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ABSTRACT
A general "exible framework for Network Autoregressive Processes (NAR) is developed, wherein the
response of each node in the network linearly depends on its past values, a prespeci!ed linear combination
of neighboring nodes and a set of node-speci!c covariates. The corresponding coe#cients are node-speci!c,
and the framework can accommodate heavier than Gaussian errors with spatial-autoregressive, factor-
based, or in certain settings general covariance structures. We provide a su#cient condition that ensures
the stability (stationarity) of the underlying NAR that is signi!cantly weaker than its counterparts in previous
work in the literature. Further, we develop ordinary and (estimated) generalized least squares estimators
for both !xed, as well as diverging numbers of network nodes, and also provide their ridge regularized
counterparts that exhibit better performance in large network settings, together with their asymptotic
distributions. We derive their asymptotic distributions that can be used for testing various hypotheses of
interest to practitioners. We also address the issue of misspecifying the network connectivity and its impact
on the aforementioned asymptotic distributions of the various NAR parameter estimators. The framework
is illustrated on both synthetic and real air pollution data.
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1. Introduction

Consider a network comprising of N nodes, for which we collect
measurements over T time periods for a variable X; that is,
Xit , i = 1, . . . , N, t = 1, . . . , T. Depending on the application
of interest, these nodes may correspond to agents/actors in a
social network, companies in an economic network, sensors in
an environmental network and even physical sites or devices in
an engineering network. Further, for each node i we also observe
p covariates Yi,t ∈ Rp that are also time-varying. The model
posited next assumes that the measurements Xit for node i are
in!uenced by their past values (self-lags), plus past values of
“related” nodes (network lags), a"er adjusting for the e#ect of
covariates. Henceforth, we refer to this model as the Network
Autoregressive (NAR) model. The corresponding NAR(q1,q2)
process with q1 self-lags and q2 network lags takes the form:

Xit =
q1∑

j=1
a(j)

i Xi(t−j) +
q2∑

j=1
b(j)

i

N∑

k=1
wikXk(t−j) + γ T

i Yi,(t−1) + εit ,

i = 1, . . . , N,
(1)

where a(j)
i ∈ R, b(j)

i ∈ R, γi ∈ Rp are regression coe$cients for
the self-lags, the network lags and the covariates, respectively;
further, wik ∈ [0, 1] are weights capturing the degree of depen-
dence among node i and other nodes k #= i. We impose further
constraints on these weights in the sequel (see Assumption 2).
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Finally, εit is an error term with E(εit) = 0 and E(εit)4 < ∞,
which is assumed to be independent of the covariates Yi,t .

An example of an NAR(1,1) model with three nodes is given
in Figure 1. Every node i is in!uenced by its past values and
a linear combination of its neighbors’ past values through the
ith row of weight matrix wi. Additional conditions on the error
processes are discussed in the sequel.

The posited model encompasses as special cases a number
of models that appeared in recent literature, and also extends
other related models, as discussed next. Speci%cally, Zhu et al.
(2017) consider an NAR model with a(j)

i = a(j), b(j)
i = b(j)

for all i = 1, . . . , N, while Zhu and Pan (2018) assume that
the nodes belong to K groups Gk, k = 1, . . . , K and thus all
nodes in group Gk share the same coe$cients; that is, a(j)

i =
a(j)

k , b(j)
i = b(j)

k , for all i ∈ Gk. The assignment of nodes into
groups is obtained from the data, by assuming a mixture model.
Further, in both cases the error term is homoscedastic, that is,
εk ∼ N(0, σkI), k = 1, . . . , K. A variation of the model in
Zhu and Pan (2018) is presented in Chen, Fan, and Zhu (2020),
wherein the adjacency matrix of the network W is assumed to
be generated by a Stochastic Block model with K communities,
which allows interactions between nodes belonging to the same
community, as well as belonging to di#erent communities. Fur-
ther, the covariance matrix of the error term can exhibit factor
structure, while the community structure is estimated from the
data through spectral clustering. Knight et al. (2020) allow for
di#erent autoregressive coe$cients for the nodes, and di#erent
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Figure 1. An example of an NAR(1,1) model instance with three network nodes.

speci%cations of the network e#ects with a single regression
coe$cient for each network speci%cation, but do not consider
exogenous covariates. A paper focusing on the economic impact
of COVID-19 mitigation strategies and fatality rates (Nason and
Wei 2021) enhances the model in Knight et al. (2020) by incor-
porating exogenous covariates. Further, a variant of the popular
in the econometrics literature Seemingly Unrelated Regressions
model in Zellner (1962) is also encompassed by the NAR one;
speci%cally, by letting yit = βT

i xit + εit , where εit ∼ F(0, %),
and yit := Xit , xit :=

[
Xi(t−1) wT

i Xt−1 YT
i,(t−1)

]T , where Yi,(t−1) are
de%ned to be exogenous covariates.

Speci%c variants of the NAR model have been employed in
diverse application areas, including social media analysis (Zhu
et al. 2017), pollution (Zhu and Pan 2018), environmental mon-
itoring and economic growth studies (Knight et al. 2020) and
predicting stock market returns (Chen, Fan, and Zhu 2020).

