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ABSTRACT: We explore the effective field theory of a vector field X* that has a Stiickelberg
mass. The absence of a gauge symmetry for X# implies Lorentz-invariant operators are
constructed directly from X#. Beyond the kinetic and mass terms, allowed interactions at
the renormalizable level include X, X* H YH, (XX M2 and X uJt, where j# is a global current
of the SM or of a hidden sector. We show that all of these interactions lead to scattering
amplitudes that grow with powers of \/s/mx, except for the case of X,j* where j* is a
nonanomalous global current. The latter is well-known when X is identified as a dark photon
coupled to the electromagnetic current, often written equivalently as kinetic mixing between
X and the photon. The power counting for the energy growth of the scattering amplitudes is
facilitated by isolating the longitudinal enhancement. We examine in detail the interaction
with an anomalous global vector current X, jhhom, carefully isolating the finite contribution to
the fermion triangle diagram. We calculate the longitudinally-enhanced observables Z — X~
(when myx < mg), ff — Xv, and Zy — Z~ when X couples to the baryon number current.
Introducing a “fake” gauge-invariance by writing X* = A" — 9'xw/mx, the would-be gauge
anomaly associated with A, jhnom is canceled by jgnomauw /mx; this is the four-dimensional
Green—Schwarz anomaly-cancellation mechanism at work. Our analysis suggests there is
no “free lunch” by appealing to Stiickelberg for the mass of a vector field: the price paid
for avoiding a dark Higgs sector (with its fine tunings and additional dark Higgs boson
interactions) is replaced by the non-generic set of interactions that the Stiickelberg vector
field must have to avoid amplitudes that grow with energy.
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1 Introduction

New massive vector bosons are ubiquitous in beyond the Standard Model (SM) physics.
At masses large compared with collider energies, they provide UV completions of higher
dimensional operators [1]. At intermediate masses, of order collider energies, they yield
resonances that are targeted by many searches [2]. At somewhat smaller masses, they can be
produced, decay, and be observed in high intensity experiments [3-5], typically when coupled
to charged leptons (for reviews, see [6, 7]). Also at smaller masses, they can act as mediators
to permit light dark matter to interact with the SM [8-10], underpinning the viability of a
large class of light dark matter detection experiments [7]. At exceptionally small masses,
vector bosons can even serve as dark matter itself [11-17].

One of the attractions of a single new massive vector boson is that a simple model [18]
exists: the massive U(1) dark photon A* (see [19] for a review),

Liark 4 = —%FA,WF;;” - %mE(AHA“ — eFuw FY, (1.1)
that involves just two parameters mx and €, respectively the mass of the U (1) dark photon and
its kinetic mixing to hypercharge. The simplicity of this extension hinges on the existence of
a Stiickelberg mass (see [20] for a review) for the dark photon. In particular, by not specifying
a Higgs mechanism for the dark photon, one is able to avoid the consideration of additional
interactions of the dark Higgs field ¢ x. In particular, one does not need to address the new
fine tunings from the “dark hierarchy problem” that are inevitable with a dark Higgs field
or how to avoid the respective destabilization of the dark and/or SM Higgs sectors through
renormalizable interactions such as qb&gb xH'H.

One of the reasons the dark photon Lagrangian seems simple is how the longitudinal
mode is packaged in A*. We can introduce the longitudinal mode 7 such that, under a gauge
transformation A¥ — A¥ + 0 a(x), the longitudinal mode shifts 7 — 7+ mxa(z). Using the
equation of motion (EOM) for the hypercharge gauge boson, 8,F}” = gy j} in terms of the
SM hypercharge current jy-, the dark photon Lagrangian can be rewritten as:

1

1 .
4FX7MVF§V + 7m,2XXMXH - GQYX;L])/; (12)

Edark v = 9

in terms of X# = A%, — 0Fm/myx — the Stiickelberg vector field — a vector boson without a
corresponding U(1) gauge invariance. The lack of gauge invariance is obvious because X*
remains invariant under the simultaneous gauge transformations of A* and w. This form of
the dark photon Lagrangian makes it clear that a Lagrangian with a Stiickelberg mass for a
vector field is best expressed in terms of X*; the use of the field strength F{” for the kinetic
term (or kinetic mixing with the SM) has nothing to do with gauge invariance, and instead
simply ensures there are only three propagating degrees of freedom (DOF) in X*.!

LContrast this with a spin-one gauge field, such as hypercharge B*, which only appears in the field strength
FE£Y and covariant derivatives.



This naturally leads to the question of the effective field theory involving a Stiickelberg
vector field X# — what are all possible interactions of X*, and what are their consequences?
The goal of this paper is to show that the Lagrangian eq. (1.2) is a special case of a more
general set of interactions for X#. For instance, already at the renormalizable level we can
write (X, XH)?, XHX“HTH, and X, j" where j# is a global vector or axial current that may

2 As we will see, most of these interactions have

or may not be (globally) anomaly-free.
couplings of the longitudinal mode with itself or the SM fields, and thus lead to scattering
amplitudes that grow with powers y/s/mx. This is analogous to the energy growth that
arise in a Higgsless SM [22]. The range of validity of the effective theory including X in
the spectrum relies on taking the coefficients of longitudinally-enhanced interactions to be
(sometimes exceptionally) small. Only if there are ezactly zero couplings of the longitudinal
mode with itself or with the SM can the cutoff scale of the EFT be taken arbitrarily large
relative to the mass of the Stiickelberg vector field.

There is a host of related literature that we will only briefly mention. Numerous papers
have studied theories with a Stiickelberg vector field in the context of field theory or string
theory [20, 21, 23-29]. There is also a huge literature on anomalous U (1) symmetries and their
implications for theory or phenomenology [27, 30-47]. The connections between anomalous
U(1) symmetries and the Green—Schwarz anomaly cancellation mechanism have also been
elucidated [27, 31, 33, 34, 41, 48]. While we have certainly benefited from this literature
and we do not claim to be the first or last word on this subject, our focus on a theory with
a Stiickelberg mass for X*#, a vector field without a corresponding gauge symmetry, lays a
foundation for a systematic approach to analyze the effective field theory of X* in terms of
its leading self-interactions as well as its interactions with the SM.

The organization of this paper is as follows. First, in sec. 2, we review the Stiickelberg
Lagrangian, (fake) gauge fixing, BRST, the external physical states, the propagator, and the
BRST current. In sec. 3 we consider tree-level interactions of the Stiickelberg vector field
XH. We demonstrate that self-couplings as well as tree-level couplings of the longitudinal
mode with the SM lead to amplitudes that grow with energy above the mass of the Stiick-
elberg vector field. While these interactions are not radiatively generated by a dark photon
Lagrangian that consists solely of a mass term and a coupling to a conserved vector current,
there are no symmetries that forbid these terms. Consequently, the dark photon Lagrangian
appears rather peculiar. In particular, we show that these interactions can be generated by
a dark Higgs mechanism for a dark U(1) gauge theory, and like the Higgs mechanism of the
SM, the dark Higgs boson renders the amplitudes finite above the dark Higgs mass. In sec. 4,
we consider the coupling of a Stiickelberg vector field to an anomalous vector current. This
is motivated by Dror et al. [40], who showed that should an anomalous symmetry of the SM
(e.g., baryon number) be gauged, the couplings of the longitudinal mode lead to longitudinal
enhancements of the amplitudes involving the anomalous fermion triangle diagram. These

2The phenomenological implications of the quartic interaction for the electromagnetic field was explored in
[21].



longitudinal enhancements are critical in determining the viable range of parameter space in
the model [38]. The Stiickelberg vector field theory would appear to be special, since there
is no gauge symmetry, and thus, no gauge anomalies. Nevertheless, we carefully consider
the one-loop triangle diagrams that arise because of an anomalous global symmetry of the
SM. We find that the Stiickelberg vector field has couplings of its longitudinal mode to the
divergence of the anomalous global current. The observable predictions of a Stiickelberg vec-
tor field coupled to, say, global baryon number of the SM are identical to the case in which
baryon number is gauged, so long as the “anomalons” needed to cancel the gauge anomaly
are taken to be heavy. In sec. 5, we demonstrate the importance of the one-loop couplings
of the longitudinal part of X* to an anomalous global current for several physical processes,
including Z — X~ and ff — X~, and Zv — Z~, when X couples to baryon number. Finally,
in sec. 6, we discuss the implications of our results. The appendices contain technical details
of calculations relevant for results in sec. 4 and sec. 5.

2 Review of quantization of massive vector fields

2.1 The Lagrangian and propagator for a massive spin-one field

A massive spin-one field X* has three propagating degrees of freedom (DOF). We see this
by decomposing the four components of the four-vector X* into the 1 & 3, or spin-zero and
spin-one, representations of the Lorentz group. The spin-zero component leads to a negative
energy density, and can be removed as a propagating DOF in the theory by imposing the
Lorenz condition

9,X" =0, (2.1)

together with writing the kinetic term for the four-vector as a function of the field-strength
tensor F{” = 9" XY — 9V X" [49]. The above two requirements are achieved by the Proca
Lagrangian
1 1
Ly = = Fxuw Py + img(XﬂX“ : (2.2)

which yields the EOM and its derivative

O FY +mx X" =0,

2.3
m%0,X" =0. 23)

For mx # 0, the Lorenz condition follows from the second line and therefore is not an
independent constraint. The Proca Lagrangian for X* is not gauge invariant: there is no
U(1) symmetry associated with X* since there is no redundancy in its description—all three
of its propagating DOF are physical.

The propagator for X* can be derived directly from inverting the Proca Lagrangian,
which is textbook material [49, 50]

—1 LoV
(X)X () = ey (w - ) . (2.4



The propagator for X* is equivalent to the propagator of a Higgsed, massive U(1) theory in
unitary gauge; however, we emphasize that the result above is not in unitary gauge—there is
no gauge invariance. This also implies that the sum of the polarization states for an on-shell
X" coincides with that of a massive U(1) theory, i.e.,

S )k (p) = (gW - “;) . (2.5)
A

mx

This explicitly demonstrates the counting of the on-shell physical DOF: X* has three physical
polarizations.
2.2 Stiickelberg formalism: introducing a fake gauge symmetry

The Stiickelberg formalism expresses

o
xt=an T (2.6)
mx

where A* is a “fake” U(1) gauge field and 7 is a scalar field that also transforms under this
“fake” U(1) gauge invariance:

Al — AF 4 Ot a(x) ,

(2.7)
T =T+ mxa(z),
where «(z) is the gauge parameter. The Proca Lagrangian becomes
1 w1 8\’
Ly = _EFA,/WFA + 9Mx A= mx ) (2.8)

purely in terms of the “fake” gauge field with its its field strength given by F4”. While this
construction introduces one additional DOF 7, the “fake” U(1) gauge invariance removes one
DOF, leaving the same three of the massive vector field in the original Proca Lagrangian
[51, 52].

We use the term “fake” to describe the gauge invariance of A* since the physical conse-
quences of X* and its interactions can be determined entirely in terms of the vector-field X*#
directly. The identification X* = A* — 0#7/mx is exact, in the sense that renormalization
does not disrupt the size of the coefficient of 07 /mx relative to A*. This follows from
ensuring that the gauge transformations of A* and 7 leave the combination A* — O#7/mx
invariant.

The purpose of introducing the “fake” gauge invariance is to more easily uncover the
role of the longitudinal polarization of X*, namely X/, which for a suitable choice of gauge,
can be fully captured by the interactions of the the scalar field w. Hence, we will refer to
7 as the “longitudinal component” synonymously with X, though we emphasize that this
identification is only strictly true in Landau gauge, as we discuss below.



