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ABSTRACT

A general flexible framework for Network Autoregressive Processes (NAR) is developed, wherein the
response of each node in the network linearly depends on its past values, a prespecified linear combination
of neighboring nodes and a set of node-specific covariates. The corresponding coefficients are node-specific,
and the framework can accommodate heavier than Gaussian errors with spatial-autoregressive, factor-
based, or in certain settings general covariance structures. We provide a sufficient condition that ensures
the stability (stationarity) of the underlying NAR that is significantly weaker than its counterparts in previous
work in the literature. Further, we develop ordinary and (estimated) generalized least squares estimators
for both fixed, as well as diverging numbers of network nodes, and also provide their ridge regularized
counterparts that exhibit better performance in large network settings, together with their asymptotic
distributions. We derive their asymptotic distributions that can be used for testing various hypotheses of
interest to practitioners. We also address the issue of misspecifying the network connectivity and its impact
on the aforementioned asymptotic distributions of the various NAR parameter estimators. The framework
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is illustrated on both synthetic and real air pollution data.

1. Introduction

Consider a network comprising of N nodes, for which we collect
measurements over T time periods for a variable X; that is,
Xi,i = 1,...,N,t = 1,...,T. Depending on the application
of interest, these nodes may correspond to agents/actors in a
social network, companies in an economic network, sensors in
an environmental network and even physical sites or devices in
an engineering network. Further, for each node i we also observe
p covariates Y;; € RP? that are also time-varying. The model
posited next assumes that the measurements X;j; for node i are
influenced by their past values (self-lags), plus past values of
“related” nodes (network lags), after adjusting for the effect of
covariates. Henceforth, we refer to this model as the Network
Autoregressive (NAR) model. The corresponding NAR(q1,92)
process with q; self-lags and g, network lags takes the form:

@ @ N
Xip = Z alg)Xi(tfj) + Z by Z witXe— + ¥i' Yig—1) + €ir

i=1,...,N,

(1)

where a,g) e R, bfj) € R, y; € RP are regression coefficients for
the self-lags, the network lags and the covariates, respectively;
further, wj, € [0, 1] are weights capturing the degree of depen-
dence among node i and other nodes k # i. We impose further

constraints on these weights in the sequel (see Assumption 2).

Finally, € is an error term with E(e;;) = 0 and E(e;)* < oo,
which is assumed to be independent of the covariates Y.

An example of an NAR(1,1) model with three nodes is given
in Figure 1. Every node i is influenced by its past values and
a linear combination of its neighbors™ past values through the
ith row of weight matrix w;. Additional conditions on the error
processes are discussed in the sequel.

The posited model encompasses as special cases a number
of models that appeared in recent literature, and also extends
other related models, as discussed next. Specifically, Zhu et al.
(2017) consider an NAR model with a?) = a(7>,b?) = bV
foralli = 1,...,N, while Zhu and Pan (2018) assume that
the nodes belong to K groups Gx,k = 1,...,K and thus all
nodes in group Gy share the same coeflicients; that is, af’) =
a,(cl), b?) = b,(g), for all i € Gy. The assignment of nodes into
groups is obtained from the data, by assuming a mixture model.
Further, in both cases the error term is homoscedastic, that is,
€ ~ N(@,01]), k = 1,...,K. A variation of the model in
Zhu and Pan (2018) is presented in Chen, Fan, and Zhu (2020),
wherein the adjacency matrix of the network W is assumed to
be generated by a Stochastic Block model with K communities,
which allows interactions between nodes belonging to the same
community, as well as belonging to different communities. Fur-
ther, the covariance matrix of the error term can exhibit factor
structure, while the community structure is estimated from the
data through spectral clustering. Knight et al. (2020) allow for
different autoregressive coeflicients for the nodes, and different
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Figure 1. An example of an NAR(1,1) model instance with three network nodes.

specifications of the network effects with a single regression
coeflicient for each network specification, but do not consider
exogenous covariates. A paper focusing on the economic impact
of COVID-19 mitigation strategies and fatality rates (Nason and
Wei 2021) enhances the model in Knight et al. (2020) by incor-
porating exogenous covariates. Further, a variant of the popular
in the econometrics literature Seemingly Unrelated Regressions
model in Zellner (1962) is also encompassed by the NAR one;
specifically, by letting y;; = ,BiTx,-t + €it, where €;; ~ F(0, %),
and yir = Xip, xig = [ Xio—n w/ X1 Y[, ]T, where Y1) are
defined to be exogenous covariates.

Specific variants of the NAR model have been employed in
diverse application areas, including social media analysis (Zhu
etal. 2017), pollution (Zhu and Pan 2018), environmental mon-
itoring and economic growth studies (Knight et al. 2020) and
predicting stock market returns (Chen, Fan, and Zhu 2020).

