¥® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online

View Journal | View Issue

Assessment of chemistry knowledge in large

i") Check for updates‘
language models that generate codef

Cite this: Digital Discovery, 2023, 2,
368
Andrew D. White, © *3 Glen M. Hocky, & **¢ Heta A. Gandhi, @2 Mehrad Ansari, ©2

Sam Cox, 22 Geemi P. Wellawatte, ©¢ Subarna Sasmal, & ¢ Ziyue Yang, ©2
Kangxin Liu, © € Yuvraj Singh @€ and Willmor J. Pefia Ccoa ¢

In this work, we investigate the question: do code-generating large language models know chemistry? Our
results indicate, mostly yes. To evaluate this, we introduce an expandable framework for evaluating
chemistry knowledge in these models, through prompting models to solve chemistry problems posed as
coding tasks. To do so, we produce a benchmark set of problems, and evaluate these models based on
correctness of code by automated testing and evaluation by experts. We find that recent LLMs are able
to write correct code across a variety of topics in chemistry and their accuracy can be increased by 30
percentage points via prompt engineering strategies, like putting copyright notices at the top of files.
Our dataset and evaluation tools are open source which can be contributed to or built upon by future

Received 17th August 2022 h d will it . luating th f ¢ del
Accepted 19th January 2023 researchers, and will serve as a community resource for evaluating the performance of new models as
they emerge. We also describe some good practices for employing LLMs in chemistry. The general

DOI: 10.1039/d2dd00087c success of these models demonstrates that their impact on chemistry teaching and research is poised to

Open Access Article. Published on 26 January 2023. Downloaded on 7/2/2023 7:09:26 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery be enormous.

Environmental significance

Large language models (LLMs) can generate functional computer code. We assess the inherent ability of these models to solve problems in the domain of
chemistry, and also investigate whether intrinsic “knowledge” of chemistry is contained within LLMs. All the models evaluated here show some ability to solve
chemistry problems, including equations, chemical structures, units, and principles. As LLMs become more available, it leads us to ask what more will

researchers be able to do, and what more can we ask from students in classes, if repetitive tasks are easily solved using these approaches.

. Introduction

Large language models (LLMs) are multi-billion parameter
transformer neural networks' that are trained on enormous
collections of documents (a ‘corpus’) without supervision or
labels.> LLMs can perform multiple tasks like classifying natural
language, translating text, and document search. Perhaps the
most remarkable task of LLMs is to complete an input string of
text; via this mechanism (called causal language modeling),
LLMs can write unit tests, document function, write code from

“Department of Chemical Engineering, University of Rochester, USA. E-mail: andrew.
white@rochester.edu

*Vial Health Technology, Inc., USA

“Department of Chemistry, New York University, USA. E-mail: hockyg@nyu.edu
Simons Center for Computational Physical Chemistry, New York University, USA
‘Department of Chemistry, University of Rochester, USA

T Electronic supplementary information (ESI) available: Supporting figures,
tables, and text. Accuracy data are available as comma separated value files.
Contexts are available as a markup file. The responses from the model
(completions) which were the basis for expert evaluators are available in HTML
format at https://doi.org/10.5281/zenodo.6800475. See DOI:
https://doi.org/10.1039/d2dd00087c

368 | Digital Discovery, 2023, 2, 368-376

a doc string, answer questions, and complete stoichiometric
equations.>*

We previously discussed the outlook of LLMs in chemistry.?
In the few months since then, LLMs have been both developed
for specific chemistry problems®” and general LLMs have been
applied in chemistry.*®* On Nov 30, 2022, OpenAl released an
interactive interface to an LLM termed ChatGPT (ref. 10) which
substantially increased interest in this area as well as use by
scientists for coding and writing tasks. An open question for
LLMs such as GPT-3,® T5," or GPT-neo (ref. 12) that are trained
on very large and varied textual data is if they can be applied in
domains like chemistry, which have specialized language and
knowledge. In our initial work,> we found that relationships
between SMILES and natural language is possible with GPT-3.
SMILES is the standard method of representing molecules as
strings.*® It is even possible to loosely edit structures vig natural
language (see Fig. 6)."**> However, the extent to which LLMs can
be directly applied in chemistry in the broad context of research
and teaching is unexplored. The large amount of specific
domain knowledge required to solve chemistry problems may
limit applicability of general LLMs. For example, recent work

© 2023 The Author(s). Published by the Royal Society of Chemistry

Open Access Article. Published on 26 January 2023. Downloaded on 7/2/2023 7:09:26 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

has found that knowledge of the periodic table of elements
requires very high parameter counts.*

Recent comparisons of LLMs that generate code can be
found in ref. 16. Here, we focus our study on whether LLMs that
generate code'” can be applied to chemistry tasks of a compu-
tational nature (both computational chemistry problems, and
general tasks which can be expressed as simple computer
programs, such as ranking elements by ionic radius). Most
LLMs that generate computer code are causal decoder-only
models'”**—a user provides a sequence of text (called the
prompt) and it proposes a continuation of the text (the
completion).?® There are LLMs trained on code that can infill or
match encoder/decoder natural language to code like Code-
BERT,*" but they are typically used for embedding code for tasks
like classification, document retrieval, or translating code to
natural language. Because it is not reasonable to use encoder-
decoder or encoder-only models to generate code or answer
questions with open-ended length, this paper explores solely
decoder-only causal language models.

Evaluating LLMs' knowledge of chemistry should be distin-
guished from capability to reason or understand. LLMs can
make compelling completions, but are incapable of reasoning
and demonstrate superficial understanding.**** Our goal is to
evaluate LLMs' ability to correlate natural language, equations,
code, and heuristics of chemistry.

[I. Methods

We have compiled a categorized set of chemistry and related
example prompts for benchmarking code-generating LLMs in
a public repository.> To generate these problems, we first

Table 1 The number of prompts by topic and best accuracy achiev-
able in this work. “Expert” is the number within a topic that must be
evaluated by an expert. We used the "copyright” context for incoder-
6B, “authority” for codegen-16B, and “insert” for davinci and T = 0.2
(best for all models). Accuracies are averaged (macro-averaging)
across top-k sampling (we consider correct if valid prompt appeared in
top-k results). Expert accuracies are macro-averaged across topics/
prompts

Topic N Expert Incoder Codegen Davinci Davinci3
Bio 13 2 0% 29% 43% (0%)" 86%
Cheminf 10 0 20% 20% 50% 50%
Genchem 11 0 29% 86% 86% 86%
md 1 3 0% 13% 63% (81%) 88%
Plot 10 10 — — — (57%) —
qm 8 3 20% 60% 100% (59%) 100%
sim 8 5 0% 0% 100% (64%) 100%
spect 11 1 30% 20% 50% (12%) 40%
stats 1 1 40% 80% 70% (88%) 60%
Thermo 10 0 10% 10% 80% 70%
Total 84> 23 17% 35% 72% (57%) 75%

“ Expert evaluator scores are in parentheses. ” Some prompts appear in
multiple topics. The abbreviations of topics are biochemistry (bio),
cheminformatics (cheminf), general chemistry (genchm), molecular
dynamics & simulation (md), quantum mechanics (qm), methods of
simulation (sim), spectroscopy (spect), statistics (stats), and
thermodynamics (thermo)

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

decided upon a list of categories of chemistry and chemical
engineering knowledge, listed in Table 1, and set a goal of
having at least 10 examples in each category for our initial
database of problems. Members of our research groups (the
authors of this paper), who we consider to have sufficient
expertise in these areas due to formal schooling, research, and
teaching experience, contributed the prompts and reference
solutions for these categories.

The examples in this table span a range of topics that we
consider common questions across chemistry fields. There is
some representation of computational chemistry research topics
(categories corresponding to performing chemical simulations
(sim), analyzing molecular dynamics simulations (md), chemical
informatics (cheminf), and some quantum mechanics (qm)), but
this constitutes less than half of the initial prompts created by us.
The rest correspond to typical questions that one might
encounter in general chemistry (genchem), biochemistry (bio),
physical chemistry (thermodynamics, quantum mechanics, and
spectroscopy), and in laboratory classes (plotting and statistics).

Within this set of topics, some examples were labeled as only
expert evaluable, where automated evaluation is infeasible or
insufficient (e.g. plotting). The total number of examples is 84,
of which 25 were expert evaluable, and the accuracy is 75% for
the best performing model.