2.3 BRST and R; gauge fixing

Before we discuss the gauge fixing of eq. (2.8) and applying the BRST to the Stiickel-
berg formalism, we briefly review the general gauge-fixing and quantization procedure using
BRST [53, 54]. The BRST transformations of the fields are equivalent to gauge transforma-
tions like those in eq. (2.7) with infinitesimal gauge parameter

a(r) =0w(zx), (2.9)

where 6 is an infinitesimal Grassmann constant and w is a real, Grassmann scalar field (ghost).
For the Stiickelberg theory, we have the following BRST transformations of the fields:

0pA = 00w,

dom =mxOw,

Sob =0, (2.10)
dpw =0,
dgw™ = 0b,

where w* is a real, Grassmann scalar field (antighost) and b is a Nakanishi-Lautrup auxiliary
field [55, 56]. The action of a BRST operator s on a field ¢ is defined in terms of the
infinitesimal BRST transformation of a field ¢ by

g =0Osp. (2.11)
For a product of fields,

do(192) = (dop1)p2 + ©1(dap2) = 0 [(se1)p2 £ p1(sp2)] (2.12)

where + for whether 1 is bosonic or fermionic; i.e., s can be viewed as a fermionic operator.
Using the transformations in eq. (2.10), the gauge-fixing part of the Lagrangian can be written
as [23]

Lo =s [w* <g + gbﬂ = —w* (sG) + bG + gzﬂ : (2.13)

where G[A, 7] is a gauge-fixing functional. Since b is an auxiliary field and does not propagate,
we can eliminate it using its EOM, yielding an alternate form for eq. (2.13),

Lo = —w* (sG) — 21592' (2.14)

The Rg-like class of gauge-fixing choices is obtained by setting

Ge = 0, AF +Emx. (2.15)



The general R¢-gauge Lagrangian is the sum of eq. (2.8) and the gauge-fixing terms,

Eg =Ly + [,gf|g5

1 L o or\? 1 2 * (52 2
= —1 A,p,l/FzV + §mX (A;U' — nf];() — ?g(auAM + §mx7r) — W (a + me)w
1 1 1 1 1 .
= Fa PR — 2—5((9#14“)2 + gmx A A + S moin — §£m§(772 — W@ +Em¥)w,

(2.16)

which explicitly exhibits the decoupling of A*, d#r.3

From this, we see that the Proca Lagrangian corresponds to the choice & — 0, where
the second term in the last line of eq. (2.16) decouples and 7 becomes a free, massless scalar
field. The Stiickelberg Lagrangian is obtained from the choice of Stiickelberg—Feynman gauge
e=1,

1 | 9,m\? 1
Lo = —~FawFt +-m% (A, — 2T} — Z(9"A, +mxm)?. (2.17)
. 2 mx 2

Note that the first two terms in eq. (2.17) are unchanged under the gauge transformation
eq. (2.7); however, invariance of the last term requires m to obey the EOM for a massive
scalar field,

(O+m%)7m=0. (2.18)

2.4 Propagator in R; gauge

The R, gauge fixing removes the mixing terms of the form A*0, 7 in the original Stiickelberg
Lagrangian of eq. (2.17), leaving just the gauge-dependent two-point functions for A* and 7.
These have the standard R¢-gauge forms:

v oy _ Tl R B
WA ) = (9 -0

S pP-Emi

(2.19)
(m(p)m(—p))

Using eq. (2.10) and the decomposition in eq. (2.6), the BRST transformation of X* is

1
0 X1 = Bg At — ——"Ggm = 0w — O (0w) = 0. (2.20)
X

3Using R¢ gauge fixing, the ghosts decouple in Abelian gauge theories because the ghost kinetic term
involves only partial derivatives (in Yang-Mills theories, these become covariant derivatives in the adjoint
representation). Hence, we omit them from the Lagrangian for the remainder of the paper.



X*# is annihilated by the BRST operator and corresponds to a physical external state. From
eq. (2.19), the X* two-point function can be reconstructed as

(XH(p) X" (=p)) = (A*(p)A"(-p)) + W%{(ip“)(—ip”)<7r(p)ﬂ(—p)>

—1 v pt'p” i pf'p
o (a0 )

P -mk pr—&myx ) mix p? - E&mk

_ w _ PPPY
T2 —m2 9 m2 ]
X X

which agrees with eq. (2.4). The absence of ¢-dependence demonstrates that the propagator

12

(2.21)

for the physical state X* is, unsurprisingly, itself independent of the fake gauge symmetry.

2.5 Current conservation

The decomposition X* = A* — 9Hr/mx allows us to study Stiickelberg theories using tech-
niques familiar from gauge theories. In fact, the fake gauge field A* has the same form as
that of a massive gauge field arising from a Higgsed U(1) symmetry that is spontaneously
broken with mass mx = gv/2. However, for a Stiickelberg vector field, we know that only
the combination A* — 97 /myx is physical and can represent an external state, while for a
gauge theory, the external state is of course just A*. How do we reconcile this difference?

To understand when there is a distinction between the Stiickelberg vector field and a
spontaneously broken massive gauge field A*, we examine the BRST current,

oL
Thrst = Y Sop - (2.22)
field 090up

To keep things simple, consider a scenario in which the spin-one fields have interactions with
a fermion current, i.e., g (A4, — O,m/mx)jf. . = gX,jk.  for a Stiickelberg vector field and
gAujk  for a spontaneously broken, gauged U(1) vector field.

In the case where A* is a gauge field that is spontaneously broken, it is straightforward
to show that the divergence of the BRST current is

o
ferm

OuJbper = —w0uJ (for a massive gauge field A"). (2.23)

Therefore, a conserved BRST charge requires the divergence of the fermion current to vanish.
In contrast, when the same BRST transformations are applied to the Stiickelberg vector
field, we obtain

OuJhrgr = 0 (for a Stiickelberg vector field X* = A* — 0w /mx). (2.24)

A conserved BRST charge can always be formed since the divergence of the BRST current
vanishes independently of the conservation of the fermion current.

Once we enforce a conserved current (in what follows, a fermionic current), under the
decomposition X# = A¥ — 9tm/mx the scalar field 7 decouples from this interaction leaving
X*" and A* indistinguishable.



3 Tree-level Couplings of a Stiickelberg Vector Field

We now turn to considering the tree-level interactions of a Stiickelberg vector field X#*. As
we have emphasized, X* does not transform under a gauge symmetry. Hence, interactions
in the effective theory will be built from powers of X#. The goal in this section is to enu-
merate the possible renormalizable tree-level interactions of X* and identify those that lead
to scattering amplitudes that grow with powers of \/s/mx. These amplitudes arise from
couplings of the longitudinal mode X/. The absence of a (gauge) symmetry under which X*
transforms implies that its mass does not signal spontaneous symmetry breaking (SSB) nor
the existence of Goldstone bosons. Nevertheless, the longitudinal mode, X/, is physical. We
now state the longitudinal equivalence theorem: the leading interactions of the longitudinal
mode can be characterized either by working directly with X', or by using the fake gauge
invariance of eq. (2.7), choosing Landau gauge, and then associating X/’ with the interactions
of the derivatively coupled longitudinal scalar field 7. This is the Stiickelberg analogue of the
Goldstone boson equivalence theorem.

3.1 The generalized Ward identity and the longitudinal equivalence theorem

In a theory with an exact U(1) gauge symmetry, current conservation leads to the Ward
identity

KM, =0 (3.1)

for an arbitrary amplitude M in momentum space. This implies that the longitudinal po-
larization of an external on-shell gauge boson decouples. For a spontaneously broken U(1)
gauge theory, in which a gauge field A" acquires a mass my, the longitudinal polarization
of an external on-shell gauge boson has, of course, physical couplings. Again using current

conservation, a generalized Ward identity

K+ .
—— M, (A) = iM(G; ¢ =0) (3.2)
mx
can be constructed that relates the momentum-contracted amplitude for an on-shell external
gauge boson A* with momentum k* with the same amplitude, M(G°; ¢ = 0), for the Gold-
stone boson in Landau gauge. In the limit of large momentum |k| > mx, i (A) ~ k*/mx,
giving the Goldstone boson equivalence theorem
|k|>mx
—_—

e (A)M,(A) iIM(G% € = 0) (3.3)

for a single on-shell, longitudinally polarized gauge boson.

For the massive Stiickelberg vector boson, there is no (generalized or other) Ward identity
since there is no gauge symmetry and thus no conserved local current associated with X*.
This means

ﬁM“(X) £0. (3.4)

mx

,10,



At large momentum |k| > my, el (X) ~ k*/mx, and so this is simply a statement that the
longitudinal mode of a Stiickelberg vector field couples with a strength of k*/mx.

What if we follow sec. 2.2 and sec. 2.3 and decompose the Stiickelberg vector field into a
fake gauge boson A and scalar field 7 and use the fake gauge invariance and R¢ gauge fixing
to remove the A*0,m mixing terms? Here, the gauge redundancy of A* and 7 implies that
there is no gauge-independent identification of X' with A} and/or 7. Consider the two-point
functions eq. (2.19) and eq. (2.21). As we have discussed, the sum of the polarizations of
XH is gauge independent. We can match the sum of the polarizations of X* to that of a
massive gauge field A¥* by going to unitary gauge, & — oo. In unitary gauge, w does not play
a dynamical role because m2 = {m% — oo, and so € (X) = €} (A;€ — oo). By contrast, in
Landau gauge (£ = 0) the sum of the polarizations of the two-point function of A* is purely
transverse, matching that of a massless gauge theory that has only two propagating DOF.
Hence, in Landau gauge, the longitudinal polarization X/ is fully captured by "7 /mx. This
is the same result found in a spontaneously broken gauge theory in Landau gauge, where the
longitudinal polarization of a massive gauge field is fully captured by O*G°/my for the eaten
Goldstone scalar field.

Therefore, analogously to eq. (3.3) for a spontaneously broken theory, in Landau gauge
at large momentum |k| > mx, we can identify

|k>myx kM
_> —_

0 # eh(Mu(X) Mu(X) = iM(r; € =0). (3.5)

mx
This is the longitudinal equivalence theorem: the leading behavior for on-shell, external X ‘LL
interactions can be found by replacing X/’ with 0#m/mx. For Stiickelberg theories, longitu-
dinal equivalence arises as a consequence of the invariance of Green’s functions under BRST
transformations (Slavnov-Taylor identities) carried out on the A, — d,7/mx formulation.
Following eq. (2.24), BRST invariance holds for Stiickelberg theories regardless of whether
A, —0um/mx couples to conserved currents. Goldstone equivalence in a Higgsed U(1) theory
can also be formulated from BRST invariance (assuming 8,jf. = 0); however, it is more
commonly derived using the generalized Ward identities from U(1) gauge invariance (gauge
fields coupling to conserved currents).* Moreover, we can also identify the leading behavior
of the off-shell two-point function [59],
k:2>>m§( LM kY

(XH (k)XY (=k)) - (r(k)m(=k); € =0). (3.6)

The Stiickelberg formalism makes clear that the large-momentum behavior found by
using eq. (3.5) and eq. (3.6) yields nonrenormalizable interactions of the longitudinal mode
7 suppressed by powers of mx. Below, we will utilize these results in our discussions of the
leading behavior of interactions and scattering amplitudes at large momentum. We note that

“See refs. [57, 58] for more details on the relation between the BRST Slavnov-Taylor identities and the
generalized Ward identity in this regard.
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Lagrangians involving X*# do not necessarily contain interactions of the longitudinal mode .
For example, one special case is the Proca Lagrangian eq. (2.2)

1
4

1 k2>»m3 1
Fx P + GmA X, X" Zx 50T, (3.7)
i.e., by the equivalence above, the Proca Lagrangian for a free massive Stiickelberg vector
field becomes the Lagrangian for a free massless scalar field 7.
We now turn to considering interactions of X*# with itself or with the SM, identifying
those interactions that couple to the longitudinal mode, and discussing the consequences for

the effective field theory.

3.2 Comnserved vector current

Consider the interaction

9x Xy » (3.8)

in which the Stiickelberg vector field couples to a conserved vector current j{t, with strength
gx . For the purposes of this section, the current is assumed to be exactly conserved, 9,54 = 0.
(The anomalous case that leads to one-loop couplings will be discussed in detail in sec. 4.)
Using the equivalence X* = A* — 0¥ /mx, it is clear that the longitudinal component 7
decouples from the conserved vector current, since under integration by parts (IBP)

SO 0 > 0. (3.9)
This is the famous example of a dark photon kinetically mixed with electromagnetism, namely
J = jbm, with coupling strength gx = ee [18]. This coupling is equivalent to a kinetically
mixed Stiickelberg field with the electromagnetic field strength using the EOM j&, = 9,F4
and IBP. In the electroweak theory, ji; = j{*, with coupling strength gx = eg’/cw, where ¢y
is the cosine of the Weinberg angle. While j4* is no longer a pure vector current, it of course
remains anomaly-free. (The couplings of X to the axial vector part of hypercharge will be
discussed in the next section.)

While kinetic mixing eFx,,, F{/" is equivalent to egy X,j{-, it is worth emphasizing that
the inverse need not be true. The Stiickelberg vector field X* can be coupled to a conserved
current that is purely global and not gauged. For example, in the SM the global current jf_,
is exactly conserved®, and so the interaction

9x Xuip_1 (3.10)

can be written without explicitly gauging B — L. This has fascinating consequences when one
imagines X* coupling to a linear combination of both j&, and ji;_, [60].

