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ABSTRACT: We calculate pp — £+v,£~7 to O(1/A*) within the Standard Model Effective
Field Theory (SMEFT) framework. In particular, we calculate the four-fermion contribution
from dimension six and eight operators, which dominates at large center of mass energy. We
explore the relative size of the O(1/A%) and O(1/A?) results for various kinematic regimes
and assumptions about the Wilson coefficients. Results for Drell-Yan production pp — £7¢~
at O(1/A%) are also provided. Additionally, we develop the form for four fermion contact
term contributions to pp — £Tv, =, pp — ¢4~ of arbitrary mass dimension. This allows us
to estimate the effects from even higher dimensional (dimension > 8) terms in the SMEFT
framework.


mailto:tkim12@nd.edu
mailto:amarti41@nd.edu

Contents

1 Introduction 1
2 Setup 3
2.1 Operators at dimension six 4
2.2 Operators at dimension eight 6
2.3 Helicity amplitude expansion for monolepton production 9
3 Parton level result 14
4 Proton level results 15

5 Four fermion contributions to pp — (¢~ ,¢*v at arbitrary mass dimension 20

6 Conclusions 22
A 0(Gq — (*v) in the G, input scheme: 24
B Results for Dilepton production pp — ¢4~ 26
B.1 Helicity amplitude expansion for pp — ¢4~ 27
B.2 Parton level calculation for qg — ¢4~ 28
B.3 Proton level pp — 70~ results 29
C Contact operators for Ejé; — Ejﬁ; at dimension six and eight 31

1 Introduction

In this paper we calculate monolepton production pp — v, ¢~ within the Standard Model
effective field theory (SMEFT) [1-3] out to O(1/A*). The framework for SMEFT consists of
the SM supplemented by a series of higher dimensional operators formed from the SM fields
and their (covariant) derivatives,

" O ONQ, ue,de, Ly eoy H, By, W, G2, D
Loyverr =Lsy+ > Y ( = pr: W G D) (1.1)

d=>5 i=1

where d labels the mass dimension, ¢ runs over the set of independent operators at a given
dimension, and A is the new physics scale. By convention, we will use a single scale A and
absorb any differences in the scale or perturbation order when an operator is generated into



the coefficients. Any UV physics with all states heavier than the SM and single source of
electroweak symmetry breaking can be mapped to Lgasgrr, though in this paper we will use
it from the bottom up, meaning we will keep all effects to a given order in 1/A and refrain
from imposing relations among different Wilson coefficients (the Ci(d)). We will also assume
baryon and lepton number are preserved. This eliminates all odd d from Eq. (1.1) — so that
the sum starts at d = 6 — and reduces the number of operators at even d.

An important feature of the SMEFT is that certain d > 4 operators can do more than
create new vertices. Setting the Higgs to its vacuum expectation value (vev), it is possible for
higher dimensional terms to feed back into lower dimensional quantities, altering couplings
and the normalization of fields by terms proportional to O((2(HTH))"/A?"). Thus, there are
three ways that SMEFT effects can enter into monolepton production:

e Higher dimensional operators impact how parameters of the electroweak SM Lagrangian
are related to experimental data [4-6]. All corrections of this type scale as O((2(HTH))"/A?™)
#2n
= %, where v is the minimum of the full Higgs potential and n is an integer related

1. The ratio of the Higgs vev squared

to the mass dimension of the SMEFT operator
to the new physics scale squared is our main expansion parameter, which we will call
x = v2/A? for simplicity. We are interested in O(1/A%) effects, so O(x?). We will use

the terms O(z, 22) <+ O(1/A2,1/A%) interchangeably throughout.

e SMEFT operators alter the f, fV[{zinteractions of SM fermions with W and Z bosons.
Effects of this type also scale as X%n =z".

e Contact, four fermion +X operators, where X is some combination of Higgs bosons
X . . 72n .9 snoan/2 .
and/or derivatives. This type of effect may scale as %, XT:LL or %, where § is the

x n/2x"™
o

energy (squared) of the process; these scalings can rewritten as z", é”# and §
The first two types of SMEFT correction can be arranged into compact, all-orders expressions
via the geoSMEFT basis [7], and the electroweak parameter shifts and ffW corrections to
O(1/A*) were calculated in Ref. [8, 9]. As we will review in Sec. 2, the fact that all-orders
forms are possible for the first two SMEFT effects is related to the special kinematics of 2-
and 3-particle vertices. Contact terms, meanwhile, involve 4 particles (at least), and therefore
cannot be massaged into all-orders forms — so the number and form of the vertices must be
worked out manually at each order.

Extending out O(1/A*) will allow us to explore monolepton production within SMEFT
in a wider range of energies. Purely by dimensional analysis, contact terms grow with energy
faster the vertex or input corrections. Therefore, at § > v, the largest SMEFT effects will be
driven by dimension six contact terms that scale as (in the amplitude) (3/A2). Understanding

!By full potential, we mean the potential including SMEFT effects. Therefore, o7 is different from the
Lagrangian parameter vg. The two can be related, but this is often unnecessary, as vr is what appears in the
W/Z masses and couplings and is therefore what is connected to Gp. The distinction between o7 and vg is
only needed when multi-Higgs operators, such as |H %, etc. explicitly play a role in the process.



the exceptions to this naive scaling, and how it is impacted by truncation errors, requires
knowing the next order term in the EFT expansion, O(1/A%). This analysis is part of a
larger program to better understand and quantify the uncertainty in SMEFT analyses coming
from terms of higher mass dimension, the ‘truncation uncertainty’. Processes where the
complete O(1/A*) terms are known can be used as test cases and studied to derive estimates
for scenarios where O(1/A*) results are not known. As the state of the art for Monte Carlo
SMEFT programs contain dimension six operators, the extent to which dimension six squared
pieces can be used as a proxy for the complete O(1/A%) result is particularly interesting.

Results for neutral current cousin pp — K;rﬂj_ within SMEFT can be obtained using the
same steps. As the O(1/A*) corrections to this process have been presented previously in
Ref. [10, 11], our main focus will be monolepton production rather than dileptons. However,
we present results for the dilepton case as well (though only at lowest order in «y), for the
sake of completeness, to present more analytic form for how the Wilson coefficients enter, and
because our basis — a geoSMEFT compatible basis — differs slightly from what was used in
Ref. [10, 11].

The organization of this paper is as follows. In Sec. 2 we introduce the operators at
dimension six and eight that can play a role in monolepton and dilepton production and
classify them according to whether they have a direct (meaning new vertices) or indirect
effect. When converting the contact terms to Feynman rules, we pay particular attention
to their flavor and momentum structures. Section 3 contains some parton level results. We
focus on the large § pieces of the calculation, as the terms growing with energy have the most
significant impact on the total cross section. Folding in parton distribution functions, we
present proton level results in Sec. 4. We explore the impact of the O(1/A%) terms, including
what fraction comes from dimension eight operators versus dimension six squared. We also
explore how our results change as we vary the relative sign and size of the Wilson coefficients.
Then, in Sec. 5 we look beyond dimension eight, deriving a compact formula (and count)
for four fermion operators with arbitrary powers of Higgses and derivatives; this allows us to
estimate the effects of O(1/A%) SMEFT terms on monolepton production. Section 6 contains
our conclusions. The main text is supplemented by several appendices which contain results
for dilepton production (analytic and plots analogous to Sec. 4) and results for alternate
electroweak input schemes.

2  Setup

In the limit of massless SM fermions, the partonic amplitude can be classified by the helicity
of the quarks Ay (as they must be the same within the SM) and the helicity of the outgoing
leptons Ag; A = L, R. Each helicity class can be decomposed into a spinor piece Sy, », and a
coefficient A, e For the charged current, Ay e consists of the W exchange piece plus any
contact terms a) £

CC.total W 4
A/\f»>\eo TS = (A/\f7/\e(s’mw’ FW’g%J}L’g;‘%R’ Verar) + ‘AAJ;N (aiﬁkz)) Sxpae (21)



The neutral current contains a photon exchange piece, a Z exchange piece, and contact terms:

NC\total A, A, 4
A)‘f’)\; a S)\f,)\g = (Azf’)\l(sa eem) + Aff,)\@ (87 mz, FZ7 g%{.}chgeZ{-ffR) + AAi,Ae (af\J;J;\Z)) S)\f,)\p
(2.2)

where we have listed the parameters in each piece of the amplitude. Clearly, the contact terms
come from higher dimensional operators. However, as mentioned earlier SMEFT effects also
leak into the masses and three point couplings of SM fields.

Our first step is to list the operators at dimension six and eight that can play a role in these
processes and to classify their effects. Before proceeding, let us define our flavor assumptions.
Our baseline flavor assumption is (U(3))? = U(3)g®@U (3)u, ®U(3)4, @U(3) L, @U(3),, and CP
invariance. This implies unit CKM and PMNS matrices?. We make this assumption because
we are primarily interested in the high energy behavior of dimension six and eight operators
in pp — (*v, as this is where questions of higher dimensional effects can have exaggerated
effects (relative to lower orders) and questions of EFT validity arise. The (U(3))° assumption
simplifies the calculation of the large § regime while still capturing the physics we care about.
For most purposes, the flavor symmetry can be relaxed to U(3)g X U(3)y4+a X U(3)r, X U(3)e.,
where U (3),,4q means a transformation where the right handed up and down quarks transform
identically. We will comment on the differences between this looser flavor assumption and
full (U(3))°> where present. The ramifications of further loosening the flavor assumption
are interesting and will be discussed for each operator category. The strategy of presenting a
baseline flavor symmetry then successively loosening it is inspired by the approach in Ref. [12].

2.1 Operators at dimension six

The operators at dimension six can be grouped into those that affect field normalizations and
couplings, those that affect trilinear vertices involving two fermions and a gauge field, and
contact terms. For all operators, we exclusively work with left handed fermion fields.

The first class contains:

CWLHHBM B, + CSl, HIHW W], + 00 HIT H W™ B,
+ Cpo(HTH)O(HTH) + ) (HTDMH>* (eDrm). (2.3)

and is clearly independent of our flavor assumption. Here we have left off the factors of A for
brevity.
The operators in the second class are

COUHTD 1) (Wlo"), & € {Quuc de L)
= B
CrViEYDLH) (ot e, v € {Q,L},

2Provided we limit the final state leptons to electrons and muons, our flavor assumption can be relaxed
actually (U(2))® without any change in our results, given the b/b/t/f parton distributions are significantly
smaller than the first two generation quarks. However, for simplicity, we will use U(3) when discussing flavor
assumptions.