There is a strong correlation between the model parameter
count and accuracy,” so we focus only on the largest models
with more than 1B parameters. The architectures of models are
all decoder-only like GPT-3 (ref. 3) with the ability to insert
completions,* (except when noted). The first model is a GPT-3
12B fine-tuned on code (Codex) abbreviated as “cushman”. It
is known as code-cushman-001 in the OpenAl APL.*” This is
modified from the original one in Austin et al.'” somewhat and
is described as “a stronger, multilingual version of the Codex
12B model.”.*® We also used code-davinci-002, abbreviated as
“davinci”. This model is part of the category of “GPT-3.5”
models that are derived from GPT-3.** The number of parame-
ters in davinci-class models is not public information, but may
match the 175B parameters of the model described in the GPT-
3.5 paper.*® We also considered the recent text-davinci-003
model which is derived from code-davinci-002 with a reinforce-
ment-learning adaption from human user feedback® -
although this model became available only after human evalu-
ation (below) was complete, so our analysis is reported only on
automated evaluations. This model is denoted as ‘davinci3’
here. Finally, from publicly available information we know that
ChatGPT is based on a slightly modified version of GPT-3.5, and
so we expect its performance to be comparable to that of the
model; however, it does not have an API that would allow us to
systematically probe any differences in our study. One example
use of ChatGPT is given in the ESL.}

We also study two “incoder” models from Fried et al'®
trained on code only. We chose incoder because it is able to
infill code in addition to completing code prompts, which gives
a more direct comparison, and it has generally good perfor-
mance. Lastly, we consider the ‘codegen’ model,> which is
another decoder-only model trained on a similar dataset to
‘incoder’. It was not trained for infilling, because it was

Digital Discovery, 2023, 2, 368-376 | 369

Open Access Article. Published on 26 January 2023. Downloaded on 7/2/2023 7:09:26 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

designed for back-and-forth code synthesis with natural
language. Although it is not exactly analogous to the other
models, it is one of very few competitive models that can
generate working code, and so we include it here for
comparison.*

Recent benchmarks show that davinci is the best or nearly
the best for general programming tasks.*®*> Incoder was used as
implemented in HuggingFace transformers.*® To avoid library
changes since 2021 influencing the accuracy, our evaluations
are performed using the python version and packages from June
2021. The chosen date was based on the reported training range
from ref. 32 and comes before the training time in ref. 18.

When developing example prompts and solutions, the
prompts were tested and modified using davinci. Some prompt
engineering was inevitable through this process.*>**** However,
prompts were not designed to get a correct answer and some
prompts (e.g., two atom harmonic oscillator) were never
correctly completed. We do emphasize that the reported accu-
racy is not what one would expect of the first prompt con-
structed on-the-fly for a given problem. Rather, they are
constructed to answer “how much chemistry do these LLMs
know?” These figures should not be construed as upper bounds
either, as recent work on prompt engineering shows that
multiple steps (sometimes known as using “scratchpads”)* or
eliciting multiple steps can further improve accuracy.”

Following Chen et al.,** a prompt completion is accurate if
the code functions correctly, not if it matches a reference
implementation. Most examples have both a prompt and unit
tests. The accuracy of expert evaluable prompts for which there
are no unit tests is not reported, unless specified. Five
completions were generated via top-k sampling®® and multiple
temperatures at 7= 0.05, 0.2, 0.5 (softmax scaling). We explored
nucleus sampling,*” but found it to be no different compared to
adjusting the temperature for balancing the diversity and
correctness of completions. We chose k£ = 5 for all models,

Prompt

View Article Online

Paper

except for incoder-6B where GPU memory limitations prevented
sampling more than k = 1. Thus, these results may be slightly
inflated since accuracy is reported on only a most likely output.
Error bars in all plots are 95% confidence intervals generated
from bootstrap resampling across top-k.

Expert evaluation was performed on k = 3 outputs of davinci
(T = 0.2, “insert” context) and accessed through a web inter-
face.®® Each example contains a link to a custom Google form
which could be used to evaluate that example, with results saved
in a spreadsheet. The multiple choice questions in the form
were: “Is this question: Easy; Medium; Hard”, “Is the solution:
Perfect; Correct but not perfect; Runs and is almost correct;
Does not run but is almost correct; Is far from correct”. There
was also a box for extra comments. This evaluation did breakout
more detailed information like alignment between the prompt
and completion or hazards of completion, similar to that
recently proposed by Khlaaf.** The full set of evaluations, with
personally identifiable information (student emails) removed,
is available as a comma separated value (CSV) file in the ESI.} To
make a numerical evaluation of this data as shown in Fig. 3, we
assigned scores from 1-5 with 5 being the best (“Perfect”) and 1
being the worst (“Is far from correct”). To compute an overall
accuracy as reported in Table 1, we assigned “Perfect”, and
“Correct but not perfect” a value of 1.0, and all others 0.0, and
then computed the mean score for each prompt separately. It
should be noted that each assessor had a different level of
expertise on each topic, as well as a different level of python
programming experience, although we feel all were sufficiently
expert to evaluate each prompt with sufficient authority.

1. Results

A. Example problems

To illustrate the kinds of tasks and impressive (if not always
correct) results produced by LLMs, we show the output for one

import numpy as np

def run_mc(n_steps, T, k):

W

nun

[insert]
return traj

This function performs metropolis monte carlo sampling of a harmonic
potential at temperature T and returns the trajectory

nserted code - output (1)

traj = np.zeros(n_steps)
traj[0] = np.random.uniform(-1, 1)
for i in range(l, n_steps):

* x_new = np.random.uniform(-1, 1)
dE =
if dE x 0fF

traj[i]
else:
if np.random.uniform(0,
traj[i] = x_new
else:
traj[i] = traj[i-1]

= x_new

(2) X_new
(3) X new

traj[i-1] + np.random.randn()
np.random.normal (traj[i-1], 1)

o

0.5%k*(x_new**2 — traj[i-1]**2)

1) < np.exp(-dE/T):

Fig.1 Example promptand code generated for database example ‘mc_harmonic’. Full output is the prompt with ‘[insert]’ replaced by code in the
lower box. The asterisk indicates a line that is faulty. The inset box shows equivalent lines from two other solutions that are correct, if not

necessarily optimal. This example is discussed in Sec. Il A.

370 | Digital Discovery, 2023, 2, 368-376

© 2023 The Author(s). Published by the Royal Society of Chemistry

Open Access Article. Published on 26 January 2023. Downloaded on 7/2/2023 7:09:26 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

‘sim’ category task in Fig. 1. To standardize our tasks, each task
is phrased as a function to be filled in, as in the top box. This
prompt includes a first line which loads the numerical python
(numpy*°) library, which gives additional ‘context’ (see below).
The rest of the information for the LLM is contained in two
places, the names of the variables given as inputs ‘n_steps’, ‘T,
‘, and a comment string which says what the function does/
should do. In this case, the function should perform Metrop-
olis Monte Carlo for a harmonic potential. Implicit in the
instruction by the creator is that k represents the spring
constant, and so this code should produce samples from the

. 1 . . .
energy function U(x) = 3 k(x — xo)?, with xo = 0 since it was not

specified as an input, and also that reduced units are used, such
that Boltzmann's constant kg = 1.0. We can see that—with quite
minimal instruction—the code in the output is correct except
for an error in the line indicated with a ‘*; in this line, the
position of the particle is completely resampled from scratch on
the range [—1,1). This code would actually be fine if the system
were constrained to be within a box of length 2, and in the limit
of k > 1 it will also appear to give correct results. The inset
shows the equivalent line in two other outputs of the model,
both of which are acceptable; one displaces the position by
a Gaussian random number with u = 0 and ¢* = 1, and the
second chooses a new position from a Gaussian with the mean
centered at the current position and ¢* = 1. Note that neither of
these is optimized for the choice of (k,T), as ¢> = 1 may be too
large or too small to be efficient, depending on the spring
constant and temperature. Finally, in one of the other two
outputs for this example (available in the ESIt or on the result
website), k is interpreted as Boltzmann's constant, and the
harmonic system is given a spring constant of 1.0 implicitly;
this is a reasonable inference of the model. It illustrates how the
author must be careful about what is implicit in their prompt
and what is stated explicitly (e.g. here, that Tis the temperature).