®The global U(1)%_, and U(1) 5—r(grav)? anomalies vanish in the presence of three right-handed neutrinos,
though this is not critical to our argument.
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(a) (b) (c)

Figure 1. Diagrams for 2-2 scattering amplitudes with two fermions and two gauge bosons: (a)
XX — ff; ) ff = XX; (c) fX — fX. [We have omitted the u-channel diagrams for (a), (b).]
When 9,54 # 0 due to the explicit violation of the global axial current by the fermion mass, the
amplitudes for the longitudinally-polarized X field grow with energy proportional to m f\/g/mgg

These statements also hold for Stiickelberg vector fields coupled to currents of hidden
(dark) fermions, which are commonly found in the literature. In this scenario, it is often
assumed that X*# is the gauge boson of a new U(1) and that the hidden fermions are charged
under this symmetry. However, provided the hidden current coupling to X* is vector-like and
conserved, this need not be the case—the interaction is indistinguishable from a Stiickelberg
vector field coupled to a global (hidden fermion) current.

3.3 Axial-vector current

Next, consider an interaction of X* with an axial current,
gx Xujh - (3.11)

Unlike the case of the global vector current, the global axial-vector current is not, in general,
conserved already at tree-level. This is simply because an axial-vector current is explicitly
violated by fermion masses (within the SM or beyond).

The consequences of the axial-vector current violation by fermion mass is most easily seen
by focusing on the longitudinal component of the Stiickelberg vector field, X/, or equivalently
—0"m/mx following eq. (2.6). For an axial current of fermions ji = fy"7y5f, the 7 field is
derivatively coupled, so the longitudinal part of eq. (3.11) becomes

2N (frsf), (312)

gx Xp il = =2 8,m (Frrasf) = Lo u(fr s f) =
mx mx
proportional to the fermion mass.

We can use this result to illustrate the high energy behavior of X* in several scattering
processes that have axial-vector couplings including ff — XX, XX — ff, and fX — fX
as shown in Fig. 1.

The full expression for the scattering amplitude follows by using the vector-boson polar-
ization tensor for the external boson X*#. Since we are interested in the high-energy behavior
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of the amplitude, we can focus on just the longitudinal part using eq. (3.12). Using this effec-
tive interaction, and taking the limit of s > mg(, m% with ¢ fixed in the amplitude squared,
we find that X; X — ff is W
‘M’2: BEQX;nfS 4+ .. (3.13)
m (m% —t)
where --- stands for terms with subdominant energy growth. We see that the amplitude
grows with energy proportional to mfy/s/ m§(
We can obtain a crude estimate of the scale at which perturbative unitarity is violated

by setting ¢ — 0 (forward scattering) and |[M|? =1,

1 m_ZX .
42 g5 my

V/Smax ~ (3.14)
The effective theory for a Stiickelberg vector field has a cutoff scale that is parametrically
above mx only when m; < mx. This is fully equivalent to the Appelquist-Chanowitz bound
on scattering amplitudes involving longitudinal electroweak gauge bosons and SM fermions
when the Higgs is decoupled from the SM [61].

If instead the fermions are much heavier than the scattering energy, mff > 5 > m%,
the fermions can be integrated out, generating an effective (X, X M)2 quartic interaction at
one-loop order that will also lead to amplitudes that grow with energy. This is investigated
below in sec. 3.5.

The coupling of X* to an axial-vector current is equivalent to a dimension-4 Higgs-
derivative interaction with X*

iHYD X (3.15)

=
where we remind the reader that H' D ,H = H'(D,H) — (D,H")H is a SM gauge singlet
with fully contracted SU(2)r x U(1)y indices. Focusing on the longitudinal part,

> — o
iH'D ,HX! - —iH'D ,H=" . (3.16)
mx
Using IBP, the longitudinal coupling becomes
i or(HTD ) =i [HTDQH —(p*uhH| . (3.17)
mx mx

In the last line, we are free to promote the partial derivative to a covariant derivative since
the additiona<1_§M vector boson terms needed to covariantize the left-hand side of eq. (3.17)
vanish under D . Applying the EOM of the Higgs field, the Higgs mass and quartic will cancel,
leaving just the m coupling to a pseudoscalar current proportional to Yukawa couplings,

— —imLX ©(frys fr— FrybfL) (U\J/rih) : (3.18)
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For the leptons and one type of quark, we can diagonalize the Yukawas so their entries are
real and positive. In this case,

(v+h) ®™ -
7 g D (3.19)

We can convert this into an axial current by using the EOM for the fermions and IBP once

—>—iyf

more. Starting with eq. (3.17),
. T _ -
i — (—eRl/Z (H'L) + (LH) yeer + -- )
mx
— i —— (—egiler + LiPL + - )
mx
= — = (epv'er — LY*L+---)

= (/") (3.20)
mx

Hence, the Higgs-derivative interaction can be rewritten as axial-vector couplings of the SM
fermions with X*, and thus have the same energy growth in the amplitudes.

While X M?v“wg, fand iH J‘ﬁ HX# separately lead to amplitudes that grow with energy,
a carefully chosen combination of the two terms will not. This is precisely what occurs for
X*# coupling to the axial part of the hypercharge current. Explicitly,

yr(v+h)
T V2mx

X,ij,Y =1 ((YfR - YfL) + YH) ™ (JE’VSf) (3.21)

after carrying out the manipulations in eq. (3.12) to eq. (3.20) and focusing on the longitudinal
piece of X*. Here Yy, ,Yy, are the hypercharges for f; and fgr, respectively, Yy is the Higgs
hypercharge, and the + (—) sign holds for leptons and down-type quarks (up-type quarks).
Inserting the hypercharges for SM matter, eq. (3.21) vanishes. Thus, X, jg,y does not induce
any amplitudes that grow with energy.

3.4 Higgs portal

At the renormalizable level, there is one independent Higgs interaction with X*#,
1
§>\2|H|2XMX“ : (3.22)

Inserting the Higgs vacuum expectation value (vev), this leads to an additional contribution
to the mass of Stiickelberg vector field. The shifted mass is

by 2
2 =m% 22” (3.23)
The interactions of the longitudinal component are identified as
1 2 1 2
5)\2|H| X, Xt — o Xo| H|*(OymO#Tr) . (3.24)
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This yields dimension-5 and dimension-6 interactions of the longitudinal mode 7 with the

Higgs field ,

A2(20h T 1) () ) (3.25)
2m%
that lead to scattering amplitudes that grow with powers of \/s/mx. Explicitly, examining
the process XX — hh and using [M|? = 1 as the criterion for the perturbative unitarity
limit, we find \/Smax ~ \/%ﬁlx.

If X* were to acquire its mass mostly through this interaction (i.e., m% ~ Aav?/2), the
strength of the coupling Ay cancels out in eq. (3.25). In this case, the Stiickelberg vector
boson amplitudes grow with energy above the electroweak-breaking scale independently of
the mass of the Stiickelberg vector boson.

Finally, we note that this operator is familiar from the scenario of a U(1) gauge field
spontaneously broken by a complex scalar, in which case A would be identified with ¢2, the
square of the U(1) gauge coupling. This suggests that A2 < 0 is highly suspect: in particular,
the positivity of Ao is mandatory in the case where the mass of the Stiickelberg field is obtained
from this operator.

3.5 Quartic self-interaction

At the renormalizable level, there is one operator that leads to a self-interaction of the Stiick-

elberg vector field:
1

IM(}@Xﬂ)2 . (3.26)
For the longitudinal component this becomes
A4 9
m(@m@“w) . (3.27)

In the presence of this quartic self-interaction, the 2-2 scattering amplitude with Stiickelberg
vector bosons grows with energy as
§2
AXp Xy — X Xp) ~ M— (3.28)
mx
due to the couplings of the longitudinal mode. The s?/ m}l( growth of the four-point amplitude
is the same as that encountered in the SM arising from (just) the four-point interaction of
longitudinal W gauge bosons. Of course, this energy growth is famously canceled in the SM
by Z and h exchange diagrams.
The breakdown of the effective theory from this operator can be obtained by performing
a rough estimate of the maximum allowed energy as in the previous subsection,

mx
V/Smax S N (3.29)
4
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Separating |/smax and mx requires Ay < 1.6

However, restricting to just the interactions of the normal dark photon model, (X, X*)?
is not generated radiatively. The coupling A4 is multiplicatively renormalized and thus tech-
nically natural if set to an exceptionally small number (including zero). It is well known that
the sign of A4 must be positive to ensure UV analyticity [62].

In the case of a Higgsed U(1) theory in which the vector-boson mass is acquired through
SSB, the energy growth of X X — X X scattering is tamed by the Higgs exchange diagram. In
the low-energy effective theory below the mass of the Higgs (but above mx), this interaction
is generated with a coefficient Ay = Gg4v2/m,21 where mx = gv/2, m%b = 2\pv?, giving
AXX = XX) ~ if}—j In other words, the scattering of vector bosons in a spontaneously
broken U(1) theory has an amplitude that grows with energy until the vev v, where the EFT
must be supplemented by the Higgs boson.

4 Coupling a Stiickelberg vector field to an anomalous vector current

Perhaps the most intriguing interaction that a Stiickelberg vector field could have is X, jhnom,
a coupling to an anomalous current. In this section we will mainly focus on coupling to an
anomalous vector current, since we already showed in sec. 3.3 that a tree-level coupling to an
axial current generically leads to amplitudes that grow with energy.

For a gauge field, A, jhmom gauges what is a globally anomalous U(1) current associated
with jhom. In the presence of just one U(1) gauge interaction, this leads to the usual U(1)3
anomaly. When the fermions contributing to the current jhhom also transform under other
gauge symmetries, such as the SM, this leads to the mixed anomalies (SM)2U(1). The
presence of the gauge anomalies leads to radiative corrections to the mass of the U(1) gauge
boson and to certain scattering amplitudes growing with energy [30, 42].

In [40], a detailed analysis of a light U(1) gauge boson coupled to an anomalous cur-
rent was carried out. Their focus was on baryon number, which has the mixed anomalies
[U1)y]?U(1)p and [SU(2).]?U(1)p. The interaction A,j% leads to couplings of the longi-
tudinal mode of A, with the (anomalous) baryon current. The consequences of this nonzero
coupling emphasized in [40] are longitudinally enhanced interactions, including Z — A~y and
other anomaly-induced decays. A careful analysis of the loop functions leading to this decay
was carried out in [45].

But now there is a puzzle. The Stiickelberg vector field interaction X, jinom appears to
lead to an anomalous fermion triangle loop, and yet, X* is not a gauge field. There cannot
be U(1)3 or (SM)2U(1) mixed gauge anomalies because there is no U(1) gauge symmetry
associated with X*.

In this section, we resolve this puzzle and, in the course of our analysis, find several
consequences for theories with a Stiickelberg vector boson. When we first introduce the fake
gauge symmetry of eq. (2.7), the mystery seems to deepen further because now A, would,

SFor vector-boson dark matter with mx ~ 107° eV [13] and requiring the cutoff scale to be A = Mp, we
find an exceptionally small bound on the coupling Ay < 107129,
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in fact, appear to gauge an anomalous current. We will see that the term (8,7/mx)jknom
precisely cancels the gauge anomaly that arises from A, jfhom. The mechanism responsible
for canceling the anomaly can be understood essentially by IBP,

oum .

— 7‘711
mx anom

T , T -
- mixaﬂjgnom X mixF,LWFMV7 (41)
where ﬁ;w = %ealgWFaB , and we recognize that the partial derivative of the anomalous current
0, jnom 1s proportional to Fj,, F*, the Chern—Pontryagin density. The resulting dimension-
5 interaction on the right-hand side of eq. (4.1) is referred to as the Peccei-Quinn term”
(for any of the gauge symmetries of the SM, not just QCD). When this term is combined

8 (coupling a gauge/vector field to a Chern-Simons class’

with suitable Wess—Zumino terms
[49, 63]) with appropriate choices of coefficients to restore gauge invariance, we will see that
the Ward identities can be satisfied for all symmetries, verifying that A, does not have a
gauge anomaly.'?

We now turn to considering the coupling of a vector field to an anomalous symmetry
current, jhnom = Zw q¥ Tatp, where ¢¥ are the fermion charges under the symmetry. We
wish to explicitly calculate the fermion loop attaching an external A* to two gauged vector
bosons BY and C?. Our discussion will apply to both a gauged vector field coupled to an
anomalous local symmetry current, as well as a Stiickelberg vector field X# coupled to an
anomalous global symmetry current. For the Stiickelberg vector field, however, we will do this
by first decomposing X# = A¥ — 9*m/mx, carrying out the calculation of the contribution
to the gauge anomaly from A*, and then add back in the contribution from o /mx.

