal component this becomes

�4

4!m4
X

(@µ⇡@
µ
⇡)2 . (3.27)

In the presence of this quartic self-interaction, the 2–2 scattering amplitude with Stückelberg

vector bosons grows with energy as

A(XLXL ! XLXL) ⇠ �4
s
2

m
4
X

(3.28)

due to the couplings of the longitudinal mode. The s2/m4
X
growth of the four-point amplitude

is the same as that encountered in the SM arising from (just) the four-point interaction of

longitudinal W gauge bosons. Of course, this energy growth is famously canceled in the SM

by Z and h exchange diagrams.

The breakdown of the e↵ective theory from this operator can be obtained by performing

a rough estimate of the maximum allowed energy as in the previous subsection,

p
smax . mX

�
1/4
4

. (3.29)
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Separating
p
smax and mX requires �4 ⌧ 1.6

However, restricting to just the interactions of the normal dark photon model, (XµX
µ)2

is not generated radiatively. The coupling �4 is multiplicatively renormalized and thus tech-

nically natural if set to an exceptionally small number (including zero). It is well known that

the sign of �4 must be positive to ensure UV analyticity [62].

In the case of a Higgsed U(1) theory in which the vector-boson mass is acquired through

SSB, the energy growth of XX ! XX scattering is tamed by the Higgs exchange diagram. In

the low-energy e↵ective theory below the mass of the Higgs (but above mX), this interaction

is generated with a coe�cient �4 = 6g4v2/m2
h
where mX = gv/2, m

2
h

= 2�hv2, giving

A(XX ! XX) ⇠ 1
�h

s
2

v4
. In other words, the scattering of vector bosons in a spontaneously

broken U(1) theory has an amplitude that grows with energy until the vev v, where the EFT

must be supplemented by the Higgs boson.

4 Coupling a Stückelberg vector field to an anomalous vector current

Perhaps the most intriguing interaction that a Stückelberg vector field could have is Xµj
µ
anom,

a coupling to an anomalous current. In this section we will mainly focus on coupling to an

anomalous vector current, since we already showed in sec. 3.3 that a tree-level coupling to an

axial current generically leads to amplitudes that grow with energy.

For a gauge field, Aµj
µ
anom gauges what is a globally anomalous U(1) current associated

with j
µ
anom. In the presence of just one U(1) gauge interaction, this leads to the usual U(1)3

anomaly. When the fermions contributing to the current j
µ
anom also transform under other

gauge symmetries, such as the SM, this leads to the mixed anomalies (SM)2U(1). The

presence of the gauge anomalies leads to radiative corrections to the mass of the U(1) gauge

boson and to certain scattering amplitudes growing with energy [30, 42].

In [40], a detailed analysis of a light U(1) gauge boson coupled to an anomalous cur-

rent was carried out. Their focus was on baryon number, which has the mixed anomalies

[U(1)Y ]2U(1)B and [SU(2)L]2U(1)B. The interaction Aµj
µ

B
leads to couplings of the longi-

tudinal mode of Aµ with the (anomalous) baryon current. The consequences of this nonzero

coupling emphasized in [40] are longitudinally enhanced interactions, including Z ! A� and

other anomaly-induced decays. A careful analysis of the loop functions leading to this decay

was carried out in [45].

But now there is a puzzle. The Stückelberg vector field interaction Xµj
µ
anom appears to

lead to an anomalous fermion triangle loop, and yet, Xµ is not a gauge field. There cannot

be U(1)3 or (SM)2U(1) mixed gauge anomalies because there is no U(1) gauge symmetry

associated with X
µ.

In this section, we resolve this puzzle and, in the course of our analysis, find several

consequences for theories with a Stückelberg vector boson. When we first introduce the fake

gauge symmetry of eq. (2.7), the mystery seems to deepen further because now Aµ would,

6
For vector-boson dark matter with mX ⇠ 10

�5
eV [13] and requiring the cuto↵ scale to be ⇤ = MPl, we

find an exceptionally small bound on the coupling �4 . 10
�129

.

– 17 –



in fact, appear to gauge an anomalous current. We will see that the term (@µ⇡/mX)jµanom
precisely cancels the gauge anomaly that arises from Aµj

µ
anom. The mechanism responsible

for canceling the anomaly can be understood essentially by IBP,

�
@µ⇡

mX

j
µ

anom !
⇡

mX

@µj
µ

anom /
⇡

mX

Fµ⌫F̃
µ⌫

, (4.1)

where eFµ⌫ ⌘
1
2✏↵�µ⌫F

↵� , and we recognize that the partial derivative of the anomalous current

@µj
µ
anom is proportional to Fµ⌫

eFµ⌫ , the Chern–Pontryagin density. The resulting dimension-

5 interaction on the right-hand side of eq. (4.1) is referred to as the Peccei–Quinn term7

(for any of the gauge symmetries of the SM, not just QCD). When this term is combined

with suitable Wess–Zumino terms8 (coupling a gauge/vector field to a Chern–Simons class9

[49, 63]) with appropriate choices of coe�cients to restore gauge invariance, we will see that

the Ward identities can be satisfied for all symmetries, verifying that Aµ does not have a

gauge anomaly.10

We now turn to considering the coupling of a vector field to an anomalous symmetry

current, jµanom =
P

 
q
 
 
†
�̄
µ
 , where q

 are the fermion charges under the symmetry. We

wish to explicitly calculate the fermion loop attaching an external Aµ to two gauged vector

bosons B
⌫ and C

⇢. Our discussion will apply to both a gauged vector field coupled to an

anomalous local symmetry current, as well as a Stückelberg vector field X
µ coupled to an

anomalous global symmetry current. For the Stückelberg vector field, however, we will do this

by first decomposing X
µ = A

µ
� @

µ
⇡/mX , carrying out the calculation of the contribution

to the gauge anomaly from A
µ, and then add back in the contribution from @

µ
⇡/mX .

4.1 Triple-gauge vertex from a single fermion loop

Consider the triangle diagrams that contribute to the anomaly with general vector bosons

A,B,C as shown in fig. 2. By power counting, their amplitudes are linearly divergent and

thus not uniquely defined. This can be encoded by including arbitrary four-momentum shifts

a and b in the fermion loops in the left- and right-hand side diagrams, respectively. We will

7
This is also referred to as a “Green–Schwarz term” in some of the literature, e.g., [35].

8
These are also referred to as “generalized Chern–Simons terms” in the literature, e.g., [35, 41].

9
The Chern–Simons class for a non-Abelian gauge field is (the second term is zero for the Abelian case)

⌦
µ
= ✏µ⌫�⇢

✓
Aa
⌫F

a
�⇢ �

1

3
fabcAa

⌫A
b
�A

c
⇢

◆
) @µ⌦

µ
=

1

2
✏µ⌫�⇢F a

µ⌫F
a
�⇢ . (4.2)

10
Coupling Aµ and @µ⇡, the two “components” of Xµ, separately to the Chern–Simons class for an unbroken

gauge symmetry ⌦
µ
B yields

Aµ⌦
µ
B = Aµ✏µ⌫�⇢B

⌫F�⇢B , (4.3)

the dimension-4 Wess–Zumino term used to cancel the mixed anomaly, and

@µ⇡
mX

⌦
µ
B = � ⇡

mX
@µ⌦

µ
B = � ⇡

mX
FBµ⌫

eFµ⌫
B , (4.4)

the dimension-5 Peccei–Quinn term. As we will see in sec. 4.3, the four-dimensional Green–Schwarz mechanism

combines these two types of terms to cancel anomalies.
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C⇢

p+ q !

`
�
p
+
a

`+
q +

a

`+ a

Aµ

! p

B⌫

! q

+ C⇢

p+ q !

`
�
q
+
b

`+
p+

b

`+ b

Aµ

! p

B⌫

! q

Figure 2. Triangle diagrams responsible for the coupling of A
µ (decomposed from X

µ = A
µ
�

@
µ
⇡/mX) to two gauge bosons B

⌫ and C
⇢. We have labeled Lorentz indices and directions of four-

momenta according to their use in the main text.

see that these arbitrary shifts are restricted by physical requirements, e.g., gauge invariance

of either B or C.