Fig. 2 shows an additional example to highlight how the
davinci-codex model internally contains knowledge of

Prompt
import math
import sys

def claussius(HVap, T1, P1, T2):
This function returns the phase
transition pressure at temperature T2
given a heat of vaporization HVap,
and and reference temperature and
pressure Tl and Pl
[insert]
return P2

Inserted code - output (4)

P2 = Pl*math.exp((HVap/8.314)*
((1/T1)=(1/T2)))

Fig.2 Example prompt and code generated for the database example
‘claussius’. Full output is the prompt with ‘[insert]’ replaced by code in
the lower box. Davinci passed our automated check for this example
on three out of five tries.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

chemistry topics (in this case, general chemistry pertaining to
phase equilibrium). The output shows that the model “knows”
the relevant rearrangement of the Claussius-Clapeyron equa-
tion, and returns the appropriate result, assuming that the heat
of vaporization (‘Hvap’) was given in joules mol . One figure in
the ESIT shows that we can use ChatGPT to solve the same
problem, either by asking it to fill in the “[insert]” text with the
correct solution, or by describing the problem conversationally.
When an API for ChatGPT is available, we would expect the
performance in the former mode to be very similar to that of the
underlying GPT-3.5 model.

B. Expert evaluations

Davinci, the best performing model, does have broad knowl-
edge of equations and common calculations across multiple
domains of chemistry. Table 1 gives the overall accuracy across
the topics, models, and expert evaluable topics. Both models
can correctly answer prompts across a range of topics, with
davinci performing the best. About 30 percentage points of
accuracy are from prompt engineering, which is discussed
further below.

On average, the accuracy for human evaluable topics is
lower, reflecting their increased difficulty. These prompts
include tasks like writing an input file for NWChem,** imple-
menting a Monte Carlo simulation of a harmonic oscillator
(Fig. 1), and generating a complex multi-panel plot. Fig. 3 shows
a breakdown of difficulty from the individual evaluations. There
is a balance of easy and hard prompts in the dataset, as judged
by experts. Our primary result here is that the accuracy of the
model is negatively correlated with perceived prompt difficulty,
as might be expected but did not necessarily have to be the case.
We did not perform any randomization or controls; each eval-
uator was able to see all prompts and all outputs, and so we
acknowledge that scores could be biased by factors such as the
order of the prompts on the website, and the order that results
for a given prompt were presented on the website. In the rest of
this article, we focus only on prompts whose correctness can be

6
>
o]
— 4
[}
=}
o
i}
— 2
s
7
Q
~
0 -
n=300 n=242 n=108
T T T
Easy Medium Hard

Is this question

Fig. 3 650 evaluations of davinci completions by the nine coauthors
who are postdoctoral scholars or PhD students in chemistry or
chemical engineering. Scoring is described in Sec. II. We find that the
typical result quality (white dot) drops from ‘Perfect,” to '‘Correct but
not perfect’, to ‘Runs and is almost correct’ as perceived difficulty
increased.

Digital Discovery, 2023, 2, 368-376 | 371

Open Access Article. Published on 26 January 2023. Downloaded on 7/2/2023 7:09:26 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

evaluated by comparison with an expected solution in an
automated fashion.

C. How to improve performance

There is a large accuracy gain when using basic prompt engi-
neering strategies. Fig. 4 shows the effect of different “contexts”
on accuracy across models. A context here is code prepended
before all prompts, or all prompts within a topic. The contexts
are given both in the ESIf and our accompanying code.
“Custom” includes two pieces: some imports related to the topic
(e.g., rdkit® for cheminf) and a single example to teach the
model how to indicate the end of a prompt completion. The
imports are not just to prevent errors due to failure to include
relevant libraries—they influence the completions and give
context. For example, a “structure” after importing rdkit means
a bonded arrangement of atoms; in contrast, a structure after
importing openmm* (a molecular dynamics simulation code)
would implicitly mean a 3D arrangement of atoms, e.g. obtained
from a PDB file.

The completion example is a one line statement (e.g.,
printing the version number of an imported package) with
a comment above and #end below. This causes the LLM to end
completions with #end. We tried to ad hoc look for certain
keywords such as new function defs, returns, or comments as
completion ends, but these heuristics were often violated. The
completion example is significant for the Cushman model,
which can only perform completions but not insertions. For the
davinci and incoder models, we can replace this with the
“insert” contexts which have the same imports but use a model
capability to infill at a special insert token (as in Fig. 1).
Avoiding our completion example in the context seems to be
insignificant for davincni, but important for incoder.

LLMs seem to be very susceptible to conditioning contexts,
like adding the word “very” many times to improve a comple-
tion** or stating that the code “has no bugs”. We explored this in
our benchmarks in two ways. We tried inserting copyright
notices and found, as shown in Fig. 4 and 5 that it does
significantly improve accuracy at higher temperatures. This
makes intuitive sense; lowering the temperature makes the LLM
choose more likely completions and a copyright notice would
more often be included with standard/quality code, thus giving

View Article Online

Paper

codegen-16B model incoder-6B model cushman model

> b,
%o.5 Hl } [y
5 L “l
5 b4
5 | |
i ok B
0.0 a0 e i e e
@ & % X
& x° ef’ 60 K/’d
) A,Qe g 0‘
(9 ' S Y
&S
davinci model davinci3 model
i
5, T | | T I temperature
a5 &HiHH | mlH ok 5 5
] ot 0.2
o 0.5
2 g
0.0 T e e
@ S X e & X X
& LT é“’d & £ F 4,)&
Al &9 L& & 9
[% Qq < [% Q“‘ <&
¥ SR

Fig. 5 Comparison of the context effect across models and temper-
atures. Having a custom context is most important. Note that insert,
copyright, and authority include the “custom” context. Error bars are
95% confidence intervals from bootstrapping across individual
prompts and temperatures, and from multiple completions. Cushman
and codegen cannot perform insertions.

a similar effect to lowering the temperature. The best per-
forming model/temperature combination was not improved
because it already had a low temperature. We also tried
inserting the statement “This is written by an expert Python
programmer” as suggested by Austin,*® and saw slightly less
improvement. A similar recent work has found context or
specific phrases (e.g., “let's think step by step”) that elicit chain-
of-thought outputs which can give large accuracy improve-
ments.**® Fried et al.*® and Wei et al.** have recently explored
using metadata, including popularity of code, as a mechanism
to condition completions, so that we do not need to use ad hoc
prompt engineering. Interestingly, the results from davinci3
show that the improvements to the NLP model through human
feedback removed some of the observed sensitivity® to prompt
engineering on our examples.

Aside from contexts, there are a few strategies to ensure that
a prompt aligns the intent of a user with the completion. If the
prompt contains programming mistakes or spelling mistakes,
then the completion will be of similar quality. So a correctly
spelled and intelligible prompt is necessary.

stats thermo cheminf bio spectroscopy
1] 1 1 |
19)
©
o]
S
0
0
<0+ -
" md genchem qm sim
>
@ model
; codegen-16B
8 incoder-6B
< 0]
T T T T T T T T T T T T T cushman
& o F D & & o F D & o D P R S - davinci
X5 [R Y o [R «, [R y o e) '
@ » 5§ < @ " % @ > 5§ < @ @ » $: :
WO & o WO & o 2 & o D7 &) davinci3
R M LS PSS SRS
S S S S

Fig.4 A comparison of accuracy of the LLMs compared in this study across different contexts, broken down by category. Adding context — short
comments/imports — generally improves accuracy across topics and models. Error bars are 95% confidence intervals from bootstrapping across
individual prompts and temperatures, and from multiple completions.

372 | Digital Discovery, 2023, 2, 368-376

© 2023 The Author(s). Published by the Royal Society of Chemistry

Open Access Article. Published on 26 January 2023. Downloaded on 7/2/2023 7:09:26 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

The LLM tries to agree with each word in the prompt. If
a prompt is a function declaration and uses the phrase
“compute the moment”, the model will probably not return the
value. Thus, the word “return” should be used. If a package is
imported in the prompt, the model will try to make use of it.
This can lead to problems if many packages are imported - it
can be unexpected as to which packages the model will use, or if
the model thinks it must use all of them.