4.1 Triple-gauge vertex from a single fermion loop

Consider the triangle diagrams that contribute to the anomaly with general vector bosons
A, B,C as shown in fig. 2. By power counting, their amplitudes are linearly divergent and
thus not uniquely defined. This can be encoded by including arbitrary four-momentum shifts
a and b in the fermion loops in the left- and right-hand side diagrams, respectively. We will

"This is also referred to as a “Green—Schwarz term” in some of the literature, e.g., [35].

8These are also referred to as “generalized Chern-Simons terms” in the literature, e.g., [35, 41].

9The Chern-Simons class for a non-Abelian gauge field is (the second term is zero for the Abelian case)
1

Q= e (AZF,‘\lp -3 f“bcAﬁA§A§> = 0.0 = %GWPF;UF;p. (4.2)

9Coupling A, and 9,7, the two “components” of X,,, separately to the Chern-Simons class for an unbroken
gauge symmetry Q5 yields

Ay = Aueuw\pBngp ) (4.3)
the dimension-4 Wess-Zumino term used to cancel the mixed anomaly, and
o, T T ~
mLXQ‘é = —m—X@LQ‘é = —mfoBwFﬁ ; (4.4)

the dimension-5 Peccei—-Quinn term. As we will see in sec. 4.3, the four-dimensional Green—Schwarz mechanism
combines these two types of terms to cancel anomalies.
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{+b
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B,

Figure 2. Triangle diagrams responsible for the coupling of A* (decomposed from X# = AH* —
Ot /mx) to two gauge bosons B” and CP. We have labeled Lorentz indices and directions of four-
momenta according to their use in the main text.

see that these arbitrary shifts are restricted by physical requirements, e.g., gauge invariance
of either B or C.
Our convention for the amplitude of the sum of the triangle diagrams in fig. 2 is

AR (p, g3 my; a,b) = 9 g2 g Ty (0, a3 mysa,b), (4.5)
where the indices r; € {A,V} indicate axial or vector couplings, respectively, of the boson
with corresponding Lorentz superscript index in the same order, and m,; is the mass of the
fermion v circulating in the loop. For now, all fermion charges have been subsumed into the
couplings, so one should view 921,7123’?0 as specific to the particular fermion in the loop, i.e., the
interaction term in the Lagrangian for this fermion is

Ling = 9" (98 — go5) Y C* + (C — A, B) . (4.6)

Focusing for example on the case r{ = Ajro = V,rg3 = V, the amplitudes for the
(coupling-stripped) triangle diagrams are:

1 1 1

v

Lo (p, q; s a, b :/Tr P #
AVV( P ) ) 757[+¢_p_mw7 [+¢_mw’7[+¢+¢_mw

(4.7)

o 1 y 1 L 1
T g —my | FF—my Z+I5+p—m¢}’

/Z:/(jifd (4.8)

For the VAV and VVA amplitudes, we move the 5 matrix in front of v* or v, respectively.

where

To avoid non-chiral anomalies, we set b = —a [64-66]. In terms of the external momenta p, g,
we can then express the arbitrary shift a = zp + wq using two real parameters z,w. The
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amplitude can be written in the Rosenberg parameterization as [45, 64]

o 1 » y
Iy (pq2,w) = Wg{Gh}(p, ¢; W) + G (p, g 2)e

(4.9)
+ (Fg(n Q)p" + Fa(p, q)q“)e”””’q + (F5 (P, @)p” + Fo(p, q)q”)epwq} :

where ePFV1 = PFYYq,, and we have made implicit the fermion mass dependence. The form
factors F; are finite and independent of {r}, whereas G', G? are dependent on the momentum
shift a (or the parameters w,z) as a consequence of the linear divergences of the triangle
diagrams.

Full details of computing the form factors is given in appendix A. We quote here the final
expressions for the AVV and VAV cases that we will use in the following sections. Employing
eq. (A.8) to eliminate F5, we obtain for the AVV and VAV cases:

1
Gy = 1(Z+1)+p2F3—p'qF4,
! (4.10)
Givy = 1(w—1)+q2F6+p'qF4,

1
Giay = Z<Z+ 1) +p*Fs—p-qFy,

i (4.11)
Gy = E(UJ —1)+¢* Fs+p-qF1—mjCo(m}) .

4.2 Momentum-contracted vertex functions

Now that we have established how the triple-gauge vertex can be manipulated into purely
finite terms — form factors F3 g plus the momentum-shift parameters w, z — we turn to its
phenomenological consequences. The most interesting quantity is not the triple-gauge vertex
itself, but what happens when the triple-gauge vertex is contracted with a longitudinally
polarized A, B, or C: as explained in sec. 3.1, the longitudinal polarizations are proportional
to momenta in the large-momentum limit, and these can lead to scattering or decay amplitudes
that grow with energy. The relevant quantities are the momentum-contracted vertex functions
(MCVF)

(P + q)p AP, pp AP | g, APV, (4.12)

which are exactly the quantities we calculated in appendix A to eliminate G}Lf}

In fact, the MCVF are the starting points for the calculation of the Ward identities for
this vertex, e.g., for A this is p,MH*(A) = pMAPW. For a vertex that respects all of the
symmetries, (p + q), Arrv — Dy AP = g, APH — (), while for anomalous fermion content,
one or more of these Ward identities is nonvanishing. Contracting the momentum of a massive
gauge boson with the vertex function also yields a nonzero result, hence the Ward identity is
also not satisfied. However, as we discussed in sec. 3.1, one can construct a generalized Ward
identity for a massive gauge boson that relates the MCVF of the massive gauge boson with
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that having the massive gauge bosons swapped with the Goldstone boson (for a spontaneously
broken gauge symmetry) or the longitudinal mode (for a Stiickelberg vector field).

Employing the procedure described in the previous subsection, we can compute (p +
q)p Arrv. Dy APRY g, APRY for O A, B, respectively, with arbitrary combination of V, A cou-
plings to the fermions in the loop. For the remainder of the paper, however, we will make
the simplification that one of the vector fields, which we take (without loss of generality) to
be B, has purely vectorial couplings. This is because the phenomenological examples we will
examine in sec. 5 all share this property. The MCVF simplify to [45]:

vV
~ g .
(p+a)y A = 55 B et { (w— 2) (9094 + 989x%) + 4mi,Co(m?) - 959 }

v
vV
~ g .
—pp A = e P {(w = 1) (9094 + 9293) — AmiCo(m}) - gbgat ,  (413)
vV
~ . g .
—qy AP = TP { (2 4+1) (9l94 + 90934) } -
where
Arwv = N A (4.14)
ri,ro€{A,V}

and Cy is a special case of the three-point Passarino—Veltman scalar function

1-x
Co(m?p):Co(QQ,(erq) D5 My, Mg, M) / dm/ dy AT, (4.15)

with A from eq. (A.3). Two relevant limits are

1
hm m2Co(m2) — —=,
b g T 0! Dl

(4.16)
hm meO(mw) —0.

—>0

More precisely, these are limits of mi with respect to the other scales p?, (p + ¢)?,¢* that
appear in eq. (A.3).

In a theory with a fermion content that is nonanomalous, obviously all of the MCVF in
eq. (4.13) vanish independently of the presence or absence of masses for the vector bosons.
When the fermion content is anomalous, i.e., with respect to A and/or C (recall that we take
B to couple vectorially), the MCVF are not uniquely determined due to the freedom to choose
the coefficients of the most general momentum shift a = zp + wq in the vertex function. This
allows for several possibilities. One possible choice of coefficients results in all three MCVF
being equal,

(p+ q)p AP = pu AP = q, AP 20, (4.17)

a configuration referred to as the “consistent anomaly” [67—69]. This choice is convenient from
an EFT perspective: we view the contributions to the gauge anomaly as arising from the SM
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plus a contact term that, for instance, arises from some heavy fermions that maintain anomaly
cancellation. In the consistent picture, all gauge symmetries are violated, so integrating
out UV physics can generate gauge-violating operators. Combining these gauge-violating
operators with the SM loop (also gauge-violating in the consistent picture) and choosing its
coefficient appropriately, we can cancel all anomalies.!!

A second possibility is to utilize momentum shifts such that the anomaly resides in only
a single gauge interaction, the so-called “covariant anomaly” [68, 69]. Gauge-variant Wess—
Zumino effective operators of the form e#"#?A,C, F ,, can be added to the Lagrangian to
shift from the consistent to covariant picture. This approach is often employed for calculations
with two gauge bosons, B,C, with anomaly-free couplings and one (massive) gauge boson,
A, that has anomalous couplings. By taking w = z = —1 in eq. (4.13), the terms that are
independent of fermion mass appear only in the MCVF for A

Vv
(p+q), AP = ;Be“”’pqmico(mi) 989N

A v g v
—pu AP = 232 P (ghgn + 98g%) +2m2Co(m3) - ggh } (4.18)

—q APHY — ().

Notice that the fermion mass-dependent terms in the first two expressions above come with
different coupling structures: if the fermions have purely axial couplings to A (VAV structure),
the mass-dependent term vanishes from the first line, while if the couplings to C are purely
axial (AVV structure), the mass-dependent term vanishes from the second line.

4.3 Anomaly cancellation, Ward identities, and =«

We are now in a position to clarify the role that the longitudinal mode 7 plays in anomaly
cancellation. Consider a theory with massless fermions in which the vector field A* has
anomalous couplings. For a single massless fermion 1, the MCVF become

(p+9), A" =0,

¥
A 9gc9gx9gBq Vo A Ay V
—p, AP = TB ePViPd (qC’%X’w + qcﬂﬂqxv’”) , (4.19)

0 A =0,

11 the covariant picture, discussed below, the issue in the EFT is that integrating out UV physics can
only change the coefficients of SM terms, or generate new, higher-dimensional terms that respect the UV
symmetries. As there is no B- or C-invariant, A-violating term, there is no coefficient to change, and the
power counting for higher-dimensional terms will not work out correctly to cancel the anomaly. Therefore,
working in the covariant picture requires doing calculations in the full UV theory, keeping both SM and UV
physics and not taking the low-energy limit of SM + effective operators.
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where from eq. (4.16), miCo(mfp) — 0 in the massless fermion limit. Here, we have also

separated the coupling constants gx g ¢ from the individual fermion charges q;/’( .o by writing

V7 A7
9N = gx v, g =gx ay’
A
9% = 9845, g =0, (4.20)
v, A,
98 =gc g, 9A =gogi?.

In this limit, the only nonvanishing MCVF is the one involving the A*. If we sum over several
massless fermions, this becomes

—py AP — _AX49029XQQB PVipa (4.21)
s

in terms of the A* anomaly coeflicient

V7 V7 A7 A7 V7
Ax = Zqu(ququ"‘ququ)- (4.22)
¥

From the start of sec. 4.1 until now, we have focused solely on the contribution to the
MCVF from a vector field A*. Aside from forming the MCVF in eq. (4.21) by contracting the
momentum of A* onto the vertex, we have not specified whether A* is massive or massless. In
addition, there is no distinction between whether A* is a gauge field that gauges the fermion
current to which it couples with strength gx or is in fact a Stiickelberg vector field X* that
couples to a global fermion current with strength gx.

Below, we identify three distinct cases.

1. A" is a massless gauge field: In this case, eq. (4.21) manifestly violates the Ward
identity, and so either A" must acquire a mass or the theory contains multiple massless
fermions with charges chosen such that, while the contribution from any single (Weyl)
fermion is nonzero, the sum in eq. (4.22) vanishes.

2. A¥ represents X", the massive Stiickelberg vector field: In this case, eq. (4.21) is the
final result for the MCVF that connects X* with the gauge fields C* and BY through a
loop of massless fermions. There is no (generalized or other) Ward identity since there
is no symmetry or conserved current associated with X*.

3. A represents a massive gauge field arising from a spontaneously broken U(1) gauge
symmetry: This is the conventional case, which requires additional massive fermions,
“anomalons”, to cancel the anomaly. The presence of anomalons is the key distinction
from case 2.

We now want to compare and contrast cases 2 and 3, but we first need to resolve the puzzle of
decomposing X# = A* — 9#m/mx. In this decomposition, A* is a gauge field, and so A, jhnom
necessarily gauges the anomalous current jhnom; however, X, jhnom is simply an interaction of
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a vector field with a globally anomalous current jinom. How can A* be anomalous under its
gauge symmetry while X# has nothing to do with a gauge symmetry or a gauge anomaly?

