
SPATIAL ASYMPTOTICS OF GREEN’S FUNCTION
AND APPLICATIONS

By

SERGEY A. DENISOV∗

Abstract. We study the spatial asymptotics of Green’s function for the 1d
Schrödinger operator with operator-valued decaying potential. The bounds on
the entropy of the spectral measures are obtained. They are used to establish the
presence of the a.c. spectrum.

1 Introduction and the main result

In this note, we revisit the spectral theory of Schrödinger operators with long-range
potentials. In dimension one, the quest for the minimal assumptions on the decay
of potential that guarantee the preservation of absolutely continuous spectrum
resulted in the theorem (Deift–Killip [1], see also [13]), which says:

If V ∈ L2(R+), then σac(−∂2rr +V) = [0,∞) where σac denotes the a.c. spectrum

of the operator with Dirichlet boundary condition at zero.

In the case of the Dirac equation, an analogous result was obtained by M. Krein
already in 1955 (see [15] and [2]). The L2-condition is sharp: it is known [14]
that V ∈ Lp(R+), p > 2 can lead to an empty a.c. spectrum. In higher dimension,
one again is interested in finding the minimal assumptions on the decay of V
in −� + V, x ∈ R

d, d ≥ 2 that guarantee “scattering” which can be understood
either in the sense of preservation of the a.c. spectrum or as the existence of wave
operators in Schrödinger dynamics. Some results were obtained for decaying
potentials that oscillate (see [4, 17] for their surveys). However, if the oscillation
condition is dropped and no additional smoothness (see, e.g., [16, 19] for various
classes of potentials) is assumed, then the identity σac(−� + V) = [0,∞) is not
known even forV obeying fairly strong constraints, such as |V(x)| ≤ C(1+ |x|)−1+ε,
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0 < ε � 1. Notice that the last assumption is only slightly weaker than the short-
range condition of the classical scattering theory [11]. In this paper, we make
progress on a related problem.

Consider the Hilbert space H :=
⊕∞

n=1 L
2(R+) with the inner product defined

by

〈F,G〉H =
∫ ∞

0
〈F,G〉dr =

∞∑
n=1

∫ ∞

0
fngndr,

where F = (f1, f2, . . .),G = (g1, g2, . . .). We define the 1-d Schrödinger operators

(1.1) H = −∂2rr + V, H(0) = −∂2rr, x ≥ 0

with Dirichlet boundary condition at the origin and operator-valued potential V . It
satisfies V(r) = V∗(r) for a.e. r > 0 and ‖V‖ ∈ L∞[0,∞). By the general theory
of symmetric operators, H defines the self-adjoint operator with the domain

D(H) = D(H(0)) =
∞⊕
n=1

H2
0(R

+),

where H2
0(R

+) := {f : f, f ′′ ∈ L2(R+), f (0) = 0} is the standard H2(R+) Sobolev
space of functions vanishing at the origin. Denote the Green’s function of H by
G(r, ρ, z), i.e.,

RzF = (H − z)−1F =
∫
R+

G(r, ρ, z)F(ρ)dρ, F ∈ H.

We let z ∈ C+ and k =
√
z ∈ {k ∈ C+, Im k > 0,Re k > 0}. The Green’s function

of the unperturbed operator will be called G(0). Notice that

(1.2) G(0)(r, ρ, k2) =
i
2k

(eik|r−ρ| − eik(r+ρ)).

Let u := Rk2F, ψ := e−ikru. We have −u′′ + Vu = k2u + F, u(0, k) = 0 and

(1.3) −ψ′′ − 2ikψ′ + Vψ = Fe−ikr.

In this note, we develop the perturbative theory which partially controls the spatial
asymptotics of u when F has compact support, r → +∞ and z ∈ C+ is taken
close to R

+. Our analysis allows the direct study of G(r, ρ, z) when ρ is fixed
and r → ∞ but u has a better regularity and we will work with it instead. The
following theorem showcases the typical application of our analysis to the study
of spectral type.

Theorem 1.1. Suppose γ > 2
3 , λ > 0, and ‖V‖ ≤ λ(1 + r)−γ. Then,

R
+ ⊆ σac(H).
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Later in the text, we can assume that γ is fixed in the range γ ∈ ( 23 , 1). Many
constants the reader encounters in this text depend on γ and λ but we might not
explicitly mention that.

Remark. The proof of the theorem employs elementary properties of sub-
harmonic functions and a few apriori integral estimates obtained directly from
the equation itself. We avoid ODE asymptotical methods so this technique can
potentially be applied to study elliptic partial differential equations and difference
operators on graphs.

The connection betweenσF, the spectralmeasure ofF ∈ H, and the asymptotics
of u at infinity is revealed in the following lemma.

Lemma 1.1. Suppose T > 1, suppV ⊂ [0,T], F ∈ H, and suppF ⊂ [0, 1].
Then, σF is absolutely continuous on R

+ and

(1.4) σ′
F(k

2) = kπ−1‖ψ(∞, k)‖2

for k ∈ R+.

Proof. Under the assumption of the lemma, the so-called absorption principle
holds (see, e.g., [8, 9, 10] for the Weyl–Titchmarsh theory of the operator-valued
Schrödinger operator). In particular, for every interval I ⊂ (0,∞) and every
positive r, the function u(r, k) = (Rk2F)(r) has continuous extension in k from
RI,1 := I× (0, 1) to the interval I and this u satisfies −u′′ +Vu = k2u+F, u(0, k) = 0
for k ∈ RI,1. Thus, ψ(r, k) = e−ikru(r, k) is defined as well for k ∈ I and ψ(r, k) =
ψ(∞, k) if r > T . That explains why the right-hand side in (1.4) is well-defined.
The absorption principle also implies that σF is purely a.c. on R+. Next, we take
k ∈ RI,1 and write −u′′ + Vu = k2u + F. Take an inner product with u and integrate
over [0,T]. Subtracting the resulting identity from its conjugate gives us

〈u′(T, k), u(T, k)〉−〈u(T, k),u′(T, k)〉 = (k̄2−k2)
∫ T

0
‖u‖2dρ+〈Rk2F,F〉−〈F,Rk2F〉.

