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In this work, we investigate the question: do code-generating large language models know chemistry? Our

results indicate, mostly yes. To evaluate this, we introduce an expandable framework for evaluating

chemistry knowledge in these models, through prompting models to solve chemistry problems posed as

coding tasks. To do so, we produce a benchmark set of problems, and evaluate these models based on

correctness of code by automated testing and evaluation by experts. We find that recent LLMs are able

to write correct code across a variety of topics in chemistry and their accuracy can be increased by 30

percentage points via prompt engineering strategies, like putting copyright notices at the top of files.

Our dataset and evaluation tools are open source which can be contributed to or built upon by future

researchers, and will serve as a community resource for evaluating the performance of new models as

they emerge. We also describe some good practices for employing LLMs in chemistry. The general

success of these models demonstrates that their impact on chemistry teaching and research is poised to

be enormous.

Environmental signicance

Large language models (LLMs) can generate functional computer code. We assess the inherent ability of these models to solve problems in the domain of

chemistry, and also investigate whether intrinsic “knowledge” of chemistry is contained within LLMs. All the models evaluated here show some ability to solve

chemistry problems, including equations, chemical structures, units, and principles. As LLMs become more available, it leads us to ask what more will

researchers be able to do, and what more can we ask from students in classes, if repetitive tasks are easily solved using these approaches.

I. Introduction

Large language models (LLMs) are multi-billion parameter

transformer neural networks1 that are trained on enormous

collections of documents (a ‘corpus’) without supervision or

labels.2 LLMs can performmultiple tasks like classifying natural

language, translating text, and document search. Perhaps the

most remarkable task of LLMs is to complete an input string of

text; via this mechanism (called causal language modeling),

LLMs can write unit tests, document function, write code from

a doc string, answer questions, and complete stoichiometric

equations.3,4

We previously discussed the outlook of LLMs in chemistry.5

In the few months since then, LLMs have been both developed

for specic chemistry problems6,7 and general LLMs have been

applied in chemistry.8,9 On Nov 30, 2022, OpenAI released an

interactive interface to an LLM termed ChatGPT (ref. 10) which

substantially increased interest in this area as well as use by

scientists for coding and writing tasks. An open question for

LLMs such as GPT-3,3 T5,11 or GPT-neo (ref. 12) that are trained

on very large and varied textual data is if they can be applied in

domains like chemistry, which have specialized language and

knowledge. In our initial work,5 we found that relationships

between SMILES and natural language is possible with GPT-3.

SMILES is the standard method of representing molecules as

strings.13 It is even possible to loosely edit structures via natural

language (see Fig. 6).14,15 However, the extent to which LLMs can

be directly applied in chemistry in the broad context of research

and teaching is unexplored. The large amount of specic

domain knowledge required to solve chemistry problems may

limit applicability of general LLMs. For example, recent work
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has found that knowledge of the periodic table of elements

requires very high parameter counts.4

Recent comparisons of LLMs that generate code can be

found in ref. 16. Here, we focus our study on whether LLMs that

generate code17 can be applied to chemistry tasks of a compu-

tational nature (both computational chemistry problems, and

general tasks which can be expressed as simple computer

programs, such as ranking elements by ionic radius). Most

LLMs that generate computer code are causal decoder-only

models17–19—a user provides a sequence of text (called the

prompt) and it proposes a continuation of the text (the

completion).20 There are LLMs trained on code that can inll or

match encoder/decoder natural language to code like Code-

BERT,21 but they are typically used for embedding code for tasks

like classication, document retrieval, or translating code to

natural language. Because it is not reasonable to use encoder–

decoder or encoder-only models to generate code or answer

questions with open-ended length, this paper explores solely

decoder-only causal language models.

Evaluating LLMs' knowledge of chemistry should be distin-

guished from capability to reason or understand. LLMs can

make compelling completions, but are incapable of reasoning

and demonstrate supercial understanding.22,23 Our goal is to

evaluate LLMs' ability to correlate natural language, equations,

code, and heuristics of chemistry.