The resolution is found by considering the additional contribution from the scalar field
m. The Lagrangian contains

oum . T .
—9x mLX]zgnom = ngiXan;/;nom ) (423)

where we have used IBP to get the right-hand side. The divergence of the anomalous current
is given by

gcgxgp

oz FouFg’, (4.24)

gXaujgnom = Ax

and so the scalar field contributes a dimension-5 Peccei-Quinn term in the Lagrangian,

gcgxgp ™ -
AX?WXFCaHVFgV . (425)
In momentum space, this interaction becomes
i AP () = Ay 20598 (120

namely a dimension-5 three-point vertex among m, C,, and B, in the effective theory. We
can combine eq. (4.21) with eq. (4.26) as

PuAP (A) — imx AP () = 0. (4.27)

This is the generalized Ward identity from sec. 3.1 for A* applied to the fermion triangle
diagram. That is, so long as the dimension-5 Peccei-Quinn term has the specific coefficient
given in eq. (4.25), A" satisfies the generalized Ward identity. The specific coefficient that
is required is precisely the one that permits the combination of the renormalizable A,,j4nom
and the dimension-5 interaction —6M7Tjéfnom /mx to be written as X, jhnom; in other words,
the combination of A, and (9,7)/mx must maintain the fake gauge invariance. This is
otherwise known as the four-dimensional Green—Schwarz anomaly cancellation mechanism
[27, 30, 31, 48, 70].

Since A* as part of X* is not an external state, we remark that eq. (4.27), the generalized
Ward identity, is not a statement about longitudinal equivalence. Contracting an on-shell
external X* with AP* in the high-momentum limit || > mx gives eq. (4.21), which we can
equivalently calculate using an external on-shell 7 and the longitudinal equivalence theorem
in eq. (3.5). That is, A* and 7w “conspire” to satisfy the generalized Ward identity while there
is no analogue of this for X*.

Finally, it is interesting to compare and contrast what happens in a theory with a massive
Abelian gauge boson in which the anomalous contribution is canceled by anomalons. The
general case, with arbitrary vector and axial couplings for A# and C”, can be worked out
straightforwardly from eq. (4.13). For the purposes of this discussion, however, we simply
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illustrate the similarities and differences in the case where the massless fermions contributing
to the anomaly have purely vector interactions to A* and BY and purely axial interactions
to CP, in which case eq. (4.22) simplifies to

Vap A 'V,
Ax = aparvay” (4.28)
"

The massive anomalons have purely axial interactions to A* and purely vector interactions
to BY and C”,

A%?om _ Z qg7¢q¥7¢q§7¢_ (429)
¥

Anomaly cancellation requires that the sum of the charges of the anomalons under the gauge
symmetries satisfy

Asmom A (4.30)

such that eq. (4.22) vanishes.

However, for massive anomalons, there are additional contributions to the momentum-
contracted vertex function from the Cj functions in eq. (4.13). We further simplify this
discussion by taking all of the anomalons to have the same mass m,,. For the specific choices
in eq. (4.28) and eq. (4.29), the only nonzero MCVF is

—pyy Ao = ICIXID v [ A — A™ (1+ 2m Co(m3))

(4.31)
= A%élomigcgégl? ep”?pqmiCo(mi) )

where we used the anomaly cancellation condition eq. (4.30) to get the second line. If the
anomalons were massless, the right-hand side above would vanish using eq. (4.16); this is as
expected since by definition the theory would then be anomaly-free and the Ward identities
satisfied. If the anomalons are infinitely massive, the term in parentheses on the first line
multiplying A%°™ vanishes using eq. (4.16), leaving the right-hand side nonzero and equal to
eq. (4.21), i.e., back to where we started.

With nonzero anomalon masses, eq. (4.31) does not vanish. Following our discussion in
sec. 3.1, we can again construct a generalized Ward identity such that

puMH(A) — imx M(G°) = 0. (4.32)

where, for this discussion, G is the Goldstone boson absorbed to make A" massive. Applying
this to the MCVF for the fermion triangle diagram,

PuAPY —imx AP (GO) = 0. (4.33)

From this we can deduce the required interaction that the Goldstone boson must have with
the MCVF,

my Co(m3,) . (4.34)

X 9CIX9IB pu:
iAPY GO — anom pVipq
( ) X 2 € myx
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Here, we finally see the key difference between the case of a Stiickelberg vector field and
a spontaneously broken massive Abelian gauge field. In the specific example above, the
anomalons have axial interactions with A*, implying the anomalons are chiral with respect
to the gauge symmetry associated with A#*. The only way to give mass to these chiral fermions
without explicitly breaking the symmetry is to write Yukawa interactions with the Higgs field
whose vev spontaneously breaks the gauge symmetry associated with A#. This means that,
with conventional normalizations my, = yyv/ V2 and myx = gv/2, one power of the vev
drops out in eq. (4.34). Hence we see that the generalized Ward identity can be satisfied
with renormalizable Yukawa interactions of the Goldstone mode with the fermions. This key
difference is what permits a spontaneously broken gauge symmetry with anomalous fermion
content (and a separate set of anomalons with heavier masses) to be at least possibly viable
without a divergence in the UV leading to a cutoff scale. The caveat is that this requires
Yukawa couplings to be perturbative (i.e., less than order one) in order to avoid Landau poles.

5 Applications to baryon number

We now consider specific cases where the Stiickelberg vector field X* couples to a globally
anomalous current in order to investigate the phenomenological consequences. One of the
most interesting possibilities is X* coupling to baryon number. Baryon number is anomalous
in the SM, but anomaly-free with respect to SU(3), x U(1)em below the electroweak scale.
Here, our focus is to investigate the observable consequences of the longitudinal enhancements
that occur in the presence of X, j%, specifically three observables: Z — X+, ff — X~, and
Z~vy — Z~. These depend on the electroweak scale and disappear in the limit v — oo.
We compare and contrast our results with those when baryon number is gauged [40, 45],
identifying the similarities and differences for the case of a Stiickelberg vector field. In the
discussion below, we take all SM fermions to be massless; however, it is straightforward to re-
introduce SM fermion mass dependence (e.g., [45]). In reality, only the top quark significantly
invalidates this assumption, causing the baryon anomaly coefficient to be slightly smaller than
what we have assumed below.

5.1 Prelude: Z — Ay with gauged baryon number

As a prelude to the results in subsequent sections, we want to review the calculation of
Z — A7y, where A" is the gauge field associated with gauged baryon number [71-73]; we
reserve X* to refer to the Stiickelberg vector field. However, we will use mx, gx, and ¢x to
refer to the mass, coupling, and charges of the (gauged or ungauged) vector field coupled to
the baryon current.

In the SM, the baryon current is anomalous with respect to the mixed anomalies U(1)3U (1) 5
and SU(2)2U(1)p in the specific combination [40]

Ouily = 5 (9B B"™ = W W) . (5.1)
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Here Apg is the anomaly coefficient

> Qlayl ey (5.2)

fesM

where the sum is over all of the fermions f in the SM with electric charge @f, baryon
number qé, and axial coupling q?’f = Tg /2 = £1/4 to the Z. This is equivalent to the
anomaly coefficient for just SU(2)2U (1) g or (the negative of ) U(1)2.U (1) g since U(1)%,U(1)p
vanishes. Three generations of massless SM fermions give Ap = 3/4.

As we have learned from sec. 4.2, we are free to choose a set of Wess—Zumino terms such
that the only nonzero MCVF is

_ AP — _ fy 99X pvipa 5.3
puZ ST (5:3)

following eq. (4.13) with the specific choices w = z = —1.12

Baryon number can be made anomaly-free by extending the SM with anomalons 1) with
charges such that, when they are included in the sum eq. (5.2), the net result is zero. For
certain choices of their SU(2)r x U(1)y charges, these anomalons can obtain masses inde-
pendently of the electroweak vev and therefore can be much heavier than the SM fermions.
The full result for the decay rate Z — A~ including both SM fermions and a set of massive
anomalons was given in [45]. However, for our purposes, it is more convenient to separate
the contributions to the triangle loop from the SM, eq. (5.3), and the massive anomalons.
Defining Aanom as the contribution to the vertex function from the anomalons, and making
the same choice w = z = —1, the additional contribution to the MCVF can again be easily
obtained from eq. (4.13),

€99x
~Dy ZAQ’ﬁSm = Apgy (14 2mi Co(m))) (5.4)

To cancel the anomaly and obtain mass without electroweak symmetry breaking, these anoma-
lons have pure vector couplings to Z and pure axial couplings to A such that

> QY ayt = —Ap. (5.5)
"

This is the same situation we encountered in sec. 4.3—the anomalon mass only appears in
the MCVF in eq. (5.4).

If we were instead to take m, — 0 (and therefore degenerate with the SM), the two
sectors would cancel exactly, as required of an anomaly-free theory. For nonzero anomalon

masses, the cancellation between the two sectors is inexact, leaving

—puZAf(’ftV Ap gzv); e PIm3 Gy (m?) (5.6)

2Had we included nonzero SM fermion masses, the first line of eq. (4.13) would also be nonzero. Adding
mz times the Z, Goldstone contribution, a ¢z — A —  vertex, to the first line would yield zero.
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as in eq. (4.31). It is interesting to consider anomalons that are much heavier than the Z
boson.'3 Then the right-hand side simplifies to
€99x

—p“ZAfé‘;’ = mdw M, (5.7)
which up to corrections of O(mZ /mw) reduces to just the original SM-only contribution
in eq. (5.3). Dividing both sides by mx, the above equation becomes the amplitude for
Z — Apv, where Ap is the longitudinal polarization. Squaring, we can convert this to
a decay rate (again, in the limit that the SM fields are massless and the anomalons are
infinitely heavy)

3 2 3
D(Z = Ay) "XS" D(Z = Apy) ~ Com X M7 (5.8)

3272 chW my
where sy is the sine of the Weinberg angle and we have used Ap = 3/4.

As emphasized in [40], the m%/m% longitudinal enhancement implies the decay width is
unbounded in the limit mx < myz. For the effective theory to be valid, I'(Z — Avy) < my,
which implies a lower bound on mx of

mx>ﬂx%xmz. (5.9)
Up to an irrelevant numerical prefactor, this is the same bound obtained by Preskill [30]
for an anomalous gauge theory by requiring the divergent three-loop contribution to the

(anomalous) gauge boson mass not exceed its bare mass. More precisely, Preskill derived an
6473 cyy
eggx
scaling as eq. (5.9) when we reinterpret the cutoff scale A to be m.

expression A = myx for the cutoff scale A of the effective theory that has the same

What happens when mx is lowered below the bound given in eq. (5.9)7 In a theory
with anomalons, it is no longer possible to take their mass m, to be much larger than m.
Approximating the results in [45] in the limit mx < m, < mz (with massless SM fermions),
we find

3 ao? m m
INZ — Avy) ~ aemax X Mg X Y logt —¥ | (5.10)
3272 3,52 m2m2 m2
wSW xz A

where now the EFT requirement I'(Z — A7v) < my implies the lower bound on my is
modified to

eggx My o My
mx > VO X My X ——1 _— 5.11
X 647r3cW ¥ my 08 m?% (5-11)

This implies that we can lower the mass for mx at the price of reducing the anomalon masses
below mz. However, the additional suppression factor m.;/mz log? mi / m2Z on the right-hand
side in eq. (5.11) relative to the result in eq. (5.9) implies that the separation between mx
and my, can become increasingly large as m,; is lowered below m .

1376 play a role in the anomaly, the anomalons must receive some of their mass from the same SSB that gives
mass to A and therefore my ~ yvx, where mx ~ gxvx and y is some Yukawa coupling. A large hierarchy
between the anomalons and X requires taking gx < y, with the validity of perturbation theory limiting
Ymax ~ 4m. More discussion on the phenomenological implications of this “maximum hierarchy” between
and X can be found in [45].
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5.2 Z — X~ with global baryon number

Now we are in a position to evaluate Z — X+ when X is a Stiickelberg vector field with
coupling gx X,j to the global, anomalous baryon current of the SM. The contribution to
the Z, — X,, — 7, vertex coming from loops of SM fermions is identical to the gauged case in
the last section. Therefore, the nonzero MCVF is

—p ZAPHV __Apeggx PVIPe (5.12)

12 - SM 22 cw
This is the total contribution since there are no anomalons present.
Using this vertex to calculate Z — X, we find

3 2 3
0(Z = Xv) "™ (7 5 X)) ~ CemX 7 (5.13)

- 22
327 Sy My

exactly the same result as eq. (5.8), the case where U(1)p is gauged and made anomaly-free
via infinitely heavy anomalons. We remark that the same result could also have been obtained
using the longitudinal equivalence theorem to relate e’zAp‘“’ (X) to AP”(r) in Landau gauge
at large momentum |k| > mx.