O i(H'DLH)(d ,6"uces) + hec. (2.4)

c,

Here i is a flavor index, H = e(H)*, H{'D ,H = H'D,H — (D,H')H and H'DIH =
H'7!D,H —(D,H)r! H with 7! the Pauli matrices. The C\?)
handed quark currents when the Higgs is set to its vev, are allowed by U(3)g x U(3)y4a X
U(3)r x U(3),, but are forbidden by (U(3))%, hence we have colored them in blue. Reducing

the flavor symmetry further rapidly increases the number of dimension six effects, as dimen-

4 operators, which create right

sion six operators do not need to interfere with the SM to contribute to O(1/A*) and are
therefore insensitive to its helicity and flavor structure. For example, reducing the symmetry
to U(3)Q+u+d X U(3)L+e, dipole terms are allowed. These have the wrong helicity structure
to interfere with the SM, but appear unsuppressed when squared at O(1/A%).

The operators we've written above are in the Warsaw basis [2]. While useful for its
familiarity, we also use it because it complies with a more general organization scheme known
as geoSMEFT [7]. A simple way to state the philosophy of geoSMEFT is to minimize the
number of operators that contribute to two and three point vertices via judicious choices of
where to put derivatives. Sticking with this philosophy and considering higher and higher
dimensional operators, the number of operators that can contribute to a given two or three
point vertex plateaus to a small, constant number (at each order). As such, it is possible
to derive results to all orders. The plateau in the operator count is a consequence of trivial
kinematics — meaning all dot products of momenta can be reduced to masses — and a limited
set of electroweak contractions one can make using two to three SM fields. The minimum
set of two and three point vertices was established in Ref. [7] in the form of ‘metrics’ or
‘connections’ on the 4-dimensional manifold corresponding to ¢7,I = 1---4, the four real
degrees of freedom in the Higgs doublet. The operators in Eq. (2.3), (2.4) lie in the following
metrics:

h1s(0)(Dud) (D"9),  gap(@)W WL, LY () (Duo)’ (¥atr4)), (2.5)

where A runs from 1 to 4 and all four gauge bosons are grouped into W;?Z, = {Wl}'y"?’, B}

The couplings and masses of the SM Lagrangian can be expressed compactly in terms of these

metrics. For example, the terms relevant for monolepton production are?:

iy, = = 51— or(LiY") = ier (LY47) 2 =02v3" = 025", (2:6)
where (---) indicates we’ve taken the vacuum expectation value, and \/gll, etc. are short
for <\/gj) Ap- Here, g2 (compared to the SM Lagrangian parameter gs) encapsulates the
change in normalization of W in the presence of operators like Ht HW W;fw while Llﬁl, sz
contain the ffW pieces from operators in Eq (2.4). In addition to being convenient, the
geoSMEFT organization is a further step in the geometric picture of effective field theory.

3With our baseline flavor assumption and massless fermions, the CKM remains a unit matrix to all orders
in . Dropping these restrictions, the flavor information or a SMEFT theory can also be expressed in terms
of the metrics, see Ref. [13].



First advocated in the context of SMEFT in Ref. [14, 15|, the metrics in Eq. 2.6 can be
interpreted as interactions on a curved manifold in field space.
Using our baseline flavor assumption, the dimension six four fermion operators that can

contribute to monolepton and dilepton production are:
Cro(L1e"D)(@Q15,Q) + €15 (Lo L)(Q'6, 7' Q) + CF (L1o" L) (ulouc)
+ CL(L1e"L)(d]o,de) + O (elo"e)(Q15,Q) + O (elaec) (uloue)
+ O (elaec)(diohd,), 2.7)

e

where we have also dropped all flavor indices as these are trivial with our flavor assumption.
Relaxing the flavor symmetry to U(3)g X U(3)y+d X U(3)r x U(3). does not change the
counting, while relaxing to U(3)g+ut+d X U(3) 4. adds terms C’é%eueikLiQk ecUe + h.c. and

6 .
O LiQeld..

The impact on mono- and dilepton physics from dimension six operators alone has been
studied extensively in the literature [16-27], both at leading order and at next-to-leading

order, and the operators here are included in standard SMEFT Monte Carlo packages [28, 29].

2.2 Operators at dimension eight

At dimension eight, the number of operator classes balloons*. However, many classes can be
dismissed right away as they do not fit into any of the bullet points mentioned in Sec. 1. Using
the notation of [2], where 1) refers to any fermion, X to any field strength, H for Higgs or its
conjugate, and D a covariant derivative that can be applied to any field, incompatibility with
the bullet points removes operator classes ¥*X, 2 H X2, H3 X2, X4 Dy? X?, D?H? X2,
D?H*X, Dy? H> X, D*?> H X, D3?H?, D*H*, D*¢?>H and Dy*H. For some of these
operator types, e,g, ¥ X, the incompatibility is obvious, while for other types it is a bit more
subtle. The subtle cases involve operators that, from their field content alone, look like they
could contribute to the three-point ffV vertices, such as D32 H?. However, as a result of the
geoSMEFT organization, the operators that can possibly contribute to two and three-particle
vertices is known to all orders, and none of the operators in this category fall into this list.
What this means is that, even if an operator appears to contribute to ffV (or any other
two/three-particle interaction) from its field content, we can always partition the derivatives
in such a way that the operators contribute to only four particle and higher interactions.
Explicitly, for the D3y?H? example, this tells us that at least two of the derivatives can
always by manipulated by the equations of motion (EOM) and integration by parts (IBP) to
sit on the Higgses, so that all resulting vertices involve two fermions and either two Higgses,
two electroweak (EW) gauge bosons, or one Higgs and one EW gauge boson. None of these
vertices can interfere with the SM mono/dilepton amplitude (at tree level). The choice of

4Complete SMEFT bases to dimension eight have been presented in Ref. [30, 31]. The basis presented
here is similar to Ref. [31], as the derivative terms are constructed using the same strategy, however we have
massaged the operators into products of currents rather than products of scalars to facilitate combing them
with the SM.



where to put derivatives constitutes a basis, so the counting we are performing here is specific
to a those dimension eight operator bases that are ‘geoSMEFT compatible’, meaning that
derivatives have been placed to minimize the number of operators contributing at any given
order to two and three-particle vertices.

As dimension eight operators enter O(1/A*) through interference with the SM, we can
further neglect all operators whose helicity or flavor structure does not match the SM. Looking
at the helicity structure first, tree-level SM amplitudes for dilepton production are products
of fermionic currents of the form (LL)(LL), (RR)(LL) and (RR)(RR), where L/R refer
to the fermion helicity. For monolepton production, only left handed fermions participate.
Operators that yield (LR) helicity structure — such as 12H° — the analog of the SM Yukawa
term carrying additional Higgses, ¥? H3X (the dipole terms), and a subset of ¢)* H? and D?3*
terms — cannot interfere and are eliminated.

Taking these two restrictions into consideration, we are left with only five operator struc-
tures: H*X?, D?>HS, Dy?H*, *H? and D%*y*. The first two structures contain the dimension
eight contributions to the h;; and g4p metrics and are independent of any flavor assumptions:

Ciip(HH)* (DuH)' (DM H) + Cippy (HYH)(H 7 H) (D H)' ! (DM H)
+ CW) (HTH)? B* By, + sy (HTH)? W Wy,
+ CiwoHIT B (H HYW W, 4 O3 (HYH) (HY 7 H) W B, (2.8)

Similarly, the D2 H* operators are the dimension eight contribution to L}b 4(0):

Cflig/JB)Z(HTH)(HTﬁMH) (w;'r&”wj)? 1/} € {Q’umdc;L) ec}
CHO it 1) (HTD 1) (wlatnry), € {Q. L),

CEOi(H ) (H D LH) (wlotryy), o€ {Q.L),

e(8). — _
Ch;gf)zezm (HT TKH)(HTDiH) (wza“rle), Y e{Q,L},
Cipqi(H ) (HY D, H) (df 6 ue) + hec. (2.9)

Adding these to the metrics and using Eq. (2.6), we can can derive the dimension eight
contributions to the SM couplings and masses. We have written the fermions in Eq. (2.9)
with different flavor indices. However, the combinations with ¢ # j cannot interfere with the
SM, so only the diagonal entries — 3 operators per field type for each operator— can contribute
at O(1/A%), regardless of the flavor structure of the original operators. Imposing our baseline
flavor symmetry sets the coefficients equal for all generations (and forbids the right handed
current terms), leaving us with only one operator per field type.

The remaining two structures are four fermion terms. The ¥*H? are the analog of
Eq. (2.4), dressed with an additional power of HTH. Given that the Higgs is an electroweak
doublet, the extra power of H' H introduces more electroweak structures in some cases.

O (HYH) (el o ec)(dl 5, de) + Cly, (HTH) (el 5% ec) (uf 5, ue)+



C (HUH)(LY % D) (uf 0ue) + CHE) (HYT H)(LY 647y L) (ul 5 )+
it <H*H><LT L)(d} o de) + Ci) (HYT! H)(LY 5%y L) (d} 3,0 de) +
Chl (HTH)(el 6" e)(Q1 3,Q) + O (H'7T H)(el 5% ) (QL 6, m1Q)+
Oyl (HYH) (LY 67 L)(Q1 5, Q) + 5 ) (HTH) (LT a# 77 L)(Q1 7, 71 Q)+

CH® (Hir! H)(L " 71 L)(Q1 5, Q) + C (B! H)(L 6" L)(Q1 5, Q)+

Crty e (HTT HY(L 6 77 1)(Q' 5,78 Q) + O i H*(L'6" L) (d}5,uc) + hec.  (2.10)

Q

Dressing the fields with flavor indices, interference with the SM projects out only the diag-
onal flavor structures, e.g. operators of the form (1/1;r 1/1i)(x;r-xj) where ), x are SM fermions.
(U(3))? reduces the number from 9, 3 for i times 3 for j for each ¢ and x, to 1. Loosening
the flavor symmetry to U(3)g X U(3)g+u X U(3)r x U(3). allows one extra structure (in blue).
Further relaxing the symmetry to U(3)Q+d+u X U(3)r+e We can write operators containing
deQe.L(HN?,d.Q el LYH'H),u.Qe.L(H'H) and u,Qe. L H? (all requiring h.c.), how-
ever none of these have the right helicity structure to interfere with the SM (in the limit of
massless fermions) so they cannot enter at O(1/A%).

Of the 14 operator structures written in Eq. (2.10), only two — Ci;g% and C%fgz, which
involve both left handed lepton and quark EW triplets — lead to products of charged currents
and will enter into monolepton production®. The CZ(I% structure actually exclusively gen-
erates products of charged currents and therefore cannot play a role in dilepton production,
while the remaining 13 will enter.