II. Methods

We have compiled a categorized set of chemistry and related

example prompts for benchmarking code-generating LLMs in

a public repository.24 To generate these problems, we rst

decided upon a list of categories of chemistry and chemical

engineering knowledge, listed in Table 1, and set a goal of

having at least 10 examples in each category for our initial

database of problems. Members of our research groups (the

authors of this paper), who we consider to have sufficient

expertise in these areas due to formal schooling, research, and

teaching experience, contributed the prompts and reference

solutions for these categories.

The examples in this table span a range of topics that we

consider common questions across chemistry elds. There is

some representation of computational chemistry research topics

(categories corresponding to performing chemical simulations

(sim), analyzing molecular dynamics simulations (md), chemical

informatics (cheminf), and some quantummechanics (qm)), but

this constitutes less than half of the initial prompts created by us.

The rest correspond to typical questions that one might

encounter in general chemistry (genchem), biochemistry (bio),

physical chemistry (thermodynamics, quantum mechanics, and

spectroscopy), and in laboratory classes (plotting and statistics).

Within this set of topics, some examples were labeled as only

expert evaluable, where automated evaluation is infeasible or

insufficient (e.g. plotting). The total number of examples is 84,

of which 25 were expert evaluable, and the accuracy is 75% for

the best performing model.

There is a strong correlation between the model parameter

count and accuracy,25 so we focus only on the largest models

with more than 1B parameters. The architectures of models are

all decoder-only like GPT-3 (ref. 3) with the ability to insert

completions,26 (except when noted). The rst model is a GPT-3

12B ne-tuned on code (Codex) abbreviated as “cushman”. It

is known as code-cushman-001 in the OpenAI API.27 This is

modied from the original one in Austin et al.17 somewhat and

is described as “a stronger, multilingual version of the Codex

12B model.”.28 We also used code-davinci-002, abbreviated as

“davinci”. This model is part of the category of “GPT-3.5”

models that are derived from GPT-3.29 The number of parame-

ters in davinci-class models is not public information, but may

match the 175B parameters of the model described in the GPT-

3.5 paper.30 We also considered the recent text-davinci-003

model which is derived from code-davinci-002 with a reinforce-

ment-learning adaption from human user feedback30
–

although this model became available only aer human evalu-

ation (below) was complete, so our analysis is reported only on

automated evaluations. This model is denoted as ‘davinci3’

here. Finally, from publicly available information we know that

ChatGPT is based on a slightly modied version of GPT-3.5, and

so we expect its performance to be comparable to that of the

model; however, it does not have an API that would allow us to

systematically probe any differences in our study. One example

use of ChatGPT is given in the ESI.†

We also study two “incoder” models from Fried et al.18

trained on code only. We chose incoder because it is able to

inll code in addition to completing code prompts, which gives

a more direct comparison, and it has generally good perfor-

mance. Lastly, we consider the ‘codegen’ model,31 which is

another decoder-only model trained on a similar dataset to

‘incoder’. It was not trained for inlling, because it was

Table 1 The number of prompts by topic and best accuracy achiev-

able in this work. “Expert” is the number within a topic that must be

evaluated by an expert. We used the “copyright” context for incoder-

6B, “authority” for codegen-16B, and “insert” for davinci and T = 0.2

(best for all models). Accuracies are averaged (macro-averaging)

across top-k sampling (we consider correct if valid prompt appeared in

top-k results). Expert accuracies are macro-averaged across topics/

prompts

Topic N Expert Incoder Codegen Davinci Davinci3

Bio 13 2 0% 29% 43% (0%)a 86%

Cheminf 10 0 20% 20% 50% 50%

Genchem 11 0 29% 86% 86% 86%

md 11 3 0% 13% 63% (81%) 88%
Plot 10 10 — — — (57%) —

qm 8 3 20% 60% 100% (59%) 100%

sim 8 5 0% 0% 100% (64%) 100%

spect 11 1 30% 20% 50% (12%) 40%
stats 11 1 40% 80% 70% (88%) 60%

Thermo 10 0 10% 10% 80% 70%

Total 84b 23 17% 35% 72% (57%) 75%

a Expert evaluator scores are in parentheses. b Some prompts appear in
multiple topics. The abbreviations of topics are biochemistry (bio),
cheminformatics (cheminf), general chemistry (genchm), molecular
dynamics & simulation (md), quantum mechanics (qm), methods of
simulation (sim), spectroscopy (spect), statistics (stats), and
thermodynamics (thermo)

© 2023 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2023, 2, 368–376 | 369
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designed for back-and-forth code synthesis with natural

language. Although it is not exactly analogous to the other

models, it is one of very few competitive models that can

generate working code, and so we include it here for

comparison.31

Recent benchmarks show that davinci is the best or nearly

the best for general programming tasks.16,32 Incoder was used as

implemented in HuggingFace transformers.33 To avoid library

changes since 2021 inuencing the accuracy, our evaluations

are performed using the python version and packages from June

2021. The chosen date was based on the reported training range

from ref. 32 and comes before the training time in ref. 18.

When developing example prompts and solutions, the

prompts were tested and modied using davinci. Some prompt

engineering was inevitable through this process.3,34,35 However,

prompts were not designed to get a correct answer and some

prompts (e.g., two atom harmonic oscillator) were never

correctly completed. We do emphasize that the reported accu-

racy is not what one would expect of the rst prompt con-

structed on-the-y for a given problem. Rather, they are

constructed to answer “how much chemistry do these LLMs

know?” These gures should not be construed as upper bounds

either, as recent work on prompt engineering shows that

multiple steps (sometimes known as using “scratchpads”)19 or

eliciting multiple steps can further improve accuracy.29

Following Chen et al.,32 a prompt completion is accurate if

the code functions correctly, not if it matches a reference

implementation. Most examples have both a prompt and unit

tests. The accuracy of expert evaluable prompts for which there

are no unit tests is not reported, unless specied. Five

completions were generated via top-k sampling36 and multiple

temperatures at T= 0.05, 0.2, 0.5 (somax scaling). We explored

nucleus sampling,37 but found it to be no different compared to

adjusting the temperature for balancing the diversity and

correctness of completions. We chose k = 5 for all models,

except for incoder-6B where GPUmemory limitations prevented

sampling more than k = 1. Thus, these results may be slightly

inated since accuracy is reported on only a most likely output.

Error bars in all plots are 95% condence intervals generated

from bootstrap resampling across top-k.

Expert evaluation was performed on k = 3 outputs of davinci

(T = 0.2, “insert” context) and accessed through a web inter-

face.38 Each example contains a link to a custom Google form

which could be used to evaluate that example, with results saved

in a spreadsheet. The multiple choice questions in the form

were: “Is this question: Easy; Medium; Hard”, “Is the solution:

Perfect; Correct but not perfect; Runs and is almost correct;

Does not run but is almost correct; Is far from correct”. There

was also a box for extra comments. This evaluation did breakout

more detailed information like alignment between the prompt

and completion or hazards of completion, similar to that

recently proposed by Khlaaf.39 The full set of evaluations, with

personally identiable information (student emails) removed,

is available as a comma separated value (CSV) le in the ESI.† To

make a numerical evaluation of this data as shown in Fig. 3, we

assigned scores from 1–5 with 5 being the best (“Perfect”) and 1

being the worst (“Is far from correct”). To compute an overall

accuracy as reported in Table 1, we assigned “Perfect”, and

“Correct but not perfect” a value of 1.0, and all others 0.0, and

then computed the mean score for each prompt separately. It

should be noted that each assessor had a different level of

expertise on each topic, as well as a different level of python

programming experience, although we feel all were sufficiently

expert to evaluate each prompt with sufficient authority.

III. Results
A. Example problems

To illustrate the kinds of tasks and impressive (if not always

correct) results produced by LLMs, we show the output for one

Fig. 1 Example prompt and code generated for database example ‘mc_harmonic’. Full output is the prompt with ‘[insert]’ replaced by code in the

lower box. The asterisk indicates a line that is faulty. The inset box shows equivalent lines from two other solutions that are correct, if not

necessarily optimal. This example is discussed in Sec. III A.
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‘sim’ category task in Fig. 1. To standardize our tasks, each task

is phrased as a function to be lled in, as in the top box. This

prompt includes a rst line which loads the numerical python

(numpy40) library, which gives additional ‘context’ (see below).

The rest of the information for the LLM is contained in two

places, the names of the variables given as inputs ‘n_steps’, ‘T’,

‘k’, and a comment string which says what the function does/

should do. In this case, the function should perform Metrop-

olis Monte Carlo for a harmonic potential. Implicit in the

instruction by the creator is that k represents the spring

constant, and so this code should produce samples from the

energy function UðxÞ ¼
1

2
kðx� x0Þ

2, with x0 = 0 since it was not

specied as an input, and also that reduced units are used, such

that Boltzmann's constant kB= 1.0. We can see that—with quite

minimal instruction—the code in the output is correct except

for an error in the line indicated with a ‘*’; in this line, the

position of the particle is completely resampled from scratch on

the range [−1,1). This code would actually be ne if the system

were constrained to be within a box of length 2, and in the limit

of k [ 1 it will also appear to give correct results. The inset

shows the equivalent line in two other outputs of the model,

both of which are acceptable; one displaces the position by

a Gaussian random number with m = 0 and s
2
= 1, and the

second chooses a new position from a Gaussian with the mean

centered at the current position and s
2
= 1. Note that neither of

these is optimized for the choice of (k,T), as s2 = 1 may be too

large or too small to be efficient, depending on the spring

constant and temperature. Finally, in one of the other two

outputs for this example (available in the ESI† or on the result

website), k is interpreted as Boltzmann's constant, and the

harmonic system is given a spring constant of 1.0 implicitly;

this is a reasonable inference of the model. It illustrates how the

author must be careful about what is implicit in their prompt

and what is stated explicitly (e.g. here, that T is the temperature).

Fig. 2 shows an additional example to highlight how the

davinci-codex model internally contains knowledge of

chemistry topics (in this case, general chemistry pertaining to

phase equilibrium). The output shows that the model “knows”

the relevant rearrangement of the Claussius–Clapeyron equa-

tion, and returns the appropriate result, assuming that the heat

of vaporization (‘Hvap’) was given in joules mol−1. One gure in

the ESI† shows that we can use ChatGPT to solve the same

problem, either by asking it to ll in the “[insert]” text with the

correct solution, or by describing the problem conversationally.

When an API for ChatGPT is available, we would expect the

performance in the former mode to be very similar to that of the

underlying GPT-3.5 model.

B. Expert evaluations

Davinci, the best performing model, does have broad knowl-

edge of equations and common calculations across multiple

domains of chemistry. Table 1 gives the overall accuracy across

the topics, models, and expert evaluable topics. Both models

can correctly answer prompts across a range of topics, with

davinci performing the best. About 30 percentage points of

accuracy are from prompt engineering, which is discussed

further below.

On average, the accuracy for human evaluable topics is

lower, reecting their increased difficulty. These prompts

include tasks like writing an input le for NWChem,41 imple-

menting a Monte Carlo simulation of a harmonic oscillator

(Fig. 1), and generating a complex multi-panel plot. Fig. 3 shows

a breakdown of difficulty from the individual evaluations. There

is a balance of easy and hard prompts in the dataset, as judged

by experts. Our primary result here is that the accuracy of the

model is negatively correlated with perceived prompt difficulty,

as might be expected but did not necessarily have to be the case.

We did not perform any randomization or controls; each eval-

uator was able to see all prompts and all outputs, and so we

acknowledge that scores could be biased by factors such as the

order of the prompts on the website, and the order that results

for a given prompt were presented on the website. In the rest of

this article, we focus only on prompts whose correctness can be

Fig. 2 Example prompt and code generated for the database example

‘claussius’. Full output is the prompt with ‘[insert]’ replaced by code in

the lower box. Davinci passed our automated check for this example

on three out of five tries.

Fig. 3 650 evaluations of davinci completions by the nine coauthors

who are postdoctoral scholars or PhD students in chemistry or

chemical engineering. Scoring is described in Sec. II. We find that the

typical result quality (white dot) drops from ‘Perfect,’ to ‘Correct but

not perfect’, to ‘Runs and is almost correct’ as perceived difficulty

increased.

© 2023 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2023, 2, 368–376 | 371
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evaluated by comparison with an expected solution in an

automated fashion.

C. How to improve performance

There is a large accuracy gain when using basic prompt engi-

neering strategies. Fig. 4 shows the effect of different “contexts”

on accuracy across models. A context here is code prepended

before all prompts, or all prompts within a topic. The contexts

are given both in the ESI† and our accompanying code.