Thus we see that the gauging of the would-be anomalous baryon number symmetry is
irrelevant to the presence of the physically observable decay process Z — X+. It is the
presence of the global baryon number anomaly that is essential for this decay to proceed.
Said differently, our results show that the decay rate alone cannot differentiate between the
scenarios of a gauge boson accompanied by heavy anomalons and a Stiickelberg field coupled
to a global current—a perspective emphasized in [66].

The presence of the Peccei-Quinn term, a dimension-5 operator in the Stiickelberg EFT,
implies a UV cutoff that cannot be taken arbitrarily large. Applying eq. (4.25) to the specific
case of the anomalous baryon current, the dimension-5 operator is

99X T g

R4
Am2eyw mx em

(5.14)

and requiring the coefficient of this operator be less than 47, we obtain a cutoff scale of order

167['30me

v/ Smax ~
e Apeggx

(5.15)

The existence of a cutoff scale is not surprising because we previously discovered in eq. (5.9)
that we could not arbitrarily separate mx from my while allowing the decay rate I'(Z —
X) to remain perturbative. Both bounds scale similarly (up to numerical coefficients) with
couplings and mass. What we see is that a Stiickelberg vector field coupled to a globally
anomalous current has a nonrenormalizable interaction signaling the existence of amplitudes
that can grow with energy. This is explicitly seen in the decay rate Z — X~, and as we
will see below, also occurs for processes that have one or more factors of AP# with an odd
number of axial couplings embedded in the amplitude.
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Figure 3. Diagrams for ff — X+, with f an SM fermion: if only anomalons ) couple to X, only the
left diagram is relevant; otherwise, if f also couples to X, there are the ¢- and u-channel diagrams as
well (cross diagrams not shown).

For finite my, > my, there will be corrections in eq. (5.8) of O(m%/ mi) that are absent in
eq. (5.13). It is tempting to think that these corrections would be observable given sufficiently
accurate measurements of my and I'(Z — X+). However, this is premature, since in the case
of a Stiickelberg vector field, there are additional higher-dimensional operators suppressed
by A that can contribute to the decay process. Hence, in the absence of direct observations
(on-shell production) of anomalons and/or a Higgs boson, there is no way to unambiguously
determine whether the decay process signals the existence of gauged baryon number, or
instead, a Stiickelberg vector field coupled to global baryon number.

53 ff— Xy

Attaching the Z” leg of the Z# — X#* — ~¥ vertex to a fermion current, we can explore how
the longitudinal enhancement of the vertex manifests in ff — X+, where f is a SM fermion.
This calculation is interesting because it allows us to probe the triple-gauge vertex and its
longitudinal enhancement at a wider range of energies than in Z decay. In particular, we can
consider limits such as m§< <s K m2Z, where the Z has been integrated out.

The diagrams for ff — X~ are shown above in fig. 3; an s-channel diagram proceeding
through the triple-gauge vertex AP#” | plus ¢- and u-channel diagrams. The ¢- and u-channel
diagrams involve only vectorial couplings and lead to the usual collinear divergences in the
cross section. However, at least in the limit that the SM fermions are massless, they do not
couple to the longitudinal part of X and thus do not grow with s (for a fixed scattering
angle)'. Therefore, we will ignore these diagrams and focus on the s-channel piece, deferring
a more general calculation to appendix B. Furthermore, we will focus on the X7, piece of the
amplitude, as this contains the leading dependence on s:

. a Zg 1 _ A v P *
IM(Ff = Xim) = ok (a7 — 0y ) wk) ALY cla), (5.16)
Z

where q}/’f (q?’f ) are the vectorial (axial) couplings of fermion f to the Z and A% is the

triple-gauge vertex after summing over all fermions — SM and beyond — in the loop. Here we

14 Additionally, the interference between the ¢- and u-channel diagrams and the s-channel diagram is zero.
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have used € (X)) — p#/mx for large [p] > mx, and so we are implicitly imagining a scenario
where /s of the process is large compared to my. Note that only the transverse part of the
Z propagator enters, since (p + q), A% = 0.

As shown in previous sections, puﬁff)‘t” has the same value whether we consider a Stiickel-
berg vector field coupled to global baryon number or a gauged baryon number with anomalons
much heavier than all of the other physical scales in the process. Thus we can evaluate p“Afé;V
via eq. (5.12) or eq. (5.7), yielding

4 = ig Apeggx 1 1 _ v, A, D
iIM(ff— X)) = aw 2l mixs mgzv(/fz)’Yp (qz T —qy f’Y5> u(ky) e Pel(q) .

(5.17)

The details of the calculation of the leading behavior of the squared, polarization-summed
and initial-state spin-averaged amplitude are given in appendix B. We employ eq. (B.14) with
only the AVV terms in the second line and the massless fermion limit of eq. (B.15) to obtain

2 2
1 A% (@) + (ay7)? 82 2tu A
2 - Z Z . b I ana,,Aa
| M?2| A(N,)27* ((CW) 9x e) (s B m22)2 Ary <1 52 ) ZH Qlq, )

q
(5.18)
where N, is the number of colors of the initial-state fermions, x4 = k9 = 1/3 is the baryon

number of the quarks, and Q¢ is the electromagnetic charge of the quark ¢. For up- and
down-type quarks, q?’q =1T3/2, so Q“q?’" =1/6 and qug’d = 1/12. The entire squared-sum
on the right-hand side evaluates to 1/16 for one generation (including the color factor); there
is an additional factor of 9 for three generations. This agrees with A% = 9/16. The cross
section resulting from this amplitude is

- 3 1 od,ax /, v A (s —m2%)?
o(ff = X17) = ¢~ 3 oy ((QZJ)? + <qZ,f)z> . L £ (5.19)

m% (s —m%)?

This expression already assumes s > m§( (and in the case of gauged baryon number, the
masses of any anomalons are much greater than my and 4/s); however, there are a couple of
further limits that are interesting to explore. First, consider s > mQZ, with the hierarchy of
scales mﬁ( < mQZ < s. In this case, the cross section becomes a constant

F 3 1 admOxX (V2 o Afy2) L
(I = Xieoms, = g2 33 C%;HS%V ((qZ 2 + (g3 )m%( (5.20)

A 2-2 scattering cross section constant in energy implies an amplitude squared that grows as
s, so an amplitude that grows linearly with energy.
A more interesting limit is s < m2Z, with the hierarchy of scales mg( Ls K m2Z In this

limit,
(fF = X17) 3L e (02 (ghye) S (5.21)
o = — — — - .
LY)m% <s<m?, 81 N2 C%/VS?/V 4z 4z m‘é m%(
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3/2

This cross section implies an amplitude squared o s3, so an amplitude o s%/2. To see why this

limit is intriguing, let us write the amplitude squared as o S—i%. If we use the condition
m., m

zZ X
|M|? =1 to set a limit on the cutoff of the theory, we find

S~ ¥(%>l/3 my. (5.22)

1/2 1/6
Qem 0Ly M2

We contrast the above with the result from a four-fermion interaction in the Fermi theory.
S

There, the amplitude M(ff — ff) ~ —% (using myz instead of v to make the comparison
zZ

easier and neglecting couplings and numerical factors), implying \/Smax ~ mz—a cutoff at

the scale of particles we have integrated out. Compared to this, the limit from ff — X is

/3 We remark in passing that in eq. (5.22), it is curious that

1/3

the cutoff scale of the theory scales as my " in the same way as the weak gravity conjecture

smaller by a factor of (mx/myz)

suggests when m is replaced with Mp [42].

The situation becomes even more intriguing once we recall that the SM below the weak
scale is purely vectorial. The triple-gauge vertices formed from loops of fermions with vectorial
couplings (VVV in the language introduced in sec. 4) are zero—stated in the language of gauge
anomalies, the theory is anomaly-free. As such, ff — X~ cannot exhibit any pathological
scaling with respect to s in the limit that we take the weak scale to be infinitely heavy.
The 1/ m‘é scaling on the right-hand side of eq. (5.21) satisfies this requirement; however,
unusually, it predicts the scale where perturbative unitarity is violated (using |[M|? < 1) to
be parametrically lower than the weak scale. If we require that ff — X~ remain valid at

least until m, this sets a lower limit on the mass of X,
1/2
vV, A,
1 [3aduax (@2 + @)")?)]
mMX min ~~ 5 3 myz.
Gy Sw

(5.23)

Taking f to be a charged lepton, mx min ~ 6 X 1073 Vax mz.

The above bound is a function of ax, so it can be made arbitrarily small by sending
ax < 1; in other words, for ax < 1, the EFT cutoff implied by eq. (5.22) can be pushed
above the scale of current experiments. It is an interesting and open question as to whether
processes such as ff — X~ could place bounds on (ax,my) that are competitive with

bounds from Z — X~ and other electroweak scale processes.

5.4 Zv— Z~v via X exchange

The final amplitude we calculate using the triple-gauge vertex involves a so-called “BIM”
process [74], the scattering of gauge fields off each other through the exchange of an off-shell
Stiickelberg vector field. The original BIM calculation considered the scattering of massless
bosons through a (massive) Stiickelberg vector field. For consistency with previous sections,
here we specialize the calculation to the case of a Stiickelberg vector field coupling to global
baryon number, and so we consider Zy — Zv through an s-channel X. The diagrams
involving X are shown in fig. 4.
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b1, 1 q1, 1
:j\:\% 7T ﬁi;; A
b2, 2 q2, 12
Figure 4. Z~ — Z~ scattering through an s-channel 7 (left) or A (right, with 3 cross diagrams not
pictured).

There are, of course, additional diagrams from boxes of fermions or W bosons, but these
are independent of gx. If all loop fermions 1 are heavy relative to /s, we recover the Euler—
Heisenberg Lagrangian from the box diagrams, with M(Zy — Z7) ~ ;—i Here we focus

b

on the same scenario considered in the previous subsections, with only massless SM fermions
in the loop. (We would obtain the same result with gauged baryon number so long as the
anomalon masses are taken to be much heavier than all other scales). Together with the limit
s> m#,, the box diagrams involving W bosons have no bad s behavior!'® [75, 76], so we will
neglect them and focus on the contributions from X exchange.

The X exchange occurs through a single diagram stitching together two Z — v — X
vertices. However, if we write X* as A* — 0#*71/mx and employ gauge fixing as described in
sec. 2.3, there appear to be two diagrams as in fig. 4—one from 7 exchange and one from
A exchange, each with gauge dependence. Feynman rules for these diagrams can be derived
from the Lagrangian in appendix C.

The A exchange piece for Z,(p1)v.(q1) — Zy(p2)7(q2), coming from loops of SM
fermions alone, is

- - / (P14 @) (P2 + 42)" \ 3 v/
7A“p”( o _ (] _ )Apu : 5.24
s —mk su =5 s —Emi . o
while the 7 piece is
7 . ("4732 €g9x >2€pV;p1Q1 eP'V'ip2a2 (5.25)
s — ng 27 Cyw mx

Evaluating the gauge-dependent piece of eq. (5.24) using eq. (5.3) with appropriate modifi-

5Here we are referring to (s/M)™ behavior at fixed scattering angle, where M is some other mass scale in
the problem, and not to divergences in the limit of forward or backward scattering. The latter manifest as
ratios of Mandelstam invariants.
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cations, then its sum with the 7 exchange term,

: 1-¢) ‘ <@ eggX)QEPV;pun PV ip2ge
s—mi s—&mi  mi(s—E&mi) | \2n? ew

= (@eggx>2EPV;p1q1ep’V’;p2q2 i ( (1-¢) + i) (5.26)
212 ey s—&mi \s—m3%  m%

_ (@ eggX)2€PV§qu1€P/V/§P2QQ i
272w m% (s —m%)’

we see that the & dependence cancels. Notice that the final result of eq. (5.26) is the same as
just 7 exchange given by eq. (5.25) in the limit s > m§( in Landau gauge (£ = 0), as required
by the longitudinal equivalence theorem in eq. (3.6).

Assuming s > m2Z, m%o we can neglect the other terms and use eq. (5.26) as an approxi-
mation to the full amplitude, deferring a more complete and general calculation to appendix C.
Forming a cross section from eq. (5.26) and taking the large-s limit, we find:

27 ot

2
em®x S

o(Zy — Zy) ~

~ S 5.27
12873 C%V S%V m‘)l( + ( )

where the - -- indicates terms subleading in s.