Due to the absorption principle, we can take Im k → 0 in the last formula. This
gives (1.4) after we take into account that u(r, k) = eikrψ(∞, k) for r > T . �

Remark. One of the key ideas in the proof of Theorem 1.1 is based on the
following observation. Taking the logarithm of both sides in (1.4) gives

log σ′
F(k

2) = log(kπ−1) + 2 log ‖ψ(∞, k)‖.

The function log ‖ψ(∞, k)‖ is subharmonic in RI,1 = I × (0, 1) for every closed
interval I ⊂ (0,∞). Thus, rough bounds for log ‖ψ(∞, k)‖ in RI,1 can provide
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the lower bounds for the entropy
∫
I′ log σ′

F(k
2)dk, I ′ ⊂ I by application of the

mean-value inequality for subharmonic functions. The uniform control over the
logarithmic integral implies the a.c. spectral type by the standard argument. A
serious obstacle we will face is that the good control of ‖ψ(∞, k)‖ is only possible
when Im k is very small. The development of strategy that overcomes this difficulty
was the main motivation to write this note.

Some previous results. In [20], the reader can find an overview of one-
dimensional results related to the topic. The survey papers [4, 17] discuss the
higher-dimensional case. See also [5, 19, 18] for more recent advances. The one-
dimensional Schrödinger with operator-valued potential was extensively studied
in the past and a thorough account of the literature can be found in [8, 9, 10].
The a.c. spectrum of the operator-valued Schrödinger with decaying potential was
studied in the context of hyperbolic pencils in [3]. In particular, it was established
that R+ ⊆ σac(−∂2rr + tV) for a.e. t ∈ R, provided that the operator-valued potential
V satisfies ‖V‖ ∈ L2(R+) ∩ L∞(R+).

Motivation. To relate (1.1) to multidimensional problems, consider the three-
dimensional Schrödinger operator−�+V, x ∈ R

3 which allows the representation

(1.5) −∂2rr − B
r2

+ V(r, θ)

in the spherical coordinates (r, θ) ∈ R
+ × S

2. Here, B stands for the Laplace–
Beltrami operator on S2 and the Dirichlet boundary condition is assumed at the
origin. If the higher spherical modes can be neglected, one considers

(1.6) H = −∂2rr − P≤rκB
r2

+ V(r, θ)

instead of (1.5), where P≤rκ is an orthogonal projection to the first [rκ] spherical
harmonics. Assuming |V(x)| ≤ C(1+|x|)−γ with γ > 2

3 and choosing κ in a suitable
way, we reduce (1.6) to the form (1.1).

Structure of the paper. The second section contains some a priori estimates
for the solutions to equation (1.3). In the third section, we give the proof of
Theorem 1.1. Some useful estimates on subharmonic functions are collected in
Appendix 1. The second appendix contains general bounds on Green’s function.

Notation.
• If I is a closed interval on R, cI denotes its center and |I| denotes its length;
Ir stands for the interval centered at zero with radius r; R+ = (0,∞).

• If ψ is a vector in Hilbert space 
2(N), then ‖ψ‖ denotes its norm. If V is a
bounded linear operator acting in 
2(N), then ‖V‖ denotes its operator norm.

• If I is a closed interval in R+ and δ > 0, then RI,δ := I × (0, δ).
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• If φ,ψ ∈ 
2(N), then 〈φ,ψ〉 refers to the inner product in 
2(N).
• For a > 0, we define log+ a = max{0, log a}, log− a = min{0, log a}.
• The symbol Cα will indicate a positive constant whose dependence on a
parameter α we want to emphasize. The actual value of this constant can
change from one formula to another.

• For two non-negative functions f1(2), we write f1 � f2 if there is an absolute
constant C such that f1 ≤ Cf2 for all values of the arguments of f1(2). We
define � similarly and say that f1 ∼ f2 if f1 � f2 and f2 � f1 simultaneously.
If the constant C depends on parameter α, we might write f1 �α f2.

• For the set � ⊂ R, we denote �2 = {E2 : E ∈ �}.

2 Two simple estimates obtained from the equation

In this section, we consider the casewhen suppV ⊂ [0,T] and ‖V(r)‖ < λ(r+1)−γ,
γ ∈ ( 23 , 1). In later discussion, we will be taking T = 2n, n ≥ n0 � 1. Let, e.g., F
be such that

(2.1) F = (f, 0, . . .), ‖f‖L2(R+) = 1, supp f ⊂ [0, 1], f �≡ 0.

Let σF be the spectral measure of F, i.e.,

〈RzF,F〉H =
∫

dσF(E)
E − z

, z ∈ C\R.

Recall that σF is a probability measure and that u = RzF. Rewrite equation (1.3)
for ψ as

(2.2) ψ′ = i
ψ′′

2k
− i

Vψ

2k
, r > 1.

Lemma 2.1. If I is any closed interval in R
+, α ∈ (0, 1) and k ∈ RI,T−α , then

sup
r>0

‖ψ(r, k)‖ ≤ CI,α exp(2(Im k)−(1−α)/α).

Proof. Since V(r) = 0 for r > T , ψ(r, k) = ψ(T, k) if r > T and we can assume
that r ≤ T . Because ‖u‖L2[0,∞) ≤ CI(Im k)−1 we have ‖u′′‖L2[0,∞) ≤ CI(Im k)−1

from the equation −u′′ + Vu = k2u + F. Then, ‖u‖L∞[0,∞) ≤ CI(Im k)−1 as follows
from the standard Sobolev’s embedding. Since ‖ψ(r, k)‖ = e(Im k)r‖u(r, k)‖, this
gives us the statement of the lemma because

(Im k)r ≤ (Im k)T ≤ (Im k)−(1−α)/α

and
(Im k)−1 exp((Im k)−(1−α)/α) ≤ Cα,I exp(2(Im k)−(1−α)/α). �
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Remark. Notice that this lemma only requires that ‖V‖ ∈ L∞(R+) and
suppV ⊂ [0,T].