In the study of the NAR multivariate {Xit} process, the fol-
lowing two issues need to be addressed at the technical level: (i)
conditions that ensure its stability/stationarity, and (ii) estima-
tion of the model parameters and inference in di#erent regimes;
namely, (a) wherein the number of network nodes is %xed,
while the number of time points grows and (b) wherein both
the number of network nodes and time points grow at appro-
priate rates. For the %rst issue, the work in the literature has
adopted a rather stringent su$cient condition, that this article
substantially relaxes (see Theorem 2.1 and ensuing discussion
in Remark 3). For the second issue, the nature of the posited
model dictates the estimation procedure and associated infer-
ence results. Speci%cally, Zhu et al. (2017) use ordinary least
squares and establish asymptotic normality for the !xed number
of estimated parameters present in their model speci%cation.
Zhu and Pan (2018) use the EM algorithm to identify the under-
lying group structure, and then apply the NAR model de%ned in
Zhu et al. (2017) to each group. Hence, a %xed number of model

parameters is also considered. Knight et al. (2020) use a least
squares criterion to %t the model and establish the asymptotic
normality of the model parameters assuming that the network
size N is !xed. The same setting of a %xed network size is used in
the extension by Nason and Wei (2021) that incorporates exoge-
nous covariates. Chen, Fan, and Zhu (2020) use a multi-step
estimation procedure to %rst identify the community structure,
then the factor structure of the error term and %nally through
generalized least squares obtain estimates of the model param-
eters. Further, asymptotic distributions for the parameters are
also derived. Finally, Armillotta and Fokianos (2021) consider
a network autoregressive model for count data, with common
parameters for all nodes and use quasi-likelihood methods for
inference for the model parameters.

In contrast, the posited model in (1) can accommodate het-
erogeneity across network nodes, by having a di#erent network
e#ect parameter for each node. Further, the network size is
allowed to grow as a function of the time observations, which
together with the model formulation leads to increasing param-
eter space. Hence, estimation and inference issues require tech-
nical care, as seen in Propositions C.1 and D.1. In addition, a
general structure of the covariance matrix is assumed for the
error term, which is also !exible, but further contributes to
the technical challenges. Hence, the key contributions of this
work are: (i) building a general !exible modeling framework for
network autoregressive data (Section 1), (ii) developing a relaxed
su$cient condition for stability/stationarity of the underlying
NAR process (Section 2), (iii) establishing inference procedures
for the growing number of model parameters, including regu-
larized variants of the (empirical) generalized least squares esti-
mates (Section 3), and (iv) addressing model misspeci%cation
issues regarding the network matrix W (Appendix E).

Notation. Throughout the article, we use ||A||∞ to denote the
matrix induced in%nity norm of matrix A ∈ Rm×n, that is,

||A||∞ = max
1≤i≤m

n∑
j=1

|aij|. We use ||A||max, ||A|| and ||A||F to

denote the element-wise max norm, the operator norm and
Frobenius norm of A, respectively. We use ei to denote the ith
unit vector in Rp. For matrices, we use →p to denote element-
wise convergence in probability, and →d to denote convergence
in distribution. For a symmetric or Hermitian matrix A, we
denote its spectral radius by ρ(A), where the spectral radius of
a square matrix is the maximum of the absolute values of its
eigenvalues.

2. Stability of the NAR Process

The %rst issue addressed is to derive conditions that ensure the
stability/stationarity of the NAR(q1, q2) process for the model
posited in (1). To proceed, some additional notation is required.

Let Xt := [ X1t X2t ··· XNt ]T , εt := [ ε1t ε2t ··· εNt ]T , Ai :=
diag{a(i)

1 , a(i)
2 , . . . , a(i)

N } ∈ RN×N for i = 1, 2, . . . , q1, Bj :=
diag{b(j)

1 , b(j)
2 , . . . , b(j)

N } ∈ RN×N for j = 1, 2, . . . , q2, Ck :=
diag{γ1k, γ2k, . . . , γNk} ∈ RN×N for k = 1, 2, . . . , p where γik is
the kth covariate for node i, and G' := A' + B'W, wherein ' =
1, 2, . . . , max{q1, q2}, with the convention that zero matrices are
included/padded for the relationship to hold; namely, if q1 > q2,



TECHNOMETRICS 3

Bj = 0 for j > q2, whereas if q1 < q2, Aj = 0 for j > q1. Let
q = max{q1, q2}, then NAR(q1, q2) posited in matrix form can
be written as

Xt =
q1∑

i=1
AiXt−i +

q2∑

j=1
BjWXt−j +

p∑

k=1
CkYk,(t−1) + εt

=
q∑

'=1
G'Xt−' +

p∑

k=1
CkYk,(t−1) + εt , (2)

wherein Xt and Xt−' ∈ RN and Yk,(t−1) =
[
Y1k,(t−1) · · ·

YNk,(t−1)

]T ∈ RN and Yik,(t−1) being the kth element of Yi,(t−1).
We impose Yik,(t−1) further constraints on these weights in
the sequel (see Assumption 2). Finally, εit is an error process
with E(εit) = 0 and E(εit)4 < ∞, which is assumed to be
independent of the covariates Yi,t . For technical developments,
it is convenient to also express (2) in the following form:

Xt = Zt−1β + εt , (3)

where Zt−1 := [ Zt−1 ··· Zt−q diag{Y1,(t−1)} ··· diag{Yp,(t−1)} ], Zt−' :=
[ diag{Xt−l} diag{WXt−l} ], β :=

[
βT

1 βT
2 ··· βT

q γ T
1 γ T

2 ··· γ T
p

]T , β' :=
[

a(')
1 a(')

2 ··· a(')
N b(')

1 b(')
2 ··· b(')

N

]T , and γk := [ γ1k γ2k ··· γNk ]T , for
l = 1, . . . , q and k = 1, . . . , p.

Let ε̃t = εt +
p∑

k=1
CkYk,(t−1) and rewrite (2) as Xt =

q∑
'=1

G'Xt−' + ε̃t , which can be considered as a vector autore-

gressive model (VAR) with transition matrix G and error term
ε̃t . The latter model can also be expressed as a VAR(1) model
(see (Lütkepohl 2005)):

Xt = GXt−1 + Et . with (4)

Xt :=





XT
t

XT
t−1
...