In the study of the NAR multivariate {X;} process, the fol-
lowing two issues need to be addressed at the technical level: (i)
conditions that ensure its stability/stationarity, and (ii) estima-
tion of the model parameters and inference in different regimes;
namely, (a) wherein the number of network nodes is fixed,
while the number of time points grows and (b) wherein both
the number of network nodes and time points grow at appro-
priate rates. For the first issue, the work in the literature has
adopted a rather stringent sufficient condition, that this article
substantially relaxes (see Theorem 2.1 and ensuing discussion
in Remark 3). For the second issue, the nature of the posited
model dictates the estimation procedure and associated infer-
ence results. Specifically, Zhu et al. (2017) use ordinary least
squares and establish asymptotic normality for the fixed number
of estimated parameters present in their model specification.
Zhu and Pan (2018) use the EM algorithm to identify the under-
lying group structure, and then apply the NAR model defined in
Zhu et al. (2017) to each group. Hence, a fixed number of model

parameters is also considered. Knight et al. (2020) use a least
squares criterion to fit the model and establish the asymptotic
normality of the model parameters assuming that the network
size N is fixed. The same setting of a fixed network size is used in
the extension by Nason and Wei (2021) that incorporates exoge-
nous covariates. Chen, Fan, and Zhu (2020) use a multi-step
estimation procedure to first identify the community structure,
then the factor structure of the error term and finally through
generalized least squares obtain estimates of the model param-
eters. Further, asymptotic distributions for the parameters are
also derived. Finally, Armillotta and Fokianos (2021) consider
a network autoregressive model for count data, with common
parameters for all nodes and use quasi-likelihood methods for
inference for the model parameters.

In contrast, the posited model in (1) can accommodate het-
erogeneity across network nodes, by having a different network
effect parameter for each node. Further, the network size is
allowed to grow as a function of the time observations, which
together with the model formulation leads to increasing param-
eter space. Hence, estimation and inference issues require tech-
nical care, as seen in Propositions C.1 and D.1. In addition, a
general structure of the covariance matrix is assumed for the
error term, which is also flexible, but further contributes to
the technical challenges. Hence, the key contributions of this
work are: (i) building a general flexible modeling framework for
network autoregressive data (Section 1), (ii) developing a relaxed
sufficient condition for stability/stationarity of the underlying
NAR process (Section 2), (iii) establishing inference procedures
for the growing number of model parameters, including regu-
larized variants of the (empirical) generalized least squares esti-
mates (Section 3), and (iv) addressing model misspecification
issues regarding the network matrix W (Appendix E).

Notation. Throughout the article, we use ||A||s to denote the
matrix induced infinity norm of matrix A € R™*”", that is,

n
oo = X ijl- max> F
[|A]] max ) |a;|. We use ||A]| [|A]] and ||A]|F to
15157}1]':1

denote the element-wise max norm, the operator norm and
Frobenius norm of A, respectively. We use ¢; to denote the ith
unit vector in R?. For matrices, we use — pto denote element-
wise convergence in probability, and — ; to denote convergence
in distribution. For a symmetric or Hermitian matrix A, we
denote its spectral radius by p(A), where the spectral radius of
a square matrix is the maximum of the absolute values of its
eigenvalues.

2. Stability of the NAR Process

The first issue addressed is to derive conditions that ensure the
stability/stationarity of the NAR(q;, q2) process for the model
posited in (1). To proceed, some additional notation is required.

Let Xy = [Xu Xo v T, € = [aren en]T, A =
diag{agl),a;’),...,al(f,)} € RVNfori = 1,2,...,q1, Bj =

diag{by), v, b;\’,)} e RVN forj = 1,2,...,q2, Cx =
diag{yix, v2k> - - -» YNk} € RNN fork =1,2,... ,p where yj is
the kth covariate for node i, and Gy := Ay + By W, wherein £ =
1,2,...,max{qi, g2}, with the convention that zero matrices are
included/padded for the relationship to hold; namely, if g, > g2,



Bj = 0 forj > qp, whereasif g < g2, Aj = 0 forj > q. Let
q = max{q1,q2}, then NAR(q, g2) posited in matrix form can
be written as

q1 Q@ p
X = ZAiXH + ZBjWXH‘ + Z CrYg t—1) + €
i=1 =1 k=1
q p
=Y GiXie+ Y C¥go-1) + €0 (2)
=1 k=1

wherein X; and X;_y € RN and Yii—1) = [Ylk,(,_l)

YNk,(t,l)]T e RN and Yik,—1) being the kth element of Y; (;_1).
We impose Yj —1) further constraints on these weights in
the sequel (see Assumption 2). Finally, €;; is an error process
with E(e;) = 0 and E(ei)* < oo, which is assumed to be
independent of the covariates Y;;. For technical developments,
it is convenient to also express (2) in the following form:

Xt =2t B+ e 3)
where Zt—l = [Zt—l thq diag{Yl,(t—l)} diag{Yp,(t—l)}], Zt_g =
. . T
[ diag(X, 1} diag{WX, 1} ], B == [B] B] ~ 8] vi vi ~ v |, Be ==
T
[0 a® o a@ b b0 - 0], and yx = [k vk~ v ]7, for

I=1,...,qandk=1,...,p.

p
Let & = e + Y CYg—1) and rewrite (2) as X; =
k=1

q

> G¢Xi—¢ + &, which can be considered as a vector autore-
=1
gressive model (VAR) with transition matrix G and error term
€;. The latter model can also be expressed as a VAR(1) model

(see (Litkepohl 2005)):

Xt = GXt_l + 5[. Wlth (4)
X7 Gy -« Gy1 G
xT, & o 0 0
Xp=| . [&=|0|G=|_ |
. oT AR
X i1 0 - Iy 0

Before stating the main result, we introduce the following
assumptions:

Assumption 1. Moment conditions on €; and Y:

(i) {e:t € N}isaniid sequence over the time index t of random
vectors satisfying E(e;) = 0, and £, = E(etetT) is non-
singular. Further, for some finite constant c;, the following
relationship holds

Elej€jrekseme| < ¢ fori,j,k,m =1,...,N,and all ¢.