While the diagrams in fig. 4 are reminiscent of longitudinal W scattering in the SM,
we emphasize that the external v, Z fields in the BIM process are purely transverse. In the
large-s limit, contracting the vertices above with longitudinal Z polarizations yields zero (for
massless SM fermions) via the MCVF.

6 Discussion

We have investigated theories with a Stiickelberg vector field, emphasizing the systematic
approach to constructing an effective field theory involving X*. We considered several possible
interactions of the Stiickelberg vector field with the SM or with itself, identifying the couplings
of the longitudinal mode that lead to scattering amplitudes that grow with energy. At tree-
level these involve the operators (X, X*)?, H‘LHXuX“ and HTD#HX“, while the interaction
X ujg‘nom (with jhhom an anomalous global current) induces one-loop amplitudes that grow
with energy. The energy growth implies an EFT with one of these interactions requires a UV
cutoff scale that appears above my by an amount that is parametrically 1/(coupling) of the
interaction. In the specific case of X* coupled to the global baryon current, we demonstrated
that the finite contribution to the fermion triangle diagram leads to a variety of processes
that have longitudinal enhancements in the small mx limit, including Z — X~, ff — X~
and Zy — Z~.16

YThe importance of Z — X for gauged baryon number was emphasized in [38, 45] along with other FCNC
processes involving K — X and B — KX meson decays [38]. Constraints on other U(1)s were discussed in
[43].
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We performed a detailed analysis of the operator X, jinom. This interaction is, at first,
somewhat puzzling since X* is not a gauge boson and yet it suggests X* is gauging an
anomalous current. Preskill [30] demonstrated that anomalous gauge theories are simply ef-
fective theories with a narrow range of scales where the EFT is valid. His analysis emphasized
the UV divergent contributions to the two-point function, leading to maximum separation
between the mass of the gauge boson of an anomalous theory and the cutoff scale of the
theory. As we have seen, this result holds for theories with a Stiickelberg vector field that has
no gauge symmetry. In particular, we demonstrated that the generalized Ward identity is
satisfied if and only if the contributions from both A#, the (fake) gauge boson associated with
a (fake) gauge symmetry, and O#mw/mx appear in the specific gauge-invariant combination
AP — OFr /mx. Our analysis demonstrates that it is the existence of the global anomaly, not
the gauging of it, that leads to the physical consequence of scattering amplitudes that grow
with energy in the UV. This is reminiscent of [77] and may lead to a different interpretation
of anomalies when expressed directly in terms of on-shell scattering amplitudes. For example,
[78] recasts the constraints from anomaly cancellation in terms of on-shell amplitudes that
satisfy unitarity and locality.

A Stiickelberg mass term in the Lagrangian is introduced independently of the couplings
of X to itself or other matter. In particular, the mass mx does not arise as gxvx where vy is
the vev of a Higgs field, and so the limit mx — 0, gx — 0 with the ratio vx = mx/gx held
constant does not exist. Instead, from the low energy perspective, the case of a Stiickelberg
vector field is obtained by ungauging the theory (sending gx — 0), holding mx fixed, and thus
taking vx — oco. This demonstrates that a strict interpretation of a theory with a Stiickelberg
vector boson does not have anything to do with SSB. There is no Higgs mechanism, no Higgs
boson, and so the presence of longitudinally enhanced scattering amplitudes that grow with
energy, and consequently a UV cutoff scale of the EFT, is inevitable. Reece [21] has suggested
that weak gravity conjecture arguments [79] prevent an arbitrarily small Stiickelberg mass
since the limit mx — 0 lies at infinite distance in field space. It would be interesting to
further investigate the constraints on other parameters of the effective theory of Stiickelberg
vector bosons using arguments based on embedding the theory into quantum gravity [80, 81].

In the SU(3). x U(1)em effective theory below the electroweak scale, all fermion currents
are vectorial with no (gauge or global) anomalies. Naively, there are no restrictions on cou-
pling an arbitrarily light Stiickelberg vector field to any linear combination of these currents.
Of course, the weak interaction explicitly violates some global symmetries, such as baryon
number, so the interactions of X with SM fermion currents are not purely vectorial. Hence,
X will have scattering amplitudes that grow with powers of v/s/mx!”. One might think
this growth is the same as four-fermion interactions that also scale with s/m3,, such that
the cutoff scale of the theory is the electroweak breaking scale. This is not true. Consider
ff — X~ with X coupling to baryon number. While there is s/m?% suppression in the am-

17 An alternative approach in which a vector field interacts only through higher-dimensional operators was
discussed in [82].
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plitude from Z exchange, there is also v/s/myx enhancement from producing a longitudinally
polarized X. By observing this energy growth in the cross section (at energies well below
the electroweak scale), one could determine whether or not a vector boson has longitudinally
enhanced couplings.

Finally, we should discuss the status of dark photons that partly motivated our study
of Stiickelberg vector fields. In theories where the dark photon Lagrangian arises from a
spontaneously broken U(1) gauge symmetry by a dark Higgs field, some discussion of the
dark Higgs scalar has appeared (e.g., [5, 7, 83-88]). Instead, we proclaim that the time
is ripe to consider the more general set of interactions that a Stiickelberg vector field can
have. Longitudinally enhanced interactions imply the theory will have a cutoff scale: within
the validity of the effective theory (i.e., \/s less than the cutoff scale as determined by the
longitudinally enhanced scattering processes), what phenomenological consequences can arise
in the presence of these interactions? This is an interesting question to explore for more
general vector boson dark matter as well as for dark photon models.

Ultimately our discussion of a Stiickelberg vector field reiterates the lesson of the precar-
ious nature of vector fields in quantum field theory whose mass is not associated with SSB.
The longitudinal component generically couples to itself or to the SM, and the presence of
these couplings leads to amplitudes that grow with energy and thus require a cutoff scale for
the EFT. There are only two resolutions: craft the effective theory to have no couplings of
the longitudinal mode, i.e., X coupled only to an anomaly-free global current, or introduce a
Higgs mechanism with a Higgs boson to restore unitarity of longitudinal vector boson interac-
tions. If evidence of a new vector boson were uncovered in data, we hope our analysis provides
a framework to characterize the effective field theory comprising the leading interactions of
the vector boson independent of its ultimate UV origin.
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A Form factors in the Rosenberg parameterization of the triangle diagrams

In this appendix, we detail the computation of the amplitude of the triple-gauge boson triangle
diagrams of fig. 2. Factoring out couplings, the relevant expressions are of the type in eq. (4.7).
To compute the finite form factors F3 g, we follow the procedure of [35]. The denominators
on the first and second lines of eq. (4.7) can be combined as

[((¢£0)* = m)) (¢ = m) (((Fp)* —mi)]

1 -z 5 (A.1)
—I‘S)/ dx/ dy[€2:|:2€-k+xq2+yp2—m12/,+i6] ,
0 0

where k = xq — yp; since we are only interested in the finite form factors, we can make the
change of loop momentum ¢ — ¢ F k. The numerators have terms with up to three powers
of ¢: the terms proportional to 3, £? will contribute only to G2, and those linear in ¢ vanish
because they are odd under integration. We use the AVV case as a prototype, finding

1—x
Fp,u\/‘ﬁnlte / d[B/ dy F /(62 A)

( 1 —x—3y)k" —2yph'} P14+ {(1 — 3z — y)k"” — 2xq"” } ’P1 (A.2)
— {(z =gk + g +ag?p )

where
A:mi—:c(l—:c)q2—y(l—y)p2—2myp-q—i5. (A.3)

The loop integral evaluates to

1 7 1 _
Lo ay = arrec (A-4)

To match eq. (A.2) to the Rosenberg parameterization in eq. (4.9), we apply the Schouten

identity
kPehvaB | pneraBp 4 v eaBon o paBouy  pBeppra — (A.5)

to the last line, which becomes

{(z —y)k" —ypt" — xg"} ”P1 — {(x — y)k¥ — yp" — xq"} "HP1 + (terms in GX\Q/V> . (A.6)

The above lead to
1 1—x
<[ [ aya-mat,
0 0

1 11—z
F4——/ dw/ dy:cyAfl,
A (A7)
Fy = / / dyxy A~
0 0
1 11—z
:/ / dyz(l—z) A,
0 0

dx
dx
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from which we see that

F3(p,q) = —Fs(q,p) ,

(A.8)
Fy(p,q) = —F5(p,q) -

With the F3 6 set'® the next step is to express G',G? in terms of F3. .6 so that
the vertex function can be written in terms of the finite form factors.!® To relate G', G?
to F3 . ¢, we contract [ with the momenta of A, B,or C—respectively, Pus Qv O (p+q)p.
From the Rosenberg parametrization of eq. (4.9), we obtain the following expressions for the
momentum-contracted coupling-stripped vertex functions:

~ 1 ”
(p+a)p 'y = (G~ Glyy) 71,

w1 y
iy = (G%r} —p Fy—p- qF4) e, (A.9)

~ 1 .
oy == (G{lir} —p-qFs—¢° Fﬁ) G
However, we know that G, G? are not uniquely defined. To isolate their ambiguities, we first
define the triangle vertex function with unshifted loop momentum (i.e., when a = b = 0 in
fig. 2)

oy 0) =105 (g 2 = 0,w =0). (A.10)

The difference I' — T’ encapsulates the ambiguity from shifting the momentum, and for any
{r} with an odd number of axial couplings, evaluates to [35]

~ puv 25
r-r = [ a"Op- FPH (0) = a” lim 020, FP* (¢
{ ]{r} /K e ) (2m)4 =00 {r} © (A.11)
1 1
— = ppvé 6 _ - puvd o 1)
2 = e (zp° +wq’),

where ]-'{plfL}V is the integrand in, e.g., eq. (4.7) for the AVV case.
We proceed to directly calculate the left-hand sides of eq. (A.9) using the explicit form in
eq. (4.7). The integrands in each of these contractions can be massaged into terms differing

only by a shift in loop momentum, which can then be evaluated using the analog of eq. (A.11).

8Recall, F3, . ¢ are independent of the r; € {A, V}, so the results of eq. (A.7) hold in general and are not
specific to the AVV example.

9Tn the case of massless loop fermions, we note that F3 [Fg) suffers infrared divergences if p* = 0 [¢* = 0].
This can be seen from eq. (A.3) and eq. (A.7).

AAAAA
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For example:

4 IO /T 1 1 1 1
rq 757, gl =57 g/
AVV pl_ﬁ—mw #[_mw P[_mw ”[ﬂﬁ—mw

1 1 1 1
+ —
=g —my M p—my 75%ﬁ—%—mwwl+fl—mw}

2im? 1 1 1 1 (A.12)
hm p 0 Tr{ - } +(p—gq T£2€TT1"{ — }
(27r) '757p[yul +p ( ) '75'7/)[ _p%t[ +d
271r2 ,}Lm E% [ O et 4 (p— q>r£7(6up;lp + ehrila _ HPPT) 4 O(mfb)]
€PHiPa

42
where we have used (©0# — (28 /4 to simplify the penultimate line, and the e#?P? term has

only one power of £ in the numerator and therefore vanishes when we take ¢ — co.
Below, we list the complete sets of expressions for the AVV case,

(p+q) A eﬂu;pq im C (m )
AVV T T H 0T
_p o (A.13)
nEAVYV T 47‘(’2
€PHPa

ppv
—q Uyyy = An2

and the VAV case,

(p+a)p T¥ay =0,
_p, TP L (1+4m3,Co(m3))
KEVAV T T 0\, (A.14)

_qy I‘\p,MV _ eptu“qu
VAV 47T2

Finally, we can fix G > } by combining eq. (A.11) and the above contractions of (p+¢q),, P, qv

with unshifted T?*

(v} then equating the sum with eq. (A.9).

B Generalized ff — X~

We examine the amplitude for the s-channel (left-hand side) diagram of fig. 3:

. _ ig A -
ZMISW _ U(kg) { "}/U (q\Z/J o qZVf'YS)
Cw S —

. —1 <
£ (1), +i6Q/2" gy ulh)- B0 (B.)
z
where Q7 is the electromagnetic charge of f, (qz’f A ) are the (vector, axial) charges of f
to Z, and the Z propagator in unitary gauge is

(M2 )p = 9op — (e ¥ ’“i);;p )y (B.2)
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The coupling ) must be vector-like.
Let us isolate the contribution from the intermediate Z:

. g 1« _ , A, 2mg(p+q)p A,
Mi’WZ =t 2 APV v(k?) {7p (Q\Z/ f_ 4z f’Ys) + fan)p qz f’75} u(k‘l) . (B.3)
Z

As expected, in the case of the ffZ vector coupling, only the transverse part of the Z
propagator contributes. Moreover, we focus on the two cases for which we expect a diverging
amplitude: the AVV and VAV parts of the triangle vertex functions, i.e., an axial Z coupling
and a vector X coupling or vice versa. Then

A o L ge @ {ay PRI + )RV TR (B.4)
w
with q%, k¥ the charge of the fermion v to Z, X respectively.