Next, we will study ψ(r, k) when r ∈ [T/2,T]. In particular, we will be
interested in how ‖ψ(r, k)‖ deviates from ‖ψ(T/2, k)‖when r > T/2, k ∈ RI,1, and
Im k is small. Our basic tool is the following integral identity.

Lemma 2.2. Let 1 < a < b and Re k > 0, Im k > 0. Then

(2.3) ‖ψ(b, k)‖2+ Im k
|k|2

∫ b

a
‖ψ′‖2dρ = ‖ψ(a, k)‖2+Q1−Q2− Im k

|k|2
∫ b

a
〈Vψ,ψ〉dρ

where
Q1 :=

i
2k

〈ψ′(b, k), ψ(b, k)〉− i

2k̄
〈ψ(b, k), ψ′(b, k)〉

and
Q2 :=

i
2k

〈ψ′(a, k), ψ(a, k)〉− i

2k̄
〈ψ(a, k), ψ′(a, k)〉 .

Proof. Take the inner product of both sides in (2.2) with ψ and integrate
from a to b. Then, take the real part of the resulting identity. We get

‖ψ(b, k)‖2

= ‖ψ(a, k)‖2 + i
2k

∫ b

a
〈ψ′′, ψ〉dρ − i

2k̄

∫ b

a
〈ψ,ψ′′〉dρ − Im k

|k|2
∫ b

a
〈Vψ,ψ〉dρ.

Integration by parts gives the statement of the lemma. �

Remark. In (2.3), an additional condition V ≥ 0 immediately provides and a
priori estimate on

∫ ∞
1 ‖ψ′‖2dρ with essentially no assumptions on the decay of V .

The following lemma is straightforward.

Lemma 2.3. Let Y and A be two 
2(N)-valued functions defined on [a,∞)
that satisfy ‖Y‖, ‖Y ′‖, ‖A‖ ∈ L2[a,∞) and

Y =
i
2k

Y ′ + A, Im k > 0.

Then,

(2.4) ‖Y‖L∞[a,∞) �
|k|‖A‖L2[a,∞)√

Im k
, ‖Y‖L2[a,∞) �

|k|‖A‖L2[a,∞)

Im k
.

Proof. We have Y ′ = −2ikY + 2ikA. If � is defined by � := e2ikrY , then
� = −2ik

∫ ∞
r A(s)e2iksds. In the end, one has

Y = −2ike−2ikr
∫ ∞

r
A(s)e2kisds.

Applying the convolution bounds, we get our lemma. �
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If T > 1, we arrange for two positive numbers LT and 
T such that 
T < LT ,

T := T1−2γ+2δ1 and LT := Tγ−1−δ1 , where δ1 is a positive parameter (e.g., take
δ1 = γ

2 − 1
3 ). Its choice is possible since γ ∈ ( 23 , 1). Given any closed interval

I ⊂ R
+, define the set

PCI,T := RI,1 ∩ {k : 
T ≤ Im k ≤ LT}.

We will refer to PCI,T as the zone of perfect control. The reader will see that
this name is justified from the next two results.

Lemma 2.4. For k ∈ PCI,T/2, we have

(2.5) ‖ψ(T, k)‖2 = ‖ψ(T/2, k)‖2(1 + εT ), εT ≤ CIT
−δ1

where δ1 > 0.

Proof. We introduce M := supr>T/2 ‖ψ(r, k)‖. Let k ∈ RI,1. Applying
Lemma 2.3 to (2.2) on the interval [T/2,∞), one has

‖ψ′‖L∞[T/2,∞) ≤ CIM
T0.5−γ

√
Im k

.

Hence,

sup
a,b>T/2

‖Q1(2)‖ ≤ CIM
2 T

0.5−γ

√
Im k

.

By the same Lemma 2.3,

‖ψ′‖L2[T/2,∞) ≤ CIM
T0.5−γ

Im k
.

Taking the supremum in b ≥ T/2 in (2.3) and letting a = T/2, we get

|M2 − ‖ψ(T/2, k)‖2| ≤ CI

(
(Im k)T1−γ +

T0.5−γ

√
Im k

+
T1−2γ

Im k

)
M2.

Thus, one has

(2.6)
M2 = ‖ψ(T/2, k)‖2(1 + εT),

εT ≤ CI

(
(Im k)T1−γ +

T0.5−γ

√
Im k

+
T1−2γ

Im k

)
≤ CIT

−δ1

for given k. Now, we can take b = T, a = T/2 in (2.3) and use the bound on M to
get the desired statement. �
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We just saw that the ‖ψ(r, k)‖ does not change much in r when r ∈ [T/2,T] and
k is fixed in the zone of perfect control. Next, we set up the iteration scheme which
will play the key role in the proof of themain result. SupposeTn = 2n, n ≥ n0 where
n0 is a large parameterwhichwill befixed later. GivenV : ‖V‖ ≤ λ(1+r)−γ, γ > 2

3 ,
we let

(2.7) V(n) := V · χ[0,Tn], H(n) := H(0) + V(n), ψn := e−ikrR(n),k2F ,

where function F has been chosen in the beginning of this section and
R(n),z := (H(n) − z)−1. The next lemma estimates ψn(∞, k) in the (n − 1)-th
zone of perfect control.

Lemma 2.5. Let I be a closed interval in R
+. If k ∈ PCI,Tn−1 , then

‖ψn(∞, k)‖ = ‖ψn−1(∞, k)‖(1 + ε′
n), |ε′

n| ≤ CIT
−δ2
n

where δ2 is a positive parameter.