A major source of the errors in some of the categories such as
‘md’ is the improper use of functions from a package such as
mdtraj, in particular, improper knowledge of how many and
what type of values are returned by that function; this could be
a simple error or due to training on an earlier version of the
module; these results may be able to be improved in the future
by ‘fine tuning’ the LLM on examples from a particular package
that is frequently used in one's work, or by adding additional
context.

D. Molecular structures

Our goal is to evaluate how much chemistry LLMs know.
Besides evaluating tasks that can be expressed as programs, we
also explored whether LLMs can connect natural language
directly with molecular structures. We tested both
InstructGPT** and davinci in these examples, but found
InstructGPT to work better. Neither could convert from molec-
ular SMILES to the name of the molecule, as demonstrated with
0% accuracy on 100 random molecules from pubchem*” when
we tried a SMILES length of less than 60 characters (relatively
small/simple molecules). The attempt from InstructGPT is
shown in the ESI.{ InstructGPT was able to convert a sentence

amEmag
ans "y

. ", SPPTTLELT P
P b]

.
o0 % * o* 3
o o S
3
0 .
N o .
» . .
H .]
. " .
. 0
* S N *
. o0 AR
%oy 0® o
0 *

. .
s .
"t"ragmunnn®

This is a drug-like
molecule with a tertiary

This is a drug-like
molecule with a bicyclic

amine and phenol ring
smmmma,
asEEEEEE, eun® y
P 2 ~ s e o
. .
* R * PN
* * . . *

* * * * * .
* *: * & * .
5 . . o &
L i of O‘ -
L P s :

. * -
. % 3 . - 0
. * 0 *
2 R % ., o 0
0 3 K . o o
.
‘0 O‘ t‘ *

. *

.'."'----.----"‘
This is a very lipophilic
drug-like molecule with
two rings

This is a weakly
lipophilic drug-like
molecule with two rings

Fig. 6 Generating molecules with InstructGPT (text-davinci-002).
Prompts are shown in annotations. The strongly lipophilic molecule is
Csos, @ polystyrene that is indeed strongly lipophilic. Most examples
contain mistakes, but were mostly valid. The top-left example had an
ambiguous ring indicator index which was removed prior to drawing.
All structures do not match the prompt exactly (indicated by
a crossed-icon), but do have details correlated with the prompt.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

describing a molecule into SMILES, as shown with examples in
Fig. 6. InstructGPT is able to connect functional groups from
SMILES to natural language. The molecules are not exact
matches, but there is some correlation (e.g., oxygen near a ring
for phenol and amine). It is also able to correlate molecular
properties like lipophilicity with SMILES. InstructGPT rarely
generates invalid SMILES; only the first molecule in Fig. 6 had
a single invalid character (see the ESIT for SMILES). It appears
that InstructGPT or other LLMs could be trained/fine-tuned on
the connection between natural language and chemical struc-
tures. Recently, specific models that can translate between
molecular structure and natural language have also been
trained from scratch.*®

E. Discussion

Davinci seems to not reason well about computational chem-
istry. If we prompt davinci to use a “highly accurate single-
point” quantum calculation in pyscf,* it will frequently use
relativistic Hartree-Fock regardless of the property being
computed because it has memorized that “relativistic” is asso-
ciated with accurate. Another example is in the “force constant”
prompt which is meant to compute the force constant for a two-
atom harmonic oscillator with different masses given a wave-
length. Perhaps because this is an unusual variant of a common
question (converting between the force constant and wave-
length), davinci always fails on this question and is unable to
rearrange the equation to take a harmonic mean of masses.

Davinci may also hallucinate functions that do not exist. If
a difficult prompt is given, for example “return the residual
dipole couplings given a SMILES string,” the model will simply
try to use a non-existent method MolToRDC. As reported
previously,”* LLMs are not able to perform chemical reasoning
when completing prompts.

We would like to anecdotally note that the LLMs could
perform many of the benchmark problems if the natural
language was in Chinese, German, or Spanish. We did not
explore this in depth, but a few example prompts written in
Mandarin can be found in the ESI.f The use of LLMs with
prompts that are not in English may be a valuable tool for
lowering the barrier for employing computational tools for
those who are not native English speakers, and who therefore
may have a harder time interpreting documentation and
programming forums.

IV. Conclusions

LLMs are now easily available via tools like tabnine,* copilot,*
or ChatGPT.”” We have found high accuracy on chemistry
questions, and it is inevitable that students and researchers will
begin using these tools. From our results, high accuracy should
be expected with reasonable prompts. We emphasize that our
results only give lower bounds on the chemistry knowledge in
these models, since they cover only the specific topics so far
included in our database, and further prompt engineering or
other strategies for evaluating this knowledge besides python
function writing could elicit even better results.

Digital Discovery, 2023, 2, 368-376 | 373

Open Access Article. Published on 26 January 2023. Downloaded on 7/2/2023 7:09:26 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

Tricks like inserting copyright notices at the top of a source
file seems to be another way to improve accuracy, although fine-
tuning with human feedback mitigates this effect,*® as seen in
davinci3. We found that humans are able to gauge accuracy for
easy to medium prompts, but care should be taken if using
completions of difficult prompts. The seeming ability to always
generate syntactically valid code means LLMs often produce
something, but it is up to the user to assess it. We also found
somewhat unexpected capabilities like generating molecules
from natural language and accurate completions with non-
English prompts. For a broader discussion of what impact
this will have on education, we refer interested readers to our
earlier perspective article.®

Data availability

Accuracy data is available as comma separated value files in the
ESI.t Contexts are available as a markup file included in the
ESL+ The responses from the model (completions) which were
the basis for expert evaluators are available in HTML format at
https://doi.org/10.5281/zenodo.6800475. Code used to create
completions with contexts is available at https://github.com/
whitead/nlce. Incoder model is available at https://
github.com/dpfried/incoder/blob/main/README.md. OpenAl
Codex requires an access key to use and its model and
analysis are discussed in https://arxiv.org/abs/2107.03374.

Author contributions

A. D. W. and G. M. H. wrote NLCC software and designed the
nlcc-database, website, and human evaluation form. They
contributed examples to the nlcc-data repository, performed
data analysis, and drafted the manuscript. All other authors
contributed examples to the nlcc-data repository, participated
in the expert evaluation, and assisted in writing the manuscript.

Conflicts of interest

After submission of this manuscript, A. D. W. worked as a paid
consultant for OpenAl, the developers of some of the models
presented in this work.

Acknowledgements

Research reported in this work was supported by the National
Institute of General Medical Sciences of the National Institutes of
Health under award number R35GM137966 (to A. D. W.) and
R35GM138312 (to G. M. H.). HAG was supported by NSF award
1751471. MA, SC, and Z. Y. were supported by NIH award
R35GM137966. G. P. W. was supported by NSF award 1764415. S.
S.and Y. S. were partially supported by NIH award R35GM 138312,
WJPC by R35GM138312-02S1, and K. L. partially by Department
of Energy award DESC0020464. S. S. and K. L. were also partially
supported by the Simons Foundation Grant No. 839534. We
thank Drs Sanjib Paul, David Gomez, and Navneeth Gokul who
also contributed some examples to the repository.

374 | Digital Discovery, 2023, 2, 368-376

View Article Online

Paper

References

1 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you
need, Adv. Neural Inf. Process. Syst., 2017, vol. 30.

2]J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, Bert: pre-
training of deep bidirectional transformers for language
understanding, arXiv, 2018, preprint, arXiv:1810.04805,
DOI: 10.48550/arXiv.1810.04805.

3 T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
et al., Language models are few-shot learners, Adv. Neural
Inf. Process. Syst., 2020, 33, 1877.

4 A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid,
A. Fisch, A. R. Brown, A. Santoro, A. Gupta, A. Garriga-
Alonso, et al., Beyond the imitation game: quantifying and
extrapolating the capabilities of language models, arXiv,
2022, preprint, arXiv:2206.04615, DOI: 10.48550/
arXiv.2206.04615.

5 G. M. Hocky and A. D. White, Natural language processing
models that automate programming will transform
chemistry research and teaching, Digit. Discovery, 2022, 1, 79.