XT
t−q+1



, Et :=
[

ε̃T
t

0T
···
0T

]

, G :=




G1 ··· Gq−1 Gq
IN ··· 0 0
... . . . ...

...
0 ··· IN 0



. (5)

Before stating the main result, we introduce the following
assumptions:

Assumption 1. Moment conditions on εt and Yt :

(i) {εt , t ∈ N} is an iid sequence over the time index t of random
vectors satisfying E(εt) = 0, and %ε = E(εtεT

t ) is non-
singular. Further, for some %nite constant c1, the following
relationship holds

E|εitεjtεktεmt| ≤ c1 for i, j, k, m = 1, . . . , N, and all t.

(ii) {Yt , t ∈ N}, where Yt :=
[
YT

1,t YT
2,t · · · YT

p,t
]T , is

a stationary process satisfying E(Yt) = 0, E(YtYT
t ) =

(Y(0) = %Y , E(YtYT
t−j) = (Y(j), and with absolutely

summable autocovariance function. For i1, i2, i3, i4 =
1, . . . , N, j1, j2, j3, j4 = 1, . . . , p and t1, t2, t3, t4 = 1, . . . , T
and some %nite constant c2, the following holds:

E|Yi1j1,t1 Yi2j2,t2 Yi3j3,t3 Yi4j4,t4 | ≤ c2

(iii) The error process {εt , t ∈ N} is independent of the covariate
process {Yt , t ∈ N}.

Assumption 2. W ∈ RN×N is a row-normalized matrix; that
is,

∑N
j=1 wij = 1 with wii = 0 and wij ≥ 0 for i #= j, ∀i, j =

1, 2, . . . , N.

Assumption 3. For diverging network size N as a function of
time T, the error {εt , t ∈ N} and covariate {Yt−1, t ∈ N}
processes are assumed to be sub-Weibull (see de%nition in
Appendix A of the supplementary materials). )

Assumptions 1 (i)–(ii) require existence of fourth moments
for the error term as well as the covariate process. While %nite-
ness of second moments is su$cient to ensure the existence
of a unique stationary solution to the recursive equations (2),
%niteness of fourth moments is required to establish the asymp-
totic normality of the various estimators presented in Section 3.
In addition, Assumption 1 (ii) is satis%ed by a wide class of
processes, such as stable linear processes that include vector
autoregressive and moving average processes as special cases.
Assumption 1 (iii) requires independence between the error
and the covariate process, which makes the latter process exoge-
nous. Assumption 2 is required for the identi%ability of the
network coe$cients and is needed both for establishing the
stability/stationarity of the NAR process and for the asymptotic
properties of the estimators of the model parameters. Finally,
Assumption 3 imposes a mild condition on the tail behavior
of the distribution of the error and the covariate processes that
encompass a wide range of possibilities, including sub-Gaussian
and sub-exponential random variables.

Remark 1. Note that all prior work in the literature Zhu et al.
(2017), Zhu and Pan (2018), Chen, Fan, and Zhu (2020), Knight
et al. (2020), and Nason and Wei (2021) assumes that both the
exogenous variables Yt , as well as the error terms εt are normally
distributed. Assumption 3 relaxes signi%cantly this requirement.
Further, Zhu et al. (2017) and Zhu and Pan (2018) assume that
the exogenous process Yt is an iid sequence over the time index t,
whereas Assumption 1(ii) allows for temporal dependence that
proves useful in applications (see Section 5).

Remark 2 (Missing Data in the NAR Model). Assumption 2
requires row normalization of the weights of the network matrix
W. A small adjustment on this assumption su$ces for the tech-
nical framework for the NAR process to hold, in the presence
of missing data either for the process {Xit}, t = 1, . . . , T, i =
1, . . . , N, or whenever network edges drop-out and then reap-
pear. The key idea is that the in!uence of nodes with missing
values (or missing network edges) will receive zero weights in
their corresponding columns and the remaining weight values
will be adjusted to ensure that each row sums up to one and
hence satisfy Assumption 2. Thus, data missing from a speci%c
node or in the presence of a missing network edge do not enter
the network e#ect estimation calculations, while the identi%a-
bility assumption on weight matrices still holds due to other
nodes’ weight adjustments. Note that this adjustment obviates
the need for using imputation techniques. This issue is handled
in analogous manner for the GNAR model (see details in section
2.6 in Knight et al. (2020)).
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Theorem 2.1. Consider the NAR(q1, q2) process de%ned recur-

sively by Xt =
q∑

'=1
G'Xt−' + ε̃t where G' = A' + B'W and

ε̃t = εt +
p∑

k=1
CkYk,(t−1). Assume Assumptions 1–2 hold. Then,

Xt is a stationary process with a %nite %rst-order moment that
can be expressed as

Xt =
[
IN 0N×N(q−1)

] ∞∑

j=0
GjEt−j,

if ρ(G) < 1. Equivalently, Xt is a stationary process if

det(INq − Gz) = det(IN − G1z − · · · − Gqzq) #= 0 for |z| ≤ 1.

Remark 3. (i) For row-normalized W, max
1≤i≤N

{
q∑

l=1
(|a(l)

i | +

|b(l)
i |)} < 1 is only a su$cient condition for an NAR(q1, q2)

model to be stationary.
(ii) The stability/stationarity condition in Theorem 2.1 is
signi%cantly weaker than those in the literature for even special
cases of the posited model as illustrated in Appendix A.1 in the
supplementary materials.