(i) Yot € N}, where Y, = [Y], YT, vL]' s
a stationary process satisfying E(Y;) = 0, E(YthT ) =
I'y(0) = Ty, E(Y,Yf_j) = TI'y(j), and with absolutely
summable autocovariance function. For iy,i,i3,i4 =
L...,N, j1,j2,03,j4 = 1,...,pand ti, bty ts = 1,...,T
and some finite constant ¢, the following holds:

E| Yi1j1,t1 Yizjz,tz Yi3j3,t3 Yi4j4,t4| =Q
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(iii) The error process {¢;, t € N} isindependent of the covariate
process {Y;,t € N}.

Assumption 2. W € RNV is a row-normalized matrix; that
. N . S g
115,2 jzlxj/ij = 1 with w;; = 0 and wij >0 fori # j,Vi,j =

Assumption 3. For diverging network size N as a function of
time T, the error {€;,t € N} and covariate {Y;_1,t € N}
processes are assumed to be sub-Weibull (see definition in
Appendix A of the supplementary materials). )

Assumptions 1 (i)-(ii) require existence of fourth moments
for the error term as well as the covariate process. While finite-
ness of second moments is sufficient to ensure the existence
of a unique stationary solution to the recursive equations (2),
finiteness of fourth moments is required to establish the asymp-
totic normality of the various estimators presented in Section 3.
In addition, Assumption 1 (ii) is satisfied by a wide class of
processes, such as stable linear processes that include vector
autoregressive and moving average processes as special cases.
Assumption 1 (iii) requires independence between the error
and the covariate process, which makes the latter process exoge-
nous. Assumption 2 is required for the identifiability of the
network coefficients and is needed both for establishing the
stability/stationarity of the NAR process and for the asymptotic
properties of the estimators of the model parameters. Finally,
Assumption 3 imposes a mild condition on the tail behavior
of the distribution of the error and the covariate processes that
encompass a wide range of possibilities, including sub-Gaussian
and sub-exponential random variables.

Remark 1. Note that all prior work in the literature Zhu et al.
(2017), Zhu and Pan (2018), Chen, Fan, and Zhu (2020), Knight
et al. (2020), and Nason and Wei (2021) assumes that both the
exogenous variables Yy, as well as the error terms €; are normally
distributed. Assumption 3 relaxes significantly this requirement.
Further, Zhu et al. (2017) and Zhu and Pan (2018) assume that
the exogenous process Y; is an iid sequence over the time index t,
whereas Assumption 1(ii) allows for temporal dependence that
proves useful in applications (see Section 5).

Remark 2 (Missing Data in the NAR Model). Assumption 2
requires row normalization of the weights of the network matrix
W. A small adjustment on this assumption suffices for the tech-
nical framework for the NAR process to hold, in the presence
of missing data either for the process {Xi},t = 1,...,T,i =
1,...,N, or whenever network edges drop-out and then reap-
pear. The key idea is that the influence of nodes with missing
values (or missing network edges) will receive zero weights in
their corresponding columns and the remaining weight values
will be adjusted to ensure that each row sums up to one and
hence satisfy Assumption 2. Thus, data missing from a specific
node or in the presence of a missing network edge do not enter
the network effect estimation calculations, while the identifia-
bility assumption on weight matrices still holds due to other
nodes’ weight adjustments. Note that this adjustment obviates
the need for using imputation techniques. This issue is handled
in analogous manner for the GNAR model (see details in section
2.6 in Knight et al. (2020)).
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Theorem 2.1. Consider the NAR(q1, g2) process defined recur-

q
> G¢Xi—¢ + & where Gy = Ay + B¢W and
=1

sively by X; =

p
€& =¢€+ Y CkYp—1). Assume Assumptions 1-2 hold. Then,
k=1

X is a stationary process with a finite first-order moment that
can be expressed as

o0
Xi=[IN OnxN(g-D] Z G&j,
=0

if p(G) < 1. Equivalently, X, is a stationary process if
det(Ing — Gz) = det(Iy — G1z — - - - — G4z?) # 0 for |z| < 1.

Remark 3. (i) For row-normalized W, max {i(|afl)| +
1<i<N =1

|bfl)|)} < 1 is only a sufficient condition for an NAR(q1, q2)
model to be stationary.

(ii) The stability/stationarity condition in Theorem 2.1 is
significantly weaker than those in the literature for even special
cases of the posited model as illustrated in Appendix A.1 in the
supplementary materials.

3. Estimation Procedures for the NAR Model and their
Asymptotic Properties

We consider the following estimators for the NAR model: (a)
generalized least squares (GLS) (with ordinary least squares
(OLS) being a special case), and (b) the empirical counterpart of
(a): empirical generalized least squares (EGLS), in the following
two regimes: (I) N < T and (I) N > T. In both regimes, both
the network size N and the number of time points T grow to
infinity at appropriately defined rates that impact the asymp-
totics. The case of a fixed size network size can be subsumed in
case (I).