Our convention for the amplitude of the sum of the triangle diagrams in fig. 2 is

�̃⇢µ⌫

{r} (p, q;m ; a, b) = g
r1
C
g
r2
A
g
r3
B
�̃⇢µ⌫{r} (p, q;m ; a, b) , (4.5)

where the indices ri 2 {A,V} indicate axial or vector couplings, respectively, of the boson

with corresponding Lorentz superscript index in the same order, and m is the mass of the

fermion  circulating in the loop. For now, all fermion charges have been subsumed into the

couplings, so one should view g
r1,2,3
A,B,C

as specific to the particular fermion in the loop, i.e., the

interaction term in the Lagrangian for this fermion is

Lint =  ̄�
µ
�
g
V
C � g

A
C�5

�
 C

µ + (C ! A,B) . (4.6)

Focusing for example on the case r1 = A, r2 = V, r3 = V, the amplitudes for the

(coupling-stripped) triangle diagrams are:

�̃⇢µ⌫AVV(p, q;m ; a, b) =

Z

`

Tr

(
�5�

⇢
1

/̀+ /a� /p�m 

�
µ

1
/̀+ /a�m 

�
⌫

1
/̀+ /a+ /q �m 

+ �5�
⇢

1
/̀+ /b � /q �m 

�
⌫

1
/̀+ /b �m 

�
µ

1
/̀+ /b + /p�m 

)
,

(4.7)

where Z

`

⌘

Z
d
d
`

(2⇡)d
. (4.8)

For the VAV and VVA amplitudes, we move the �5 matrix in front of �µ or �⌫ , respectively.

To avoid non-chiral anomalies, we set b = �a [64–66]. In terms of the external momenta p, q,

we can then express the arbitrary shift a = zp + wq using two real parameters z, w. The
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amplitude can be written in the Rosenberg parameterization as [45, 64]

�̃⇢µ⌫{r} (p, q; z, w) =
1

⇡2

⇢
G

1
{r}(p, q;w)✏

⇢µ⌫;p +G
2
{r}(p, q; z)✏

⇢µ⌫;q

+
⇣
F3(p, q)p

µ + F4(p, q)q
µ

⌘
✏
⇢⌫;pq +

⇣
F5(p, q)p

⌫ + F6(p, q)q
⌫

⌘
✏
⇢µ;pq

�
,

(4.9)

where ✏⇢µ⌫;q ⌘ ✏
⇢µ⌫↵

q↵ and we have made implicit the fermion mass dependence. The form

factors Fi are finite and independent of {r}, whereas G1
, G

2 are dependent on the momentum

shift a (or the parameters w, z) as a consequence of the linear divergences of the triangle

diagrams.

Full details of computing the form factors is given in appendix A. We quote here the final

expressions for the AVV and VAV cases that we will use in the following sections. Employing

eq. (A.8) to eliminate F5, we obtain for the AVV and VAV cases:

G
1
AVV =

1

4
(z + 1) + p

2
F3 � p · q F4 ,

G
2
AVV =

1

4
(w � 1) + q

2
F6 + p · q F4 ,

(4.10)

G
1
VAV =

1

4
(z + 1) + p

2
F3 � p · q F4 ,

G
2
VAV =

1

4
(w � 1) + q

2
F6 + p · q F4 �m

2
 
C0(m

2
 
) .

(4.11)

4.2 Momentum-contracted vertex functions

Now that we have established how the triple-gauge vertex can be manipulated into purely

finite terms – form factors F3...6 plus the momentum-shift parameters w, z – we turn to its

phenomenological consequences. The most interesting quantity is not the triple-gauge vertex

itself, but what happens when the triple-gauge vertex is contracted with a longitudinally

polarized A,B, or C: as explained in sec. 3.1, the longitudinal polarizations are proportional

to momenta in the large-momentum limit, and these can lead to scattering or decay amplitudes

that grow with energy. The relevant quantities are the momentum-contracted vertex functions

(MCVF)

(p+ q)⇢ �̃
⇢µ⌫

, pµ �̃
⇢µ⌫

, q⌫ �̃
⇢µ⌫

, (4.12)

which are exactly the quantities we calculated in appendix A to eliminate G
1,2
{r}.

In fact, the MCVF are the starting points for the calculation of the Ward identities for

this vertex, e.g., for A this is pµM
µ(A) = pµ�̃⇢µ⌫ . For a vertex that respects all of the

symmetries, (p + q)⇢ �̃⇢µ⌫ = pµ �̃⇢µ⌫ = q⌫ �̃⇢µ⌫ = 0, while for anomalous fermion content,

one or more of these Ward identities is nonvanishing. Contracting the momentum of a massive

gauge boson with the vertex function also yields a nonzero result, hence the Ward identity is

also not satisfied. However, as we discussed in sec. 3.1, one can construct a generalized Ward

identity for a massive gauge boson that relates the MCVF of the massive gauge boson with
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that having the massive gauge bosons swapped with the Goldstone boson (for a spontaneously

broken gauge symmetry) or the longitudinal mode (for a Stückelberg vector field).

Employing the procedure described in the previous subsection, we can compute (p +

q)⇢ �̃⇢µ⌫ , pµ �̃⇢µ⌫ , q⌫ �̃⇢µ⌫ for C,A,B, respectively, with arbitrary combination of V, A cou-

plings to the fermions in the loop. For the remainder of the paper, however, we will make

the simplification that one of the vector fields, which we take (without loss of generality) to

be B, has purely vectorial couplings. This is because the phenomenological examples we will

examine in sec. 5 all share this property. The MCVF simplify to [45]:

(p+ q)⇢ �̃
⇢µ⌫ =

g
V
B

4⇡2
✏
µ⌫;pq

�
(w � z)

�
g
V
Cg

A
A + g

A
Cg

V
A

�
+ 4m2

 
C0(m

2
 
) · gACg

V
A

 
,

�pµ �̃
⇢µ⌫ =

g
V
B

4⇡2
✏
⇢⌫;pq

�
(w � 1)

�
g
V
Cg

A
A + g

A
Cg

V
A

�
� 4m2

 
C0(m

2
 
) · gVCg

A
A

 
,

�q⌫ �̃
⇢µ⌫ =

g
V
B

4⇡2
✏
⇢µ;pq

�
(z + 1)

�
g
V
Cg

A
A + g

A
Cg

V
A

� 
.

(4.13)

where

�̃⇢µ⌫ =
X

r1,r22{A,V}

�̃⇢µ⌫

r1r2V
, (4.14)

and C0 is a special case of the three-point Passarino–Veltman scalar function

C0(m
2
 
) = C0(q

2
, (p+ q)2, p2;m ,m ,m ) = �

Z 1

0
dx

Z 1�x

0
dy ��1

, (4.15)

with � from eq. (A.3). Two relevant limits are

lim
m

2
 !1

m
2
 
C0(m

2
 
)! �

1

2
,

lim
m

2
 !0

m
2
 
C0(m

2
 
)! 0 .

(4.16)

More precisely, these are limits of m2
 
with respect to the other scales p

2
, (p + q)2, q2 that

appear in eq. (A.3).

In a theory with a fermion content that is nonanomalous, obviously all of the MCVF in

eq. (4.13) vanish independently of the presence or absence of masses for the vector bosons.

When the fermion content is anomalous, i.e., with respect to A and/or C (recall that we take

B to couple vectorially), the MCVF are not uniquely determined due to the freedom to choose

the coe�cients of the most general momentum shift a = zp+wq in the vertex function. This

allows for several possibilities. One possible choice of coe�cients results in all three MCVF

being equal,

(p+ q)⇢�̃
µ⌫⇢ = pµ�̃

µ⌫⇢ = q⌫�̃
µ⌫⇢
6= 0 , (4.17)

a configuration referred to as the “consistent anomaly” [67–69]. This choice is convenient from

an EFT perspective: we view the contributions to the gauge anomaly as arising from the SM
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plus a contact term that, for instance, arises from some heavy fermions that maintain anomaly

cancellation. In the consistent picture, all gauge symmetries are violated, so integrating

out UV physics can generate gauge-violating operators. Combining these gauge-violating

operators with the SM loop (also gauge-violating in the consistent picture) and choosing its

coe�cient appropriately, we can cancel all anomalies.11

A second possibility is to utilize momentum shifts such that the anomaly resides in only

a single gauge interaction, the so-called “covariant anomaly” [68, 69]. Gauge-variant Wess–

Zumino e↵ective operators of the form ✏
µ⌫⇢�

AµC⌫FB,⇢� can be added to the Lagrangian to

shift from the consistent to covariant picture. This approach is often employed for calculations

with two gauge bosons, B,C, with anomaly-free couplings and one (massive) gauge boson,

A, that has anomalous couplings. By taking w = z = �1 in eq. (4.13), the terms that are

independent of fermion mass appear only in the MCVF for A

(p+ q)⇢ �̃
⇢µ⌫ =

g
V
B

⇡2
✏
µ⌫;pq

m
2
 
C0(m

2
 
) · gACg

V
A ,

�pµ �̃
⇢µ⌫ = �

g
V
B

2⇡2
✏
⇢⌫;pq

��
g
V
Cg

A
A + g

A
Cg

V
A

�
+ 2m2

 
C0(m

2
 
) · gVCg

A
A

 
, (4.18)

�q⌫ �̃
⇢µ⌫ = 0 .

Notice that the fermion mass-dependent terms in the first two expressions above come with

di↵erent coupling structures: if the fermions have purely axial couplings to A (VAV structure),

the mass-dependent term vanishes from the first line, while if the couplings to C are purely

axial (AVV structure), the mass-dependent term vanishes from the second line.