Proof. Recall that ψj(Tj, k) = ψj(∞, k) for every j. By the previous lemma, it
is enough to show that

(2.8) ‖ψn(Tn/2, k)‖ = ‖ψn−1(∞, k)‖(1 +O(T−δ3
n ))

where k ∈ PCI,Tn−1 and δ3 is a positive fixed number independent of n. To do that,
we will use Lemma 5.2. Recall that H(n) = H(n−1) + V · χ[Tn−1,Tn] and

R(n),k2F = R(n−1),k2F − R(n),k2 (V · χ[Tn−1,Tn])R(n−1),k2F.

Multiply both sides by e−ikr and recall the definition of ψn in (2.7). Since
ψn−1(r, k) = ψn−1(∞, k) for r ∈ [Tn−1,∞) and k is in the zone of perfect con-
trol, we can apply Lemma 5.2 to R(n),k2 . This yields

(2.9)

‖ψn(Tn/2, k)− ψn−1(∞, k)‖
≤ CI‖ψn−1(∞, k)‖

∫ Tn

Tn−1

e(Im k)(Tn−1−c(ρ−Tn−1)−ρ)T−γ
n dρ

≤ CIT
−γ
n (Im k)−1‖ψn−1(∞, k)‖

≤ CIT
γ−1−2δ1
n ‖ψn−1(∞, k)‖,

because k ∈ PCI,Tn−1 . Putting together (2.8) and (2.9) gives the desired result. �
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3 Iteration and the proof of the main theorem

Recall that F is chosen to satisfy (2.1). First, we need an auxiliary lemma.

Lemma 3.1. Suppose ‖V‖ ∈ L∞(R+) and ψn is defined as in (2.7). Then,

sup
0≤y≤1

∫
I
‖ψn(∞, x + iy)‖2dx < ∞, inf

0≤y≤1

∫
I
log ‖ψn(∞, x + iy)‖2dx > −∞

for every closed interval I ⊂ R+.

Proof. Since V(n) is compactly supported,ψn(∞, k) has continuous extension
to any closed interval on the real line, and ψn �≡ 0. It is also analytic in k in
every rectangle RI,1 so the lemma follows from, e.g., the mean-value estimate for
subharmonic function log ‖ψn(∞, k)‖. �

To begin the iterative process which will be the key to the proof of our main
result, we start with taking I, any closed interval in R+. Then, for this I, we choose
n0 ∈ N, a fixed large parameter whose dependence on I will be specified later, and
define two numbers An0 and Bn0 as follows:

(3.1)

An0 := sup
0<y<LTn0

∫
I
‖ψn0 (∞, x + iy)‖2dx,

Bn0 := sup
0<y<LTn0

∫
I
log ‖ψn0 (∞, x + iy)‖dx.

From the last lemma, one knows that An0 < ∞ and Bn0 > −∞ for every n0. Next,
we define the sequence of intervals {I(n)}, n ≥ n0 by conditions

(3.2) I(n0) := I, cI(n) = cI, |I(n)| = |I(n−1)| − 2τn

and τn = T−υ
n , where 0 < υ < 0.01(−γ + 1 + δ1) so Ln = Tγ−1−δ1

n � τn = T−υ
n , see

Figure 1. Notice that ∑
n≥n0

τn =
∑
n≥n0

2−υn ∼ Cυ2
−υn0

and limn0→∞ 2−υn0 = 0. Therefore, if I is given, we can always arrange for n0 large
enough that LTn0

< 1 and that there is Ĩ(n0):

(3.3) c
˜I(n0)

= cI, Ĩ(n0) ⊂ ⋂
n≥n0

I(n), lim
n0→∞ |I\Ĩ(n0)| → 0.

Let us collect what we already know about the sequence {ψn} below:
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Tn−1

LTn−1

cI(n−1) = cI(n) Ĩ(n0) In I(n−1)

Figure 1. RI(n−1),Tn−1 and RI(n),Tn .

• Rough upper bound, Lemma 2.1:

(3.4) ‖ψn(∞, k)‖ ≤ C(I ′, α) exp(2(Im k)−(1−α)/α), k ∈ RI′,LTn
,

where I ′ can be chosen as any open interval in R
+ that contains I(n0) = I. The

parameter α is related to γ by α = 1 + δ1 − γ.
• The first step: by construction, An0 and Bn0 are defined for every n0.
• Estimate in the zone of perfect control, Lemma 2.5: if k ∈ PC(I,Tn−1),
then

(3.5) ‖ψn(∞, k)‖ = ‖ψn−1(∞, k)‖(1 + ε′
n), |ε′

n| ≤ CIT
−δ2
n .

• Uniform bounds on the real line, formula (1.4): for every I ′ ⊂ R
+, we

get

(3.6) sup
n≥n0

∫
I′
‖ψn(∞, k)‖2dk < CI′ .

To control ψn(∞, k) in RI(n),LTn
, one can use apriori estimates (3.4), (3.6) along

with (3.5). To interpolate the bounds on ψn(∞, k) from the zone of perfect control
all the way to RI(n),LTn

, we will use a few estimates on the subharmonic functions
that are collected and proved in the Appendix for the reader’s convenience. Our
immediate goal is to prove the following lemma.

Lemma 3.2. For every closed interval J ⊂ R+, we have the estimates

(3.7) lim sup
n→∞

sup
0<y<LTn

∫
J
‖ψn(∞, x + iy)‖2dx < ∞

and

(3.8) ‖ψn(∞, x + iy)‖2 ≤ CJ(1 + y−1 + (LTn − y)−1), x ∈ J, 0 < y < LTn .
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Proof. We start with any interval I and define the sequence {I(n)} as before in
(3.2). For each n ≥ n0, one lets

An := sup
0<y<LTn

∫
I(n)

‖ψn(∞, x + iy)‖2dx.