3. Estimation Procedures for the NAR Model and their
Asymptotic Properties

We consider the following estimators for the NAR model: (a)
generalized least squares (GLS) (with ordinary least squares
(OLS) being a special case), and (b) the empirical counterpart of
(a): empirical generalized least squares (EGLS), in the following
two regimes: (I) N ≤ T and (II) N > T. In both regimes, both
the network size N and the number of time points T grow to
in%nity at appropriately de%ned rates that impact the asymp-
totics. The case of a %xed size network size can be subsumed in
case (I).

Note that the GLS estimator is primarily of theoretical inter-
est, but serves as a building step for its empirical counterpart
used in practice, by identifying the assumptions required for its
consistency and asymptotic normality.

3.1. GLS Estimator

The GLS estimator is de%ned next, and uses the covariance
structure of the error term:

β̂GLS = (

T∑

t=1
ZT

t−1%
−1
ε Zt−1)

−1
T∑

t=1
ZT

t−1%
−1
ε Xt

= β + (

T∑

t=1
ZT

t−1%
−1
ε Zt−1)

−1
T∑

t=1
ZT

t−1%
−1
ε εt , (6)

where %ε := E(εtεT
t ).

Note that if one ignores the structure of the covariance matrix
%ε , then the OLS estimator is obtained by setting %ε = I.
(I) Growing network size with N ≤ T:

Theorem 3.1 (Asymptotic Properties of the GLS Estimator). Sup-
pose Assumptions 1–3 hold. Let Xt be a stationary process

generated by the NAR(q1, q2) model (3), that is, Xt = Zt−1β+εt
with growing network size N ≤ T. De%ne D ∈ Rk×(2Nq+Np) for
any %nite k. Further, assume:

• D has bounded row sums; that is, for i = 1, . . . , k, there exists

a %nite constant c such that
2Nq+Np∑

j=1
di,j ≤ c where di,j is the ijth

element of D.
• %−1

ε has bounded row sums.

Then,

1√
T

D(

T∑

t=1
ZT

t−1%
−1
ε Zt−1)(β̂GLS − β) →d N(0, DQDT) (7)

where Q := E(ZT
t %−1

ε Zt).

Remark 4. Note that if the network size N is %xed, the expression
in (7) simpli%es to

√
T(β̂GLS − β) →d N(0, Q−1); the detailed

result and its derivation is presented in Appendix C.1 (supple-
mentary materials).

(II) Growing network size with N > T:
In this case, regularization needs to be introduced. We con-

sider a ridge GLS estimator that uses the covariance structure of
the error term:

β̂ridge = (

T∑

t=1
ZT

t−1%
−1
ε Zt−1 + TM)−1

T∑

t=1
ZT

t−1%
−1
ε Xt , (8)

where %ε := E(εtεT
t ) and M := diag{λ1IN , λ2IN , . . . , λ1IN ,

λ2IN , λ3INp}. Speci%cally, λ1, λ2, and λ3 are the tuning param-
eters for the autoregressive, the network and the exogenous
covariates coe$cients, respectively.

Theorem 3.2 (Asymptotic Properties of the ridge regularized GLS
Estimator). Suppose Assumptions 1–3 hold. Let Xt be a sta-
tionary process generated by the NAR(q1, q2) model (3), that
is, Xt = Zt−1β + εt with growing network size N. De%ne
D ∈ Rk×(2Nq+Np) for any %nite k. Further, assume:

• D has bounded row sums; that is, for i = 1, . . . , k, there exists

a %nite constant c such that
2Nq+Np∑

j=1
di,j ≤ c where di,j is the ijth

element of D.
• %−1

ε has bounded row sums.
• N > T, and λi = o( 1√

T ) for i = 1, 2, 3. Then,

1√
T

D(

T∑

t=1
ZT

t−1%
−1
ε Zt−1 + TM)(β̂ridge − β) →d N(0, DQDT)

(9)
where Q := E(ZT

t %−1
ε Zt).

3.2. EGLS Estimator

As previously mentioned, the EGLS estimator de%ned as

β̂EGLS = (

T∑

t=1
ZT

t−1%̂
−1
ε Zt−1)

−1
T∑

t=1
ZT

t−1%̂
−1
ε Xt (10)
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is of primary interest in practice. The asymptotic properties
established for the GLS estimator in Theorem 3.1 hold for EGLS,
as long as a consistent estimator %̂ε for %ε is available (full details
provided in Proposition D.1 in Appendix D).

Such an estimator is readily available for the case N < T,
by using the residuals from the OLS estimator to obtain %̂ε (see
Proposition D.2 in Appendix D). However, this is not the case for
N > T. To address this issue, we consider two popular models
for the structure of the covariance matrix of the error term for
the NAR(q1, q2) model. We consider both a factor model and a
spatial autoregressive structure one for %ε , described in detail
(due to space considerations) in Appendices D.2, D.3 in the
supplement and used in the application presented in Section 5.

3.3. Testing Hypotheses of Interest

The technical results established for the (E)GLS estimator enable
testing a number of hypotheses of interest. Next, we present the
null hypotheses of the test statistic for selected ones:

(A) Homogeneity of the autoregressive e"ects: H0 : a(')
1 =

· · · = a(')
N , ' = 1, . . . , q.

(B) Homogeneity of the network e"ects: H0 : b(')
1 = · · · =

b(')
N , ' = 1, . . . , q.

(C) Homogeneity of both the autoregressive and the network
e"ects: H0 : β1 = · · · = βq.

If the null hypothesis in any of these three cases holds, it leads
to a simpli%cation in the model speci%cation and a reduction in
the number of model parameters to be estimated.

Let K denote a matrix of size (N −1)×(Nq1 +Nq2 +Np) that
encodes the null hypothesis of interest. For example, for a(1)

1 =
· · · = a(1)

N , K takes the form

K :=




1 −1 0 · · · 0 0 0T

N(q1−1+q2+p)

0 1 −1 · · · 0 0 0T
N(q1−1+q2+p)

0 0 0 · · · 1 −1 0T
N(q1−1+q2+p)



.