Note that the GLS estimator is primarily of theoretical inter-
est, but serves as a building step for its empirical counterpart
used in practice, by identifying the assumptions required for its
consistency and asymptotic normality.

3.1. GLS Estimator

The GLS estimator is defined next, and uses the covariance
structure of the error term:

T T
Bos = (Z VAP ZZ[T_IEjX[
t=1 t=1
T

T
=B+ 2l 272 2L 35 e, (6)
t=1 t=1
where X, = E(etetT).
Note that if one ignores the structure of the covariance matrix
Y, then the OLS estimator is obtained by setting X¢ = I.

(I) Growing network size with N < T:

Theorem 3.1 (Asymptotic Properties of the GLS Estimator). Sup-
pose Assumptions 1-3 hold. Let X; be a stationary process

generated by the NAR(q1, g2) model (3), thatis, X; = Z;_1 f+¢€;
with growing network size N < T. Define D € RF*@Na+Np) for
any finite k. Further, assume:

o Dhasbounded row sums; thatis, fori = 1,. . ., k, there exists
2Ng+Np
afinite constantcsuchthat )  d;j < cwhered;;istheijth
j=1

element of D.
« X7 ! has bounded row sums.

Then,
1 T .
ﬁm; Zr 277 1)(Bais — B) —a N(0,DQDY)  (7)

where Q := E(ZI'27'7Z,).

Remark 4. Note that if the network size N is fixed, the expression
in (7) simplifies to ﬁ(ﬁGLS — B) =4 N(0,Q71); the detailed
result and its derivation is presented in Appendix C.1 (supple-
mentary materials).

(IT) Growing network size with N > T:

In this case, regularization needs to be introduced. We con-
sider a ridge GLS estimator that uses the covariance structure of
the error term:

T T
ﬂAridge = (Z ZtT_1ZJIZt—1 + TM)71 ZZ?_lzglxt’ (8)
=1 t=1
where X, := E(ee]) and M = diag{A1In, A2Ins - . . AN,
AaIn, A3lnp). Specifically, Ay, A2, and A3 are the tuning param-
eters for the autoregressive, the network and the exogenous
covariates coefficients, respectively.

Theorem 3.2 (Asymptotic Properties of the ridge regularized GLS
Estimator). Suppose Assumptions 1-3 hold. Let X; be a sta-
tionary process generated by the NAR(q;, q2) model (3), that
is, X = Zi—1B + € with growing network size N. Define
D € RF*CNa+Np) for any finite k. Further, assume:

o Dhasbounded row sums; thatis, fori = 1,. .., k, there exists
2Ng+Np
afinite constant csuchthat ) d;; < cwhered;isthe ijth

j=1
element of D.
+ 2! has bounded row sums.
e N> T,and A; = O(\/LT) fori = 1,2,3. Then,

T
1 A
ﬁD(Z Z{ 27 iy 4 TM) (Brigge — B) —a N(0,DQD")
t=1

©))
where Q := E(Z?E;IZO.

3.2. EGLS Estimator

As previously mentioned, the EGLS estimator defined as

T T
BrcLs = (Z 3717, )7 ZZtT_liJIXt (10)
=1 =1



is of primary interest in practice. The asymptotic properties
established for the GLS estimator in Theorem 3.1 hold for EGLS,
aslong as a consistent estimator 3. for S is available (full details
provided in Proposition D.1 in Appendix D).

Such an estimator is readily available for the case N < T,
by using the residuals from the OLS estimator to obtain 3 (see
Proposition D.2 in Appendix D). However, this is not the case for
N > T. To address this issue, we consider two popular models
for the structure of the covariance matrix of the error term for
the NAR(q1, g2) model. We consider both a factor model and a
spatial autoregressive structure one for X, described in detail
(due to space considerations) in Appendices D.2, D.3 in the
supplement and used in the application presented in Section 5.

3.3. Testing Hypotheses of Interest

The technical results established for the (E)GLS estimator enable
testing a number of hypotheses of interest. Next, we present the
null hypotheses of the test statistic for selected ones:

(A) Homogeneity of the autoregressive effects: Hy : agﬁ)
=a§5), £=1,...,q

(B) Homogeneity of the network effects: Hy
b%), t=1,...,q

(C) Homogeneity of both the autoregressive and the network
effects: Hy : py = --- = By.

If the null hypothesis in any of these three cases holds, it leads
to a simplification in the model specification and a reduction in
the number of model parameters to be estimated.

Let K denote a matrix of size (N — 1) x (Ng; +Ngq2 + Np) that
1 _
=

EACO R —
'bl = ... =

encodes the null hypothesis of interest. For example, for a

— az(\}), K takes the form

T

1 -1 0 -0 0 OITV(q1—1+qz+p)

Ki=] 0 1 =1 -0 0 ) 0yg _1444p
o 0 0 --- 1 —1|0&

N(q1—1+q2+p)

Then, the test statistic has the following form:

T
F=(KB) (KO Z{ 372 1)Ky (KB) /(N — 1)
t=1

~ F(N—1),NT=Nx(q1+q2+p)-

Under the alternative hypothesis, the noncentrality parame-
ter is given by

T
§ = &KpY (KO _ZI 272, )K) " (KP).
t=1

A brief evaluation of the F-test statistic is given in Section G.3 of
the Appendix.