Wewill control how An changes when n is increased by one. Given n−1 and An−1,
the goal is to estimate An. To do that, we apply (3.5) and write

sup

Tn−1<y<LTn−1

∫
I(n−1)

‖ψn(∞, x + iy)‖2dx

≤ (1 + ε′
n)

2 sup

Tn−1<y<LTn−1

∫
I(n−1)

‖ψn−1(∞, x + iy)‖2dx

≤ An−1(1 + ε′
n)

2.

Next, we apply (3.4), (3.6), and Lemma 4.3 with κ = (1−α)/α, δ ∼ τn, ε1 ∼ LTn−1 ,
ε2 = 
Tn−1 to get

sup
0<y<
Tn−1

∫
I(n)

‖ψn(∞, x + iy)‖2dx ≤ CI′ +O(T−δ4
n (1 + CI′ + An−1)), δ4 > 0.

In the end, we have

An ≤ max{CI′ +O(T−δ4
n (1 + CI′ + An−1)),An−1(1 +O(Tδ5

n ))}
with positive δ4 and δ5. That is supplemented by fixing An0 . The previous bound
yields

An ≤ An−1(1 +O(Tδ5
n )) +O(T−δ4

n )

and An ≤ CIAn0 . Consequently,

(3.9) lim sup
n→∞

sup
0<y<LTn

∫
˜I(n0)

‖ψn(∞, x + iy)‖2dx < ∞.

Due to (3.3), we can start with any J, choose I that contains it and then n0 so large
that Ĩ(n0) contains J too. That will give us the first statement of the lemma. Now,
the bound (3.8) follows from (4.8). �

Lemma 3.3. For every closed interval J ⊂ R+, we have an estimate

(3.10) lim inf
n→∞

∫
J
log ‖ψn(∞, k)‖dk > −∞.

Proof. As in the previous proof, we define

Bn := inf
0<y<LTn

∫
I(n)

log ‖ψn(∞, x + iy)‖dx.
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We will control how Bn changes when n is increased by one. Given Bn−1 and the
previous lemma, we want to estimate Bn. To control log ‖ψn(∞, x + iy)‖ in the
upper part of RI(n),Tn , we use estimates in PC(In−1,Tn−1). Applying (3.5), one has

(3.11)

inf

Tn−1≤y≤LTn

∫
I(n−1)

log ‖ψn(∞, x + iy)‖dx

= O(ε′
n) + inf


Tn−1≤y≤LTn

∫
I(n−1)

log ‖ψn−1(∞, x + iy)‖dx

≥ O(ε′
n) + Bn−1.

and

inf

Tn−1≤y≤LTn

∫
I(n)

log ‖ψn(∞, x + iy)‖dx

= O(ε′
n) + inf


Tn−1≤y≤LTn

∫
I(n)

log ‖ψn−1(∞, x + iy)‖dx.

Notice that for the chosen range of y we have∫
I(n)

log‖ψn−1(∞, x + iy)‖dx

=
∫
I(n−1)

log ‖ψn−1(∞, x + iy)‖dx−
∫
I(n−1)\I(n)

log ‖ψn−1(∞, x + iy)‖dx

and

−
∫
I(n−1)\I(n)

log ‖ψn−1(∞, x + iy)‖dx ≥ −
∫
I(n−1)\I(n)

log+ ‖ψn−1(∞, x + iy)‖dx.

Then, ∫
I(n−1)\I(n)

log+ ‖ψn−1(∞, x + iy)‖dx �I τ
1
2
n

as follows from the estimate log+ t ≤ |t|, Cauchy–Schwarz inequality, (3.7), and
the bound |I(n)\I(n−1)| � τn. In the end, we get

inf

Tn−1≤y≤LTn

∫
I(n)

log ‖ψn(∞, x + iy)‖dx ≥ Bn−1 +O(τ
1
2
n ) +O(ε′

n).

To control the integral for the smaller values of y, i.e., when y < 
Tn−1 , we apply
Lemma 4.4 with ε1 = LTn, ε2 = 2
Tn−1 and δ ∼ τn. The base of the smaller rectangle
is I(n) and the base of the larger one is I(n−1). Given Lemma 3.2, we can write

inf
0<y<
Tn−1

∫
I(n)

log ‖ψn(∞, x + iy)‖dx

≥ (1 +O(T−δ6
n ))

∫
I(n−1)

log ‖ψn(∞, x + 2i
Tn−1)‖dx− O(T−δ7
n ).
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with positive δ6 and δ7. For the integral on the right-hand side, apply (3.11). In
the end, one has

Bn ≥ (1 +O(T−δ8
n ))Bn−1 +O(T−δ9

n ) , δ8 > 0, δ9 > 0.

Consequently, lim infn→∞ Bn > −∞ and thus

lim inf
n→∞

∫
I(n)

log ‖ψn(∞, x)‖dx > −∞.

Since∫
I(n)

log ‖ψn(∞, x)‖dx =
∫
I(n)

log− ‖ψn(∞, x)‖dx +
∫
I(n)

log+ ‖ψn(∞, x)‖dx

and (3.6) guarantees that lim supn→∞
∫
I(n)

log+ ‖ψn(∞, x)‖dx < ∞, we have

lim inf
n→∞

∫
˜I(n0)

log− ‖ψn(∞, x)‖dx ≥ lim inf
n→∞

∫
I(n)

log− ‖ψn(∞, k)‖dk > −∞.

The reasoning given at the end of the proof of the previous lemma can be used
again to deduce (3.10). �

The last two results provide the crucial estimates for ‖ψn(∞, k)‖ when
Im k ∈ (0,LTn). They control the behavior of ‖(R(n),k2F)(r)‖ for large r with-
out giving precise asymptotics for (R(n),k2F)(r). That, however, is enough to prove
Theorem 1.1.