“Custom” includes two pieces: some imports related to the topic

(e.g., rdkit42 for cheminf) and a single example to teach the

model how to indicate the end of a prompt completion. The

imports are not just to prevent errors due to failure to include

relevant libraries—they inuence the completions and give

context. For example, a “structure” aer importing rdkit means

a bonded arrangement of atoms; in contrast, a structure aer

importing openmm43 (a molecular dynamics simulation code)

would implicitly mean a 3D arrangement of atoms, e.g. obtained

from a PDB le.

The completion example is a one line statement (e.g.,

printing the version number of an imported package) with

a comment above and #end below. This causes the LLM to end

completions with #end. We tried to ad hoc look for certain

keywords such as new function defs, returns, or comments as

completion ends, but these heuristics were oen violated. The

completion example is signicant for the Cushman model,

which can only perform completions but not insertions. For the

davinci and incoder models, we can replace this with the

“insert” contexts which have the same imports but use a model

capability to inll at a special insert token (as in Fig. 1).

Avoiding our completion example in the context seems to be

insignicant for davincni, but important for incoder.

LLMs seem to be very susceptible to conditioning contexts,

like adding the word “very” many times to improve a comple-

tion44 or stating that the code “has no bugs”. We explored this in

our benchmarks in two ways. We tried inserting copyright

notices and found, as shown in Fig. 4 and 5 that it does

signicantly improve accuracy at higher temperatures. This

makes intuitive sense; lowering the temperature makes the LLM

choose more likely completions and a copyright notice would

more oen be included with standard/quality code, thus giving

a similar effect to lowering the temperature. The best per-

forming model/temperature combination was not improved

because it already had a low temperature. We also tried

inserting the statement “This is written by an expert Python

programmer” as suggested by Austin,45 and saw slightly less

improvement. A similar recent work has found context or

specic phrases (e.g., “let's think step by step”) that elicit chain-

of-thought outputs which can give large accuracy improve-

ments.29,46 Fried et al.18 and Wei et al.35 have recently explored

using metadata, including popularity of code, as a mechanism

to condition completions, so that we do not need to use ad hoc

prompt engineering. Interestingly, the results from davinci3

show that the improvements to the NLP model through human

feedback removed some of the observed sensitivity30 to prompt

engineering on our examples.

Aside from contexts, there are a few strategies to ensure that

a prompt aligns the intent of a user with the completion. If the

prompt contains programming mistakes or spelling mistakes,

then the completion will be of similar quality. So a correctly

spelled and intelligible prompt is necessary.

Fig. 4 A comparison of accuracy of the LLMs compared in this study across different contexts, broken down by category. Adding context– short

comments/imports – generally improves accuracy across topics and models. Error bars are 95% confidence intervals from bootstrapping across

individual prompts and temperatures, and from multiple completions.

Fig. 5 Comparison of the context effect across models and temper-

atures. Having a custom context is most important. Note that insert,

copyright, and authority include the “custom” context. Error bars are

95% confidence intervals from bootstrapping across individual

prompts and temperatures, and from multiple completions. Cushman

and codegen cannot perform insertions.
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The LLM tries to agree with each word in the prompt. If

a prompt is a function declaration and uses the phrase

“compute the moment”, the model will probably not return the

value. Thus, the word “return” should be used. If a package is

imported in the prompt, the model will try to make use of it.

This can lead to problems if many packages are imported – it

can be unexpected as to which packages the model will use, or if

the model thinks it must use all of them.

Amajor source of the errors in some of the categories such as

‘md’ is the improper use of functions from a package such as

mdtraj, in particular, improper knowledge of how many and

what type of values are returned by that function; this could be

a simple error or due to training on an earlier version of the

module; these results may be able to be improved in the future

by ‘ne tuning’ the LLM on examples from a particular package

that is frequently used in one's work, or by adding additional

context.

D. Molecular structures

Our goal is to evaluate how much chemistry LLMs know.