6 S. Wang, Y. Guo, Y. Wang, H. Sun and J. Huang, Smiles-bert:
large scale unsupervised pre-training for molecular property
prediction, in Proceedings of the 10th ACM international
conference on bioinformatics, computational biology and
health informatics, 2019, pp. 429-436.

7 N. Frey, R. Soklaski, S. Axelrod, S. Samsi, R. Gomez-
Bombarelli, C. Coley and V. Gadepally, Neural scaling of
deep chemical models, ChemRxiv, 2022, preprint, DOI:
10.26434/chemrxiv-2022-3s512.

8 D. Flam-Shepherd, K. Zhu and A. Aspuru-Guzik, Language
models can learn complex molecular distributions, Nat.
Commun., 2022, 13, 1.

9]. Ross, B. Belgodere, V. Chenthamarakshan, I. Padhi,
Y. Mroueh and P. Das, Do large scale molecular language
representations capture important structural information?,
arXiv, 2021, preprint, arXiv:2106.09553, DOI: 10.48550/
arXiv.2106.09553.

10 https://openai.com/blog/chatgpt/.

11 C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, P. J. Liu, et al, Exploring the
limits of transfer learning with a unified text-to-text
transformer, J. Mach. Learn. Res., 2020, 21, 1.

12 L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe,
C. Foster, J. Phang, H. He, A. Thite, N. Nabeshima, et al.,
The pile: An 800 gb dataset of diverse text for language
modeling, arXiv, 2020, preprint, arXiv:2101.00027, DOI:
10.48550/arXiv.2101.00027.

13 D. Weininger, Smiles, a chemical language and information
system. 1. introduction to methodology and encoding rules,
J. Chem. Inf. Comput. Sci., 1988, 28, 31.

14 C. Nantasenamat, “would be cool to have gpt-3 generate new
chemical structures in smiles notation?”, Twitter,
1516794237391863810, 2022 A. D. White, “as suggested by
@thedataprof, gpt-3 can actually generate molecules. very

© 2023 The Author(s). Published by the Royal Society of Chemistry

Open Access Article. Published on 26 January 2023. Downloaded on 7/2/2023 7:09:26 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

clever idea! prompt was ”the smiles for this drug-like
molecular are:”, Twitter, 1516795519284228106, 2022 P.
Isola, “language-conditional models can act a bit like
decision transformers, in that you can prompt them with
a desired level of “reward”. e.g.,, want prettier #dalle
creations? “just ask” by adding “[very]An beautiful”:”,
Twitter, 1532189616106881027, 2022 J. Austin, “we found
that code models get better when you prompt them with
I'm an expert python programmer. the new anthropic
paper did something similar, prefixing the model’s
response with i've tested this function myself so i know
that it’s correct:, Twitter, 1515063524258627586, 2022.

15 C. Nantasenamat, “would be cool to have gpt-3 generate new
chemical structures in smiles notation?”, Twitter,
1516794237391863810, 2022 A. D. White, “as suggested by
@thedataprof, gpt-3 can actually generate molecules. very
clever idea! prompt was ”the smiles for this drug-like
molecular are:”, Twitter, 1516795519284228106, 2022 P.
Isola, “language-conditional models can act a bit like
decision transformers, in that you can prompt them with
a desired level of “reward”. e.g.,, want prettier #dalle
creations? “just ask” by adding ’[very]An beautiful”:”,
Twitter, 1532189616106881027, 2022 J. Austin, “we found
that code models get better when you prompt them with
I'm an expert python programmer. the new anthropic
paper did something similar, prefixing the model’s
response with i've tested this function myself so i know
that it’s correct:, Twitter, 1515063524258627586, 2022.

16 F. F. Xu, U. Alon, G. Neubig and V. J. Hellendoorn, A
systematic evaluation of large language models of code, in
Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, 2022, pp. 1-10.

17 J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski,
D. Dohan, E. Jiang, C. Cai, M. Terry, Q. Le, et al., Program
synthesis with large language models, arXiv, 2021,
preprint, arXiv:2108.07732, DOI: 10.1145/3520312.3534862.

18 D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi,
R. Zhong, W.-t. Yih, L. Zettlemoyer and M. Lewis, Incoder:
a generative model for code infilling and synthesis, arXiv,
2022, preprint, arXiv:2204.05999, DOI: 10.48550/
arXiv.2204.05999.

19 E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou,
S. Savarese and C. Xiong, A conversational paradigm for
program synthesis, arXiv, 2022, preprint, arXiv:2203.13474,
DOI: 10.48550/arXiv.2203.13474.

20 A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever,
et al., Language models are unsupervised multitask learners,
OpenAl blog, 2019, vol. 1, p. 9.

21 Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, et al, Codebert: A pre-
trained model for programming and natural languages,
arXiv, 2020, preprint, arXiv:2002.08155, DOI: 10.48550/
arXiv.2002.08155.

22 E. M. Bender and A. Koller, Climbing towards nlu: on
meaning, form, and understanding in the age of data, in
Proceedings of the 58th annual meeting of the association for
computational linguistics, 2020, pp. 5185-5198.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

23 E. M. Bender, T. Gebru, A. McMillan-Major and
S. Shmitchell, On the dangers of stochastic parrots: Can
language models be too big?, in Proceedings of the 2021
ACM Conference on Fairness, Accountability, and
Transparency, 2021, pp. 610-623.

24 https://github.com/ur-whitelab/nlcc-data.

25 P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soyluy,
M. Yasunaga, Y. Zhang, D. Narayanan, Y. Wu, A. Kumar,
et al., Holistic evaluation of language models, arXiv, 2022,
preprint, arXiv:2211.09110, DOI: 10.48550/arXiv.2211.09110.

26 M. Bavarian, H. Jun, N. Tezak,]J. Schulman, C. McLeavey,
J. Tworek and M. Chen, Efficient training of language
models to fill in the middle, arXiv, 2022, preprint,
arXiv:2207.14255, DOI: 10.48550/arXiv.2207.14255.

27 https://Openai.com.

28 https://beta.openai.com/docs/model-index-for-researchers.

29 T. Kojima, S. S. Gu, M. Reid, Y. Matsuo and Y. Iwasawa, Large
language models are zero-shot reasoners, arXi, 2022,
preprint, arXiv:2205.11916, DOI: 10.48550/arXiv.2205.11916.

30 L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al.,
Training language models to follow instructions with
human feedback, arXiv, 2022, preprint, arXiv:2203.02155,
DOI: 10.48550/arXiv.2203.02155.

31 E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou,
S. Savarese and C. Xiong, A conversational paradigm for
program synthesis, arXiv, 2022, preprint, arXiv:2203.13474,
DOI: 10.48550/arXiv.2203.13474.

32 M. Chen,]J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman,
et al., Evaluating large language models trained on code,
arXiv, 2021, preprint, arXiv:2107.03374, DOI: 10.48550/
arXiv.2107.03374.

33 T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al.,
Huggingface's transformers: state-of-the-art natural
language processing, arXiv, 2019, preprint,
arXiv:1910.03771, DOI: 10.48550/arXiv.1910.03771.

34 S. H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel,
N. V. Nayak, A. Sharma, T. Kim, M. S. Bari, T. Fevry, et al.,
Promptsource: an integrated development environment
and repository for natural language prompts, arXiv, 2022,
preprint, arXiv:2202.01279, DOI: 10.48550/arXiv.2202.01279.

35 J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le and
D. Zhou, Chain of thought prompting elicits reasoning in
large language models, arXi, 2022, preprint,
arXiv:2201.11903, DOI: 10.48550/arXiv.2201.11903.

36 A. Fan, M. Lewis and Y. Dauphin, Hierarchical neural story
generation, arXiv, 2018, preprint, arXiv:1805.04833, DOI:
10.48550/arXiv.1805.04833.

37 A. Holtzman, J. Buys, L. Du, M. Forbes and Y. Choi, The
curious case of neural text degeneration, arXiv, 2019,
preprint, arXiv:1904.09751, DOI: 10.48550/arXiv.1904.09751.

38 https://ur-whitelab.github.io/nlcc-data/.

39 H. Khlaaf, A hazard analysis framework for code synthesis
large language models, arXi, 2022, preprint,
arXiv:2207.14157, DOI: 10.48550/arXiv.2207.14157.