4.3 Anomaly cancellation, Ward identities, and ⇡

We are now in a position to clarify the role that the longitudinal mode ⇡ plays in anomaly

cancellation. Consider a theory with massless fermions in which the vector field A
µ has

anomalous couplings. For a single massless fermion  , the MCVF become

(p+ q)⇢ �̃
⇢µ⌫ = 0 ,

�pµ �̃
⇢µ⌫ = �

gCgXgBq
 

B

2⇡2
✏
⇢⌫;pq

⇣
q
V, 

C
q
A, 

X
+ q

A, 

C
q
V, 

X

⌘
, (4.19)

�q⌫ �̃
⇢µ⌫ = 0 ,

11
In the covariant picture, discussed below, the issue in the EFT is that integrating out UV physics can

only change the coe�cients of SM terms, or generate new, higher-dimensional terms that respect the UV

symmetries. As there is no B- or C-invariant, A-violating term, there is no coe�cient to change, and the

power counting for higher-dimensional terms will not work out correctly to cancel the anomaly. Therefore,

working in the covariant picture requires doing calculations in the full UV theory, keeping both SM and UV

physics and not taking the low-energy limit of SM + e↵ective operators.
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where from eq. (4.16), m2
 
C0(m2

 
) ! 0 in the massless fermion limit. Here, we have also

separated the coupling constants gX,B,C from the individual fermion charges q 
X,B,C

by writing

g
V
A = gX q

V, 

X
, g

A
A = gX q

A, 

X

g
V
B = gB q

 

B
, g

A
B = 0 , (4.20)

g
V
C = gC q

V, 

C
, g

A
C = gC q

A, 

C
.

In this limit, the only nonvanishing MCVF is the one involving the Aµ. If we sum over several

massless fermions, this becomes

�pµ �̃
⇢µ⌫ = �AX

gCgXgB

2⇡2
✏
⇢⌫;pq (4.21)

in terms of the A
µ anomaly coe�cient

AX ⌘

X

 

q
V, 

B
(qV, 

C
q
A, 

X
+ q

A, 

C
q
V, 

X
) . (4.22)

From the start of sec. 4.1 until now, we have focused solely on the contribution to the

MCVF from a vector field A
µ. Aside from forming the MCVF in eq. (4.21) by contracting the

momentum of Aµ onto the vertex, we have not specified whether Aµ is massive or massless. In

addition, there is no distinction between whether Aµ is a gauge field that gauges the fermion

current to which it couples with strength gX or is in fact a Stückelberg vector field X
µ that

couples to a global fermion current with strength gX .

Below, we identify three distinct cases.

1. A
µ is a massless gauge field : In this case, eq. (4.21) manifestly violates the Ward

identity, and so either Aµ must acquire a mass or the theory contains multiple massless

fermions with charges chosen such that, while the contribution from any single (Weyl)

fermion is nonzero, the sum in eq. (4.22) vanishes.

2. A
µ represents X

µ, the massive Stückelberg vector field : In this case, eq. (4.21) is the

final result for the MCVF that connects Xµ with the gauge fields C⇢ and B
⌫ through a

loop of massless fermions. There is no (generalized or other) Ward identity since there

is no symmetry or conserved current associated with X
µ.

3. A
µ represents a massive gauge field arising from a spontaneously broken U(1) gauge

symmetry : This is the conventional case, which requires additional massive fermions,

“anomalons”, to cancel the anomaly. The presence of anomalons is the key distinction

from case 2.

We now want to compare and contrast cases 2 and 3, but we first need to resolve the puzzle of

decomposing X
µ = A

µ
�@

µ
⇡/mX . In this decomposition, Aµ is a gauge field, and so Aµj

µ
anom

necessarily gauges the anomalous current jµanom; however, Xµj
µ
anom is simply an interaction of
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a vector field with a globally anomalous current jµanom. How can A
µ be anomalous under its

gauge symmetry while X
µ has nothing to do with a gauge symmetry or a gauge anomaly?

The resolution is found by considering the additional contribution from the scalar field

⇡. The Lagrangian contains

�gX
@µ⇡

mX

j
µ

anom = gX
⇡

mX

@µj
µ

anom , (4.23)

where we have used IBP to get the right-hand side. The divergence of the anomalous current

is given by

gX@µj
µ

anom = AX

gCgXgB

4⇡2
FC,µ⌫F̃

µ⌫

B
, (4.24)

and so the scalar field contributes a dimension-5 Peccei–Quinn term in the Lagrangian,

AX

gCgXgB

4⇡2
⇡

mX

FC,µ⌫F̃
µ⌫

B
. (4.25)

In momentum space, this interaction becomes

imX�̃⇢⌫(⇡) = AX

gCgXgB

2⇡2
✏
⇢⌫;pq

, (4.26)

namely a dimension-5 three-point vertex among ⇡, C⇢, and B⌫ in the e↵ective theory. We

can combine eq. (4.21) with eq. (4.26) as

pµ�̃
⇢µ⌫(A)� imX�̃⇢⌫(⇡) = 0 . (4.27)

This is the generalized Ward identity from sec. 3.1 for A
µ applied to the fermion triangle

diagram. That is, so long as the dimension-5 Peccei–Quinn term has the specific coe�cient

given in eq. (4.25), Aµ satisfies the generalized Ward identity. The specific coe�cient that

is required is precisely the one that permits the combination of the renormalizable Aµj
µ
anom

and the dimension-5 interaction �@µ⇡j
µ
anom/mX to be written as Xµj

µ
anom; in other words,

the combination of Aµ and (@µ⇡)/mX must maintain the fake gauge invariance. This is

otherwise known as the four-dimensional Green–Schwarz anomaly cancellation mechanism

[27, 30, 31, 48, 70].

Since Aµ as part of Xµ is not an external state, we remark that eq. (4.27), the generalized

Ward identity, is not a statement about longitudinal equivalence. Contracting an on-shell

external Xµ with �̃⇢µ⌫ in the high-momentum limit |~k|� mX gives eq. (4.21), which we can

equivalently calculate using an external on-shell ⇡ and the longitudinal equivalence theorem

in eq. (3.5). That is, Aµ and ⇡ “conspire” to satisfy the generalized Ward identity while there

is no analogue of this for Xµ.

Finally, it is interesting to compare and contrast what happens in a theory with a massive

Abelian gauge boson in which the anomalous contribution is canceled by anomalons. The

general case, with arbitrary vector and axial couplings for A
µ and C

⇢, can be worked out

straightforwardly from eq. (4.13). For the purposes of this discussion, however, we simply
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illustrate the similarities and di↵erences in the case where the massless fermions contributing

to the anomaly have purely vector interactions to A
µ and B

⌫ and purely axial interactions

to C
⇢, in which case eq. (4.22) simplifies to

AX =
X

 

q
V, 

B
q
A, 

C
q
V, 

X
. (4.28)

The massive anomalons have purely axial interactions to A
µ and purely vector interactions

to B
⌫ and C

⇢,

A
anom
X =

X

 

q
V, 

B
q
V, 

C
q
A, 

X
. (4.29)

Anomaly cancellation requires that the sum of the charges of the anomalons under the gauge

symmetries satisfy

A
anom
X = �AX , (4.30)

such that eq. (4.22) vanishes.

However, for massive anomalons, there are additional contributions to the momentum-

contracted vertex function from the C0 functions in eq. (4.13). We further simplify this

discussion by taking all of the anomalons to have the same mass m . For the specific choices

in eq. (4.28) and eq. (4.29), the only nonzero MCVF is

�pµ �̃
⇢µ⌫ = �

gCgXgB

2⇡2
✏
⇢⌫;pq

⇥
AX �A

anom
X

�
1 + 2m2

 
C0(m

2
 
)
�⇤

= A
anom
X

gCgXgB

⇡2
✏
⇢⌫;pq

m
2
 
C0(m

2
 
) ,

(4.31)

where we used the anomaly cancellation condition eq. (4.30) to get the second line. If the

anomalons were massless, the right-hand side above would vanish using eq. (4.16); this is as

expected since by definition the theory would then be anomaly-free and the Ward identities

satisfied. If the anomalons are infinitely massive, the term in parentheses on the first line

multiplying A
anom
A

vanishes using eq. (4.16), leaving the right-hand side nonzero and equal to

eq. (4.21), i.e., back to where we started.