Squaring the amplitude, summing over final polarizations, and averaging over initial spins
and fermion colors N,, we find?°

2
— 1 g\’ 1 PP
M 2 — I _ ML 2
‘ s,Z 4(Nc)2 ((CW) gx 6) 4(3 - m22)2 (gul,uz m%( Guivs

Vb AT A, -
Q) {ay W™V I + a3 n VY TR |

V, = A A T
[ 0wt B 4 gV TR T

(B.5)

where T}, is the trace over the external fermion part of the squared-amplitude,

Tyo = ((ax!)? +(a5")?) - 4 ({kapkas + krahsy} = S04

!

V,f A, .
+ qZ QZ f . 816pa’;k‘1k2 (BG)

2 1
Af s 8 S
+ (qZ ) 167y <9pa to5 <1 + ) (P +a)p(p + Q)a> ,
2 m2Z 2 m2Z
with r; = mf /s. We can also simplify the contraction of the external polarization tensors and

the triangle vertex functions:

7T49N1M29V1V2 F?i:biyl F({jrl:l;Q}VQ
1 1
=Frd—(L—rx)*sg” — — (1 —rx) {p’¢" + ¢"p°} + "¢
4’/“X 27”)( (B?)

— (2TXG~1{I‘}G~1{I‘/} + (1 — T‘X) {G%r}GQP/} + G%F}G%I"}}) Sng'
1 2 (o 2 1 o 1 1 o 2 2 o
+ 2G{r}G{r’} qpp + 2G{r}G{r’} ppq + 2G{r}G{r’} ppp + QG{r}G{r’} qpq y

29Below, we have assumed that the coupling-stripped vertex functions are real, i.e., that F3 ¢ and C (mﬁ,)

are real. For our purposes, we ignore the imaginary parts of these functions, which originate from the possibility

.....

of pair production of fermions appearing in the loop. They can be calculated using the Sokhotski—Plemelj
formula applied to the integrands of eq. (A.7) and eq. (4.15) with A from eq. (A.3).
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4Pu1Pus PHIVI A0 pa 2
o 9ty e

2 . . (B.8)
= (fL GinG r’}) { (1—rx)?sg” — e LT+ a7 q”q"} :

where Fr 1, contain products of F; and G1;27 s and {r}, {r'} € {AVV,VAV}.

In addition to eq. (A.8), eq. (4.10), and eq. (4.11), we have an additional relation between
the form factors in the Rosenberg parameterization by using eq. (A.9) and either eq. (A.13)
or eq. (A.14):

1
rx - sFy = 5 + mfbco(mfb) — (1 —rx)sFy, (B.9)
We can use this relation to simplify the expressions for G2 in this case:
1 1—r
GAlAVVZE(Z—i_l)_ XSF4,
, 1 1y ) (B.10)
GAVV = X(U}‘i‘l) — SF4+meO(mw),
1 1—r
G%/szz(Z‘i‘l)— XSF4,
1 1=, (B.11)
G%/szz(w—i-l)— 5 X8F4.

Then only Fy¢ and miC’O(m?p) are independent. In terms of the these functions, the two
quantities Fr r, in eq. (B.7

)
o (tomicon)|
)

+ T‘XSF4(SF4 + sk

and eq. (B.8) can then be written as

1
+ me’o mw) — 8F4:| +rxskFy { + md)C'O(mw) — SF(;]

+ DN

rx (sFy — sFs) (Gly + Gl ) (B.12)
1
_ |:2 + miCo(mi) - (1- 27‘)()SF4:| (G%r} + G2r'}> )

1 1-— 1 1—rx
FL = — |:2 -+ micb(mi) — <G{I‘} + 8F4>:| |:2 + miC()(m?/)) — <G21"} -+ 2 SF4>:| .
(B.13)

We contract eq. (B.6) with eq. (B.7) and eq. (B.8) and take the limit of massless initial-
state fermions, ry — 0. Inserting these results back into eq. (B.5), we obtain the expression
at leading-order in rxy < 1:

2
_ 1 g \* 1 v A s? 2tu
M2 , ( Fy2 S 2) 1—
‘ s,Z’ 4N027T4 ((CW) ax 6) (S _ m2z)2 (QZ ) + (QZ ) 4TX 52
) (B.14)

. (Qw)Q Z qg,%m,w (2G%r} _ 3F4>

re{AVV,VAV}

Of the two loop momentum shift parameters, we see from eq. (B.10) and eq. (B.11) that only
w appears in the second line. In order that the Ward identities for the photon and Z boson
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be satisfied, we must have w = z = —1. Examining the form factor combinations on the
second line in the two limits mfp — 0 and mfp — o0, we find:

1 2

)

QGiVV - SF4 — {

-1 mfp — 0
(B.15)
9 0 mfp — 0
2GVAV - SF4 — 1 m2 50 .
P

For completeness, we provide expressions for the form factors in the following two limits.
If the loop fermions are infinitely heavy, then at leading order we can discard the p? = m_ZX
term appearing in eq. (A.3), such that

2 2 : 2 : 2 1
m¢00(m¢) — —Ty <L12 (W) + Lio (H m)) - —3

sk, — % + m?pco(mfp) —0

skg — 1 — /4ry — larccot (w/47"w — 1) —0

where Lis is the dilogarithm function. If the loop fermions are massless, then Fg suffers an

infrared divergence:?!

Ty — 00 : , (B.16)

ry —0: < sFy — H;Hi—ﬁj{o)ggm . (B.17)

sFg — % (1+2loge) (rx —0)

C Off-shell X-exchange amplitudes

In this appendix, we compute the amplitude for BB — BB scattering (the BIM amplitude
after [74]), for which the diagrams are shown in fig. 4. This calculation illustrates the impact of
longitudinal enhancement from the triple-gauge vertex when the Stiickelberg field is off-shell,
and it is analogous to WW scattering in the SM.

A simple setup that accommodates this process is the “A-B” model from [33]: this
consists of a single Dirac fermion ¢ with an axial-vector interaction to A and a vector-like
interaction to B. The vector field A has a Stiickelberg-like mass term. In order to cancel
anomalies, the model includes dimension-5 Peccei-Quinn local counterterms coupling the
Stiickelberg scalar field © to Chern—Pontryagin densities. The Lagrangian after performing
the R¢ gauge fixing procedure as in eq. (2.16) is

1 , 1 , 1 1
L=— ZBNVBM - EF,u,yFu — 275 (QMA“)z -+ im?xAMA“
+ i (P + ieB +ighys) Y — myy (C.1)

Ca ~ Cg ~
+ %WFZVFAMV + %WB‘W/BHV .

21 As previously mentioned, sFs also has imaginary part m /4.
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Figure 5. Example diagram from dimension-5 counterterms in last line of eq. (C.1) model.

An example Feynman diagram for the Peccei-Quinn terms in the last line of eq. (C.1) is

displayed in fig. 5.22

The diagram on the left-hand side of fig. 4 with s-channel 7 exchange evaluates to
; Cp i .Cp

. HipviVe . . Bivafa (. .
Z./\/111 2V1V2 mixfulawzog(_Zpl,oq)(_ZpZOcz) . - €m§( .ZmX eV1hivz 2(1‘11,61)(192,62)

1 C3

Mlll1M2V1V2 — _ 6#1#2;10110261/1112;(11!12 .

s—¢& m?X mg(

(C.2)
For the diagram on the right-hand side, we are interested in the part of the amplitude that
involves axial couplings of the loop fermions to A,

. <A —1 -
IMRE = AR () ) — (H§<>Ap AP (g1 g0)

X (C.3)
<H_£x> =g — (1-9 (p1 +p2_)A(q12+ @)y .
A s —E&m5

Rewriting the R¢ gauge propagator as in the second line of eq. (2.21), we can evaluate
the ¢-dependent longitudinal terms using the MCVF of eq. (4.13) with C — A, A — B,

1 1 . . e’g 2 2
Hip2VIV2 | ; V1V2; 2 2
MG 2|g = T2 mg(e‘“’” P1P2 V1V2i9192 <47r2> {(w-2) + 4m;,Co (m¢)} . (C4)
For the gauge dependence to cancel, we must have
e%g

To satisfy the anomaly-free Ward identities in eq. (4.13) for the B vector bosons, we must
choose w = 1,z = —1. The remaining {-independent amplitude is My with the intermediate
A propagator in “unitary” gauge:

A 1 %
M = N (—pr, —p2) - P (TI%), - A (915 ¢2) (C.6)
X

22We can assume that e < g such that these diagrams dominate over the standard contribution from
one-loop box diagrams of fermions in, e.g., light-by-light scattering.
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which can be broken up into its transverse and longitudinal parts as

(e*g)?

H1p2VIVe A M ViV
Mz =5 L e ) (a1 62)
e (C.7)
M,LLL1H2V1V2 _ 5 B pip2ip1pz (V11259192

2
S =My Mi

where the subscript AVV is implicit. The squared amplitude, averaged and summed over

initial and final states, is

2 L[ (629)2 ? AL 42 P R4 T

|Mr|” = 7 I (=p1, =p2)T7,, 1 (=01, =p2) T\ 2 (01, 42)T s (915, G2)
L X
- 2

——2 1 1 C% : :

‘ML‘ - Z s —m2 m?2 6M1M27p1p26y1y27q1q26#1#2;1711)261/1112;(11(12 )
L X Mx

* L[ 1 ’ 2 )2 C% 11 p2;P1P2 TR [2 n Vive

2Re( LMT) = 9 2 (e“g) 5 € ' r (_p17_p2)€l/11/2§q1q21_‘)\ (q1,q2) -

s —m% m5

(C.8)

Since p? = ¢% = 0, the evaluation of the vertex functions is simple in the BIM case. From
eq. (A.8), we have both F5 = —Fy, I3 = —Fg. Then from eq. (B.10),

1
G?&VV’p2:q2:0 == G}wv‘pz:qzzo = §3F4- (C.9)

Finally, if we have massless loop fermions, then eq. (B.17) implies

1—rx +rxlog(ry)
F, = . 1
sFuln2 o 20— rx)? (C.10)
Then
4
=2 (9t 1 4 e’g
= F, —
Ml =g g o (T )
4
M. |* = —Cé72 L . <62§> . (C.11)
16 ry (1—TX) 47 U5

- 2 202 1 t 2 4 1
Re (246 My) = (©9)°C5 ; (zalc;? + (G + G2)2> - <eg> —.
4 rx (1 —ryx) s 2 8rx
where arrows indicate the limit 7y — 0 and we omitted the AV'V subscript in the interference
term for clarity.

Let us consider adding Wess—Zumino terms to the Lagrangian of eq. (C.1). These are
1
SeunpA'B” (CUFY + CRFY) = —eunpA" B (ChoP A + Cho B . (C.12)

For the BB — BB process, only the C’; coefficient is relevant; the amplitude is shown in
fig. 6. Along with fig. 4, we have three additional diagrams where one or both fermion triangle

— 44 —



A)‘ — C/B€AMVQ (q - p)a
—q

Figure 6. Feynman amplitude for Wess—Zumino term in eq. (C.12).

loops in the diagram on the right-hand side of fig. 4 is replaced with a three-boson vertex
from fig. 6.
We then have

IMEHEIT = OIBQQQ{GAMMQ(]H — p2)al?2(q1, o) + T2 (—py, —po)e? V2P (¢ — Q2)ﬁ}

()
s—m§(< X xp

. i
IMIPERIY2 = (CR) 2N 2% () — o) 0P (g1 — q2) g - s — m2 (H§<>Ap '
X

(C.13)

Again decomposing the R¢ propagator as in eq. (2.21), we find a modified cancellation con-
dition for gauge independence

e?g 2
C% = <47r2 {(w-2z)+ 4m12/,00 (mi)} - 20,’;;) . (C.14)
We are left to calculate the squared amplitude that is the sum of egs. (C.7) and (C.13), the
latter with the replacement Hg( — 1I¥. Examining the longitudina pieces as in the second
line of eq. (C.7), we find after using the gauge independence condition above

1 C% —4(C%)? +4CK(£Cp + 2CY)

Mﬂ1#2l’11/2 — 6#1#2;P1P2EV1V2;111Q2 (0‘15)
L s — m2 m2 ’
X X

which yields the same result as in eq. (C.11) in the relevant limit.
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