4. Performance Evaluation

Several factors influence the performance of the various esti-
mators proposed, including the sample size T, the number of
network nodes N, the structure of the weight matrix W, the lag
orders (g1, ¢q2) and the parameterization of the error covariance
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matrix X, (spatial autoregressive structure vs. factor structure).
The performance metrics considered include the root-mean-
square error (RMSE) of the model parameters, together with the
coverage probability of the constructed confidence intervals and
their average length.

Next, we describe the data-generating mechanism and
the settings considered. Each experiment is based on 500
replications of data generated from the NAR(qi,q2) model
Xt = AXt_l + BWXt_l + Yt—ly + € where Yt—l =
[Yie—1 Yau-) Ypu-n] € R¥Y? and y =
[yl %) yp]T. We fix the network size to N = 100.
Further, the error terms are generated either through a spatial
autoregressive (SAR) structure [¢; ~ N(0,( — p®) 11 —
p®) " D]or through a factor structure €, = AF; + u; with uy ~
N(0,I) for factor structure. Finally, the exogenous covariates
are generated according to Yix—1) ~ N(O0,1), for all i, k,t.
The specific form of the primary model parameters (A, B, y)
together with W, ® and A are specified in subsequent sections.

4.1. Estimation Accuracy

We focus on the performance of the EGLS estimator. We exam-
ine the influence of T, W, the structure of X, and the lag order
q = q1 = q2 onthe RMSE metric. The latter is defined as follows
for the three sets of model parameters: self-lags | [A—A||F /1IAllE,
network lags 1B — Bl|F /1|Bl|F and exogenous covariates
||]> — ]/||F/||)/ | |F- Weset A = diag{0.1125, 0.2125, 0.3125, 0.4125},
B = diag{0.4125, 0.3I35,0.2155,0.11,5} while we set y =
(—0.81%,-0.417,0.417,0.811)T in Tables 4-8 in Appendix G,
supplementary materials. In Table 9 of Appendix G, we fix lag
order q1 = q» = 2, A; = 03[, Ay, = 03I, By = 0.15],
B, = 0.15] and y = 0.51y9. The experiment is replicated
500 times, and we calculate the average over 500 estimates.
For convenience, we set the weight matrix W to be a row-
normalized banded matrix with different bandwidths. Due to
space considerations, we show in Figure 2 the results for the
influence of the sample size T, and present all Tables assessing
the influence of the factors (e.g., T, N, W, (41, q2), the structure
of ¥¢) in Appendix G, but provide a summary of the results in
the sequel.

It can be seen that the accuracy of all model parameters -self-
lags, network lags and regression coefficients of the exogenous
covariates- increases as the sample size increases.

Next, a summary of the results of the impact of the other
factors corresponding to Tables 5-9 (in Appendix G) is pre-
sented. The results in Table 5 (Table 8) confirm the robust-
ness of the EGLS estimates over weight matrices W (&) with
different bandwidths (number of neighboring nodes included),
while the RMSE exhibits a slight increase for network effect
parameters when the bandwidth increases. Table 6 summarizes
the performance of the EGLS estimates for different values of
p (for the SAR model based X.). It can be seen that the esti-
mates themselves are stable, while the RMSE slightly decreases
when p increases (from close to zero to close to one). Further,
Table 7 shows that the number of factors k (for the factor
model based X.) has no significant effect on EGLS estimation,
while the RMSE for the network parameters decreases slightly
when k increases. Finally, Table 9 shows that EGLS performance
improves for larger T, for NAR processes with higher temporal
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Figure 2. Absolute errors of different coefficients for increasing T under normal errors.

Table 1. N =100,g7 = g = 1, p = 0.5and W and ® being banded matrices of
width 5.

aj bi Vi
Estimator OLS GLS EGLS OLS GLS EGLS OLS GLS  EGLS
T=150 0950 0.949 0.949 0.950 0.951 0.950 0.959 0.955 0.955
T=300 0.948 0.948 0948 0948 0949 0.949 0.952 0.951 0.951
T=450 0.948 0.950 0.950 0.950 0.950 0.950 0.951 0.954 0.954

NOTE: Coverage probability of confidence intervals for T = 150, 300, 450.

lags. An overall conclusion of the various simulation scenarios
is that the performance of the EGLS estimator for the network
parameters (B) is more sensitive to changes in W, &, and p than
the autoregressive parameters (A).

4.2. Coverage Probability and Length of Confidence
Intervals

We consider NAR(1, 1) and NAR(2, 2) processes. For the former,
we fix A = B = 04y and y = 04 x 1y and for the
latter Ay = B; = 0.3Iy, Ay = By, = 0.15Iy and y =
0.5% 119. We explore how different factors influence the coverage
probability (CP) and length of confidence intervals (CI) of the
various estimators. The results are based on 500 replicates. We
set the network size N = 100, and ¢, follows either a spatial
autoregressive model with parameter p, or a k factor model. For
each model parameter (100 ;’s, 100 B;’s, 10 y;’s), we calculate
its CI and the corresponding CP and length. The 95% CI is
calculated using CI; = (B; — 20.975SE(B), Bi + 20.975SE(B)),
where SE(B) = (Y. ZIZ:) (X ZI £ 7)) (Y. 2T 7)) 7! for the
¢ ¢ t

OLS estimator and SE(,@) =0 ZtTEe_th)_l for the GLS and
t

EGLS estimators.

In Table 1, the influence of the sample size T is investigated.
We fix ¢, = pWe; + uy with p = 0.5, W as a banded matrix
of width 5 and explore how the CP and length of the CI are
influenced by T.

Figure 3 depicts the length of the confidence intervals that
decrease for larger sample sizes T for all estimators. Further, the
OLS one has longer ClIs, since it does not incorporate informa-
tion about the error covariance matrix.

Table 1 shows the coverage probability of the confidence
intervals for the three estimators, for the different model param-
eters and varying sample sizes T It can be seen that the coverage
probability is basically at the nominal level.

(b) b
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015-
Y173
Y45
0.010- Yo7
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Due to space considerations, the results of the influence of
the other factors (e.g., N, W, (q1,42), are given in Appendix G
in Tables 10-14, supplementary materials, but a summary of
the main findings follows. Table 10 shows that with lag 2, the
length of the confidence intervals decreases for larger sample
sizes T, while the coverage probabilities improve (get closer to
the nominal 95% level). Table 11 shows that as the bandwidth of
W increases, the length of the 95% confidence intervals of the
network effect parameters B increases, while the corresponding
coverage probabilities are robust. From Table 12, it can be seen
that both the length of CIs and the coverage probabilities are
robust for both the GLS and EGLS estimates with respect to
changes in p (except for the network effect parameters B for
which the CI length decreases slightly), while the length of
ClIs for the OLS estimates increases for all model parameters.
Table 13 shows that as the number of factors k increases, the
length of the 95% confidence intervals for A, B, and y increases
for the OLS estimator, while for the GLS and EGLS estimators,
the corresponding length of the CIs decreases. Finally, results
summarized in Table 14 confirm that the length of CIs and
coverage probabilities are robust with respect to changes in the
bandwidth of matrix ® (for the SAR model for X.). Overall,
the coverage probabilities in all simulation scenarios are close
to the nominal level (95%), which implies that the estimators
are unbiased and the estimated variances are close to the true
variances.

4.3. Comparison of Competing Modeling Approaches
Based on Simulated Data

The Predictive MSE (PMSE) defined as
DX — Zea Bl

te€ Test

is used as the performance metric to compare the following
models: (a) NAR(1,1), (b) homogeneous NAR(1,1) with global
aand b (A = al and B = bI), (c) GNAR Knight et al. (2020)
with global autoregressive coeflicient o and (d) GNAR with local
autoregressive coefficients. We set N = 100, T = 400, and the
weight matrix W to be a row-normalized banded matrix with
bandwidth 1. We consider two mechanisms for data generation.
The experiment is replicated 500 times, and we provide the
boxpplots of the PMSE for different models. The following two
data generation mechanisms are considered:

(A) The data are generated through a NAR(1,1) model with
(a1,4a2,...,a100) being a sequence of 100 points evenly

PMSE :=

(11)
Nthest|
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Figure 4. Comparisons of PMSE among competing network autoregressive models (T=400).

placed between —0.5 and 0.5, (b1, by, . . ., bigo) satisfies that
b; = (—=1)1(0.8 — |ai]), i = 1,2,...,100. Further, the error
terms are generated through (a) ¥, = I, and (b) a factor
structure ¢, = AF; + u; with u; ~ N(0,I) with a different
number of factors.

(B) The data are generated through a GNAR(1,[5]) model with
local o autoregressive coeflicients, where (a1, 2, . . ., ®100)
is a sequence of 100 points evenly placed between —0.3 and
0.3,and 8 = [0.3, —0.2,0.1, —0.05, 0.01]. Further, the error
terms are generated through (a) £, = I, and (b) a factor
structure ¢; = AF; + u; with u; ~ N(0,I) with a different
number of factors.

It can be seen that when the data are generated from an het-
erogeneous NAR model (mechanism (A)), the corresponding
NAR specification outperforms in terms of PMSE competing
specifications for both sample sizes, as seen in the (a) panels of
Figures 4 and 5. For data generated through mechanism (B), the
heterogeneous NAR model essentially matches the performance
of the GNAR model that was used to generate the data. The
result suggests that the added flexibility of node specific network
effects allows the NAR model to perform well in terms of pre-
diction even in settings wherein the data are generated from a
different mechanism.

4.4. Impact of the Error Covariance Structure Estimation
Method on EGLS

Next, we assess the performance of the EGLS estimator based on
different methods to estimate the error covariance matrix. We

select a setting with N = 95 and T = 100, that highlights the
issue and is also relevant in applications (see data description in
Section 5.) The data are generated through an NAR(1,1) model
with different network autoregressive effects agl) and a single
network effect bV, so that the model specification is the same
as that of the GNAR model. Specifically, (ail) , agl), ceo aéls) )isa
sequence of 95 values evenly placed between —0.5 and 0.5, and
b)) = —0.45. Further, the error terms are generated through
a factor structure ¢, = AF; + uy with uy ~ N(0,1) with five
factors.

The EGLS estimator is employed with the following choices
for estimating the error covariance matrix: (i) estimate 3, from
the factor model; (ii) estimate 3. from the least squares residu-
als; and (iii) estimate only the diagonal elements of 3, from the
least squares residuals.

Figure 6 depicts boxplots for the PMSE of each node (left
panel), as well as for the length of the confidence intervals
(right panel) for the three estimation methods of the covariance
matrix. As expected, the PMSEs are not impacted, since the
EGLS estimator is consistent for all three methods. On the
other hand, the diagonal-based covariance estimator exhibits
the largest CI lengths, while its coverage probability is 94.7%
(very close to the nominal level), while the nonparametric-based
estimator (option (ii))) the smallest ones by a large margin,
with a coverage probability 31% (thus, severing underestimating
the uncertainty of the model parameters). Finally, the factor-
based estimated covariance matrix has a coverage probability of
95%, as expected. These discrepancies become smaller when T
increases; for example, for the same setting with N = 95 and
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Figure 6. The impact of the error covariance structure estimate on the EGLS estimator.

T = 400, the coverage probability of the diagonal-based EGLS is
94.9%, while that of the nonparametric-based estimate improves
to 88%, but still falls behind the nominal coverage level.

5. Application to Air Quality Index Data

We employ the proposed NAR(q;,q2) model to analyze Air
Quality Index (AQI) data together with relevant weather con-
dition covariates, collected from N = 319 stations across China
for the period from March 20th, 2019 to March 19th, 2020, for a
total of T = 366 observations. The AQI data are obtained from
the China National Environmental Monitoring Centre, while
the weather covariates are from the National Centers for Envi-
ronmental Information.! Boxplots of the AQI for each month
across all stations are depicted in Figure 7, and the locations of
the stations (left panel), and the average AQI for each station
across all observations (right panel) are depicted in Figure 8. We
consider the log-transformed AQI as the response variable. It
can be seen from the middle panel of Figure 8 that the average
AQI reaches its peak in winter, while the pollution level is
relatively low in summer; hence, we fit separate models for each
season. Exogenous covariates Y, included in the NAR(q1, q2)
model include air temperature, relative humidity, wind speed
rate and sky condition total coverage.

'https://www.ncdc.noaa.gov/

125-

100-
12 3 4 5 6 7 8 9 10 11 12
Month

Figure 7. Boxplot of Monthly AQl values.

Note also that the right panel of Figure 8 indicates substantial
heterogeneity, with the north-northwest regions of the country
exhibiting higher AQI levels.

Given a large number of stations (319) and limited sample
size for each season, the autoregressive g; and network lag
b; coefficients, together with those of the external covariates
were obtained based on regularized estimators. The tuning
parameters A1 and A, for the ridge regression is determined
by generalized cross-validation Golub, Heath, and Wahba

T .
+ Zl (1= 12
PR i t=
(1979) by minimizing: GCV(A) := 3T, Trace(—H O
where H/(A) = Z (L, 2], Zi + TM)™'Z] | and

M := diag{r1I319, 221319, 04}.
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(a) Locations of the 319 stations

Figure 8. Spatial distribution of AQI monitoring stations and their average values.

The model is fitted with both a SAR covariance structure and
a factor model one. To construct the network for the SAR ver-
sion, both W and & correspond to a row-normalized adjacent
matrix obtained as follows: let D;; be the spatial distance between
two stations and o2 be the variance of all distances, then the

D;
=2 ifi # jand 0

otherwise. Recall that & aims to capture any additional spatial

dependence not reflected in the structure of the NAR model.
D;?

Further, the ijth element of W is defined as wj; := ﬁ,if iF#j

—~ j

i

ijth element of @ is defined as ¢;; :=

and Dj; < 500 km and 0 otherwise.
Based on the following BIC criterion

(Nq1 + Nqz +p)log T
T

an NAR(1,1) model was selected for each season. A plot of
the partial autocorrelation function for the AQI variable (not
shown) corroborates this choice for the temporal autoregres-
sive and network lags. To select the number of factors in the
corresponding model, we employed the following information
criterion: IC(k) = log(S(k)) + % log(NT). It resulted in
selecting a single factor (k = 1) for each season’s NAR model.

The results are depicted in Figures 9 and 10 and tabulated
in Tables 18-21 (in Appendix H), respectively. The NAR model
estimates show great variation amongst different regions and dif-
ferent seasons. Tables 18-21 show that all covariates employed
are statistically significant. For relative humidity, its magnitude
remains constant across the four seasons and its impact is posi-
tive in reducing air pollution (the negative sign of the regression
coeflicient). Analogously, the impact of the wind speed is fairly
similar across the four seasons and positive for air quality. The
impact of the air temperature is positive and similar during the
Summer and Fall seasons; further, it exhibits a bigger positive
impact in Winter and a small negative impact in Spring.

To aid interpretation, Table 22 (in the supplementary mate-
rials) presents the average (over monitoring stations) autore-
gressive and network lag coefficients for all the provinces and
selected big cities. Air quality in China is impacted by multiple

BIC(q) = log || + . (12)

(b) Average AQI for each station

factors and exhibits large variability over regions and seasons.
It can be seen that the regions with the largest autoregressive
coeflicients are in southwest China, while the regions with the
highest network coeflicients are in southeast China, along the
coastal area. The topography of the regions (island or plateau)
may be related to the presence of such large autoregressive
coeflicients (e.g., Yunnan-Guizhou Plateau, Tibetan Plateau and
Hainan Island). In contrast to regions with large autoregressive
coeflicients, regions with the largest network coefficients are
coastal areas. During Winter months, northern regions tend to
have larger autoregressive coeficients and smaller network coef-
ficients compared to other seasons, and temperature inversion
may be the cause. During an inversion, warmer air is held above
cooler air, so air pollution is trapped by it, which makes air
pollution hard to diftuse.