Proof of Theorem 1.1. Take any closed interval J ⊂ R
+ and recall that

V(n) = V ·χr<Tn . Define σ(n),F, the spectral measure ofF relative toH(n) = H(0)+V(n).
The spectral measure of F relative to H is σF. Then, the previous lemma yields

lim inf
n→∞

∫
�2

logσ′
(n),F(E)dE > −∞ .

Since limn→∞ ‖R(n),zF − RzF‖H = 0, z ∈ C+, we get σ(n),F → σF in the weak-(∗)
sense. Hence (see [12], Section 5),

∫
�2

logσ′
FdE > −∞

which implies that �2 supports the a.c. spectrum of the original H. Since � was
arbitrary, we get the statement of the theorem. �
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4 Appendix 1: some estimates on subharmonic func-
tions

For the reader’s convenience, we collect some elementary estimates on subhar-
monic functions in this appendix. Start with the estimates for the subharmonic
function of a thin isosceles trapezoid. We denote this trapezoid by TI,ε,β where
the height is ε, the side angles at the lower base are both equal to π/β, and the
projection of the upper base to the real line is a given interval I ⊂ R. First, we will
need some estimates on the harmonic measure of that trapezoid. It is instructive
to start with giving the exact formula for the harmonic measure of the infinite tube
which is an “infinitely long” rectangle. If Cylε := {k : 0 < Im k < ε}, then the
density of the harmonic measure on its lower side is

(4.1) ω′
k(t) =

1
2ε

sin(πε−1y)
cosh(πε−1(x − t))− cos(πε−1y)

, t ∈ R, k = x + iy ∈ Cylε.

That formula can be verified directly. Let � := ∂TJ,ε,β = �1 ∪ · · · ∪ �4, where �1

is an upper base, �2 the lower base, �3 the left leg, and �4 the right leg of the
trapezoid. Denote the harmonic measure at point k by ωk.

Lemma 4.1. Suppose that �2 = [0, 2] and the positive parameters β, ε, δ are
chosen such that β > 2, β ∼ 1, ε < δ2 � 1, k = x + iy ∈ R(δ,2−δ),0.5ε, and ξ ∈ �.

Then, the derivative of the harmonic measure in the corresponding trapezoid with

respect to its arclength satisfies

ξ = s + εi ∈ �1, ω′
k(ξ) �

ε−2y
cosh(πε−1(x − s))

,(4.2)

ξ = s ∈ �2, ω′
k(ξ) ≤ y

π((s− x)2 + y2)
,(4.3)

ξ = teiπ/β ∈ �3, ω′
k(ξ) ≤ Cβ

(xt)β−1y
(t2 + x2)β

,(4.4)

ξ = 2 + tei(π−π/β) ∈ �4, x < 1 ω′
k(ξ) ≤ Cβyt

β−1.(4.5)

Proof. See Figure 2.
Recall the following monotonicity property of harmonic measure. If �1 ⊂ �2

and E ⊂ ∂�1 ∩ ∂�2, then ωk,�1 (E) ≤ ωk,�2 (E) for k ∈ �1 ([6], p. 36) where ωk,�

denotes the harmonic measure at point k relative to the domain�. This monotonic-
ity helps us get the required upper bounds by comparingwith the harmonicmeasure
of an angle, an infinite cylinder, or a half-plane. We obtain (4.2) by comparing
with an infinite cylinder, and (4.3) by comparing with the upper half-plane. The
other two formulas are deduced by making a comparison with an infinite angle.�
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k
10 2δ 2− δ

π/β π/β

ε

�1

�2

�3 �4

Figure 2. ε < δ2 � 1.

Remark. The estimates in the upper part of the rectangle can be obtained in
a similar way.

We will need the following result later. Recall that Ir denotes the interval on
the real line with radius r centered at the origin.

Lemma 4.2. Suppose the positive parameters ε2, ε1, δ satisfy

2ε2 < ε1 < δ2 � 1

and let ωk be a harmonic measure for RI1+δ ,ε1 . Then, for k = x + iε2, we have

(4.6) sup
|ξ|<1−δ

∣∣∣∣
∫
I1

ω′
x+iε2 (ξ)dx− 1

∣∣∣∣ � ε2ε
−1
1 .

Proof. The required density of harmonicmeasure can be written via harmonic
measure of an infinite cylinder through proper extension from I1+δ to R. The
resulting formula shows that the contribution from the left and right sides of the
rectangle are exponentially small and the desired density can be well approximated
by the density of the harmonic measure of the infinite cylinder. Then, we use
formula (4.1) to obtain the required bound. �

Lemma 4.3. Suppose the positive parameters ε1, ε2 and δ satisfy

2ε2 < ε1 < δ2 � 1.

Assume that h is an 
2(N)-valued function holomorphic in RI2,1, continuous in RI2,1,
and

(4.7) ‖h(k)‖ ≤ C1 exp(C2(Im k)−κ), k ∈ RI2,1, 1 < κ, κ ∼ 1.
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k
0π/(2κ) π/(2κ)

ε2

ε1

1 1 + δ−1−(1 + δ)

�+

Figure 3.

Then, we have

(4.8)

‖h(x + iy)‖2 ≤ Cκ(1 + y−1A + (ε1 − y)−1B),

A :=
∫
I2

‖h(t)‖2dt, B :=
∫ 1+δ

−1−δ
‖h(t + iε1)‖2dt,

provided that k = x + iy ∈ RI
1+ δ

2
,ε1 . Moreover,

(4.9) sup
0<y<ε2

∫ 1

−1
‖h(x + iy)‖2dx ≤ A + Cκε2ε

−1
1 (A + B + ε1).

Proof. See Figure 3.
We can assume h �≡ 0. Let k = x + iy ∈ RI

1+ δ
2
,ε1 . Consider the isosceles

trapezoid TI1+δ ,ε1,π/(2κ). Denote its upper base by �+ and its lower base by �−. We
write the mean-value inequality for the subharmonic function 2 log+ ‖h‖ and use
the estimate (4.4) on the density of harmonic measure on the legs to get

2 log+ ‖h(k)‖ ≤ 2
∫

∂TI1+δ ,ε1,π/(2κ)

log+ ‖h‖dωk

≤ Cκyδ
−1−2κεκ

1 + 2
∫

�+∪�−
log+ ‖h‖ω′

k(ξ)dξ

≤ Cκ + 2
∫

�+∪�−
log+ ‖h‖ω′

k(ξ)dξ

where we have applied the given estimates on ‖h‖ along with ε1 < δ2. Define
Q(k) = max{1, ‖h‖} and notice that logQ = log+Q ≥ 0 so

logQ2 ≤ Cκ +
∫

�+∪�−
(logQ2)ω′

k(ξ)dξ ≤ Cκ +
∫

�+∪�−
(logQ2)dμ,

μ :=
ωk|�−∪�+

‖ωk|�−∪�+‖ ≥ ωk|�−∪�+ .
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Taking the exponential of both sides and using Jensen’s inequality

exp
(∫

log f dμ
)

≤
∫

f dμ, ‖μ‖ = 1

we get

Q2 ≤ Cκ

∫
�−∪�+ Q2ω′

k(ξ)dξ
‖ωk|�−∪�+‖ .

For considered k, we have ‖ωk|�−∪�+‖ ∼ 1. Thus,

Q2 �κ 1 +
∫ 2

−2

π−1y
(ξ − x)2 + y2

‖h(ξ)‖2dξ

+
∫ 1+δ

−1−δ

π−1(ε1 − y)
(ξ − x)2 + (ε1 − y)2

‖h(ξ + iε1)‖2dξ

�κ 1 + C
(
y−1

∫
I2

‖h‖2dξ + (ε1 − y)−1
∫ 1+δ

−1−δ
‖h(ξ + iε1)‖2dξ

)
.

To obtain (4.9), we take k ∈ RI1,ε2 and apply the mean-value inequality to subhar-
monic function ‖h(k)‖2 inside the domain RI

1+ δ
2
,ε1 . The symbol �+

I
1+ δ

2
,ε1

will stand

for an upper base of this rectangle. Then,

(4.10)

‖h(k)‖2 ≤
∫

∂RI
1+ δ

2
,ε1

‖h‖2dωk

≤ I +
∫
I
1+ δ

2

‖h‖2ω′
k(ξ)dξ +

∫
�+
I
1+ δ

2
,ε1

‖h‖2ω′
k(ξ)dξ.

To estimate the first term, we use (4.8). That gives

I �κ

∫ 0.5ε1

0
(1 + t−1A + (ε1 − t)−1B)

( xyt
(x2 + t2)2

)
dt

+
∫ ε1

0.5ε1
(1 + t−1A + (ε1 − t)−1B)

( xy(ε1 − t)
(x2 + (ε1 − t)2)2

)
dt �κ (A + B + ε1)yε1δ

−3

as follows from (4.8) and the estimates for the harmonic measure of the rectangle.
For the last term in the right hand side of (4.10), one employs the bound on the
harmonic measure to write

(4.11)
∫

�+
I
1+ δ

2
,ε1

‖h‖2ω′
k(ξ)dξ �

∫ 1+ δ
2

−1− δ
2

‖h(ξ + iε1)‖2 ε−2
1 y

cosh(πε−1
1 (x − ξ))

dξ.
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Next, we integrate (4.10) in x ∈ I1. Integration of (4.11) yields∫
I1

(∫
�+
I
1+ δ

2
,ε1

‖h‖2ω′
k(ξ)dξ

)
dx

�
∫ 1+ δ

2

−1− δ
2

‖h(ξ + iε1)‖2
(∫

I1

ε−2
1 y

cosh(πε−1
1 (x − ξ))

dx
)
dξ

� Byε−1
1 .

The second term on the right-hand side of (4.10) contributes∫
I1

(∫
I
1+ δ

2

‖h‖2ω′
k(ξ)dξ

)
dx ≤

∫
I
1+ δ

2

‖h‖2
(∫

I1
ω′
k(ξ)dξ

)
dx ≤

∫
I2

‖h‖2dx

where the estimate

ω′
k(ξ) ≤ π−1y

(ξ − x)2 + y2

was used. Combining the bounds, we get (4.9) after our assumption ε1 < δ2 is
taken into account. �

Lemma 4.4. Suppose the positive parameters ε1, ε2 and δ are chosen such

that ε2 ≤ ε1| log ε1|, ε1 < δ2 and δ � 1. Assume that the 
2(N)-valued function h
is holomorphic in RI1+δ ,ε1 , h ∈ C(RI1+δ,ε1 ), h �≡ 0,

W := sup
0<y<ε1

∫
I1+δ

‖h(x + iy)‖2dx,

‖h(k)‖2 ≤ L(y−1 + (ε1 − y)−1), k = x + iy ∈ RI1+δ,ε1 , L > 2.

Then, we have

inf
0<y<ε2/2

∫
I1−δ

log ‖h(x + iy)‖dx ≥ (1 +O(ε2ε
−1
1 ))

(∫
I1
log ‖h(x + iε2)‖dx− η

)
,

|η| < C(ε2ε
−1
1 (W0.5 + | logL| + | log ε1|) + (δW)0.5).

Proof. It is enough to prove

(4.12)
∫
I1−δ

log ‖h(x)‖dx ≥ (1 +O(ε2ε
−1
1 ))

(∫
I1
log ‖h(x + iε2)‖dx− η

)
.