Digital Discovery, 2023, 2, 368-376 | 375

Open Access Article. Published on 26 January 2023. Downloaded on 7/2/2023 7:09:26 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

40 C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser,]J. Taylor, S. Berg,
N. J. Smith, et al., Array programming with numpy, Nature,
2020, 585, 357.

41 M. Valiev, E.]. Bylaska, N. Govind, K. Kowalski,
T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha,
E. Apra, T. L. Windus, et al, Nwchem: a comprehensive
and scalable open-source solution for large scale molecular
simulations, Comput. Phys. Commun., 2010, 181, 1477.

42 G. Landrum, et al, Rdkit: A Software Suite for
Cheminformatics, Computational Chemistry, and Predictive
Modeling, Greg Landrum, 2013.

43 P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon,
Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C. Simmonett,
M. P. Harrigan, C. D. Stern, et al.,, Openmm 7: rapid
development of high performance algorithms for
molecular dynamics, PLoS Comput. Biol., 2017,13, €1005659.

44 C. Nantasenamat, “would be cool to have gpt-3 generate new
chemical structures in smiles notation?”, Twitter,
1516794237391863810, 2022 A. D. White, “as suggested by
@thedataprof, gpt-3 can actually generate molecules. very
clever idea! prompt was ”the smiles for this drug-like
molecular are:”, Twitter, 1516795519284228106, 2022 P.
Isola, “language-conditional models can act a bit like
decision transformers, in that you can prompt them with
a desired level of “reward”. e.g.,, want prettier #dalle
creations? “just ask” by adding “[very]An beautiful”:”,
Twitter, 1532189616106881027, 2022 J. Austin, “we found
that code models get better when you prompt them with
i'm an expert python programmer. the new anthropic
paper did something similar, prefixing the model’s
response with i've tested this function myself so i know
that it’s correct:, Twitter, 1515063524258627586, 2022.

45 C. Nantasenamat, “would be cool to have gpt-3 generate new
chemical structures in smiles notation?”, Twitter,

376 | Digital Discovery, 2023, 2, 368-376

View Article Online

Paper

1516794237391863810, 2022 A. D. White, “as suggested by
@thedataprof, gpt-3 can actually generate molecules. very
clever idea! prompt was ”the smiles for this drug-like
molecular are:”, Twitter, 1516795519284228106, 2022 P.
Isola, “language-conditional models can act a bit like
decision transformers, in that you can prompt them with
a desired level of “reward”. e.g.,, want prettier #dalle
creations? “just ask” by adding [very]An beautiful”:”,
Twitter, 1532189616106881027, 2022 J. Austin, “we found
that code models get better when you prompt them with
i'm an expert python programmer. the new anthropic
paper did something similar, prefixing the model’s
response with i’ve tested this function myself so i know
that it’s correct:, Twitter, 1515063524258627586, 2022.

46 Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma,
D. Drain, S. Fort, D. Ganguli, T. Henighan, et al., Training
a helpful and harmless assistant with reinforcement
learning from human feedback, arXiv, 2022, preprint,
arXiv:2204.05862, DOI: 10.48550/arXiv.2204.05862.

47 S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li,
B. A. Shoemaker, P. A. Thiessen, B. Yu, et al, Pubchem
2019 update: improved access to chemical data, Nucleic
Acids Res., 2019, 47, D1102.

48 C. Edwards, T. Lai, K. Ros, G. Honke and H. Ji, Translation
between molecules and natural language, arXiv, 2022,
preprint, arXiv:2204.11817, DOI: 10.48550/arXiv.2204.11817.

49 Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo,
Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma,
et al., Pyscf: the python-based simulations of chemistry
framework, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018,
8, e1340.

50 https://www.tabnine.com/.

51 https://github.com/features/copilot.

52 https://openai.com/blog/chatgpt/.