With nonzero anomalon masses, eq. (4.31) does not vanish. Following our discussion in

sec. 3.1, we can again construct a generalized Ward identity such that

pµM
µ(A)� imXM(G0) = 0 . (4.32)

where, for this discussion, G0 is the Goldstone boson absorbed to make Aµ massive. Applying

this to the MCVF for the fermion triangle diagram,

pµ�̃
⇢µ⌫
� imX�̃⇢⌫(G0) = 0 . (4.33)

From this we can deduce the required interaction that the Goldstone boson must have with

the MCVF,

i�̃⇢⌫(G0) = A
anom
X

gCgXgB

⇡2
✏
⇢⌫;pq

m
2
 

mX

C0(m
2
 
) . (4.34)
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Here, we finally see the key di↵erence between the case of a Stückelberg vector field and

a spontaneously broken massive Abelian gauge field. In the specific example above, the

anomalons have axial interactions with A
µ, implying the anomalons are chiral with respect

to the gauge symmetry associated with A
µ. The only way to give mass to these chiral fermions

without explicitly breaking the symmetry is to write Yukawa interactions with the Higgs field

whose vev spontaneously breaks the gauge symmetry associated with A
µ. This means that,

with conventional normalizations m = y v/
p
2 and mX = gv/2, one power of the vev

drops out in eq. (4.34). Hence we see that the generalized Ward identity can be satisfied

with renormalizable Yukawa interactions of the Goldstone mode with the fermions. This key

di↵erence is what permits a spontaneously broken gauge symmetry with anomalous fermion

content (and a separate set of anomalons with heavier masses) to be at least possibly viable

without a divergence in the UV leading to a cuto↵ scale. The caveat is that this requires

Yukawa couplings to be perturbative (i.e., less than order one) in order to avoid Landau poles.

5 Applications to baryon number

We now consider specific cases where the Stückelberg vector field X
µ couples to a globally

anomalous current in order to investigate the phenomenological consequences. One of the

most interesting possibilities is Xµ coupling to baryon number. Baryon number is anomalous

in the SM, but anomaly-free with respect to SU(3)c ⇥ U(1)em below the electroweak scale.

Here, our focus is to investigate the observable consequences of the longitudinal enhancements

that occur in the presence of Xµj
µ

B
, specifically three observables: Z ! X�, ff̄ ! X�, and

Z� ! Z�. These depend on the electroweak scale and disappear in the limit v ! 1.

We compare and contrast our results with those when baryon number is gauged [40, 45],

identifying the similarities and di↵erences for the case of a Stückelberg vector field. In the

discussion below, we take all SM fermions to be massless; however, it is straightforward to re-

introduce SM fermion mass dependence (e.g., [45]). In reality, only the top quark significantly

invalidates this assumption, causing the baryon anomaly coe�cient to be slightly smaller than

what we have assumed below.

5.1 Prelude: Z ! A� with gauged baryon number

As a prelude to the results in subsequent sections, we want to review the calculation of

Z ! A�, where A
µ is the gauge field associated with gauged baryon number [71–73]; we

reserve X
µ to refer to the Stückelberg vector field. However, we will use mX , gX , and qX to

refer to the mass, coupling, and charges of the (gauged or ungauged) vector field coupled to

the baryon current.

In the SM, the baryon current is anomalous with respect to the mixed anomalies U(1)2
Y
U(1)B

and SU(2)2
L
U(1)B in the specific combination [40]

@µj
µ

B
=

AB

8⇡2

⇣
g
02
Bµ⌫B̃

µ⌫
� g

2
Wµ⌫W̃

µ⌫

⌘
. (5.1)
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Here AB is the anomaly coe�cient

AB =
X

f2SM
Q

f
q
V,f

X
q
A,f

Z
, (5.2)

where the sum is over all of the fermions f in the SM with electric charge Q
f , baryon

number q
f

B
, and axial coupling q

A,f

Z
= T

f

3 /2 = ±1/4 to the Z. This is equivalent to the

anomaly coe�cient for just SU(2)2
L
U(1)B or (the negative of) U(1)2

Y
U(1)B since U(1)2emU(1)B

vanishes. Three generations of massless SM fermions give AB = 3/4.

As we have learned from sec. 4.2, we are free to choose a set of Wess–Zumino terms such

that the only nonzero MCVF is

�pµ

X

f

�̃⇢µ⌫

SM = �AB

eggX

2⇡2cW
✏
⇢⌫;pq

, (5.3)

following eq. (4.13) with the specific choices w = z = �1.12

Baryon number can be made anomaly-free by extending the SM with anomalons  with

charges such that, when they are included in the sum eq. (5.2), the net result is zero. For

certain choices of their SU(2)L ⇥ U(1)Y charges, these anomalons can obtain masses inde-

pendently of the electroweak vev and therefore can be much heavier than the SM fermions.

The full result for the decay rate Z ! A� including both SM fermions and a set of massive

anomalons was given in [45]. However, for our purposes, it is more convenient to separate

the contributions to the triangle loop from the SM, eq. (5.3), and the massive anomalons.

Defining �̃⇢µ⌫
anom as the contribution to the vertex function from the anomalons, and making

the same choice w = z = �1, the additional contribution to the MCVF can again be easily

obtained from eq. (4.13),

�pµ

X

 

�̃⇢µ⌫

anom = AB

eggX

2⇡2cW
✏
⇢⌫;pq(1 + 2m2

 
C0(m

2
 
)) . (5.4)

To cancel the anomaly and obtain mass without electroweak symmetry breaking, these anoma-

lons have pure vector couplings to Z and pure axial couplings to A such that
X

 

Q
 
q
A, 

X
q
V, 

Z
= �AB . (5.5)

This is the same situation we encountered in sec. 4.3—the anomalon mass only appears in

the MCVF in eq. (5.4).

If we were instead to take m ! 0 (and therefore degenerate with the SM), the two

sectors would cancel exactly, as required of an anomaly-free theory. For nonzero anomalon

masses, the cancellation between the two sectors is inexact, leaving

� pµ

X

f, 

�̃⇢µ⌫

tot = AB

eggX

⇡2cW
✏
⇢⌫;pq

m
2
 
C0(m

2
 
) , (5.6)

12
Had we included nonzero SM fermion masses, the first line of eq. (4.13) would also be nonzero. Adding

mZ times the Z⇢ Goldstone contribution, a �Z �A� � vertex, to the first line would yield zero.
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as in eq. (4.31). It is interesting to consider anomalons that are much heavier than the Z

boson.13 Then the right-hand side simplifies to

� pµ

X

f, 

�̃⇢µ⌫

tot = �AB

eggX

2⇡2cW
✏
⇢⌫;pq

, (5.7)

which up to corrections of O(m2
Z
/m

2
 
) reduces to just the original SM-only contribution

in eq. (5.3). Dividing both sides by mX , the above equation becomes the amplitude for

Z ! AL�, where AL is the longitudinal polarization. Squaring, we can convert this to

a decay rate (again, in the limit that the SM fields are massless and the anomalons are

infinitely heavy)

�(Z ! A�)
mX⌧mZ
' �(Z ! AL�) '

3

32⇡2
↵
2
em↵X

c
2
W
s
2
W

m
3
Z

m
2
X

, (5.8)

where sW is the sine of the Weinberg angle and we have used AB = 3/4.

As emphasized in [40], the m
2
Z
/m

2
X

longitudinal enhancement implies the decay width is

unbounded in the limit mX ⌧ mZ . For the e↵ective theory to be valid, �(Z ! A�) < mZ ,

which implies a lower bound on mX of

mX >

p
6⇡ ⇥

eggX

64⇡3cW
⇥mZ . (5.9)

Up to an irrelevant numerical prefactor, this is the same bound obtained by Preskill [30]

for an anomalous gauge theory by requiring the divergent three-loop contribution to the

(anomalous) gauge boson mass not exceed its bare mass. More precisely, Preskill derived an

expression ⇤ = 64⇡3
cW

eggX
mX for the cuto↵ scale ⇤ of the e↵ective theory that has the same

scaling as eq. (5.9) when we reinterpret the cuto↵ scale ⇤ to be mZ .

What happens when mX is lowered below the bound given in eq. (5.9)? In a theory

with anomalons, it is no longer possible to take their mass m to be much larger than mZ .

Approximating the results in [45] in the limit mX ⌧ m ⌧ mZ (with massless SM fermions),

we find

�(Z ! A�) '
3

32⇡2
↵
2
em↵X

c
2
W
s
2
W

⇥mZ ⇥
m

4
 

m
2
X
m

2
Z

log4
m

2
 

m
2
Z

, (5.10)

where now the EFT requirement �(Z ! A�) < mZ implies the lower bound on mX is

modified to

mX >

p
6⇡ ⇥

eggX

64⇡3cW
⇥m ⇥

m 

mZ

log2
m

2
 

m
2
Z

. (5.11)

This implies that we can lower the mass for mX at the price of reducing the anomalon masses

below mZ . However, the additional suppression factor m /mZ log2m2
 
/m

2
Z
on the right-hand

side in eq. (5.11) relative to the result in eq. (5.9) implies that the separation between mX

and m can become increasingly large as m is lowered below mZ .