Take k = x + iε2, x ∈ I1 and apply the mean-value inequality to the subharmonic
function log ‖h‖ within RI1+δ,ε1 . We define �1 = {k : Re k ∈ I1+δ, Im k = ε1},
�2 = {k : Im k ∈ (0, ε1), k ∈ ∂RI1+δ,ε1}, �3 = {k : Re k ∈ I1+δ, Im k = 0}. Check
Figure 4.
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ε2

ε1

δ
−1 1

δ

k

0

Figure 4. ε2 � ε1 < δ2 � 1.

We get

(4.13)
∫

�3

log ‖h‖dωk ≥ log ‖h(x + iε2)‖ − E1 − E2,

where
E1 =

∫
�1

log+ ‖h‖dωk, E2 =
∫

�2

log+ ‖h‖dωk.

One applies the given estimates on h and the estimates on a harmonic measure to
bound E1(2):

E2 � (| logL| + | log ε1|)δ−3ε21ε2,

E1 �
∫
I1+δ

log+ ‖h(ξ + iε1)‖ ε−2
1 y

cosh(πε−1
1 (x − ξ))

dξ.

Now, we integrate (4.13) in x over I1 and recall that �3 = I1+δ. That gives∫
I1
E1dx �

∫
I1+δ

log+ ‖h(ξ + iε1)‖
(∫

I1

ε−2
1 y

cosh(πε−1
1 (x − ξ))

dx
)
dξ ≤ W

1
2 yε−1

1 .

Then,∫
I1

(∫
I1+δ

log ‖h‖dωk

)
dx

=
∫
I1+δ

log ‖h‖
(∫

I1
ω′
kdx

)
dξ

≤ (1 +O(ε2ε
−1
1 ))

∫
I1−δ

log ‖h‖dx

+O(ε2ε
−1
1 ))

∫
I1−δ

log+ ‖h‖dx +
∫
I1+δ\I1−δ

log+ ‖h‖
(∫

I1
ω′
kdx

)
dξ

≤ (1 +O(ε2ε
−1
1 ))

∫
I1−δ

log ‖h‖dx + Cε2ε
−1
1 W

1
2 + C

∫
I1+δ\I1−δ

log+ ‖h‖dξ
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after we use the bound (4.6) from Lemma 4.2. Finally,∫
I1+δ\I1−δ

log+ ‖h‖dξ ≤ C(ε)W0.5δ0.5

by Cauchy–Schwarz inequality. Combining the obtained estimates, we get the
statement of the lemma. �

5 Appendix 2: rough bounds on Green’s function

We need the following standard bounds “a la Combes-Thomas” (see, e.g., [7]) for
Green’s function G(r, ρ, k2) of H = H(0) + V . In this section, we assume that I is a
fixed closed interval in R+ and k ∈ RI,1.

Lemma 5.1. Suppose ‖V‖L∞(R+) < ∞. Then, we have

(5.1) ‖G(r, ρ, k2)‖ ≤ C′
Ie

−0.5(Im k)|r−ρ|

for all k ∈ RI,1, Im k > CI‖V‖L∞(R+) with some CI > 0 and C′
I > 0.

Proof. This is immediate from the analysis of the perturbation identity for the
Green’s kernel G:

G(r, ρ, k2) = G(0)(r, ρ, k2)−
∫ ∞

0
G(0)(r, ξ, k2)V(ξ)G(ξ, ρ, k2)dξ.

Multiply both sides by e0.5(Im k)|r−ρ| and apply the contraction mapping principle in
L∞(R+ × R+). We use (1.2) to get

e0.5(Im k)|r−ρ|
∫ ∞

0
e−(Im k)|r−ξ|‖V(ξ)‖e−0.5(Imk)|ξ−ρ|dξ ≤ 4‖V‖L∞(R+)(Im k)−1

and (5.1) follows provided Im k > CI‖V‖L∞(R+) with suitable CI . �
Finally, we can focus on the lemma we need in the main text.

Lemma 5.2. Let ‖V‖ ≤ λ(1+ r)−γ, H = H(0) +V, k ∈ RI,1, where I is a closed

interval in R
+, γ ∈ (0, 1), and T > 1. Then, there are positive T-independent

constants C,C1 and c such that

‖G(r, ρ, k)‖ < Ce−c(Im k)|r−ρ|

for Im k > C1T−γ, 0.5T < r < T, and 0.5T < ρ < T.
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Proof. DefineH′ = −∂2rr+V ·χr> 1
4T
. By the previous lemma, the corresponding

Green’s kernel G′ satisfies the bound

(5.2) ‖G′(r, ρ, k)‖ ≤ Ce−0.5(Im k)|r−ρ|

if Im k > C1T−γ. Next, we again write the second resolvent identity

G(r, ρ, k2) = G′(r, ρ, k2)−
∫ 1

4T

0
G(r, ξ, k2)V(ξ)G′(ξ, ρ, k2)dξ.

For the first term, we use (5.2). To estimate the second one, we apply a general
bound: for every h ∈ H, one has

‖Rk2h‖L∞(R+) ≤ C(‖Rk2h‖L2(R+) + ‖(Rk2h)
′′‖L2(R+)) ≤ CI,λ(Im k)−1‖h‖L2(R+)

which follows from Sobolev’s embedding, the equation for Rk2h, and the Spectral
Theorem. Then, since r, ρ ∈ [0.5T,T], one deduces

∥∥∥∥
∫ 1

4T

0
G(r, ξ, k2)V(ξ)G′(ξ, ρ, k2)dξ

∥∥∥∥ ≤ CI,λ(Im k)−1
(∫ 1

4T

0
e−(Im k)|ξ−ρ|dξ

) 1
2

≤ CI,λ(Im k)−2e−0.1(Im k)T .

Since Im k > C1T−γ and γ ∈ (0, 1), we have (Im k)−2e−0.1(Im k)T < Ce−c1(Im k)T

with positive c1. The result now follows because e−c1(Im k)T ≤ e−c(Im k)|ρ−r| with
positive c provided that 0.5T < r, ρ < T . �
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