The results are broadly in accordance with findings in recent
studies that have investigated spatial and temporal variations of
air pollutants in China. (Wang et al. 2014). In North East China,
coal-based industries such as iron and steel manufacturing and
coal-fired power plants are key drivers for increased AQI levels
the main causes of air pollution. In the Northern China Plain,
the network effect is high compared to other regions. Emissions
from fossil fuel combustion and biomass burning for home
heating in the winter months result in a high concentration of
air pollutants. Surrounded by mountains, particulates brought
by south easterly winds may accumulate in the region, whereas
cold fronts from the north together with their winds are weak-
ened by the mountains and hence result in increased pollution
levels. Further, sandstorms from the deserts in the north also
contribute to the network effects observed for Northern China
Plain stations. A number of studies have discussed air pollution
patterns in this region and potential drivers (Wang et al. 2017;
Xiao et al. 2020). For the Yangtze River Delta in the east coastal
area, the network coefficient is large compared to the autore-
gressive coeflicient. Particulates brought by cold fronts from the
Mongolian Plateau in the north also contribute to the network
effect. Finally, it is worth noting that eastern regions exhibit on
average larger network coefficients, while western regions have
higher autoregressive coefficients.
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Table 2. PMSE for different estimators across different seasons.

Spring Summer Fall Winter
OLS 0.0656 0.0665 0.0999 0.0889
EGLS w/ spatial covariance 0.0654 0.0656 0.0990 0.0880
EGLS w/ factor structure 0.0614 0.0660 0.1030 0.0884
NAR with A = aland B = bl 0.0658 0.0661 0.1019 0.0925
VAR(1) with ridge 0.0927 0.0835 0.1466 0.1180
VAR(1) with lasso 0.0727 0.0791 0.1239 0.1068
AR(1) 0.0684 0.0693 0.1136 0.1054
GNAR(1,s) 0.0733 0.0730 0.1131 0.0990
GNARX(1, 5) 0.0687 0.0673 0.1038 0.0932

Next, we consider how the estimated NAR(1,1) model per-
forms in terms of forecasts together with a number of competing
models. The parameters of the NAR(1,1) model are estimated by
both OLS and EGLS, with SAR and factor covariance structures
and a ridge penalty (since N > T). For comparison purposes,
we also consider a NAR(1,1) model with A = al and B = bl, a
GNARX(1, s) model where the number of stages s is determined
by BIC, a regularized VAR(1) model with ridge and lasso penal-
ties and finally a simple AR(1) model, applied to each station’s
data. The evaluation is based on the last 20 days (test data) of
each season, which are used to calculate PMSEs for the different
models, defined as PMSE := m t SOIXe— Zi—1 Bl |%. The

test

results are given in Table 2.

It can be seen that the NAR-based predictions clearly out-
perform the VAR and AR(1) ones, across all seasons. Further,
EGLS for the posited NAR model exhibits better performance
than its OLS counterpart and also the predictions of the homo-
geneous NAR model. Differences are minuscule for Summer,
but around 5% in magnitude for the other seasons. Finally, the
GNAR/GNAR-X models perform well, but fall behind com-
pared to the NAR specification, probably due to the heteregone-
ity of the network effects that the latter model captures more
effectively.

6. Conclusion and Discussion

The article presented a general flexible framework for NAR pro-
cesses that can accommodate node-specific network effects in a
growing size network (number of nodes exceeding the number
of available time observations), exogenous covariates, errors that
can exhibit heavier than Gaussian tails and a variety of error
covariance matrices. It can also be regarded as a VAR model
with a specific structure in the transition matrices that reduces
the number of parameters, and also aids in interpretability. The
latter connection enables us to provide a significantly weaker
stability condition compared to those available in the literature
for significantly simpler models, thus, expanding the applicabil-
ity of the framework, as also illustrated in the real data applica-
tions. The parameter reduction requires a priori knowledge of
the weight matrices. However, the results established show that
the model parameters estimates are robust to a certain degree
of misspecification of these matrices (see Appendix E in the
supplementary materials) The flexibility of the proposed NAR
model, which allows for a node specific heterogeneous network
effect proves useful in applications as the results for both the air
quality data and the wind speed data (see Appendix E1 in the
supplementary materials) show.

TECHNOMETRICS 1

To that end, how to “design” the weight matrices W to opti-
mize performance is a topic of future research. Further, in very
high-dimensional settings, the use of sparsity-inducing penalties
(such as the lasso and its variants) is of interest, together with
inference procedures based on ideas of debiasing the resulting
parameter estimates.

Supplementary Materials

The PDF file contains proofs of all Theorems, additional lemmas and other
technical material not included in the main file due to space considerations,
as well as additional simulation results, tables and figures. The HTML files
contain R code to reproduce Tables 4, 1 and part of Table 2, as well as the
comparisons in Section E.1.
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