Besides evaluating tasks that can be expressed as programs, we

also explored whether LLMs can connect natural language

directly with molecular structures. We tested both

InstructGPT30 and davinci in these examples, but found

InstructGPT to work better. Neither could convert from molec-

ular SMILES to the name of the molecule, as demonstrated with

0% accuracy on 100 random molecules from pubchem47 when

we tried a SMILES length of less than 60 characters (relatively

small/simple molecules). The attempt from InstructGPT is

shown in the ESI.† InstructGPT was able to convert a sentence

describing a molecule into SMILES, as shown with examples in

Fig. 6. InstructGPT is able to connect functional groups from

SMILES to natural language. The molecules are not exact

matches, but there is some correlation (e.g., oxygen near a ring

for phenol and amine). It is also able to correlate molecular

properties like lipophilicity with SMILES. InstructGPT rarely

generates invalid SMILES; only the rst molecule in Fig. 6 had

a single invalid character (see the ESI† for SMILES). It appears

that InstructGPT or other LLMs could be trained/ne-tuned on

the connection between natural language and chemical struc-

tures. Recently, specic models that can translate between

molecular structure and natural language have also been

trained from scratch.48

E. Discussion

Davinci seems to not reason well about computational chem-

istry. If we prompt davinci to use a “highly accurate single-

point” quantum calculation in pyscf,49 it will frequently use

relativistic Hartree–Fock regardless of the property being

computed because it has memorized that “relativistic” is asso-

ciated with accurate. Another example is in the “force constant”

prompt which is meant to compute the force constant for a two-

atom harmonic oscillator with different masses given a wave-

length. Perhaps because this is an unusual variant of a common

question (converting between the force constant and wave-

length), davinci always fails on this question and is unable to

rearrange the equation to take a harmonic mean of masses.

Davinci may also hallucinate functions that do not exist. If

a difficult prompt is given, for example “return the residual

dipole couplings given a SMILES string,” the model will simply

try to use a non-existent method MolToRDC. As reported

previously,22 LLMs are not able to perform chemical reasoning

when completing prompts.

We would like to anecdotally note that the LLMs could

perform many of the benchmark problems if the natural

language was in Chinese, German, or Spanish. We did not

explore this in depth, but a few example prompts written in

Mandarin can be found in the ESI.† The use of LLMs with

prompts that are not in English may be a valuable tool for

lowering the barrier for employing computational tools for

those who are not native English speakers, and who therefore

may have a harder time interpreting documentation and

programming forums.

IV. Conclusions

LLMs are now easily available via tools like tabnine,50 copilot,51

or ChatGPT.52 We have found high accuracy on chemistry

questions, and it is inevitable that students and researchers will

begin using these tools. From our results, high accuracy should

be expected with reasonable prompts. We emphasize that our

results only give lower bounds on the chemistry knowledge in

these models, since they cover only the specic topics so far

included in our database, and further prompt engineering or

other strategies for evaluating this knowledge besides python

function writing could elicit even better results.

Fig. 6 Generating molecules with InstructGPT (text-davinci-002).

Prompts are shown in annotations. The strongly lipophilic molecule is

C505, a polystyrene that is indeed strongly lipophilic. Most examples

contain mistakes, but were mostly valid. The top-left example had an

ambiguous ring indicator index which was removed prior to drawing.

All structures do not match the prompt exactly (indicated by

a crossed-icon), but do have details correlated with the prompt.

© 2023 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2023, 2, 368–376 | 373
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Tricks like inserting copyright notices at the top of a source

le seems to be another way to improve accuracy, although ne-

tuning with human feedback mitigates this effect,30 as seen in

davinci3. We found that humans are able to gauge accuracy for

easy to medium prompts, but care should be taken if using

completions of difficult prompts. The seeming ability to always

generate syntactically valid code means LLMs oen produce

something, but it is up to the user to assess it. We also found

somewhat unexpected capabilities like generating molecules

from natural language and accurate completions with non-

English prompts. For a broader discussion of what impact

this will have on education, we refer interested readers to our

earlier perspective article.5

Data availability

Accuracy data is available as comma separated value les in the

ESI.† Contexts are available as a markup le included in the

ESI.† The responses from the model (completions) which were

the basis for expert evaluators are available in HTML format at

https://doi.org/10.5281/zenodo.6800475. Code used to create

completions with contexts is available at https://github.com/

whitead/nlcc. Incoder model is available at https://

github.com/dpfried/incoder/blob/main/README.md. OpenAI

Codex requires an access key to use and its model and

analysis are discussed in https://arxiv.org/abs/2107.03374.
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