Then, the test statistic has the following form:

F = ((Kβ̂)′(K(

T∑

t=1
ZT

t−1%̂
−1
ε Zt−1)K ′)−1(Kβ̂))/(N − 1)

∼ F(N−1),NT−N×(q1+q2+p).

Under the alternative hypothesis, the noncentrality parame-
ter is given by

δ = (Kβ)′(K(

T∑

t=1
ZT

t−1%
−1
ε Zt−1)K ′)−1(Kβ).

A brief evaluation of the F-test statistic is given in Section G.3 of
the Appendix.

4. Performance Evaluation

Several factors in!uence the performance of the various esti-
mators proposed, including the sample size T, the number of
network nodes N, the structure of the weight matrix W, the lag
orders (q1, q2) and the parameterization of the error covariance

matrix %ε (spatial autoregressive structure vs. factor structure).
The performance metrics considered include the root-mean-
square error (RMSE) of the model parameters, together with the
coverage probability of the constructed con%dence intervals and
their average length.

Next, we describe the data-generating mechanism and
the settings considered. Each experiment is based on 500
replications of data generated from the NAR(q1, q2) model
Xt = AXt−1 + BWXt−1 + Yt−1γ + εt where Yt−1 :=[
Y1,(t−1) Y2,(t−1) · · · Yp,(t−1)

]
∈ RN×p and γ :=

[
γ1 γ2 · · · γp

]T . We %x the network size to N = 100.
Further, the error terms are generated either through a spatial
autoregressive (SAR) structure [εt ∼ N(0, (I − ρ+)−1(I −
ρ+)−T)] or through a factor structure εt = ,Ft + ut with ut ∼
N(0, I) for factor structure. Finally, the exogenous covariates
are generated according to Yik,(t−1) ∼ N(0, 1), for all i, k, t.
The speci%c form of the primary model parameters (A, B, γ )

together with W, + and , are speci%ed in subsequent sections.

4.1. Estimation Accuracy

We focus on the performance of the EGLS estimator. We exam-
ine the in!uence of T, W, the structure of %ε , and the lag order
q = q1 = q2 on the RMSE metric. The latter is de%ned as follows
for the three sets of model parameters: self-lags ||Â−A||F/||A||F ,
network lags ||B̂ − B||F/||B||F and exogenous covariates
||γ̂ − γ ||F/||γ ||F . We set A = diag{0.1I25, 0.2I25, 0.3I25, 0.4I25},
B = diag{0.4I25, 0.3I25, 0.2I25, 0.1I25} while we set γ =
(−0.81T

3 , −0.41T
2 , 0.41T

2 , 0.81T
3 )T in Tables 4–8 in Appendix G,

supplementary materials. In Table 9 of Appendix G, we %x lag
order q1 = q2 = 2, A1 = 0.3I, A2 = 0.3I, B1 = 0.15I,
B2 = 0.15I and γ = 0.5110. The experiment is replicated
500 times, and we calculate the average over 500 estimates.
For convenience, we set the weight matrix W to be a row-
normalized banded matrix with di#erent bandwidths. Due to
space considerations, we show in Figure 2 the results for the
in!uence of the sample size T, and present all Tables assessing
the in!uence of the factors (e.g., T, N, W, (q1, q2), the structure
of %ε) in Appendix G, but provide a summary of the results in
the sequel.

It can be seen that the accuracy of all model parameters -self-
lags, network lags and regression coe$cients of the exogenous
covariates- increases as the sample size increases.

Next, a summary of the results of the impact of the other
factors corresponding to Tables 5–9 (in Appendix G) is pre-
sented. The results in Table 5 (Table 8) con%rm the robust-
ness of the EGLS estimates over weight matrices W (+) with
di#erent bandwidths (number of neighboring nodes included),
while the RMSE exhibits a slight increase for network e#ect
parameters when the bandwidth increases. Table 6 summarizes
the performance of the EGLS estimates for di#erent values of
ρ (for the SAR model based %ε). It can be seen that the esti-
mates themselves are stable, while the RMSE slightly decreases
when ρ increases (from close to zero to close to one). Further,
Table 7 shows that the number of factors k (for the factor
model based %ε) has no signi%cant e#ect on EGLS estimation,
while the RMSE for the network parameters decreases slightly
when k increases. Finally, Table 9 shows that EGLS performance
improves for larger T, for NAR processes with higher temporal
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Figure 2. Absolute errors of di"erent coe#cients for increasing T under normal errors.

Table 1. N = 100, q1 = q2 = 1, ρ = 0.5 and W and + being banded matrices of
width 5.

ai bi γi

Estimator OLS GLS EGLS OLS GLS EGLS OLS GLS EGLS

T=150 0.950 0.949 0.949 0.950 0.951 0.950 0.959 0.955 0.955
T=300 0.948 0.948 0.948 0.948 0.949 0.949 0.952 0.951 0.951
T=450 0.948 0.950 0.950 0.950 0.950 0.950 0.951 0.954 0.954

NOTE: Coverage probability of con!dence intervals for T = 150, 300, 450.

lags. An overall conclusion of the various simulation scenarios
is that the performance of the EGLS estimator for the network
parameters (B) is more sensitive to changes in W, +, and ρ than
the autoregressive parameters (A).