13
To play a role in the anomaly, the anomalons must receive some of their mass from the same SSB that gives

mass to A and therefore m ⇠ y vX , where mX ⇠ gXvX and y is some Yukawa coupling. A large hierarchy

between the anomalons and X requires taking gX ⌧ y, with the validity of perturbation theory limiting

ymax ⇠ 4⇡. More discussion on the phenomenological implications of this “maximum hierarchy” between  

and X can be found in [45].
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5.2 Z ! X� with global baryon number

Now we are in a position to evaluate Z ! X� when X is a Stückelberg vector field with

coupling gXXµj
µ

B
to the global, anomalous baryon current of the SM. The contribution to

the Z⇢ �Xµ � �⌫ vertex coming from loops of SM fermions is identical to the gauged case in

the last section. Therefore, the nonzero MCVF is

�pµ

X

f

�̃⇢µ⌫

SM = �
AB

2⇡2
eggX

cW
✏
⇢⌫;pq

. (5.12)

This is the total contribution since there are no anomalons present.

Using this vertex to calculate Z ! X�, we find

�(Z ! X�)
mX⌧mZ
' �(Z ! XL�) '

3

32⇡2
↵
2
em↵X

c
2
W
s
2
W

m
3
Z

m
2
X

, (5.13)

exactly the same result as eq. (5.8), the case where U(1)B is gauged and made anomaly-free

via infinitely heavy anomalons. We remark that the same result could also have been obtained

using the longitudinal equivalence theorem to relate ✏µ
L
�̃⇢µ⌫(X) to �̃⇢⌫(⇡) in Landau gauge

at large momentum |~k|� mX .

Thus we see that the gauging of the would-be anomalous baryon number symmetry is

irrelevant to the presence of the physically observable decay process Z ! X�. It is the

presence of the global baryon number anomaly that is essential for this decay to proceed.

Said di↵erently, our results show that the decay rate alone cannot di↵erentiate between the

scenarios of a gauge boson accompanied by heavy anomalons and a Stückelberg field coupled

to a global current—a perspective emphasized in [66].

The presence of the Peccei–Quinn term, a dimension-5 operator in the Stückelberg EFT,

implies a UV cuto↵ that cannot be taken arbitrarily large. Applying eq. (4.25) to the specific

case of the anomalous baryon current, the dimension-5 operator is

AB

eggX

4⇡2cW

⇡

mX

FZ,µ⌫F̃
µ⌫

em , (5.14)

and requiring the coe�cient of this operator be less than 4⇡, we obtain a cuto↵ scale of order

p
smax ⇠

16⇡3cWmX

ABeggX
. (5.15)

The existence of a cuto↵ scale is not surprising because we previously discovered in eq. (5.9)

that we could not arbitrarily separate mX from mZ while allowing the decay rate �(Z !

X�) to remain perturbative. Both bounds scale similarly (up to numerical coe�cients) with

couplings and mass. What we see is that a Stückelberg vector field coupled to a globally

anomalous current has a nonrenormalizable interaction signaling the existence of amplitudes

that can grow with energy. This is explicitly seen in the decay rate Z ! X�, and as we

will see below, also occurs for processes that have one or more factors of �̃⇢µ⌫ with an odd

number of axial couplings embedded in the amplitude.
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⇤

⇢

f, 

X

! p, µ

�

! q, ⌫

+

Figure 3. Diagrams for ff̄ ! X�, with f an SM fermion: if only anomalons  couple to X, only the
left diagram is relevant; otherwise, if f also couples to X, there are the t- and u-channel diagrams as
well (cross diagrams not shown).

For finitem � mZ , there will be corrections in eq. (5.8) of O(m2
Z
/m

2
 
) that are absent in

eq. (5.13). It is tempting to think that these corrections would be observable given su�ciently

accurate measurements of mX and �(Z ! X�). However, this is premature, since in the case

of a Stückelberg vector field, there are additional higher-dimensional operators suppressed

by ⇤ that can contribute to the decay process. Hence, in the absence of direct observations

(on-shell production) of anomalons and/or a Higgs boson, there is no way to unambiguously

determine whether the decay process signals the existence of gauged baryon number, or

instead, a Stückelberg vector field coupled to global baryon number.

5.3 ff̄ ! X�

Attaching the Z
⇢ leg of the Z

⇢
�X

µ
� �

⌫ vertex to a fermion current, we can explore how

the longitudinal enhancement of the vertex manifests in ff̄ ! X�, where f is a SM fermion.

This calculation is interesting because it allows us to probe the triple-gauge vertex and its

longitudinal enhancement at a wider range of energies than in Z decay. In particular, we can

consider limits such as m2
X
⌧ s⌧ m

2
Z
, where the Z has been integrated out.

The diagrams for ff̄ ! X� are shown above in fig. 3; an s-channel diagram proceeding

through the triple-gauge vertex �̃⇢µ⌫ , plus t- and u-channel diagrams. The t- and u-channel

diagrams involve only vectorial couplings and lead to the usual collinear divergences in the

cross section. However, at least in the limit that the SM fermions are massless, they do not

couple to the longitudinal part of X and thus do not grow with s (for a fixed scattering

angle)14. Therefore, we will ignore these diagrams and focus on the s-channel piece, deferring

a more general calculation to appendix B. Furthermore, we will focus on the XL piece of the

amplitude, as this contains the leading dependence on s:

iM(f̄f ! XL�) =
ig

cW

1

s�m
2
Z

v̄(k2)�
⇢

⇣
q
V,f

Z
� q

A,f

Z
�5

⌘
u(k1)�̃

⇢µ⌫

tot
pµ

mX

✏
⇤
⌫(q) , (5.16)

where q
V,f

Z
(qA,f

Z
) are the vectorial (axial) couplings of fermion f to the Z and �̃⇢µ⌫

tot is the

triple-gauge vertex after summing over all fermions – SM and beyond – in the loop. Here we

14
Additionally, the interference between the t- and u-channel diagrams and the s-channel diagram is zero.
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have used ✏µ
L
(X)! p

µ
/mX for large |~p|� mX , and so we are implicitly imagining a scenario

where
p
s of the process is large compared to mX . Note that only the transverse part of the

Z propagator enters, since (p+ q)⇢ �̃
⇢µ⌫

tot = 0.

As shown in previous sections, pµ�̃
⇢µ⌫

tot has the same value whether we consider a Stückel-

berg vector field coupled to global baryon number or a gauged baryon number with anomalons

much heavier than all of the other physical scales in the process. Thus we can evaluate pµ�̃
⇢µ⌫

tot

via eq. (5.12) or eq. (5.7), yielding

iM(ff̄ ! XL�) =
ig

cW

AB eggX

2⇡2cW

1

mX

1

s�m
2
Z

v̄(k2)�
⇢

⇣
q
V,f

Z
� q

A,f

Z
�5

⌘
u(k1) ✏

⇢⌫;pq
✏
⇤
⌫(q) .

(5.17)

The details of the calculation of the leading behavior of the squared, polarization-summed

and initial-state spin-averaged amplitude are given in appendix B. We employ eq. (B.14) with

only the AVV terms in the second line and the massless fermion limit of eq. (B.15) to obtain

|M2| ⇠
1

4(Nc)2⇡4

 ✓
g

cW

◆2

gX e

!2
(qV,f

Z
)2 + (qA,f

Z
)2

�
s�m

2
Z

�2 ·
s
2

4rX

✓
1�

2tu

s2

◆
·

 
X

q


q
Q

q
q
A,q

Z

!2

,

(5.18)

where Nc is the number of colors of the initial-state fermions, V,q = 
q = 1/3 is the baryon

number of the quarks, and Q
q is the electromagnetic charge of the quark q. For up- and

down-type quarks, qA,q

Z
= T3/2, so Q

u
q
A,u

Z
= 1/6 and Q

d
q
A,d

Z
= 1/12. The entire squared-sum

on the right-hand side evaluates to 1/16 for one generation (including the color factor); there

is an additional factor of 9 for three generations. This agrees with A
2
B

= 9/16. The cross

section resulting from this amplitude is

�(ff̄ ! XL�) =
3

8⇡

1

N2
c

↵
3
em↵X

c
4
W
s
4
W

⇣
(qV,f

Z
)2 + (qA,f

Z
)2
⌘ (s�m

2
X
)2

m
2
X
(s�m

2
Z
)2

. (5.19)

This expression already assumes s� m
2
X

(and in the case of gauged baryon number, the

masses of any anomalons are much greater than mZ and
p
s); however, there are a couple of

further limits that are interesting to explore. First, consider s � m
2
Z
, with the hierarchy of

scales m2
X
⌧ m

2
Z
⌧ s. In this case, the cross section becomes a constant

�(ff̄ ! XL�)s�m
2
Z
=

3

8⇡

1

N2
c

↵
3
em↵X

c
4
W
s
4
W

⇣
(qV,f

Z
)2 + (qA,f

Z
)2
⌘ 1

m
2
X

. (5.20)

A 2–2 scattering cross section constant in energy implies an amplitude squared that grows as

s, so an amplitude that grows linearly with energy.