© 2023 The Author(s). Published by the Royal Society of Chemistry

	㄰㌠〠潢樊㰼 呩瑬攨﻿㄰㐠〠潢樊㰼 呩瑬攨﻿㄰㔠〠潢樊㰼 呩瑬攨﻿㄰㘠〠潢樊㰼 呩瑬攨﻿㄰㜠〠潢樊㰼 呩瑬攨﻿㄰㠠〠潢樊㰼 呩瑬攨﻿㄰㤠〠潢樊㰼 呩瑬攨﻿ㄱ〠〠潢樊㰼 呩瑬攨﻿ㄱㄠ〠潢樊㰼 呩瑬攨﻿ㄱ㈠〠潢樊㰼 呩瑬攨﻿ㄱ㌠〠潢樊㰼 呩瑬攨﻿ㄱ㐠〠潢樊㰼 呩瑬攨﻿ㄱ㔠〠潢樊㰼 呩瑬攨﻿ㄱ㘠〠潢樊㰼⽎″⽌敮杴栠㌱㐴㸾獴牥慭਀�䡌楮漂ကm湴牒䝂⁘奚 츀Ȁऀ؀㄀a捳灍卆吀�I䕃⁳則䈀������ö혀Ā�Óⵈ倠 �����������������������ᅣ灲琀�倀�㍤敳挀�萀�汷瑰琀��ᑢ歰琀�Ѐ�ᑲ塙娀�᠀�ᑧ塙娀�Ⰰ�ᑢ塙娀�䀀�ᑤ浮搀�吀�灤浤搀�쐀�衶略搀�䰀�虶楥眀�퐀�⑬畭椀��ᑭ敡猀�ఀ�⑴散栀�　�౲呒䌀�㰀�౧呒䌀�㰀�ౢ呒䌀�㰀�౴數琀�C潰祲楧桴 挩‱㤹㠠䡥睬整琭偡捫慲搠䍯浰慮礀d敳挀���ታ則䈠䥅䌶ㄹ㘶ⴲ⸱������獒䝂⁉䕃㘱㤶㘭㈮㄀������������������������X奚 ��ó儀Ā�Ė챘奚 �������X奚 ��oꈀ8�遘奚 ��b餀·蔀�� ��$ꀀ�萀¶콤敳挀���ᙉ䕃⁨瑴瀺⼯睷眮楥挮捨������䥅䌠桴瑰㨯⽷睷⹩散⹣栀����������������������d敳挀���⹉䕃‶ㄹ㘶ⴲ⸱⁄敦慵汴⁒䝂⁣潬潵爠獰慣攠ⴠ獒䝂�����.䥅䌠㘱㤶㘭㈮ㄠ䑥晡畬琠則䈠捯汯畲⁳灡捥‭⁳則䈀����������d敳挀���ⱒ敦敲敮捥⁖楥睩湧⁃潮摩瑩潮⁩渠䥅䌶ㄹ㘶ⴲ⸱�����,剥晥牥湣攠噩敷楮朠䍯湤楴楯渠楮⁉䕃㘱㤶㘭㈮㄀������������v楥眀��Ꭴ︀ᑟ⸀჏᐀ϭ찀Г଀Ξ��塙娠��LॖP�Wῧ浥慳�������������ʏ��獩朠��䍒吠捵牶���Ѐ��
����#(-27;@EJOTY^chmrw|�������¤©®²·¼ÁÆËÐÕÛàåëðöûāćčēęğĥīĲĸľŅŌŒřŠŧŮŵżƃƋƒƚơƩƱƹǁǉǑǙǡǩǲǺȃȌȔȝȦȯȸɁɋɔɝɧɱɺʄʎʘʢʬʶˁˋ˕ˠ˫˵̸̡̖̭̀̋̓͏͚ͦͲ;ΊΖ΢ήκχϓϠϬϹІГРЭлшѕѣѱѾҌҚҨҶӄӓӡӰӾԍԜԫԺՉ՘էշֆֵ֖֦ׅוץ׶؆ؖاطوٙ٪ٻڌڝگۀۑۣ۵܇ܙܫܽݏݡݴކޙެ޿ߒߥ߸ࠋࠟ࠲ࡆ࡚࡮ࢂ࢖ࢪࢾ࣒ࣧࣻऐथऺॏ।ॹএত঺৏৥৻਑ਧ਽੔੪ઁઘમૅ૜૳ଋଢହ୑୩஀஘ரை௡௹ఒపృఌ甌踌꜌쀌�഍☍䀍娍琍踍ꤍ쌍�ጎ⸎䤎搎缎鬎똎툎ए┏䄏帏稏阏댏켏ऐ☐䌐愐縐鬐뤐휐጑ㄑ休洑谑ꨑ중ܒ☒䔒搒萒ꌒ쌒̓⌓䌓挓茓ꐓ씓ؔ✔䤔樔謔괔츔ሕ㐕嘕砕鬕봕̖☖䤖氖輖눖혖益ᴗ䄗攗褗긗툗ᬘ䀘攘記꼘픘神’䔙欙鄙뜙�К⨚儚眚鸚씚ᐛ㬛挛訛눛�⨜刜笜ꌜ찜ḝ䜝瀝餝쌝ᘞ䀞樞鐞븞ጟ㸟椟鐟뼟ᔠ䄠氠頠쐠ᰡ䠡甡ꄡ측ﬢ✢唢舢꼢�ਣ㠣昣鐣숣ἤ䴤簤ꬤ�㠥栥霥윥✦圦蜦뜦ᠧ䤧稧꬧�ന㼨焨ꈨ퐩ة㠩欩鴩퀪Ȫ㔪株鬪켫ȫ㘫椫鴫턬Ԭ㤬測ꈬ휭భ䄭瘭ꬭᘮ䰮舮뜮␯娯鄯윯︰㔰氰ꐰ�䨱舱먱⨲挲鬲퐳ള䘳缳렳⬴攴鸴�䴵蜵숵ﴶ㜶父긶␷怷鰷휸ᐸ倸谸젹Թ䈹缹밹鷺㘺琺눺ⴻ欻꨻✼攼ꐼ∽愽ꄽ‾怾ꀾℿ愿ꈿ⍀摀Ꙁ⥁橁걁あ牂땂㩃絃쁄̈́䝄詄칅ቅ啅驅�≆杆ꭆ㕇筇쁈Ո䭈酈흉ᵉ捉ꥉ㝊絊쑋ో卋驋⩌牌멍ɍ䩍鍍�╎湎띏O䥏鍏�❐煐뭑ّ偑魑ㅒ籒읓ፓ当꩓䉔轔�畕쉖བ嚩囷坄垒埠堯塽壋多奩妸娇婖媦嫵孅宕寥ֆ홝❝硝쥞ᩞ汞뵟ཟ慟덠ՠ坠ꩠﱡ佡ꉡ䥢鱢䍣靣䁤鑤㵥鉥㵦鉦㵧鍧㽨陨䍩驩䡪齪佫ꝫｬ坬꽭࡭恭륮ቮ歮쑯ṯ硯텰⭰虰㩱镱䭲꙳ų嵳롴ᑴ灴챵⡵蕵㹶魶噷델ᅸ湸챹⩹襹䙺ꕻѻ捻쉼ⅼ腼䅽ꅾž找쉿⍿葿䞀ꢁઁ殁춂も銂垃몄ᶄ肄䞅ꮆຆ犆힇㮇龈҈榈캉㎉馉ﺊ撊쪋る隋ﲌ掌쪍ㆍ颍ﾎ暎캏㚏麐ڐ源횑㾑ꢒᆒ窒䶓뚔ₔ誔徕즖㒖龗ગ疗䲘뢙⒙邙ﲚ梚햛䊛꾜Ნ覜撝튞䂞꺟ᶟ讟猪榠�뚢⚢隣ڣ皣嚤장㢥ꦦ᪦讦ﶧ溧动쒩㞩ꦪᲪ辫ʫ疫곐굄궸긭꺡꼖꾋뀀끵냪녠뇖뉋닂댸뎮됥뒜딓떊똁뙹뛰띨럠롙룑륊맂먻몵묮뮧밡벛봕붏븊뺄뻿뽺뿵쁰샬셧쇣쉟싛썘쏔쑑쓎앋었왆웃읁잿젽좼줺즹쨸쪷쬶쮶찵첵촵춵츶캶켷쾸퀹킺턼톾툿틁퍄폆푉퓋핎헑확훘ퟗ擘泙盚ﯛ胜ל諝ო雞᳞ꋟ⧟꿠㛠뷡䓡쳢叢�珤ﳥ蓦෦雧ῧꧨ㋨볩䛩탪寪烫ﯬ蛭ᇭ鳮⣮듯䃯쳰声狱￲賳᧳ꟴ㓴싵僵�淶ﯷ諸᧸꣹㣹쟺基矼߼飽⧽뫾䯾�淿＊敮摳瑲敡洊敮摯扪਱ㄷ‰⁯扪਼㰯䙩汴敲⽆污瑥䑥捯摥ਯ䙵湣瑩潮呹灥‰ਯ䑯浡楮嬰਱崊ਯ剡湧敛《ㄊ《ㄊ《ㅝਊ⽂楴獐敲卡浰汥‸ਯ䕮捯摥嬰ਲ㔴崊ਯ䑥捯摥嬰਱ਰ਱ਰ਱崊ਯ卩穥嬲㔵崊⽌敮杴栠ㄶㄾ㹳瑲敡洊碜藂܎舰᐀탻῍봍⁻農띂낑큀翕霷౳ﶸ燷橙᯼�떩஼껲껊葚搡⮚쿓₍絖轌≷☣摍춯΃䒾ງ뺆⍏ﴽ灥�═멫॔쟄禐ꌛ鲭�랴�헋�횥⍸쀵槿뜪읶秃⢬憙忍뼁霥댚੥湤