4.2. Coverage Probability and Length of Con!dence
Intervals

We consider NAR(1, 1) and NAR(2, 2) processes. For the former,
we %x A = B = 0.4IN and γ = 0.4 × 110 and for the
latter A1 = B1 = 0.3IN , A2 = B2 = 0.15IN and γ =
0.5×110. We explore how di#erent factors in!uence the coverage
probability (CP) and length of con%dence intervals (CI) of the
various estimators. The results are based on 500 replicates. We
set the network size N = 100, and εt follows either a spatial
autoregressive model with parameter ρ, or a k factor model. For
each model parameter (100 αi’s, 100 βi’s, 10 γi’s), we calculate
its CI and the corresponding CP and length. The 95% CI is
calculated using CIi = (β̂i − z0.975SE(β̂), β̂i + z0.975SE(β̂)),
where SE(β̂) = (

∑
t

ZT
t Zt)−1(

∑
t

ZT
t %εZt)(

∑
t

ZT
t Zt)−1 for the

OLS estimator and SE(β̂) = (
∑

t
ZT

t %−1
ε Zt)−1 for the GLS and

EGLS estimators.
In Table 1, the in!uence of the sample size T is investigated.

We %x εt = ρWεt + ut with ρ = 0.5, W as a banded matrix
of width 5 and explore how the CP and length of the CI are
in!uenced by T.

Figure 3 depicts the length of the con%dence intervals that
decrease for larger sample sizes T for all estimators. Further, the
OLS one has longer CIs, since it does not incorporate informa-
tion about the error covariance matrix.

Table 1 shows the coverage probability of the con%dence
intervals for the three estimators, for the di#erent model param-
eters and varying sample sizes T. It can be seen that the coverage
probability is basically at the nominal level.

Due to space considerations, the results of the in!uence of
the other factors (e.g., N, W, (q1, q2), are given in Appendix G
in Tables 10–14, supplementary materials, but a summary of
the main %ndings follows. Table 10 shows that with lag 2, the
length of the con%dence intervals decreases for larger sample
sizes T, while the coverage probabilities improve (get closer to
the nominal 95% level). Table 11 shows that as the bandwidth of
W increases, the length of the 95% con%dence intervals of the
network e#ect parameters B increases, while the corresponding
coverage probabilities are robust. From Table 12, it can be seen
that both the length of CIs and the coverage probabilities are
robust for both the GLS and EGLS estimates with respect to
changes in ρ (except for the network e#ect parameters B for
which the CI length decreases slightly), while the length of
CIs for the OLS estimates increases for all model parameters.
Table 13 shows that as the number of factors k increases, the
length of the 95% con%dence intervals for A, B, and γ increases
for the OLS estimator, while for the GLS and EGLS estimators,
the corresponding length of the CIs decreases. Finally, results
summarized in Table 14 con%rm that the length of CIs and
coverage probabilities are robust with respect to changes in the
bandwidth of matrix + (for the SAR model for %ε). Overall,
the coverage probabilities in all simulation scenarios are close
to the nominal level (95%), which implies that the estimators
are unbiased and the estimated variances are close to the true
variances.

4.3. Comparison of Competing Modeling Approaches
Based on Simulated Data

The Predictive MSE (PMSE) de%ned as

PMSE := 1
N|Ttest|

∑

t∈Ttest

||Xt − Zt−1β̂||2F . (11)

is used as the performance metric to compare the following
models: (a) NAR(1,1), (b) homogeneous NAR(1,1) with global
a and b (A = aI and B = bI), (c) GNAR Knight et al. (2020)
with global autoregressive coe$cient α and (d) GNAR with local
autoregressive coe$cients. We set N = 100, T = 400, and the
weight matrix W to be a row-normalized banded matrix with
bandwidth 1. We consider two mechanisms for data generation.
The experiment is replicated 500 times, and we provide the
boxpplots of the PMSE for di#erent models. The following two
data generation mechanisms are considered:
(A) The data are generated through a NAR(1,1) model with

(a1, a2, . . . , a100) being a sequence of 100 points evenly
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Figure 3. Length of con!dence Intervals for di"erent estimators for various values of T .

Figure 4. Comparisons of PMSE among competing network autoregressive models (T=400).

placed between −0.5 and 0.5, (b1, b2, . . . , b100) satis%es that
bi = (−1)i(0.8 − |ai|), i = 1, 2, . . . , 100. Further, the error
terms are generated through (a) %ε = I, and (b) a factor
structure εt = ,Ft + ut with ut ∼ N(0, I) with a di#erent
number of factors.

(B) The data are generated through a GNAR(1,[5]) model with
local α autoregressive coe$cients, where (α1, α2, . . . , α100)
is a sequence of 100 points evenly placed between −0.3 and
0.3, and β = [0.3, −0.2, 0.1, −0.05, 0.01]. Further, the error
terms are generated through (a) %ε = I, and (b) a factor
structure εt = ,Ft + ut with ut ∼ N(0, I) with a di#erent
number of factors.

It can be seen that when the data are generated from an het-
erogeneous NAR model (mechanism (A)), the corresponding
NAR speci%cation outperforms in terms of PMSE competing
speci%cations for both sample sizes, as seen in the (a) panels of
Figures 4 and 5. For data generated through mechanism (B), the
heterogeneous NAR model essentially matches the performance
of the GNAR model that was used to generate the data. The
result suggests that the added !exibility of node speci%c network
e#ects allows the NAR model to perform well in terms of pre-
diction even in settings wherein the data are generated from a
di#erent mechanism.

4.4. Impact of the Error Covariance Structure Estimation
Method on EGLS

Next, we assess the performance of the EGLS estimator based on
di#erent methods to estimate the error covariance matrix. We

select a setting with N = 95 and T = 100, that highlights the
issue and is also relevant in applications (see data description in
Section 5.) The data are generated through an NAR(1,1) model
with di#erent network autoregressive e#ects a(1)

i and a single
network e#ect b(1), so that the model speci%cation is the same
as that of the GNAR model. Speci%cally, (a(1)

1 , a(1)
2 , . . . , a(1)

95 ) is a
sequence of 95 values evenly placed between −0.5 and 0.5, and
b(1) = −0.45. Further, the error terms are generated through
a factor structure εt = ,Ft + ut with ut ∼ N(0, I) with %ve
factors.

The EGLS estimator is employed with the following choices
for estimating the error covariance matrix: (i) estimate %̂ε from
the factor model; (ii) estimate %̂ε from the least squares residu-
als; and (iii) estimate only the diagonal elements of %̂ε from the
least squares residuals.

Figure 6 depicts boxplots for the PMSE of each node (le"
panel), as well as for the length of the con%dence intervals
(right panel) for the three estimation methods of the covariance
matrix. As expected, the PMSEs are not impacted, since the
EGLS estimator is consistent for all three methods. On the
other hand, the diagonal-based covariance estimator exhibits
the largest CI lengths, while its coverage probability is 94.7%
(very close to the nominal level), while the nonparametric-based
estimator (option (ii))) the smallest ones by a large margin,
with a coverage probability 31% (thus, severing underestimating
the uncertainty of the model parameters). Finally, the factor-
based estimated covariance matrix has a coverage probability of
95%, as expected. These discrepancies become smaller when T
increases; for example, for the same setting with N = 95 and
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Figure 5. Comparisons of PMSE for competing network autoregressive models (T = 150).

Figure 6. The impact of the error covariance structure estimate on the EGLS estimator.

T = 400, the coverage probability of the diagonal-based EGLS is
94.9%, while that of the nonparametric-based estimate improves
to 88%, but still falls behind the nominal coverage level.

5. Application to Air Quality Index Data

We employ the proposed NAR(q1, q2) model to analyze Air
Quality Index (AQI) data together with relevant weather con-
dition covariates, collected from N = 319 stations across China
for the period from March 20th, 2019 to March 19th, 2020, for a
total of T = 366 observations. The AQI data are obtained from
the China National Environmental Monitoring Centre, while
the weather covariates are from the National Centers for Envi-
ronmental Information.1 Boxplots of the AQI for each month
across all stations are depicted in Figure 7, and the locations of
the stations (le" panel), and the average AQI for each station
across all observations (right panel) are depicted in Figure 8. We
consider the log-transformed AQI as the response variable. It
can be seen from the middle panel of Figure 8 that the average
AQI reaches its peak in winter, while the pollution level is
relatively low in summer; hence, we %t separate models for each
season. Exogenous covariates Yt included in the NAR(q1, q2)
model include air temperature, relative humidity, wind speed
rate and sky condition total coverage.

1https://www.ncdc.noaa.gov/

Figure 7. Boxplot of Monthly AQI values.

Note also that the right panel of Figure 8 indicates substantial
heterogeneity, with the north-northwest regions of the country
exhibiting higher AQI levels.

Given a large number of stations (319) and limited sample
size for each season, the autoregressive ai and network lag
bi coe$cients, together with those of the external covariates
were obtained based on regularized estimators. The tuning
parameters λ1 and λ2 for the ridge regression is determined
by generalized cross-validation Golub, Heath, and Wahba

(1979) by minimizing: GCV(λ) :=
1
T

T∑
t=1

||Xt−X̂t ||2F
{ 1

T
∑T

t=1 Trace(I−Ht(λ))}2 ,

where Ht(λ) := Zt−1(
∑T

j=1 ZT
j−1Zj−1 + TM)−1ZT

t−1 and
M := diag{λ1I319, λ2I319, 04}.

https://www.ncdc.noaa.gov/
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Figure 8. Spatial distribution of AQI monitoring stations and their average values.

The model is %tted with both a SAR covariance structure and
a factor model one. To construct the network for the SAR ver-
sion, both W and + correspond to a row-normalized adjacent
matrix obtained as follows: let Dij be the spatial distance between
two stations and σ 2 be the variance of all distances, then the
ijth element of + is de%ned as φij := D−1

ij∑
j

D−1
ij

if i #= j and 0

otherwise. Recall that + aims to capture any additional spatial
dependence not re!ected in the structure of the NAR model.

Further, the ijth element of W is de%ned as wij := D−1
ij∑

j
D−1

ij
,if i #= j

and Dij ≤ 500 km and 0 otherwise.
Based on the following BIC criterion

BIC(q) = log |%̂ε | + (Nq1 + Nq2 + p) log T
T , (12)

an NAR(1,1) model was selected for each season. A plot of
the partial autocorrelation function for the AQI variable (not
shown) corroborates this choice for the temporal autoregres-
sive and network lags. To select the number of factors in the
corresponding model, we employed the following information
criterion: IC(k) = log(S(k)) + k(N+T−k)

NT log(NT). It resulted in
selecting a single factor (k = 1) for each season’s NAR model.

The results are depicted in Figures 9 and 10 and tabulated
in Tables 18–21 (in Appendix H), respectively. The NAR model
estimates show great variation amongst di#erent regions and dif-
ferent seasons. Tables 18–21 show that all covariates employed
are statistically signi%cant. For relative humidity, its magnitude
remains constant across the four seasons and its impact is posi-
tive in reducing air pollution (the negative sign of the regression
coe$cient). Analogously, the impact of the wind speed is fairly
similar across the four seasons and positive for air quality. The
impact of the air temperature is positive and similar during the
Summer and Fall seasons; further, it exhibits a bigger positive
impact in Winter and a small negative impact in Spring.