A more interesting limit is s⌧ m
2
Z
, with the hierarchy of scales m2

X
⌧ s⌧ m

2
Z
. In this

limit,

�(ff̄ ! XL�)m2
X⌧s⌧m

2
Z
=

3

8⇡

1

N2
c

↵
3
em↵X

c
4
W
s
4
W

⇣
(qV,f

Z
)2 + (qA,f

Z
)2
⌘

s
2

m
4
Z

1

m
2
X

. (5.21)
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This cross section implies an amplitude squared / s
3, so an amplitude / s

3/2. To see why this

limit is intriguing, let us write the amplitude squared as / s
2

m
4
Z

s

m
2
X
. If we use the condition

|M|
2 = 1 to set a limit on the cuto↵ of the theory, we find

p
smax ⇠

1

↵
1/2
em ↵

1/6
X

⇣
mX

mZ

⌘1/3
mZ . (5.22)

We contrast the above with the result from a four-fermion interaction in the Fermi theory.

There, the amplitude M(ff̄ ! ff̄) ⇠ s

m
2
Z

(using mZ instead of v to make the comparison

easier and neglecting couplings and numerical factors), implying
p
smax ⇠ mZ—a cuto↵ at

the scale of particles we have integrated out. Compared to this, the limit from ff̄ ! XL� is

smaller by a factor of (mX/mZ)1/3. We remark in passing that in eq. (5.22), it is curious that

the cuto↵ scale of the theory scales as m1/3
X

in the same way as the weak gravity conjecture

suggests when mZ is replaced with MPl [42].

The situation becomes even more intriguing once we recall that the SM below the weak

scale is purely vectorial. The triple-gauge vertices formed from loops of fermions with vectorial

couplings (VVV in the language introduced in sec. 4) are zero—stated in the language of gauge

anomalies, the theory is anomaly-free. As such, ff̄ ! X� cannot exhibit any pathological

scaling with respect to s in the limit that we take the weak scale to be infinitely heavy.

The 1/m4
Z

scaling on the right-hand side of eq. (5.21) satisfies this requirement; however,

unusually, it predicts the scale where perturbative unitarity is violated (using |M|
2
 1) to

be parametrically lower than the weak scale. If we require that ff̄ ! X� remain valid at

least until mZ , this sets a lower limit on the mass of X,

mX,min ⇠

4
h
3↵3

em↵X

⇣
(qV,f

Z
)2 + (qA,f

Z
)2
⌘i1/2

c
2
W

s
2
W

mZ .
(5.23)

Taking f to be a charged lepton, mX,min ⇠ 6⇥ 10�3p
↵X mZ .

The above bound is a function of ↵X , so it can be made arbitrarily small by sending

↵X ⌧ 1; in other words, for ↵X ⌧ 1, the EFT cuto↵ implied by eq. (5.22) can be pushed

above the scale of current experiments. It is an interesting and open question as to whether

processes such as ff̄ ! X� could place bounds on (↵X ,mX) that are competitive with

bounds from Z ! X� and other electroweak scale processes.

5.4 Z� ! Z� via X exchange

The final amplitude we calculate using the triple-gauge vertex involves a so-called “BIM”

process [74], the scattering of gauge fields o↵ each other through the exchange of an o↵-shell

Stückelberg vector field. The original BIM calculation considered the scattering of massless

bosons through a (massive) Stückelberg vector field. For consistency with previous sections,

here we specialize the calculation to the case of a Stückelberg vector field coupling to global

baryon number, and so we consider Z� ! Z� through an s-channel X. The diagrams

involving X are shown in fig. 4.

– 32 –



p1, µ1

p2, µ2

⇡

q1, ⌫1

q2, ⌫2

A

Figure 4. Z� ! Z� scattering through an s-channel ⇡ (left) or A (right, with 3 cross diagrams not
pictured).

There are, of course, additional diagrams from boxes of fermions or W bosons, but these

are independent of gX . If all loop fermions  are heavy relative to
p
s, we recover the Euler–

Heisenberg Lagrangian from the box diagrams, with M(Z� ! Z�) ⇠ s
2

m
4
 
. Here we focus

on the same scenario considered in the previous subsections, with only massless SM fermions

in the loop. (We would obtain the same result with gauged baryon number so long as the

anomalon masses are taken to be much heavier than all other scales). Together with the limit

s� m
2
W
, the box diagrams involving W bosons have no bad s behavior15 [75, 76], so we will

neglect them and focus on the contributions from X exchange.

The X exchange occurs through a single diagram stitching together two Z � � � X

vertices. However, if we write X
µ as Aµ

� @
µ
⇡/mX and employ gauge fixing as described in

sec. 2.3, there appear to be two diagrams as in fig. 4—one from ⇡ exchange and one from

A exchange, each with gauge dependence. Feynman rules for these diagrams can be derived

from the Lagrangian in appendix C.

The A exchange piece for Z⇢(p1)�⌫(q1) ! Z⇢0(p2)�⌫0(q2), coming from loops of SM

fermions alone, is

�i

s�m
2
X

�̃µ⇢⌫

SM

⇣
g
µµ

0
� (1� ⇠)

(p1 + q1)µ(p2 + q2)µ
0

s� ⇠m2
X

⌘
�̃⇢

0
µ
0
⌫
0

SM , (5.24)

while the ⇡ piece is

i

s� ⇠m2
X

⇣
AB

2⇡2
eggX

cW mX

⌘2
✏
⇢⌫;p1q1✏

⇢
0
⌫
0;p2q2 . (5.25)

Evaluating the gauge-dependent piece of eq. (5.24) using eq. (5.3) with appropriate modifi-

15
Here we are referring to (s/M)

n
behavior at fixed scattering angle, where M is some other mass scale in

the problem, and not to divergences in the limit of forward or backward scattering. The latter manifest as

ratios of Mandelstam invariants.
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cations, then its sum with the ⇡ exchange term,
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0;p2q2 i

m
2
X
(s�m

2
X
)
,

(5.26)

we see that the ⇠ dependence cancels. Notice that the final result of eq. (5.26) is the same as

just ⇡ exchange given by eq. (5.25) in the limit s� m
2
X

in Landau gauge (⇠ = 0), as required

by the longitudinal equivalence theorem in eq. (3.6).

Assuming s� m
2
Z
,m

2
X
, we can neglect the other terms and use eq. (5.26) as an approxi-

mation to the full amplitude, deferring a more complete and general calculation to appendix C.

Forming a cross section from eq. (5.26) and taking the large-s limit, we find:

�(Z� ! Z�) '
27

128⇡3
↵
4
em ↵

2
X

c
4
W

s
4
W

s

m
4
X

+ · · · (5.27)

where the · · · indicates terms subleading in s.

While the diagrams in fig. 4 are reminiscent of longitudinal W scattering in the SM,

we emphasize that the external �, Z fields in the BIM process are purely transverse. In the

large-s limit, contracting the vertices above with longitudinal Z polarizations yields zero (for

massless SM fermions) via the MCVF.

6 Discussion

We have investigated theories with a Stückelberg vector field, emphasizing the systematic

approach to constructing an e↵ective field theory involvingXµ. We considered several possible

interactions of the Stückelberg vector field with the SM or with itself, identifying the couplings

of the longitudinal mode that lead to scattering amplitudes that grow with energy. At tree-

level these involve the operators (XµX
µ)2, H†

HXµX
µ and H

†
DµHX

µ, while the interaction

Xµj
µ
anom (with j

µ
anom an anomalous global current) induces one-loop amplitudes that grow

with energy. The energy growth implies an EFT with one of these interactions requires a UV

cuto↵ scale that appears above mX by an amount that is parametrically 1/(coupling) of the

interaction. In the specific case of Xµ coupled to the global baryon current, we demonstrated

that the finite contribution to the fermion triangle diagram leads to a variety of processes

that have longitudinal enhancements in the small mX limit, including Z ! X�, ff̄ ! X�

and Z� ! Z�.16

16
The importance of Z ! X� for gauged baryon number was emphasized in [38, 45] along with other FCNC

processes involving K ! ⇡X and B ! KX meson decays [38]. Constraints on other U(1)s were discussed in

[43].
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We performed a detailed analysis of the operator Xµj
µ
anom. This interaction is, at first,

somewhat puzzling since X
µ is not a gauge boson and yet it suggests X

µ is gauging an

anomalous current. Preskill [30] demonstrated that anomalous gauge theories are simply ef-

fective theories with a narrow range of scales where the EFT is valid. His analysis emphasized

the UV divergent contributions to the two-point function, leading to maximum separation

between the mass of the gauge boson of an anomalous theory and the cuto↵ scale of the

theory. As we have seen, this result holds for theories with a Stückelberg vector field that has

no gauge symmetry. In particular, we demonstrated that the generalized Ward identity is

satisfied if and only if the contributions from both A
µ, the (fake) gauge boson associated with

a (fake) gauge symmetry, and @
µ
⇡/mX appear in the specific gauge-invariant combination

A
µ
� @

µ
⇡/mX . Our analysis demonstrates that it is the existence of the global anomaly, not

the gauging of it, that leads to the physical consequence of scattering amplitudes that grow

with energy in the UV. This is reminiscent of [77] and may lead to a di↵erent interpretation

of anomalies when expressed directly in terms of on-shell scattering amplitudes. For example,

[78] recasts the constraints from anomaly cancellation in terms of on-shell amplitudes that

satisfy unitarity and locality.