The second type of dimension eight, four fermion terms have the form D?i?. At first
glance, the counting seems trickier here as we have the choice to put the two derivatives on
any of the four fields (so six possible arrangements), but many of these choices are related
through EOM or IBP. This is best seen in momentum space, where the derivative Di; — p;°,
and redundancies from EOM and IBP are more straight forward. Specifically, by the EOM we
can remove terms where both derivatives hit the same field, all p2 So, for two derivatives and
four fields — which we label 114 — we are left with the combinations s1s, s13, S14, S23, S24, S34,
where s;; = 2p; - pj. Momentum conservation (IBP in momentum space) allows us to remove
one of the p; in favor of the others. Choosing p4, this reduces the set of invariants to sio,
s13 and sg3 — which correspond to the usual Mandelstam variables s, ¢, u. One of these three
can be removed using s + t + u = 0, leaving only the two invariants; for operators admitting
multiple electroweak structures, we will have two D? operators for each structure. Translated

back to operators, and choosing the two momentum combinations to be Mandelstam s and ¢

5The operator C\5) iH?*(L'6"L)(di5,u.) + h.c. also generates products of charged currents. However,
even if it is permitted by the flavor symmetry, there is no SM right handed quark current for this operator to
interfere with so it does not appear at O(1/A*).

5The derivatives here are covariant derivatives, so D contains pieces proportional to A1, where A is a
gauge field. The terms with gauge fields do not contribute to dilepton production, however, so for our purposes
we only care about the ordinary derivative piece of D.



— yet another basis choice — we have’:

-|-,
e.o

—I-_
elo

oy ) D¥(

o ( )D*( )
cs (el ot e) D*(Q1 3, Q) + O
o ( )D2(

Cr )D2(

L16" L)D*(d} 5, d.) + cgg@ ((DVLT L
5 (DLTG“L)(D L&, ue) + h.c.
(8

\-//-\

Crs® (LTe" L)D*(Q1 5, Q) + Ct’l’ ((DLa D)(D"Q 5, Q) + huc. )+

Cro® (Lo 1) DA(Q 7, miQ) + Cpg Y (DLt 7 L)(DY QY 3, 71Q) + b ). (211)

The momentum space perspective for counting operators has been advocated as part of the
‘on-shell” approach, see Ref. [32-35]. Dressing the derivative operators with flavor indices, the
story is the same as with four fermion operators dressed with Higgses. The only operators that
survive interference with the SM are flavor diagonal, so 9 operators per structure appearing in
Eq. (2.11). This is reduced to one per structure under our baseline flavor symmetry. Reducing
the flavor symmetry to U(3)g+urd X U(3)L+e has no effect at O(1/A%) as the additional four
fermion terms that are allowed do not interfere with the SM®.

Only the two structures involving the contraction of lepton and quark EW triplets, CZ’%’(S)

and CtL’gj(S) will have the correct field content to interfere with SM monolepton production.
All operator structures can participate in dilepton processes.

While we are interested in analytic results for our purposes and will give analytic expres-
sions in later sections, incorporating dimension eight operators into Monte Carlo programs
is not as onerous as it may seem. The dimension eight contributions to the hrs, gap, L?} A
metrics and the four fermion terms with additional Higgses (Eq. (2.10)) do not introduce
kinematic structures beyond what’s present at dimension six and can thereby be accounted
for (numerically, at least) by rescaling Monte Carlo dimension six results. Only the dimension
eight, four fermion terms with extra derivatives require modifications to code, e.g. SMEFT-
sim [36].

2.3 Helicity amplitude expansion for monolepton production

Now that we have enumerated the important operators at dimension six and eight, we can
work out the helicity amplitudes. As a first step, we look at the pieces coming from W
exchange (for monolepton) or photon/Z exchange (for dilepton). These contributions are
functions of ffV couplings and the gauge boson masses and widths, all of which have a SM
value but receive corrections at each order in 1/A from operators lying in the hrjy, gap and

"The coefficients of all the D? are real, hence their placement outside the parenthesis for the cH® operators.
¥No additional operators are generated if the flavor symmetry is only reduced to U(3)g X U (3)u+a X U(3) L+te-



Lﬁ 4 metrics. The corrections are well defined within a given operator basis. However, we
have a choice in how to connect these quantities to experiment, specifically through what
observables are used to define the electroweak theory inputs g1, g2 and v. In the &, scheme,
G fixes v, while the electromagnetic coupling and myz set g1, go, while in the My, scheme,
G fixes v and my, myz fix the gauge couplings.

We will present our results here in the iy scheme, deferring the &g, scheme to Ap-
pendix A. Choosing the my scheme means that the electromagnetic coupling is a derived
quantity and therefore is a function of SMEFT inputs. The reward for this inconvenience is
that my is an input, so expressions for monolepton production will be simpler. Schemat-
ically carrying out the SMEFT expansion for the electromagnetic coupling, W/Z couplings
and widths, we have

Giip, = Og, T 59%/?& +a 591(42/,)fL ooy eem =€ +wde™ 27 5e® 4.
eff _ (1) 2 ¢ (2) eff _ 0 1) 2 ¢ (2)
IW,ar = $69WQR +z 5gW:(IR T 9Z.frr = 92.f1/8 + xégZ:fL/R T 6gZafL/R T
fr _
glexv,zR =0
Ty =Two+ 26T +220T + -+, Ty =Tzo+26TP + 22T + .. (2.12)

where x = X—QTQ As before, blue text indicates corrections that are absent under our baseline
flavor symmetry but appear if we loosen the flavor symmetry to U(3)g X U(3)y+q X U(3)r, X
U(3)e. As there is no right handed neutrino in the SMEFT paradigm, the W coupling to
right handed leptons is zero to all orders in the z expansion, while the W coupling to right
handed quarks is nonzero starting at O(x), provided we have assumed a flavor symmetry
loose enough to permit it.

Here, de1:2), (591(,[1/7’2/]%, 59(21:22/3 etc. are functions of Wilson coefficients. This dependency

has been worked out for the Z couplings and width in Ref. [8, 9] using the neutral current

version of Eq. (2.6) expanded to O(x?) (for both electroweak input schemes). While the

corrections to the W couplings ¢ g‘(,ZV) 7, can be extracted from those references, for convenience
A

we have listed them along with the corrections to I'yy:

e =0.308 (2.13)

se = —0.576C\%) . —0.260C1) —0.2185G

de® = —0.288 Cy)y 5 — 0.0385 Cly), — 0.230 Cly), , — 0.576 Clppy Cihy s — 0.144C), Oy
— 0576 )~ +0.406CY), .66 —0.117 (1)) +0.190 C\C) 5Gl6)

+0.231 (6G¥)? - 0.218 5G

9ive, = —0.46 (2.14)
5o\, = —0.46 O +0.336G)
S, = 0.33CHY 66 —0.35(6GY)% — 0.23 05 +0.058 O, , +0.231 C5) +0.336G
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0o _ <M _ @ _
IW,tr = O9win = 09w, =0

9., = —0.47 (2.15)
5o\, = —0.46 CHS) +0.336G)

Sgws, = 0.33CHS) 6GY —0.35(6GY))? — 0.23CHY) +0.058 O, , + 0230 C5) +0.336G%)
I fp =0

Sg\ys = —0.23iCY5,

5g§V)f —0.16iC\Y) 56\ —0.12i )

Finally, for the W width:

Yy (GeV) = 2.05 (2.16)

oTY) (GeV) = 1.36 O +2.73C5) — 2.80 G

0T (GeV) = 0.682 (CHY))? — 1.93 CHY6GY +1.36 (CHY))? — 3.86 Chy) 66
+0.341 (Cf) ) + 4.0 (6G)? +0.682 C ) + 1.36 15—

—0.511CY), +0.5110Y), , — 2.895G
Note that, had we done things in the &g, scheme, e.,, would be an input and would have no
r expansion, while we would have to add mf,{jf = m?/V + $5m(1) + 22 (5m( ) 4+ -+ to the list.
Moving to the contact/four fermion terms, we have seen they come in two varieties, i.)
accompanied by powers of (HTH), which become powers of 92, and ii.) accompanied by
derivatives, which become factors of Mandelstam s or ¢t. Allowing both of these forms, we
eff

can express Cl/\ By as

2
eff (1) z 2) @2s) b o (21
Uy = _2 * Sa Ay T % ((5a)\f7/\Z - —5 ay; 5 1_}%5a/\f7)\2). (2.17)

It is straight forward to map the contact operators in Eq. (2.7), (2.10) and (2.11) into this
format. We will group the terms according to whether they contribute to dilepton production
(using a superscript NC' for neutral current) or monolepton production (using superscript CC
for charged current). At dimension six:

NC(1) () 3,(6) NC,(1) _ ~(6) NC,(1) o) NC,(1) cl
oar, " =Cp CLQ ; Oapp :CeQ7 oapy™ " = (6) > dapp " = (6)
C’Ld Ced

day V=201, sag W =0, (2.18)

where the upper/lower sign of F refers to up/down quarks. At dimension eight:

1,(8 2,(8 3,(8 4,(8
veo _ Cite _Ciitg  Critg _ Ciit

oy = 2 2 2
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$,1,(8) $,3,(8) t,1,(8) t,3,(8)
5aNC,(2,5) _ CLQ T CLQ 6aNC,(2,t) _ CLQ T CLQ
LL 2 2 ’ LL 9 2

NC,(2 HeQ He@ NC,(2,s 5,(8 NC,(2,t t,(8
5aLR(): 5 T g9 5%3( ):Cqu)v 5%1%( ):Cqu)
cL®  3®) .
soNC@ _ ) TR o Ne2s) _ L) 5O _ cry
RL C%gm N C%g »00R CZ’CES) ) RL Cz,c(ls)
(8)
5,(8) £,(8)
NCo2) ) e Noy2,s) ) Ceu Noye2t ) Ceu
dagg" = c;ésgd , Oapp T = {05&(8) , dapp™ T = {Cz;l(s) (2.19)
o2 2,(8) _ . 5.8 CO\(2, 5,3,(8 o2, £,3,(8
safy ' = OFC)L Ficy ), 0afy Y =203 salp Y =205, (2.20)

where the upper (lower) sign in (5@%5’(2) refers to W (W) production.

Combining the tree-exchange and contact pieces together, we can write the full helicity
amplitudes as an expansion in x

Ay, =AY +a A a2 AP ) 4 (2.21)

where the real and imaginary pieces of Agf; », are functions of the parameters in Eq. (2.12), (2.17).
As both left and right-handed fermions couple to the Z/v the helicity amplitudes for pp —
(70~ all have a similar structure so it makes sense to present them for general \;, A ¢~ These
expressions are presented in Appendix B.1. However, for monolepton production, left and
right handed fermions couple very differently. The root of the difference in couplings is the
fact that there is no right handed neutrino in SMEFT. Therefore, there can be no W coupling
to right handed leptons, nor can there be any contact terms for the (LR) or (RR) helicity
structures. With these restrictions, the real and imaginary parts of the amplitude are given
below to each order in x (in the My scheme).

At O(z), the only nonzero piece comes from (A\Af) = (LL) helicity

wio), _ (8= miv) Gwp, G, wi),  Dwmw gy, 9,
) = - 0 , Im(AL ™) 2 0 (2:22)
Po(s,mw,rw) ’ PO(SamW’FW)

with Py(8, mw,T9,) = (3 — m¥,)2 + (TY,)2m?,.

At O(x), Agfz, Ag% are nonzero, while .A(Ll}%, Agz)% remain zero:

(1)

A (1)
Re(A" () (7 (miy = 3) 09wy, 9wie, + 09w, Iw.s,) N
LL PO(évmW7F[0/V)
1 R W, (1
2 M‘%/V) F?/V m%,vg%,’h ggmL (m%/v —35) &LL,L( )>
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1 1 1 .
Im(AW,(l)) _ ( _ F?/V mw (591(4/7)ng%/7& + 69‘(/[/7)&9%/,&) . 5F$/V) mw g%/,nggV,fL((m%/V B 8)2 - mIQ/V (F(I)/V)Q))
L.L Po(3,mw,TY,) P2(5, mw,TY,)
0 M Nra 2 (1) 0 ce,(1)
g Re(dg §—miy) + Im(dg my I’ da
Re(AII/%Vél)) _ we, (Re(dgyy 7, )( w) (Ogw, 1) w) n aR L,

Po(3,m?,, TY) o7

0 0 (1) (1)
T (A%()) = ~ 9we, Ty mw Re(dgyyy,) + (my — )Im(59WfR)

P0(§7m%/[/7ro )

(2.23)

At O(2?), all helicity sub-amplitudes are nonzero. However, for an O(z?) amplitude piece
to make a contribution to the cross section at O(z?), it must interfere with the SM (O(x°))
piece. As the SM piece has (LL) helicity, the only O(x?) term we care about is A(gg One

additional complication here is that the 591(/{2,)&,59&2/)& and 6@5:22 couplings are complex:

A 1 1 2 2
Re(.AW’(Z)) _ (_ (m%/V B S)<59‘(4/7)fL59‘(’V7)€L - Re((sg‘(/[ﬂ)fL)ggV,fL + Re((sg‘(’[ﬂ)ﬁL)g%/,fL)_i_
P0(§7 mw, F?}V)

2 2
n Yy mW(Im(égI(/V,)fL>ggV,éL + Im((Sg%/V)ZL)ngL)

P0(§7 mw, F%V)

290 Ty iy oy — 900l o, + 0l o)
P02(§, mw, F?,V)
26T\ T, m¥y, (m?y — 8)g% , 9%e,
P02(§ mW,F?/V)
(OTG)2 g1, 0%, My (my, — 8)(miy, + 82 — mi, (3(0Y,)% +23))

Fg (3, mw, T'yy)

cC,(2,t
5aL7L( )>

(2.24)

_l’_

_l’_

1 @y 8 . cc@s 1t
) (Re(éaL )= 1_}—2(5(1L7L )
T T T

2 N
ST mw g% 5 9%, (M — 8)% —m¥, (T9)?)
P02(§, mw, F?,V)

1 1 2 2
F?/V mw (591(4/7)&69‘(4/7)& + Re((sg‘(/V,)fL)g%/,fL + Re(égl(/l/,)ﬂL)g%ﬂfL)

P0(§, mw, F(IJ/V)

(m3y — $)(Im(0gy s )9%e, + Im(0gyrs, V9% 1)

PO(§7 mw, I‘(I]/V)
1 1 1 A A
TR iy (Og30), e, + 89, Geg, ) 7y + 8 — by (T +29))
P02(§’ mw, F(I)/V)

_l’_

1 N
(STGH2TY, mi, (3(miy — 8)2 — (T%)2m% ) g% ;. 9%, )
P§(§, myy, F?/V)
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1 ce,
+ L Im(5a52), (2.25)
v

In terms of these helicity amplitudes, the full amplitude squared is:

S AY 12 = Re(AT)? + (AT S)2) + 22 (Re(A} 1 Re( A} ) + Im(A} {7 Im (A}

)

YRY

+a? (2Re(AL {7 Re(A} {P) + 2Im( AL ) Tm (AL P) + Re(AL{)? + Im(A 1 )?)

7 )

(Re(AW“ )2+ Im(Apy 1 ))? ) (2.26)

3 Parton level result

Using the amplitude expressions from Sec. 2.3 and plugging in the coupling factors, W width
and contact operators, we can calculate the partonic cross section for monolepton production,

5(Gig; — tv) =60 (3) + 26W(3) + 2262 (3) 4 - -- (3.1)

The full expressions for 6(%12)(3) are long and not particularly illuminating. To hone in on
the subset of dimension six and eight effects that grow with energy the fastest and therefore
drive the difference between SMEFT and the SM in high energy experiments, we can take
the large § limit:

a2
ST
Gsroc (@0 — V) = ((ctS?

52
e 877
s6m o1 \(C1e (Ucig® - g™ v o), (32)

where €, 0, Sy are functions of the measured experimental inputs mw,mz,é r (in the my
scheme).”

The leading terms are O($) in the cross section, implying amplitudes that grow as O(3)
as well.'9 As expected from power counting, the operators that show up in the large § limit
are dimension six contact terms squared and the dimension eight contact terms involving
derivatives. The dimension eight terms enter proportional to the SM couplings as they in-
terfere with the SM, while the dimension six squared terms have no factors. As such, if all
Wilson coefficients have roughly the same size, one expects that the SM factors will suppress
the dimension eight pieces relative to dimension six squared!!. A further difference between

YExplicitly, & = 1/(2Y4Gr), 0 = sin~ (/1 — mZ, /m%),é = 2x 2t/ Grds. Weuse Gr = 1.1663787 x
107% GeV 2,1z = 91.1976 GeV, and 1w = 80.387 GeV [9].
0The subleading terms are: G5 s00(Gqg — Kiy)gﬁm’mso) = _$zé? 03 (6 4 W (8 02 C’z’g) (o (6) |

727 2 sg
Chy) = 2v20G1)) + 402 O3 + 21y (C15® — 4015™)

11F0110Wlng the arguments in Ref. [37] based on h counting, matching to dimension six, four fermi operators

generates coefficients with the same UV coupling order as matching to dimension eight four fermi operators
with two derivatives. So, dimension six squared terms carry additional powers of UV coupling compared to the
interference of their dimension eight, two derivative, counterparts with the SM (see Ref. [8] for an example).
The SM couplings accompanying the interference piece replace the ‘missing’ UV coupling. In this light, the
assumption that dimension six and eight coefficients are the same size can be restated as the assumption that
UV couplings are O(1).

— 14 —



the different O(1/A*) effects is the sign. The dimension six squared piece is positive definite,
while the sign of the dimension eight piece depends on the sign of the Wilson coefficients.
Depending on their sign, they can cancel each other or conspire to cancel the dimension six
squared piece. The dependence on sign and role of interference seen here echoes what was
seen in Ref. [38, 39] for SM loop induced processes involving Higgses.

Finally, an important aspect of W production is that only one dimension six contact

operator (with the flavor assumptions we have made) — Ci’g) — enters. For a positive value

of this coefficient — the choice made so far — both the interference of Ci’gs) x SM and the
squared term are positive, so there is no potential cancellation between the dimension six
linear and quadratic pieces; such cancellations can lead to more erratic behavior in the dif-
ferential cross section. With no possible cancellations or oddities in the dimension six piece,
studies of the impact of higher order O(1/A%) terms are easier to carry out. This situation
can be contrasted with dilepton production, where there are multiple dimension six contact
terms and the competing terms don’t all have the same sign interference with the SM. As
a consequence, concrete conclusions about O(1/A*) effects are harder to draw, as they can
change dramatically with a sign flip in the dimension six coefficients. For more details, see
Appendix B.

4 Proton level results

To generate proton level results, we use the NNPDF3.0 NLO parton distribution functions [40,
41] for ag = 0.118 and factorization and renormalization scales set by default to m%. We take
the LHC energy to be /s = 13 TeV.

In order to better illustrate the SMEFT effects, and the effects from O(1/A%) in par-
ticular, we will assume numerical values for the Wilson coefficients throughout this section.
Clearly, our assumptions about the coefficients (sign, any hierarchy among them) will strongly
influence our results, so the reader must bear this in mind. We will comment on any specific
coefficient signs/hierarchies that have particularly strong effects, and the complete O(1/A%)
expressions for any other coeflicient assumptions can be generated using the expressions in
Sec. 2.

We proceed with the assumption that all Wilson coefficients have a value of 1, so that the
only variable in our expressions is x, which we can exchange for the new physics scale A. In
addition to being simple, this coefficient size is backed up by the fact that contact terms and
the majority of the coefficients entering the coupling and width expansion in Eq. (2.13)-(2.16)
are generated at tree-level by generic weakly coupled UV physics, following the classification
scheme developed in Ref. [42, 43]. With the coefficients set, we explore how physics with
fixed A affects the differential cross section do(pp — £*v)/dv/5. In Fig. 1, we show the ratio
of the SMEFT result to O(1/A?) and O(1/A%) to the SM result. For the O(1/A%) result we
show three different curves, one with all Wilson coefficients equal to +1, one where the sign
of C’tL’%’(s) is flipped to maximize the dimension eight part of Eq (3.2), and one where the sign

of CZ’S’(S) is flipped to minimize the effect. We do this in an attempt to bound the region of

,15,



dimension eight effects, at least for situations where all the Wilson coefficients are roughly
the same size.

Wilson coefficients = +1 Wilson coefficients = +1
LA L B L B L L L B L L B L B . . . .
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Figure 1. Differential cross section do(pp — £tv)/dv/3 calculated in SMEFT compared to the SM
value as a function of v/3, with all Wilson coefficients set to a magnitude of 1 and a new physics scale
of 5TeV for the solid curves and 10 TeV for the dotted curves. The black lines show the ratio with
the SMEFT calculation truncated at O(z) = O(1/A?) while the red and blue curves show the ratio
using the full O(z2) SMEFT result. The red line shows the effect when we take all dimension eight
coeflicients to be positive, and the blue lines enveloping the red line show the result where we choose
the signs of C’zg’(g) and ng(s) to maximize/minimize the leading § behavior shown in Eq. (3.2).
The right panel is just a zoomed in version of the left panel. Changing the factorization scheme from
p% =m?% to u% = 3 has no effect on these ratios.

A primary motivation for calculating o(pp — £Tv) at O(1/A%) is to use it as a laboratory
for higher order effects, meaning to systematically study how the hierarchy of higher order
terms behaves in different kinematic regimes and under different UV assumptions. Using this
data, and data from other processes, we hope to better inform truncation error estimates at
more complex LHC processes where full O(1/A%) results are not available. See Ref. [36] for
more on this philosophy. As a first example, we consider W production between a minimum
center of mass energy v/3,mim and maximum v/3,,q., where 8 is the invariant mass squared of
the final state particles. Technically, for leptonic W™, we should form the transverse mass
rather than the invariant mass, but we will work with the invariant mass for this exercise as
it is simpler. We would like to know the role of the O(1/A%*) pieces in this analysis, and what
role the dimension eight operators play compared to dimension six squared.

To test the role of O(1/A%*), we calculate the ratio of the integrated cross section between
V/3min and maximum /3,4, including all O(1/A%) effects compared to the integrated cross
section with the same endpoints but only including the linear, O(1/A2) effects. To get a
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numerical value, we need to make an assumption for the Wilson coefficient sizes and the
size of * = v4/A% Taking all coefficients to 1 and setting A = 5TeV, the ratio is shown
below in the left panel Fig. 2 as a function of the minimum and maximum center of mass
energy. In the right panel we show a similar calculation, except that the denominator of

A =5TeV, coefficients = +1 A =5TeV, coefficients = +1
5000F : ] S000F T T T
40001 40001
5 3000} 5 3000}
«© « [
2000} 20001
1000} 10001
1000 2000 3000 4000 000 2000 3000 4000
ngin Vs‘min

Figure 2. In the left panel, we show the absolute value of the ratio of the cross section in the full,
O(1/A%) calculation to the linear O(1/A?) calculation as a function of the minimum center of mass

energy v/Smin and the maximum v/Spaz: [(0(pp = £70)0(w2) — o(pp = (V) 0(w)) /o (PP = £TV)0()]-
All Wilson coefficients are taken to be positive and equal to one, and the new physics scale A = 5 TeV.
In the right plot we show the ratio (absolute value) of the O(1/A%) calculation to the cross section
including only dimension six operators as a function of V3 and Smae: [(0(pp = £T0)0(2) —
o(pp = 1TV)0(2) nodim—8)/0(PP — £TV)0(22) o dim—s|- The lower right portion is unphysical as
Vémin > V3maz, and the step-like structure of the edge of this boundary is a numerical artifact.
The dotted (dashed) black lines represent the contours where we have chosen the signs of Cz’g’(S) and

02’25(8) to maximize (minimize) Eq. (3.2) instead of taking all dimension eight coefficients to be +1.

the ratio is the integrated cross section including dimension six linear and squared terms —
o(pp — f+V)O(x2)7no dim—s— thereby showing the effect of dimension eight operators alone. In
the dashed and dotted lines of Fig 2, we repeat the calculation after picking the signs of the
dimension eight operators to maximize (dotted) or minimize (dashed) their effect according
to Eq. (3.2). For both plots we begin at v/3,i, = 100 GeV, V54 = 500 GeV.

Examining Fig 2, the impact of the 1/A* terms increases as we increase /3. Picking
an v/3min and varying v/5,q. the results quickly asymptote, indicating that, at least for this
choice of Wilson coefficient and scale A, the suppression of the parton distribution functions at
larger energy overwhelms any growth in energy in the partonic cross section, so the net result
is dominated by physics at v/5min. This matches the behavior found in Ref. [44]. Focusing
on the left plot, we see that — at least for the choice of all Wilson coefficient O(1) — the
impact of the O(1/A%) terms is O(10%) when /3, ~ 1TeV, but grows to O(50%) when
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V3min ~ 2TeV. For these /3., values, the right hand plot indicates the dimension eight
operators are only a small fraction, O(few%) of the O(1/A*) result (again for this coefficient
choice), with the brunt of the effect coming from dimension six squared terms'?.

In the left panel, the dashed and dotted contours straddle the original contour, with the
/3min separation between the dashed and dotted increasing as v/$min increases. In the right
hand plot, the dashed and dotted contours nearly overlap and are offset from the original
contour (remember these are the absolute value of the cross section ratios). For example, the
dashed/dotted contours for ratio of 0.05 sit at v/3im ~ 1 TeV, right in the middle of the 0.01
contour when all signs are positive. The fact that the min/max dimension eight contours do
not envelop the contour with all coefficients taken to be positive may seem confusing at first,
however the mix/max signs were chosen by examining only the O(3) piece of the partonic
cross section in Eq. (3.2). So, the fact that the contours do not overlap is just a sign that
the O(3%) piece is also important when calculating the ratio in the right hand plot and that
it has a different sign dependency than the O($) piece.

In the above test, we took all Wilson coefficients to have the same size. While a reasonable
first guess, it does not capture the full range of effects from higher order terms. To explore how
overall suppression or enhancement of the dimension eight versus dimension six coefficients
affects things, we focus on two particular ranges of center of mass energy 1 TeV < v/5 < 2TeV
and 2TeV < V5 < 3TeV. In these two energy bins, we set all coefficients for a given mass
dimension to a common value — C'6) for all dimension six coefficients and C'® for all dimension
eight. Then, we calculate the size of the dimension eight piece compared to the rest of the
O(1/A%) result as a function of the common dimension six coefficient and the ratio of the
dimension eight coefficient to the dimension six coefficient (C®)/C(%)). The result, shown in
Fig. 3 below, is the identical calculation to the right panel of Fig. 2 except we are focusing
on two representative \/5min, V3maz values and allowing the relative size of different order
coefficients to vary.

For fixed C'®), the denominator of the ratio plotted is fixed. Increasing C'®/C©)  we
see that the impact of dimension eight grows. We have included both positive and negative
values for C'(®) but taken the dimension eight coefficients to be positive for simplicity'®. The
shaded regions on the plot show where the SMEFT contribution to the cross section in this
kinematic region is the same size as the SM piece, included to help orient the contours in

121f we replace v/ in these plots with mz — a more physical variable for leptonic W production — the qual-
itative picture is unchanged. Had we chosen a negative value for the dimension six, the O(1/A?) interference
is negative while the O(l/A4) term is positive. In this case, where cancellation between different order terms
is possible, the impact of higher dimensional SMEFT operators is inflated.

130ne motivation for taking positive dimension eight coefficients is the conditions analyticity can impose [45,
46]. However, as pointed out in Ref. [47], the bounds are more subtle than just requiring all dimension eight
coefficients to be positive. Extending Fig. 3 to negative values of C® / C© | while still keeping all coefficients
equal, the contours mirror C’(g)/C’<6> > 0. Analyticity constraints also can be applied to dimension six
coefficients and take the form of sum rules, see [48-51]. We have not imposed constraints from these on our
current analysis, though it would be interesting to do so.
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Figure 3. Dimension eight operator contribution to o(pp — ¢*v) in the center of mass energy
range 1TeV < Vs < 2TeV (left panel) and 2TeV < V3 < 3TeV (right panel) compared to the
full O(1/A*) result with the dimension eight coefficients shut off: |(o(pp — tv)oa/any —opp —
(V)no dims)/o(pp — £TV)o@1/an)| plotted as a function of the dimension six Wilson coefficient
strength C(®) = [-1.0,1.0] and the ratio of the dimension eight coefficient strength relative to the
dimension six coefficient (taking all dimension eight coefficients to be equal), C® /C(®) = [0.1,10].
The new physics scale A = 5TeV in both panels. The shaded region indicates where the SMEFT
contribution is larger than the SM contribution (either positive or negative).

terms of actual observables, and they can be viewed as rough bounds'?. More accurate bounds
require correctly incorporating the appropriate experimental acceptance/efficiencies and are
left for future work.

As C® /CO) is varied from 0.1 to 10, the effect of the dimension eight terms increases
by roughly two orders of magnitude. For example, fixing C6) = 0.1 and varying C’(S)/ c©
the impact of the dimension eight piece varies grows from 5.7 x 1074 to 0.057 (for Vs e
[1TeV,2TeV]). The effects of C®) /C(©) are larger for negative C(®) because of a cancellation
between the negative O(1/A?) interference and positive dimension six squared O(1/A*) con-
tributions. The overall impact of dimension eight also increases as we move to higher 5. Note
that we can use Fig. 3 to extrapolate the results of Fig. 2 to A other than 5TeV, as shifting
A — A is equivalent to rescaling both C(®) and C®) /C©) by (A/A’)2.

Had we calculated the net O(1/A*) relative to the O(1/A?) result — analogous to the
left plot of Fig. 2 — for the same inputs, the result would depend more sensitively on the
individual coefficient sign choice. However, for v/5 € [1TeV,2TeV] this ratio is driven by
the dimension six coefficient, to the extent that the ratio when C®) = 0.1, C(g)/ Cc® =10is

The contours are essentially unchanged if we neglect all dimension six coefficients other than Cz’c(f) or if
we plot in bins of mr instead of \/§

— 19 —



smaller than when both coefficients are 1. This remains true at higher .

Summarizing, we have found that O(1/A%) terms have an O(10%) impact on the cross
section at v/3 = 1TeV for new physics scale of A = 5TeV and all Wilson coefficients O(1).
The effect grows as we look at higher energies and is ~ 50% at v/ = 2 TeV. We have focused
on the 1 — 2TeV range as it is far from the W resonance region yet where the cross section
is still high enough that the LHC should have significant amounts of data. For this choice
of A, coefficient hierarchy, and kinematic region, the overall O(1/A%) effect is driven by the
dimension six squared piece and largely insensitive to the signs of various dimension eight
operators. This is due, at least in part, to the fact that only one dimension six operator
appears in the large § limit, so no cancellations among different dimension six terms can
occur. The exact contribution to O(1/A%) coming from dimension eight is more sensitive to
sign choices, but lies in the few percent range for our A choice. Breaking the assumption that
all Wilson coefficients are O(1), we get a wider range of effects. Shrinking the dimension six
coefficients relative to dimension eight for fixed A, the net O(1/A*) effect goes down, but a
larger portion of it comes from dimension eight.

Our study is by no means exhaustive but does give us an estimate of the O(1/A*) con-
tribution and how it varies with model/Wilson coefficient assumptions. We emphasize that
we have only plugged in numbers here to be quantitative. Our expressions in Sec. 2 are valid
independent of any specific UV assumptions other than the usual SMEFT assumptions (no
light degrees of freedom other than the SM, and only one source of electroweak symmetry
breaking) and our flavor assumption.

5 Four fermion contributions to pp — ¢(*¢~ (*v at arbitrary mass dimension

As discussed earlier, four fermion operators lie outside of the geoSMEFT scope. Specifically,
as the kinematics of 4™ point vertices is no longer trivial, we can always generate new operators
by attaching more derivatives. While this means the number of operators no longer plateaus
with increasing mass dimension, we can still find a relatively compact form.

The first important thing to notice is that, in order to contribute to the processes of
interest, operators must have the form D"H™*. No operators with field strengths can

contribute at tree level'®

. Next, if any derivatives act on a Higgs, then the operator either
has a physical Higgs boson in it or a (longitudinal) gauge boson. In either case, the operator
field content is not correct to contribute to pp — ¢£¥¢~,f*v (at tree level). Therefore, we're
really only looking for operators of the form H™D™()*), where setting the Higgs to its vev
leaves us with an operator with only four fermions.

In order to interfere with the SM g¢' — ¢1¢~,¢*v, the fermions in ¢* must have the
form wiwﬂ/}gwg where ¥ = Q, u.,d. and Y9 = L, e.. Operators that don’t interfere with the
SM have less restricted fermion form, but they will always enter at a higher power of A than

operators that can interfere. Focusing on operators that interfere, the subset of operators we

5Contact operators of the form GGLL, GGe.e. etc. can contribute to pp — £7£~. However they do not
interfere with the SM contribution and must enter as (contact term)?.
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care about are (HTH )mD2”(1/JJ{¢11/J;1/12). The fact that only even powers of derivatives and
Higgses can appear is set by the fermionic structure.

In this form and with no identical fields present, the operator is factorized — the EW
structure of (wiwlip;wg) determines the EW structure of the Higgs piece and is completely
independent of how the derivatives are sprinkled among the four fermions. The number of
EW structures depends on the helicity of the fermions involved. For ¢¥; = @, 19 = L, there
are 6 possible structures, for ¢ = uc,d.,¥s = L or 1 = Q, 19 = e, there are 2, while for
Y1 = Ue, dc, 2 = e, there is only 1. The EW forms are identical to those shown in Eq. (2.10),
each multiplied by (H YH )™~ supplemented by an additional structure for ¢ = Q, ¢y = L
that only shows up at dimension > 10,

(HTH)™2((H't"H)(H'm7H) + I < J)(Q'6"71Q)(L'5, 77L)

For each EW structure, we spread the derivatives among the fermions, D?" (@Z)J{¢1¢g¢2)
As in Sec 2.2, this is best done in momentum space. As we saw there, for four particles
there are only two invariants we can form after accounting for the equations of motion (p? =
0 for massless fermions) and momentum conservation (IBP). The two are a subset of the
Mandelstam s, t,u, where the condition s +¢ + v = 0 can be used to remove one invariant.
With D?, and choosing to remove u, the only options were terms linear in s or t. Generalizing

mtn—m

this to 2n derivatives, all terms of the form s are possible,

n

DM (ln i) — > ST (Pl idhi). (5.1)

m=0

For example, at D* there are three possibilities for a given EW structure:

(382 + 0V st + COP ) (wlunyiys). (5.2)

This form persists to arbitrary mass dimension, and is generated by

(1_8)1<1_t)(¢1¢1¢;¢2)7 (5.3)
as can be shown via Hilbert series techniques [52-56], or by directly finding the quotient ring
for four momenta subject to overall momentum conservation and the EOM. While expand-
ing Eq. (5.3) to O(s™t"™™) gets us the number of operators with 2n derivatives and their
dependence on s,t, each of those operators, in principle, carries an independent coefficient,
and once the coefficients are included the net result cannot be resummed (for generic values
of the coefficients).
Putting the pieces together, the (HTH)mDQ"(dJlew;dzg) operators can be written as

n ng’(k’n_k)

2(m+n—+1
prt A2( )

st ek (HEY P (T grpde) (5.4)
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where ¢ labels the EW structure and it is understood that s,t are formed from the t¢; momenta
only. For fixed operator dimension, the operators with the largest impact on the cross section
are those with the strongest momentum dependence. At operator dimension d, the maximal
momentum power that can accompany the operator is d — 6.

Putting this to use, we can estimate the size of O(1/A%) terms in different kinematic
regions. The most dangerous terms at O(1/A%) come from dimension ten four fermion op-
erators with four derivatives, and the interference between dimension six and two-derivative,
dimension eight four fermion terms. Focusing(g)n this subset!'%, assuming a single electroweak

S
)

structure (the four derivative analog of C' Lé’g’ for the dimension ten operators, and taking
all Wilson coefficients to be equal to one, we have

9.1 9V L2 2% (5+1) N x3 (§2+52+§f)>2’

w 2 .9
’ALL,O(a:S),Ci:ﬂ ~4a (

S — m%v v% v% v% O(x3)
N 2’ s? 12 /A2
TO(8),C=1 ~ —m(30 —17¢7/53) (5.5)

Using this, we can explore the ratio of the O(1/A%) contribution to the full O(1/A%) result
— the analog of Fig. 2 but with O(1/A%) in the numerator and O(1/A*) in the denominator.
The result is shown below in Fig. 4 as a function of the minimum and maximum center of
mass energy of the process, and as in Fig. 2 we have taken the new physics scale A = 5 TeV.
Comparing Fig 4 with Fig. 2, we see that the O(1/AS) effects are one to two orders of
magnitude smaller than the O(1/A*) effects for the kinematic regime we have plotted.

6 Conclusions

In this paper we have studied SMEFT corrections to monolepton production at O(1/A%),
adding it to the list processes [6, 810, 57] now known to that order. We are particularly
interested in the relative size of the O(1/A?) and O(1/A*) pieces and how that changes as we
push into the § > m%v regime. The main goal of this study is to extend the list of processes
known (with flavor assumptions), joining Ref. [6, 8-10], up to O(1/A*), with the hope that a
broader index of exact results will improve how truncation uncertainties in EFT analyses are
estimated.

To keep the calculation manageable and focus on the large § effects, we have assumed
(U(3))? symmetry with massless fermions and diagonal CKM and PMNS matrices, though the
terms with the most severe energy growth are unchanged under a more relaxed assumption
of U(3)g x U(3)u+a x U(3)r, x U(3),. Further relaxing the flavor symmetry has little impact
on the dimension eight piece of the calculation, as the flavor structure of those operators
are limited by what can interfere with the SM. Dimension six squared terms are free of this

At O(1/A%) there are also corrections to the subleading terms (in the large § limit) in the amplitude,
but these corrections are suppressed by a factor of x = ©%./A?, i.e. §5%/A%. We have also only kept terms
consistent with flavor (U (3))°.
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Figure 4. Absolute value of the ratio of the O(1/A%) contributions relative to the SMEFT cross section
to O(1/A*) as a function of the minimum center of mass energy v/3,,i, and the maximum v/3,,4,
[(o(pp = £TV)o1/a6) 1arge s — 0 (PP = LTV 01 /a%)) /(PP = £TV)0(1/a1)]). All Wilson coefficients are
taken to be positive and equal to one, and the new physics scale A = 5TeV.

restriction, so the number of terms we need to consider grows considerably if we relax the
flavor assumption.

While our analytic expressions hold for all coefficient choices and A values, we performed
several numerical studies using the simplification that A = 5TeV. Taking all Wilson co-
efficients 41, we quantified how the importance of O(1/A?) terms grows with \/3,,in, the
minimum center of mass energy. Throughout the range of /5, we considered and even
allowing for an order of magnitude hierarchy between the dimension six and eight Wilson
coefficients, the O(1/A*) is dominated by the dimension six squared contribution. Part of
this stability is due to the fact that, with our flavor assumptions, only one operator at dimen-
sion six is present in the large § regime, so no cancellations among terms of the same mass
dimension is possible.

We also demonstrated a closed form for the four fermion operators of arbitrary mass
dimension. Unlike 2- and 3-particle vertices, the number does not plateau with increasing
mass dimension, as we can always add more derivatives, however the number and pattern
of the higher derivative terms is predictable. Using this form, we can extract the dimension
ten operators with the largest energy growth and estimate the effect of O(1/A%) SMEFT
terms as a function of the kinematics. We believe similar all orders expressions are possible
for all other four particle (and higher) vertices, though operators with repeated fields and/or
multiple Higgs fields will be more complicated as Bose/Fermi statistics will affect the counting
of higher derivative terms. It would be interesting to explore how the compact forms for higher
point interactions fit into the more geometric picture of effective field theory advocated in
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Ref. [7, 14, 15, 58-65).
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A  o(gqg — (*v) in the &, input scheme:

In the Gey scheme, the experimental inputs are the electromagnetic coupling, the Z mass and

Gr [9]:
d(my) =1/128.951, 1y =91.1976 GeV, Gp = 1.1663787 x 107> GeV 2

Using these inputs to fix g1, g2 and vy, the O(x) expansion for the W mass, couplings,
and width are:

myy, = 80.0 GeV

sml}) = —62.6C\C) . —28.6C%) — 24356

omiy) = —31.3Ciy s — 4.29CY), — 24.3CY), , — 40.0Clyy, — 62.6 Ol ) Clipy s — 124 (Clghy )
—31.7¢% c® —62.6C8), ¢ —134¢) 560 1655 (C1))2 —23.6 ) 5610
—24.7(6G\9)? — 24.35G (A1)

9w, = —0.46

89\, = —0.46 CHY +0.466GY +0.16 CYf), +0.36 Clhy

Sgvry, =016 C3Y CF), +0.36 O3 Oy +0.46 C1YY G +0.038 (Cl5),) %+
0.18C%) c©®  +0.019¢) 569 1036 ) +0.7(CY), )7
0.5Clpy 5 6GY —0.30(6GY)? — 0.23C) +0.08Cly), +0.08 Cp)
018C, . +0.23iCc®) +0.465GY

1 2
ggVJR = 6g‘(/V,)€R = (Sg‘(/[/,)@R = O (A2)

g%,’fL = —0.46

So\;, = —0.46 CHY) +0.46 66T +0.16 C), +0.36 Clp)y

Sgis =016 CHY) Ci), +0.36 CHY) Cliply s + 046 CS) 66 +0.038 (C)) >+
0.18C%) c®  +0.019C9) 569 +0.36C) ) L +0.7(C) )2
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0.5Cliy 5 6G) — 0.30(6GY))2 — 0.23CHY) +0.08Cly), +0.08 O

0.18 Clply s +0.230 C5), +0.46 5G
ggV,fR =0
Sgvys, = —0.23i O,
Sgis. = 0181 Cp)  City g +0.080 Cl) O] +0.23i Clp) 06 — 011 CY), (A.3)
And for the W width, again for massless fermions and ignoring the CKM matrix:
9% (GeV) = 2.01
0T (GeV) = 13405 P +2.68 €S — 470G — 2.16 ), — 4730}y
6T (GeV) = 0.67 (C3)? — 144 Cff), — 315 CHY Oy — 31050 561 + 1.3 (CH))?
—29CHY O, —63CHY CSh — 6205 66O — 4730, O+ 1.27(CF))?
+0.99 C}f,’}) c® o +26C%) 66 — 473 C}I%V c® L —56(CY, )?—056C) L 5GlY
+5.30G )2 +0.67CHY +1.3CHY —0.830%), — 1.33CY), , — 3.0C) iy, — 2.37Cly g
475G +0.34(C19) )2 (A.4)

The helicity amplitudes in the &g, scheme have extra terms compared to Eq. (2.23),(2.24)
from the expansion of myy as a series in x. The extra terms begin at O(z) and only impact
the LL helicities (meaning LR, RL and RR expressions match the rmy scheme forms):

1 . 0 A
W,(1)y 2(SmE/V) mw ggv,fL 91914(L (8(s - FE/V)) + miy —28mi,)
P3(3,mw, T\
1 0 ~ R
6m$/v) Fg/V) gngfL g%/fL (3 m%V + mlz/V((F?/V)Z -2 3) - 82)
P2(8 mW7F(0))

(A.5)
where, for compactness myy in these expressions always refers to mg/?/), the zeroth order piece.
Similarly, at O(z?):

1 A 1 1
26m%,V) mw (myy, —2m3, § + §(5 — (TY, )2)(9%/7& 59i(/V,)£L + ggmL 59‘(/V7)fL)

P2(3, mw,T\Y)
(T}

2 2

)2 % 1, 9, (BTN M, 8 — (my, — 5P (3miy + 8) + (D)2 (my — 8)(mly, + 10m3, § + 82))

P3(3, my, T\
28my) muw o, 9, (my — 8)2 — (TW)25)
P2(3,my, T\

1) (1 .
_45 ()5P%/V) WFWngLgWEL(ngV_‘gméVS_(F?/V)Qm (A.6)

P33, mw, T\W)
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5y Ty (3miby +m3 (D9)2 — 28) — 2) (gl S0, + 9, 59

(1)
WafL

)

) ) w |84
Im(AZL(Q))& = Im(A?fl(/Q))mW + F(O) L

P02(§,77’LW, W)

_|_

1 A ~ ~ ~
(Omi) ) mw Ty g g, Ghe, (T )?(382 + 4miy § — 3miy) — 6(miy, — 8)2(mi, +8) — miy, (Tf)*)

P3(3, my, T\

2 o
oty Ty 9.5, Iie, By + miy (T)? —25) — 8
P3 (5, mW’F%/?/))
1 1 . . .
5m§,[,) (5F$/V) ggqu g8V7ZL((m124/ — 83 (3m3, + 8) — myy, (DY) + 6mZ, (T9,)2 (82 —myy))

_l’_

B Results for Dilepton production pp — (¢~

The coupling expansions for gz, for both electroweak input schemes have been presented
in Ref. [8] so we do not repeat them here. The Z width (in the limit of massless fermions)
can be found in Ref. [9]. Many of the results in the next few appendices can be adapted to
dilepton production at £7¢~ colliders; see Appendix C for details.

We have used a slightly different basis for the dimension eight operators compared to
Ref. [10, 11]. The majority of the differences are in the four fermion operators with two deriva-
tives. Ref. [11] use the combinations D, (v'a"1) D*(x'5,x) and (zﬂT&(”(B“)Qb)(XT&(V(ﬁu)X),
where fy(*‘(ﬁ”) = (fy“%}” + ’y”ﬁ“), while we have used the set in Eq. (2.11) to more eas-

ily track the § vs. ¢ dependence. The two sets are easily related. The other difference is
Ref. [10, 11] keep operators of the form D32 H?, while we work in a basis where both of the
Higgses carry derivatives in all D312 H? operators. Explicitly,

(Y'6"¢)(D(, Doy H')(DyH) + h.c. for) = Q, L, uc, de, ec

(15 Dyb) (D, HY) (D, H) + h.c. foryh = Q, L, ue, de, e.

W'e* 71) (D, DyyH" )71 (DyH) + hec. fory = Q, L
(Ta* 71 D,) (D, HY) 71 (D, H) + h.c. fory = Q, L, (B.1)

where D, D,y indicates symmetrized derivatives. In our basis, the D32 H? operators all
come with two gauge bosons, two Higgses, or one of each and cannot contribute to pp — £7¢~.
The fact that one can always place the derivatives in this fashion (exploiting EOM and IBP)
is guaranteed by the results of Ref. [7].

Given a UV model that generates the D32 H? operators used in Ref. [10, 11], manipulat-
ing these terms into a geoSMEFT compliant form via EOM and IBP will change the matching
onto other operators (i.e. Dip2H* type). As a result, calculations of physical quantities in the
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geoSMEFT compliant basis will agree with results carried out in the original (Ref. [10, 11])
basis. However, in the bottom up approach used in this paper, we ignore all relations among
coefficients, so it appears as if the geoSMEFT compliant results depend on fewer operators
than results in other bases'”.

Note that Ref. [10, 11] included SM QCD loops in their calculation, while all of our

results are leading order.

B.1 Helicity amplitude expansion for pp — {7/~

In the my scheme the helicity amplitudes are:

(0) (e")? Qer (8 mZ)ngA gzzM
Re (A)\f M) ( 3 PO(S,mZ,IJ:OZ) ), Im(

where Py(8,mz,T%) = (m% — 38)? + m% (I'%)? and \;, \r = L, R are the initial and final
state helicities. All couplings and coupling shifts are real, which simplifies the expressions
compared to the charged current case. At O(x):

1 0 (1) )

2 _ A~
Re(AD ) = (%(1)260 Q@ M2 909z, S0, 950,920,
Ar e 5 Py(8,mz,TY)
1) o ,,2 0 0 2 _ 5 1
20T T mbal r, 9%, (m% —3) 5@&2,&)
P()Q(gamZ7F%) U%
1 1 1 ~

Tm(AY Y% my ((5g(Z}Afg%Al + 59(2,@29%, i) 0Ty mz g, fay 9205, (M7 = 3)* = m7 (T2)%)
m(Aya) = (_ Po(3,mz,TY) - P§(8,mz,T%) )

(B.3)
Finally, for O(z?):

2 _ a\(saV) (1) (2) (2)
OQf Qe (m = 3)(097.1,,992:,, + 9925, 924, T 992:0,,92.55,)

P()(S,T)’LZ, F%)

QQf QA

Re(AY,,) = ((5 () + 26¢!

. 1 2 .
251‘(2) rYy mQZ (m% — S)(‘Sg(z,)hf g%% + 59(2,)6[ g%fkf) 2 5I‘(Z) Y% m% (m% — s)g%hfg%’@‘Z

A + A
P§(3,mz,IY) F§(3,mz,I'Y)
1 ~ A ~
(T2 9 g, 9%6,, M (mh = ) (m + 82 —m3(3(1%)? +29))
Pg(§, mz, P%)

Lic@ 8. @ 1o
q_}%(da)\f’)\e — %(5&)%)\[ — Q_}%é-a)\f’)\z> (B4)

_l’_

'"Note that Ref. [8] also calculates dimension eight effects ( in the process pp — Wh) in a non geoSMEFT-
compliant basis, so that D31)? H? effects feed into ffV vertices. Applying the logic of the previous paragraphs
to that example, had one calculated pp — Wh using the basis of Eq. (B.1), Eq. (4.1) of Ref. [8] would not
contain any dependence on cqqv1.
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2 ~
5F(Z) my g%ﬁfg%JMZ ((mQZ -35) - mZZ (F%)Z)
P02(§ mZ,F%)

1 1 2 2
1102 mz (59(Z,}>\ 0 (Z%A + 5g(Z .)f)\ gZ oy + 59(Z}/\zg%’f>‘f)

Po(8,mz, F%)

1 1 1
5F(Z) mz (59(2,}Af9%,% + 59(2,)%902,]%)(7”2 + 8 —m7((T%)* +25))

Poz(é,mZ7F%) :
) R
(OT)2 Ty m (3(m% — 8) — (19)? T”ZZ)Q%vafg%’%) (B.5)
Pg’(g,mZvr%) |

The helicity amplitudes in the ée,, scheme can be obtained from the expressions above
by setting de)) = de(?) = 0, as it is an input parameter. As my, does not appear, expanding
it as a series in = has no effect.

In either scheme, the pieces can be combined to form the amplitude squared to O(z?):

Axy 2 = Re(AY )2 + (ALY )?) + 20 (Re(A ) JRe(AL )+ Im (A, )im(AS) )
x (2Re(A(Af)N)Re(AAfN)+21m(A(A(?N)Im(A(2) )+ Re(Al) ) )? +1m<A§1f>N)2)
(B.6)
B.2 Parton level calculation for qg — ¢T¢~

Plugging in to the expressions for the amplitude squared using the expressions for the contact
terms (Sec. 2.3), couplings and Z width, we find the partonic cross section. As in Sec. 3,
we will examine the pieces that grow with energy. First, at O(z) there is a constant term,
implying an amplitude that grows linearly with v/3,

x é? (2—1—629

Gomroo ity = L0 )30y = Oy —cpy — ) —acl®) 2 cﬁj}) +0(2?)

4327023\ 252
. = _ x &2 1+ 2629, 3,6 1,(6 6 6 6
G ssoo(dids — £H07) o(a0) = 4327711209< 32 9+ epf) - CéQ)+20£d)+C£d)) +O®?)

(B.7)

where u;(d;) stand for up and charm quarks (down and strange). As opposed to monolepton
production, there are multiple operators present and with different signs making accidental
cancellations a possibility. Judiciously choosing signs of coefficients, it is possible to make all
of the operators in & (@;u; — £7€7) or G5 o0(did; — €147 positive, but not both.

Moving to the O($) cross section terms — meaning an amplitude that grows as § — which
arise at O(z?):

. _ _ z23 . 6 6 3,(6 1,(6
Gsroo(Uitty = L7 )05 = 3456701 &2 (24 & (Ce(Q))z +(C)? + (Céi)z + (CL’cg) - CLé) ))2>

U

+e(sCi? —6Cly) + 3205 —sCt® w165 1207
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$,3,(8 s,1,(8 ~ ,1,(8 ,3,(8 ~
+ (g% = Crg™hs - 12/58) + (16" - 5D - 3/3)))
2

. - _ s . 6 6 6 3,(6 1,(6
O-S*}oo(didf[: — €+£ )O(g) - m (24 Cg (CéQ))Q + (Ce(d))2 + (Cé/d))g + (CLC(;)) + CLé? ))2)

+e(scr —ecly) —160y” v ach? —scpY + oy

+ (O™ + Crg™ha6 —12/33) + (Crg¥ + Cig ) 3/55 - 0) )
(B.8)

B.3 Proton level pp — (T~ results

In this section we show some illustrative proton level results for pp — ¢7¢~. We make the
same parton distribution choices as in Sec. 4.

In Fig. 5 below we show the differential cross section as a function of the dilepton invari-
ant mass. As the large § pieces of the partonic amplitudes involve multiple coefficients, the
differential cross section is more susceptible to coefficient sign choices than pp — ¢Tv~. To
illustrate this, we show the differential cross section for two different sign choices; in the left
panel, all dimension six coefficients have been take to be +1, while in the right panel we have
chosen the sign convention to maximize the number of positive O(s) terms. When all dimen-
sion six coefficients are positive, there is a net destructive interference. Once we include the
positive definite dimension six squared piece at O(1/A*), the SMEFT result is again greater
than the SM, but the shift from destructive to constructive means an exaggerated ration when
we compare the two, (o(pp = €07) o1 /a1y — o (pp = £ ) o1 /a2)) /o (PP = €07 ) o(1/p2)- If
we choose the dimension six coefficients such that the O(1/A?) is positive, the full O(1/A*)
result is similar to the previous choice, but the ratio of O(1/A%) to O(1/A?) results is much
smaller. We see this trend in Fig. 6 below, where we plot (o(pp — €+€*)O(1/A4) —o(pp —
Y 07) o a2)/o(op — £7€7 )o@ a2y as a function of the minimum and maximum dilepton
invariant mass.

Figure 6 is the pp — £7¢~ analog of the left panel of Fig. 2. As in Fig. 5, the two panels
in Fig. 6 correspond to two different choices for the signs of the dimension six contact terms.
Comparing this figure with the monolepton counterpart (Fig. 6), see that O(1/A*) terms
generally have a larger effect (under our coefficient assumptions), even when the dimension
six coefficient signs have been chosen to make the interference positive. In the left panel, the
V/3min and /3,42 have been restricted to a range where the O(1/A2) cross section is positive.

Next, to zoom in on the role of the dimension eight operators, in Fig. 7 we have plotted
the ratio of the full O(1/A%*) result to the O(1/A*) using only dimension six squared. As
with Fig. 5, we show results for two different new physics scales and for two different choices
for the signs of the dimension six contact terms. For both dimension six sign choices we
see that setting all dimension eight coefficients to +1 leads to cancellations among those
terms and a suppressed net dimension eight effect. Flipping signs so that as much of the
dimension eight contribution is positive (upper curve) or negative (lower curve) breaks the
cancellations, and the importance of the dimension eight rises with center of mass energy.
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Figure 5. do(pp — (T¢~)/d\/3 at various SMEFT orders compared to the SM assuming all Wilson
coefficients have magnitude 1. The black line shows the result including O(1/A?) SMEFT terms while
the green and blue lines show the ratios including dimension six squared terms and the full O(1/A%)
calculation, respectively. The two O(1/A*) curves differ in the assumptions made about the sign of the
dimension eight pieces; in the upper curve, we chose signs to maximize Eq. (B.8) (as much as possible,
choosing to maximize up quark initial states over down quark), while in the lower curve we minimize
Eq. (B.8). The curve with all all dimension eight coefficients chosen positive is nearly identical to the
green line, as it is subject to cancellations. For the solid lines, the new physics scale A = 5TeV, while
dashed lines have A = 10TeV. The difference between the left and right panels is the sign choices
for the dimension six contact terms. In the left panel, all coefficients are taken as +1, which causes
cancellations within some helicity pieces and results in a net destructive interference with the SM.
In the right panel, the signs have been chosen to make the interference (at least for up quark initial
states) positive definite.

When the dimension six contribution is subject to cancellation (left panel), the dimension
eight piece is more significant, reaching O(10%) for v/5 = 4TeV for both A scales we’ve
considered; when the dimension six interference is positive, the dimension eight effects reach
only O(6%) for v/ = 4TeV for A = 5TeV, smaller for larger A.

Finally, we can estimate the effects of O(1/A°) using the procedure at the end of Sec. 5.
All four helicity combinations contribute, and the terms are different for up-type and down-
type initial states. Making the approximation that only a single electroweak structure enters
at dimension ten (to avoid cancellations) and taking all Wilson coefficients to be +1:

2.3 52

. _ s‘x e R

(i > €0 Yo, 01m = rgn o5 (00+17 325 (200 = 3)) (B.9)
= _ s2 a3 é2

O(dd = £ o) 0m1 = g g~ 0+ 17 ) (8.10)
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Figure 6. Ratio of the pp — £T¢~ cross section at O(1/A?) to the cross section at O(1/A?) as
a function of the minimum and maximum v/3. In the left panel, all dimension six contact terms
coefficients are +1, while in the right hand plot the sign of the coefficient has been chosen following
Eq. (B.7) to give positive interference. The dashed and dotted lines are the contours after choosing
dimension eight coefficient signs to maximize (dotted) or minimize (dashed) Eq. B.8. For both panels
the new physics scale A = 5TeV. The axes range in the left panel is smaller because the O(1/A?%)
cross section for that coefficient sign choice becomes negative above v/ ~ 3 TeV.

Using these results, in Fig. 8, we quantify the O(1/A%) effects by taking the ratio |(c(pp —
(07 )o@sy — o(pp = €7 )oE2))/o(pp = €707 )o2)| as a function of the minimum and
maximum center of mass energy (the dilepton version of Fig. 4 and taking A = 5 TeV.

As in Fig. 4, we have approximated the full O(1/A®) result with the dominant piece in
the large § limit. For this simple Wilson coefficient choice, we find that the O(1/A%) are
significantly smaller than the O(1/A%) for the kinematic region we have explored.

C Contact operators for (] (; — ({; at dimension six and eight

The neutral current results of this paper can easily be extended to lepton colliders (under the
same flavor assumptions), T/~ — @ ¢; and K;FE; — E;r é;r where i, j are flavor labels. For
(0~ — ; ¢;, the partonic amplitudes are identical to Sec. B, as all we have to do is switch
the initial and final states. For E?’Ki_ — E;r fj_, we need to swap g%”%)’@) — g%”(glk)’@) in the
coupling expressions and to replace the two-quark, two-lepton contact terms with four lepton
contact terms.

When the initial and final lepton flavors are different, e.g. eTe™ — ™~ the counting
is similar to the two-quark, two-lepton case, but the exact number depends on what flavor

assumptions we make. If we assume individual lepton number is conserved U(1). x U(1), X
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Figure 7. Dimension eight contributions to pp — ¢1¢~ as a function of v/3 relative to the O(1/A%)
result from dimension six operators alone. In the black line we show the ratio with all coefficients set
to +1 while in the blue lines show the ratio when the coeflicient signs have been chosen to maximize
(upper curve) or minimize (lower curve) Eq. (B.8). The solid lines assume a new physics scale of
A = 5TeV, while the dashed line assumes A = 10TeV. The difference between the left and right
panels is the assumption about the dimension six coefficient signs, as in Fig. 5.
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Figure 8. Ratio of the O(1/A®) contributions relative to the SMEFT dilepton cross section to
O(1/A*) as a function of the minimum center of mass energy v/, and the maximum v/3,,4z,
(o(pp = €707 )oa ney — alpp — LT )oa/any)/o(pp — L0 )o@ asy. All Wilson coefficients are
taken to be positive and equal to one, and the new physics scale A = 5TeV.
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U(1),, the dimension six four fermion operators that contribute to ete™ — utu~ are:
or® (Ll ah L) (Ly 5, La) + 7S (L] 6" 71 L) (L} 6, 71 Lo)
+ 02’ (L} o" Li)(el uees) + cé’ (LYo L) el 1 0y c)
+ c'6 (LJ{ at Lg)(el2 Tpeet) + h.c

LiLoejes

+CE, (el ouect)(el s ouec), (C.1)

where we have explicitly plugged in generation indices to avoid confusion, and operators for
other flavor combinations (i.e. ete™ — 7777) are identical except for the generation indices.

Strengthening the flavor symmetry to (U(1)1)% x (U(1))? removes the C-él)L2€1€2 operators,
while enforcing U (3)r x U(3), also sets 026;)62 Cg;)el

At dimension eight and imposing U (1) x U(1), x U(1),, the e"e™ — p*p~ operators
containing two Higgses are:

Coitelpy (HVH) (L] 0" La) (LY & Lo) + CHE) (HUH) (L] 6% 77 L4) (L] 671 L)
+ Oy (HYPH)(L] 6" 7Ly) (LY 5, La) + O3 (HY'r H)(L] 3% L1)(L} 3, 71 Lo)

1

+ O e (HIT HY(LY 6% 77 L1) (LY 5, 75 Lo)
+ Oy (HTH)(L] 6" L) (el 4 7 ec2) + Cit, (HYH)(LY 3" L) (el 5, ec)

Lies Laey
+ O (HT )L 6" L) (el y 0 een) + CRY) (HIT H)(LY 6% 71 L) (el 5, e01)

1 2.(8
Cr. L HTH) (LG L) (€] 15,e0) + 7D (HITTH)(Li6" 7 L) (el 15 ,e2) + hc.
L o®

Hejea (HTH)( clU# €c 1)(622 &# 60,2) ) (02)

while the operators with two derivatives are:
5’17( ) T ~H 2 i t717( ) i =M vl =
Cr.p, (Lyo" L) D*(Ly Gy Lo) + Cp ) ((DuLy 6% Ly) (DY Ly 6y La) + hec.
+ Cp (L] o T L) DALy 3 i L) + €S ((DUL 0" L)(DY L 6, Lo) + e
+ CL7( ) (LJ{ o LI)DZ( €c20p€c 2)+ CL(S) (L; o L2)D2( 10pu¢c, 1)
+ O (DL o L) (D%l y 5 ees) + hc) + CLY) ((DLLS 0% La)(D%el y 5iee) + huc)

1€2 Laey

+ Oy (LG L) D2 (el (5 ueen) + O (D, LT 6" Ly)(Del | 5, ec2) + hec

1Lz2e1e 1Lzerez

+C5 (el " ee) DX (el g ecz) + CHE) ((Doel o ecn)(DVel sy ec2) + e ) . (C:3)

In the above lists, all coefficients are real except for the CLESL)Q c1ep- Under stronger flavor

assumptions (U(1)1)3 x (U(1)e)? or U(3)L x U(3)., the number of dimension eight terms is
reduced following the same pattern as at dimension six.

These four lepton operators translate into amplitude contact term coefficients (as in
Eq. (2.17)) as

sald, =cp® +cr® . b, =P

€LHL

sal), =0 - sal) =c®) (C4)

1L2? ELHUR Lyez? ERUL Laey? E€RUR
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crQ + i v b ® 4 cpl)

L L L1L s s,1,(8 $,3,(8 , 518 t,3,(8
60’222/% = = = 2 = ’ 6a‘(32L’M)L = CLlL(2) + CLlL(z )’ 5a§2LfL)L - CL1[§2) + CLllsz)
st = Bm s g _on®, sy, ~ i)
Clv(s) +027(8)
2 _ e Loe 2,8 _ 7(8) 2, _ t7(8)
(5a<(3R)HL - = 2 : 1’ 5a£RM)L - 0.22617 5a(€RQL - CL261
ol D s
ol = 52 w2~y Wl ()

Note the Cr, 15e,e, do not appear because we have only listed the amplitudes with the same
helicity structure as the SM. While dimension eight operators must have the same helicity
structure ass the SM to contribute at O(1/A*), dimension six operators do not. The flavor
assumptions we made in the main text forbid the analogous terms from monolepton and
dilepton production, but they are permitted under U(1), x U(1), x U(1),. In this case, the
amplitude list from Appendix B.1 must be extended to include:

(1) (1)

T o (1 (6)
Aeppperpr, = ETMLRRLSeLuReRuLa 0aj ppr = CL1L26162 . (C.6)
T

If we take all four leptons to have the same flavor, e.g. for ete™ — ete™, Fermi statistics
reduces the number of terms. Specifically, the number of (H'H )(L}LLZ-)2 and DQ(LILZ-)2
operators are both reduced to two, and the LILielﬂ-eC,i operators collapse into a single form.
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