To aid interpretation, Table 22 (in the supplementary mate-
rials) presents the average (over monitoring stations) autore-
gressive and network lag coe$cients for all the provinces and
selected big cities. Air quality in China is impacted by multiple

factors and exhibits large variability over regions and seasons.
It can be seen that the regions with the largest autoregressive
coe$cients are in southwest China, while the regions with the
highest network coe$cients are in southeast China, along the
coastal area. The topography of the regions (island or plateau)
may be related to the presence of such large autoregressive
coe$cients (e.g., Yunnan–Guizhou Plateau, Tibetan Plateau and
Hainan Island). In contrast to regions with large autoregressive
coe$cients, regions with the largest network coe$cients are
coastal areas. During Winter months, northern regions tend to
have larger autoregressive coe$cients and smaller network coef-
%cients compared to other seasons, and temperature inversion
may be the cause. During an inversion, warmer air is held above
cooler air, so air pollution is trapped by it, which makes air
pollution hard to di#use.

The results are broadly in accordance with %ndings in recent
studies that have investigated spatial and temporal variations of
air pollutants in China. (Wang et al. 2014). In North East China,
coal-based industries such as iron and steel manufacturing and
coal-%red power plants are key drivers for increased AQI levels
the main causes of air pollution. In the Northern China Plain,
the network e#ect is high compared to other regions. Emissions
from fossil fuel combustion and biomass burning for home
heating in the winter months result in a high concentration of
air pollutants. Surrounded by mountains, particulates brought
by south easterly winds may accumulate in the region, whereas
cold fronts from the north together with their winds are weak-
ened by the mountains and hence result in increased pollution
levels. Further, sandstorms from the deserts in the north also
contribute to the network e#ects observed for Northern China
Plain stations. A number of studies have discussed air pollution
patterns in this region and potential drivers (Wang et al. 2017;
Xiao et al. 2020). For the Yangtze River Delta in the east coastal
area, the network coe$cient is large compared to the autore-
gressive coe$cient. Particulates brought by cold fronts from the
Mongolian Plateau in the north also contribute to the network
e#ect. Finally, it is worth noting that eastern regions exhibit on
average larger network coe$cients, while western regions have
higher autoregressive coe$cients.
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Figure 9. Autoregressive coe#cients ai .

Figure 10. Network lag coe#cients bi .
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Table 2. PMSE for di"erent estimators across di"erent seasons.

Spring Summer Fall Winter

OLS 0.0656 0.0665 0.0999 0.0889
EGLS w/ spatial covariance 0.0654 0.0656 0.0990 0.0880
EGLS w/ factor structure 0.0614 0.0660 0.1030 0.0884
NAR with A = aI and B = bI 0.0658 0.0661 0.1019 0.0925
VAR(1) with ridge 0.0927 0.0835 0.1466 0.1180
VAR(1) with lasso 0.0727 0.0791 0.1239 0.1068
AR(1) 0.0684 0.0693 0.1136 0.1054
GNAR(1, s) 0.0733 0.0730 0.1131 0.0990
GNARX(1, s) 0.0687 0.0673 0.1038 0.0932

Next, we consider how the estimated NAR(1,1) model per-
forms in terms of forecasts together with a number of competing
models. The parameters of the NAR(1,1) model are estimated by
both OLS and EGLS, with SAR and factor covariance structures
and a ridge penalty (since N > T). For comparison purposes,
we also consider a NAR(1,1) model with A = aI and B = bI, a
GNARX(1, s) model where the number of stages s is determined
by BIC, a regularized VAR(1) model with ridge and lasso penal-
ties and %nally a simple AR(1) model, applied to each station’s
data. The evaluation is based on the last 20 days (test data) of
each season, which are used to calculate PMSEs for the di#erent
models, de%ned as PMSE := 1

N|Ttest|
∑

t∈Ttest
||Xt − Zt−1β̂||2F . The

results are given in Table 2.
It can be seen that the NAR-based predictions clearly out-

perform the VAR and AR(1) ones, across all seasons. Further,
EGLS for the posited NAR model exhibits better performance
than its OLS counterpart and also the predictions of the homo-
geneous NAR model. Di#erences are minuscule for Summer,
but around 5% in magnitude for the other seasons. Finally, the
GNAR/GNAR-X models perform well, but fall behind com-
pared to the NAR speci%cation, probably due to the heteregone-
ity of the network e#ects that the latter model captures more
e#ectively.

6. Conclusion and Discussion

The article presented a general !exible framework for NAR pro-
cesses that can accommodate node-speci%c network e#ects in a
growing size network (number of nodes exceeding the number
of available time observations), exogenous covariates, errors that
can exhibit heavier than Gaussian tails and a variety of error
covariance matrices. It can also be regarded as a VAR model
with a speci%c structure in the transition matrices that reduces
the number of parameters, and also aids in interpretability. The
latter connection enables us to provide a signi%cantly weaker
stability condition compared to those available in the literature
for signi%cantly simpler models, thus, expanding the applicabil-
ity of the framework, as also illustrated in the real data applica-
tions. The parameter reduction requires a priori knowledge of
the weight matrices. However, the results established show that
the model parameters estimates are robust to a certain degree
of misspeci%cation of these matrices (see Appendix E in the
supplementary materials) The !exibility of the proposed NAR
model, which allows for a node speci!c heterogeneous network
e#ect proves useful in applications as the results for both the air
quality data and the wind speed data (see Appendix F.1 in the
supplementary materials) show.

To that end, how to “design” the weight matrices W to opti-
mize performance is a topic of future research. Further, in very
high-dimensional settings, the use of sparsity-inducing penalties
(such as the lasso and its variants) is of interest, together with
inference procedures based on ideas of debiasing the resulting
parameter estimates.

Supplementary Materials

The PDF %le contains proofs of all Theorems, additional lemmas and other
technical material not included in the main %le due to space considerations,
as well as additional simulation results, tables and %gures. The HTML %les
contain R code to reproduce Tables 4, 1 and part of Table 2, as well as the
comparisons in Section F.1.
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