A Stückelberg mass term in the Lagrangian is introduced independently of the couplings

of X to itself or other matter. In particular, the mass mX does not arise as gXvX where vX is

the vev of a Higgs field, and so the limit mX ! 0, gX ! 0 with the ratio vX = mX/gX held

constant does not exist. Instead, from the low energy perspective, the case of a Stückelberg

vector field is obtained by ungauging the theory (sending gX ! 0), holdingmX fixed, and thus

taking vX !1. This demonstrates that a strict interpretation of a theory with a Stückelberg

vector boson does not have anything to do with SSB. There is no Higgs mechanism, no Higgs

boson, and so the presence of longitudinally enhanced scattering amplitudes that grow with

energy, and consequently a UV cuto↵ scale of the EFT, is inevitable. Reece [21] has suggested

that weak gravity conjecture arguments [79] prevent an arbitrarily small Stückelberg mass

since the limit mX ! 0 lies at infinite distance in field space. It would be interesting to

further investigate the constraints on other parameters of the e↵ective theory of Stückelberg

vector bosons using arguments based on embedding the theory into quantum gravity [80, 81].

In the SU(3)c⇥U(1)em e↵ective theory below the electroweak scale, all fermion currents

are vectorial with no (gauge or global) anomalies. Naively, there are no restrictions on cou-

pling an arbitrarily light Stückelberg vector field to any linear combination of these currents.

Of course, the weak interaction explicitly violates some global symmetries, such as baryon

number, so the interactions of X with SM fermion currents are not purely vectorial. Hence,

X will have scattering amplitudes that grow with powers of
p
s/mX

17. One might think

this growth is the same as four-fermion interactions that also scale with s/m
2
W
, such that

the cuto↵ scale of the theory is the electroweak breaking scale. This is not true. Consider

ff̄ ! X� with X coupling to baryon number. While there is s/m
2
Z
suppression in the am-

17
An alternative approach in which a vector field interacts only through higher-dimensional operators was

discussed in [82].
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plitude from Z exchange, there is also
p
s/mX enhancement from producing a longitudinally

polarized X. By observing this energy growth in the cross section (at energies well below

the electroweak scale), one could determine whether or not a vector boson has longitudinally

enhanced couplings.

Finally, we should discuss the status of dark photons that partly motivated our study

of Stückelberg vector fields. In theories where the dark photon Lagrangian arises from a

spontaneously broken U(1) gauge symmetry by a dark Higgs field, some discussion of the

dark Higgs scalar has appeared (e.g., [5, 7, 83–88]). Instead, we proclaim that the time

is ripe to consider the more general set of interactions that a Stückelberg vector field can

have. Longitudinally enhanced interactions imply the theory will have a cuto↵ scale: within

the validity of the e↵ective theory (i.e.,
p
s less than the cuto↵ scale as determined by the

longitudinally enhanced scattering processes), what phenomenological consequences can arise

in the presence of these interactions? This is an interesting question to explore for more

general vector boson dark matter as well as for dark photon models.

Ultimately our discussion of a Stückelberg vector field reiterates the lesson of the precar-

ious nature of vector fields in quantum field theory whose mass is not associated with SSB.

The longitudinal component generically couples to itself or to the SM, and the presence of

these couplings leads to amplitudes that grow with energy and thus require a cuto↵ scale for

the EFT. There are only two resolutions: craft the e↵ective theory to have no couplings of

the longitudinal mode, i.e., X coupled only to an anomaly-free global current, or introduce a

Higgs mechanism with a Higgs boson to restore unitarity of longitudinal vector boson interac-

tions. If evidence of a new vector boson were uncovered in data, we hope our analysis provides

a framework to characterize the e↵ective field theory comprising the leading interactions of

the vector boson independent of its ultimate UV origin.
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A Form factors in the Rosenberg parameterization of the triangle diagrams

In this appendix, we detail the computation of the amplitude of the triple-gauge boson triangle

diagrams of fig. 2. Factoring out couplings, the relevant expressions are of the type in eq. (4.7).

To compute the finite form factors F3,...,6, we follow the procedure of [35]. The denominators

on the first and second lines of eq. (4.7) can be combined as
⇥�
(`± q)2 �m

2
 
)
� �
`
2
�m

2
 

� �
(`⌥ p)2 �m

2
 

�⇤�1

= �(3)

Z 1

0
dx

Z 1�x

0
dy
⇥
`
2
± 2` · k + xq

2 + yp
2
�m

2
 
+ i"

⇤�3
,

(A.1)

where k = xq � yp; since we are only interested in the finite form factors, we can make the

change of loop momentum ` ! ` ⌥ k. The numerators have terms with up to three powers

of `: the terms proportional to `3, `2 will contribute only to G
1,2, and those linear in ` vanish

because they are odd under integration. We use the AVV case as a prototype, finding

�⇢µ⌫AVV

��
finite

=

Z 1

0
dx

Z 1�x

0
dy �(3)

Z

`

4i

(`2 ��)3⇣
{(1� x� 3y)kµ � 2ypµ} ✏⇢⌫;pq + {(1� 3x� y)k⌫ � 2xq⌫} ✏⇢µ;pq

� {(x� y)k⇢ + yp
⇢ + xq

⇢
} ✏

µ⌫;pq
⌘
,

(A.2)

where

� = m
2
 
� x(1� x)q2 � y(1� y)p2 � 2xy p · q � i" . (A.3)

The loop integral evaluates to
Z

`

1

(`2 ��)3
= �

i

(4⇡)2
1

�(3)
��1

. (A.4)

To match eq. (A.2) to the Rosenberg parameterization in eq. (4.9), we apply the Schouten

identity

k
⇢
✏
µ⌫↵� + k

µ
✏
⌫↵�⇢ + k

⌫
✏
↵�⇢µ + k

↵
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�
✏
⇢µ⌫↵ = 0 (A.5)

to the last line, which becomes

{(x� y)kµ � yp
µ
� xq

µ
} ✏
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⌫
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1,2
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⌘
. (A.6)

The above lead to
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Z 1

0
dx
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0
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0
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(A.7)
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from which we see that

F3(p, q) = �F6(q, p) ,

F4(p, q) = �F5(p, q) .
(A.8)

With the F3,...,6 set18, the next step is to express G
1
, G

2 in terms of F3,...,6 so that

the vertex function can be written in terms of the finite form factors.19 To relate G
1
, G

2

to F3,...,6, we contract �̃ with the momenta of A,B, or C—respectively, pµ, q⌫ , or (p + q)⇢.

From the Rosenberg parametrization of eq. (4.9), we obtain the following expressions for the

momentum-contracted coupling-stripped vertex functions:
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✏
⇢µ;pq
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(A.9)

However, we know that G1
, G

2 are not uniquely defined. To isolate their ambiguities, we first

define the triangle vertex function with unshifted loop momentum (i.e., when a = b = 0 in

fig. 2)

�⇢µ⌫{r} (p, q) ⌘ �̃⇢µ⌫{r} (p, q; z = 0, w = 0) . (A.10)

The di↵erence �̃ � � encapsulates the ambiguity from shifting the momentum, and for any

{r} with an odd number of axial couplings, evaluates to [35]

h
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i
⇢µ⌫

{r}
=

Z

`

a
⌧
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⇢µ⌫�(z p� + w q

�) ,

(A.11)

where F
⇢µ⌫

{r} is the integrand in, e.g., eq. (4.7) for the AVV case.

We proceed to directly calculate the left-hand sides of eq. (A.9) using the explicit form in

eq. (4.7). The integrands in each of these contractions can be massaged into terms di↵ering

only by a shift in loop momentum, which can then be evaluated using the analog of eq. (A.11).

18
Recall, F3,...,6 are independent of the ri 2 {A,V}, so the results of eq. (A.7) hold in general and are not

specific to the AVV example.
19
In the case of massless loop fermions, we note that F3 [F6] su↵ers infrared divergences if p2 = 0 [q2 = 0].

This can be seen from eq. (A.3) and eq. (A.7).
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For example:
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(A.12)

where we have used `↵`� ! `
2
⌘
↵�

/4 to simplify the penultimate line, and the ✏µ⇢;pq term has

only one power of ` in the numerator and therefore vanishes when we take `!1.

Below, we list the complete sets of expressions for the AVV case,
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and the VAV case,
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(A.14)

Finally, we can fix G
1,2
{r} by combining eq. (A.11) and the above contractions of (p+ q)⇢, pµ, q⌫

with unshifted �⇢µ⌫{r} , then equating the sum with eq. (A.9).

B Generalized ff̄ ! X�

We examine the amplitude for the s-channel (left-hand side) diagram of fig. 3:
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where Q
f is the electromagnetic charge of f , (qV,f

Z
, q

A,f

Z
) are the (vector, axial) charges of f

to Z, and the Z propagator in unitary gauge is

(⇧1
Z )

�⇢
= g�⇢ �
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2
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. (B.2)
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The coupling  must be vector-like.

Let us isolate the contribution from the intermediate Z:
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As expected, in the case of the ff̄Z vector coupling, only the transverse part of the Z

propagator contributes. Moreover, we focus on the two cases for which we expect a diverging

amplitude: the AVV and VAV parts of the triangle vertex functions, i.e., an axial Z coupling

and a vector X coupling or vice versa. Then
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gXeQ

 

n
q
V, 

Z

A, �̃⇢µ⌫VAV + q

A, 

Z

V, �̃⇢µ⌫AVV

o
, (B.4)

with q
 

Z
,

 the charge of the fermion  to Z,X respectively.

Squaring the amplitude, summing over final polarizations, and averaging over initial spins

and fermion colors Nc, we find20
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where T⇢� is the trace over the external fermion part of the squared-amplitude,
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with ri = m
2
i
/s. We can also simplify the contraction of the external polarization tensors and

the triangle vertex functions:
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(B.7)

20
Below, we have assumed that the coupling-stripped vertex functions are real, i.e., that F3,...,6 and C0(m

2
 )

are real. For our purposes, we ignore the imaginary parts of these functions, which originate from the possibility

of pair production of fermions appearing in the loop. They can be calculated using the Sokhotski–Plemelj

formula applied to the integrands of eq. (A.7) and eq. (4.15) with � from eq. (A.3).
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where FT,L contain products of Fi and G
1,2
{r},{r0}, and {r}, {r0} 2 {AVV,VAV}.

In addition to eq. (A.8), eq. (4.10), and eq. (4.11), we have an additional relation between

the form factors in the Rosenberg parameterization by using eq. (A.9) and either eq. (A.13)

or eq. (A.14):
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We can use this relation to simplify the expressions for G1,2 in this case:
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Then only F4,6 and m
2
 
C0(m2

 
) are independent. In terms of the these functions, the two

quantities FT,L in eq. (B.7) and eq. (B.8) can then be written as
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(B.13)

We contract eq. (B.6) with eq. (B.7) and eq. (B.8) and take the limit of massless initial-

state fermions, rf ! 0. Inserting these results back into eq. (B.5), we obtain the expression

at leading-order in rX ⌧ 1:
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(B.14)

Of the two loop momentum shift parameters, we see from eq. (B.10) and eq. (B.11) that only

w appears in the second line. In order that the Ward identities for the photon and Z boson
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be satisfied, we must have w = z = �1. Examining the form factor combinations on the

second line in the two limits m2
 
! 0 and m

2
 
!1, we find:
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(B.15)

For completeness, we provide expressions for the form factors in the following two limits.

If the loop fermions are infinitely heavy, then at leading order we can discard the p
2 = m

2
X

term appearing in eq. (A.3), such that
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where Li2 is the dilogarithm function. If the loop fermions are massless, then F6 su↵ers an

infrared divergence:21
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C O↵-shell X-exchange amplitudes

In this appendix, we compute the amplitude for BB ! BB scattering (the BIM amplitude

after [74]), for which the diagrams are shown in fig. 4. This calculation illustrates the impact of

longitudinal enhancement from the triple-gauge vertex when the Stückelberg field is o↵-shell,

and it is analogous to WW scattering in the SM.

A simple setup that accommodates this process is the “A–B” model from [33]: this

consists of a single Dirac fermion  with an axial-vector interaction to A and a vector-like

interaction to B. The vector field A has a Stückelberg-like mass term. In order to cancel

anomalies, the model includes dimension-5 Peccei–Quinn local counterterms coupling the

Stückelberg scalar field ⇡ to Chern–Pontryagin densities. The Lagrangian after performing

the R⇠ gauge fixing procedure as in eq. (2.16) is

L = �
1

4
Bµ⌫B

µ⌫
�

1

4
Fµ⌫F

µ⌫
�

1

2⇠
(@µA

µ)2 +
1

2
m

2
XAµA

µ

+  ̄i
�
/@ + ie /B + ig /A�5

�
 �m  ̄ 

+
CA

2mX

⇡F
µ⌫

A
eFAµ⌫ +

CB

2mX

⇡B
µ⌫ eBµ⌫ .

(C.1)

21
As previously mentioned, sF6 also has imaginary part ⇡/4.
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⇡

Bµ

! p

B⌫

! q

! i
CB
mX

✏↵µ�⌫(�ipµ)(�iq⌫)

Figure 5. Example diagram from dimension-5 counterterms in last line of eq. (C.1) model.

An example Feynman diagram for the Peccei–Quinn terms in the last line of eq. (C.1) is

displayed in fig. 5.22

The diagram on the left-hand side of fig. 4 with s-channel ⇡ exchange evaluates to
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(C.2)

For the diagram on the right-hand side, we are interested in the part of the amplitude that

involves axial couplings of the loop fermions to A,
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Rewriting the R⇠ gauge propagator as in the second line of eq. (2.21), we can evaluate

the ⇠-dependent longitudinal terms using the MCVF of eq. (4.13) with C ! A,A! B,
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For the gauge dependence to cancel, we must have

CB = ±
e
2
g

4⇡2
(w � z) . (C.5)

To satisfy the anomaly-free Ward identities in eq. (4.13) for the B vector bosons, we must

choose w = 1, z = �1. The remaining ⇠-independent amplitude is M2 with the intermediate

A propagator in “unitary” gauge:

M
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s�m
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(⇧1
X )

�⇢
· �̃⇢⌫1⌫2

AVV (q1, q2) , (C.6)

22
We can assume that e ⌧ g such that these diagrams dominate over the standard contribution from

one-loop box diagrams of fermions in, e.g., light-by-light scattering.
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which can be broken up into its transverse and longitudinal parts as

M
µ1µ2⌫1⌫2
T

= �
(e2g)2

s�m
2
X

�̃�µ1µ2(�p1,�p2)�̃
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�

(q1, q2) ,

M
µ1µ2⌫1⌫2
L

= �
1

s�m
2
X

C
2
B

m
2
X

✏
µ1µ2;p1p2✏

⌫1⌫2;q1q2 .

(C.7)

where the subscript AVV is implicit. The squared amplitude, averaged and summed over

initial and final states, is

��MT
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(C.8)

Since p2 = q
2 = 0, the evaluation of the vertex functions is simple in the BIM case. From

eq. (A.8), we have both F5 = �F4, F3 = �F6. Then from eq. (B.10),

G
2
AVV

��
p2=q2=0

= � G
1
AVV

��
p2=q2=0

=
1

2
sF4 . (C.9)

Finally, if we have massless loop fermions, then eq. (B.17) implies

sF4|m2
 =0 =

1� rX + rX log(rX)

2(1� rX)2
. (C.10)

Then
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, (C.11)
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where arrows indicate the limit rX ! 0 and we omitted the AV V subscript in the interference

term for clarity.

Let us consider adding Wess–Zumino terms to the Lagrangian of eq. (C.1). These are

1

2
✏µ⌫�⇢A

µ
B
⌫

⇣
C

0
AF

�⇢

A
+ C

0
BF

�⇢

B

⌘
= �✏µ⌫�⇢A

µ
B
⌫

⇣
C

0
A@

⇢
A
� + C

0
B@

⇢
B
�

⌘
. (C.12)

For the BB ! BB process, only the C
0
B

coe�cient is relevant; the amplitude is shown in

fig. 6. Along with fig. 4, we have three additional diagrams where one or both fermion triangle
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B⌫

! q
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0
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✏�µ⌫↵(q � p)↵

Figure 6. Feynman amplitude for Wess–Zumino term in eq. (C.12).

loops in the diagram on the right-hand side of fig. 4 is replaced with a three-boson vertex

from fig. 6.

We then have
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0
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(C.13)

Again decomposing the R⇠ propagator as in eq. (2.21), we find a modified cancellation con-

dition for gauge independence

C
2
B =

✓
e
2
g

4⇡2
�
(w � z) + 4m2

 
C0
�
m

2
 

� 
� 2C 0

B

◆2

. (C.14)

We are left to calculate the squared amplitude that is the sum of eqs. (C.7) and (C.13), the

latter with the replacement ⇧⇠
X
! ⇧1

X
. Examining the longitudina pieces as in the second

line of eq. (C.7), we find after using the gauge independence condition above

M
µ1µ2⌫1⌫2
L

= �
1

s�m
2
X

C
2
B
� 4(C 0

B
)2 + 4C 0

B
(±CB + 2C 0

B
)

m
2
X

✏
µ1µ2;p1p2✏

⌫1⌫2;q1q2 , (C.15)

which yields the same result as in eq. (C.11) in the relevant limit.
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