獴牥慭੥湤潢樊ㄱ㠠〠潢樊㰼⽆楬瑥爯䙬慴敄散潤攊⽆畮捴楯湔祰攠《⽄潭慩湛《ㅝਊ⽒慮来嬰਱ਰ਱ਰ਱崊ਯ䉩瑳健牓慭灬攠㠊⽅湣潤敛《㈵㕝ਊ⽄散潤敛《ㄊ《ㄊ《ㅝਊ⽓楺敛㈵㙝ਯ䱥湧瑨″㈷㸾獴牥慭੸鱥죧犂䀘藡﮿饴ᮠꢨ者놣戃ጐ㬊㘘஋馼辰￹뻯茶�뵞⺗㌸鵏쁵巇痀턹ẜ쏡࡬�ᶶ�ϛ촎泖悻庁쵪৖䭠괬摩ⶬ薹堘衩骆愚낦䀿懟俍儺ꛫ獌퍵䷗昚颁⌦팩㆞䲈퇸ཱུ㐆䍤㑐䝽嗅鑡ꐷ᠒�胨⡽큖ᒤꞴ끮謵㬝곑٭뤕ꢷ⍒ꭅ풚䶢�퀨휃ꉄ젢穤䲔傓ࢾ嫃䪕橑갔蕲鱐츓뱈ʑⵆ�렢阆車⛇퇙㱆놑否鉌ғන桩ᚋ厙债䙥扨醯풓⓳᧺䣐⇪ᵉ膷㣲ᨋ버縁脃籥੥湤獴牥慭੥湤潢樊ㄱ㤠〠潢樊㰼⽆楬瑥爯䙬慴敄散潤攊⽆畮捴楯湔祰攠《⽄潭慩湛《ㅝਊ⽒慮来嬰਱ਰ਱ਰ਱崊ਯ䉩瑳健牓慭灬攠㠊⽅湣潤敛《㈵㑝ਊ⽄散潤敛《ㄊ《ㄊ《ㅝਊ⽓楺敛㈵㕝ਯ䱥湧瑨‶㐵㸾獴牥慭੸鰥숉㯚Ĝà쾵柷斗��켐ꦤ吢䪒좙䩄瑈⡄䓨⥂⑉⭍♤汫뿿볏ᬎ蟿ﰍ忼㸿뼈鷽અ칎仏舧ꇠ燠へ瀘ﰑ㣲ῼཽﺀ眿ᵀＮ믶簻溟珗믭�᷏ꛓ揟�㯜ᬎ雛뛩媵뭖획ᷫ뫓닮㓛ᱰ��씎跦സ랼㺻둦肋똙鍍뾰㨅⚍혉ꍕ㝧퇎嫆ꇁ㰶揖샩ﶒ稊⺪☗唓⚥캤킙薡⠛㏊䚑ﶚ㦩晖㩢᭺픆짰豄㔭囪ꅈꤗ⪦蓲ꧮꅉĜ鳨鑁巻耖뛵歛ꗣ郟㟖툋䞛┚鹄폔㏂ᔣᭅ檎梸䆈摷ꯪԪ陀짪到㬕疰䍞�ᮼ䱯闁⫾­Չ淮Ꝁ麴鈧┷኷꾢놗袔鑳稈ഽҶᣏᛣ悽ꢬ庈攉녌愩뎻ꐎઊ殻邌긢䙧慍➺먃ᛐ㯲わ횖䭫蔹퓖氪㾛싏ꊴ摖싦౲猺複퍈볔訦顂Ꮉ䧥�䉣⊡㄁쾁ช힀슱�᠋䭙ㄥ䳸ᕓ޿惪㸗ퟂ佅貏䖌䘴뫦κ☊崝喀粗使齏羛坵淚⻭㗌ꆾ쪡뻌ꛀ᝙铧馕ﾓ齥邟暐⌳䢑✰귢焚⫲慪旅ᑈ衈⛜伦䐤嵎쓝䷄�생丨获㝑젛꣒냤᫼蚹੣ㅗ把䯲੥湤獴牥慭੥湤潢樊ㄲ〠〠潢樊㰼⽎″⽌敮杴栠㈵㜶㸾獴牥慭਀
က��ကm湴牒䝂⁘奚 �����a捳灁偐䰀������������ö혀Ā�Óⴀ�������������������������੤敳挀�ﰀ�籣灲琀�砀�⡷瑰琀�ꀀ�ᑢ歰琀�됀�ᑲ塙娀�저�ᑧ塙娀���ᑢ塙娀��ᑲ呒䌀�Ѐ�౧呒䌀�Ѐ�ౢ呒䌀�Ѐ�౤敳挀���≁牴楦數⁓潦瑷慲攠獒䝂⁉䍃⁐牯晩汥�����"䅲瑩晥砠卯晴睡牥⁳則䈠䥃䌠偲潦楬攀����������������t數琀�C潰祲楧桴⁁牴楦數⁓潦瑷慲攠㈰ㄱX奚 ��ó儀Ā�Ė챘奚 �������X奚 ��oꈀ8�遘奚 ��b餀·蔀�� ��$ꀀ�萀¶콣畲瘀�����Ԁ਀ༀ᐀ᤀḀ⌀⠀ⴀ㈀㜀㬀䀀䔀䨀伀吀夀帀挀栀洀爀眀簀脀蘀謀退销騀鼀ꐀ꤀글눀뜀밀섀였쬀퀀픀�ﬁā܁ഁጁᤁἁ━⬁㈁㠁㸁䔁䰁刁夁态朁渁甁簁茁謁鈁騁ꄁ꤁넁뤁섁줁턁�拓̂ంᐂᴂ☂⼂㠂䄂䬂吂崂朂焂稂萂踂頂ꈂ갂똂섂쬂픂�ଃᘃ℃ⴃ㠃䌃伃娃昃爃縃訃阃ꈃ긃먃윃팃滑؄ጄ ⴄ㬄䠄唄挄焄縄谄騄ꠄ똄쐄팄︅അᰅ⬅㨅䤅堅朅眅蘅阅ꘅ딅씅픅؆ᘆ✆㜆䠆夆樆笆谆鴆꼆쀆턆܇ᤇ⬇㴇伇愇琇蘇餇갇뼇툇ଈἈ㈈䘈娈済興阈ꨈ븈툈﬉ဉ┉㨉伉搉礉載ꐉ먉켉﬊ᄊ✊㴊吊樊脊頊긊씊�ଋ∋㤋儋椋耋頋뀋젋奈ሌ⨌䌌౵ಎಧೀ೙ೳ഍ദീ൚൴ඎඩසෞ෸ณฮ้๤๿ປຶ໒໮༉༥ཁཞེྖླ࿏࿬ဉဦ၃ၡၾႛႹთჵᄓᄱᅏᅭᆌᆪᇉᇨሇሦቅቤኄኣዃዣጃጣፃ፣ᎃᎤᏅᏥᐆᐧᑉᑪᒋᒭᓎᓰᔒᔴᕖᕸᖛᖽᗠᘃᘦᙉᙬᚏᚲᛖ᛺᜝ᝁᝥញឮ្៷᠛ᡀᡥᢊ᢯ᣕ᣺ᤠ᥅ᥫᦑᦷ᧝ᨄᨪᩑ᩷᪞᫅᫬ᬔᬻ᭣ᮊ᮲ᯚᰂᰪ᱒ᱻᲣ᳌ᳵᴞᵇᵰᶙ᷃ᷬḖṀṪẔẾứἓἾὩᾔ᾿Ὺ―⁁⁬ₘ⃄⃰ℜⅈⅵ↡⇎⇻∧≕⊂⊯⋝⌊⌸⍦⎔⏂⏰␟⑍⑼⒫ⓚ┉┸╨▗◇◷☧♗⚇⚷⛨✘❉❺➫⟜⠍⠿⡱⢢⣔⤆⤸⥫⦝⧐⨂⨵⩨⪛⫏⬂⬶⭩⮝⯑ⰅⰹⱮⲢⳗⴌⵁ⵶ⶫⷡ⸖⹌⺂⺷⻮⼤⽚⾑⿇⿾〵ぬイホㄒㅊㆂㆺㇲ㈪㉣㊛㋔㌍㍆㍿㎸㏱㐫㑥㒞㓘㔓㕍㖇㗂㗽㘷㙲㚮㛩㜤㝠㞜㟗㠔㡐㢌㣈㤅㥂㥿㦼㧹㨶㩴㪲㫯㬭㭫㮪㯨㰧㱥㲤㳣㴢㵡㶡㷠㸠㹠㺠㻠㼡㽡㾢㿢䀣䁤䂦䃧䄩䅪䆬䇮䈰䉲䊵䋷䌺䍽䏀䐃䑇䒊䓎䔒䕕䖚䗞䘢䙧䚫䛰䜵䝻䟀䠅䡋䢑䣗䤝䥣䦩䧰䨷䩽䫄䬌䭓䮚䯢䰪䱲䲺䴂䵊䶓䷜严乮亷伀佉侓保倧偱傻儆児军処刱剼勇匓卟厪叶呂咏哛唨啵嗂嘏噖꥖䑗鉗⽘絘쭙ᩙ楙롚ݚ噚Ꙛ䕛镛蛖崧嵸巉帚幬庽式彡徳怅恗悪惼慏憢懵扉抜拰捃掗揫摀撔擩攽斒旧昽暒曨朽枓柩栿梖棬楃榚槱橈檟櫷歏殧毿汗沯洈浠涹渒湫滄漞潸濑瀫炆烠焺熕燰牋犦猁獝玸琔瑰瓌用疅痡瘾皛相睖瞳砑确磌礪禉秧穆窥笄筣篂簡粁糡絁綡縁繢绂缣羄翥聇肨脊腫臍舰芒苴荗莺萝蒀蓣蕇薫蘎虲蛗蜻螟蠄衩裎褳覙觾詤諊謰讖诼豣賊贱趘跿蹦軎輶辞逆遮郖鄿醨鈑鉺鋣鍍鎶鐠钊铴镟闉阴隟霊靵韠題颸餤馐駼驨髕魂鮯鰜鲉鳷鵤鷒鹀麮鼝龋鿺ꁩꃘꅇꆶꈦꊖꌆꍶꏦꑖ꓇ꔸꖩꘚꚋ꛽Ꝯ꟠ꡒ꣄ꤷꦩꨜꪏꬂꭵꯩ견킭䒭뢮ⶮꆯᚯ记°疰悱횲䮲슳㢳꺴▴鲵Ꮅ誶ƶ禶梷妸톹䪹슺㮺떻⺻Ꞽ↼鮽ᖽ达ા蒾﾿窿烀柁忂�퓄凄컅䯅죆䛆쏇䇇뿈㷈볉㫉맊㣊럋㛋뛌㗌뗍㗍뗎㛎뛏㟏룐㧐뫑㳑뻒㿒쇓䓓월䧔쯕仕퇖嗖����󰀅�������露劉練﫧ﭷﰇﲘﴩﶺ﹋ﻜｭ�੥湤獴牥慭੥湤潢樊ㄲㄠ〠潢樊㰼⽕剉⡨瑴瀺⼯潲捩搮潲术〰〰ⴰ〰㈭㘶㐷ⴳ㤶�

