SPATIAL ASYMPTOTICS OF GREEN’S FUNCTION
AND APPLICATIONS

By

SERGEY A. DENISOV*

Abstract. We study the spatial asymptotics of Green’s function for the 1d
Schrédinger operator with operator-valued decaying potential. The bounds on
the entropy of the spectral measures are obtained. They are used to establish the
presence of the a.c. spectrum.

1 Introduction and the main result

In this note, we revisit the spectral theory of Schrédinger operators with long-range
potentials. In dimension one, the quest for the minimal assumptions on the decay
of potential that guarantee the preservation of absolutely continuous spectrum
resulted in the theorem (Deift—Killip [1], see also [13]), which says:

IfV € L*(RY), then 6,.(—0% + V) = [0, 00) where 7, denotes the a.c. spectrum
of the operator with Dirichlet boundary condition at zero.

In the case of the Dirac equation, an analogous result was obtained by M. Krein
already in 1955 (see [15] and [2]). The L>-condition is sharp: it is known [14]
that V € [Z(R*), p > 2 can lead to an empty a.c. spectrum. In higher dimension,
one again is interested in finding the minimal assumptions on the decay of V
in —A +V, x € R?, d > 2 that guarantee “scattering” which can be understood
either in the sense of preservation of the a.c. spectrum or as the existence of wave
operators in Schrodinger dynamics. Some results were obtained for decaying
potentials that oscillate (see [4, 17] for their surveys). However, if the oscillation
condition is dropped and no additional smoothness (see, e.g., [16, 19] for various
classes of potentials) is assumed, then the identity o,.(—A + V) = [0, 00) is not
known even for V obeying fairly strong constraints, such as |V (x)| < C(1+|x|)~!*¢,
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0 < € < 1. Notice that the last assumption is only slightly weaker than the short-
range condition of the classical scattering theory [11]. In this paper, we make
progress on a related problem.

Consider the Hilbert space 3 := @2, L*(R*) with the inner product defined
by

00 el 00
(.G | (R.Gar=3 | figadr
n=1

O =
where F = (f1, f2,...), G = (g1, &2, - - .)- We define the 1-d Schrodinger operators

(1.1) H=-&*+V, HY=-2&

rr>

x>0

with Dirichlet boundary condition at the origin and operator-valued potential V. It
satisfies V(r) = V*(r) for a.e. r > 0 and || V|| € L*°[0, co). By the general theory
of symmetric operators, H defines the self-adjoint operator with the domain

D(H) = DH®) = (P HGRY),

n=1

where HZ(RY) := {f : f.f" € L>(R"), f(0) = 0} is the standard H?*(R*) Sobolev
space of functions vanishing at the origin. Denote the Green’s function of H by
G(r, p, 2),1.e.,

R.F = (H—Z)_1F=/ G(r, p, 2)F(p)dp, F e XH.
R+

Weletz e Crand k =/z € {k € C*,Imk > 0,Rek > 0}. The Green’s function
of the unperturbed operator will be called G?. Notice that

(1.2) GO, p, k) = Z’k(eikv—m _ oKy

Let u := RF, v := e~ *u. We have —u” + Vu = k>u + F, u(0, k) = 0 and
(1.3) —y" = 2iky’ + Vy = Fe™*"

In this note, we develop the perturbative theory which partially controls the spatial
asymptotics of u when F has compact support, r — +co0 and z € C* is taken
close to R*. Our analysis allows the direct study of G(r, p, z) when p is fixed
and r — oo but u has a better regularity and we will work with it instead. The
following theorem showcases the typical application of our analysis to the study
of spectral type.

Theorem 1.1. Suppose y > 3,2 > 0, and |V|| < A(1 +r)7". Then,
R* C o.c(H).
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Later in the text, we can assume that y is fixed in the range y € (g, 1). Many
constants the reader encounters in this text depend on y and A but we might not
explicitly mention that.

Remark. The proof of the theorem employs elementary properties of sub-
harmonic functions and a few apriori integral estimates obtained directly from
the equation itself. We avoid ODE asymptotical methods so this technique can
potentially be applied to study elliptic partial differential equations and difference
operators on graphs.

The connection between o, the spectral measure of F € H{, and the asymptotics
of u at infinity is revealed in the following lemma.

Lemma 1.1. Suppose T > 1, suppV C [0, T], F € H, and supp F C [0, 1].
Then, oF is absolutely continuous on R* and

(1.4) o (k?) = kx| y(oo, K)||?
fork € R

Proof. Under the assumption of the lemma, the so-called absorption principle
holds (see, e.g., [8, 9, 10] for the Weyl-Titchmarsh theory of the operator-valued
Schrodinger operator). In particular, for every interval I C (0, co0) and every
positive r, the function u(r, k) = (R2F)(r) has continuous extension in k from
Ry :=1x (0, 1) to the interval I and this u satisfies —u” + Vu = K*u+F, u(0, k) = 0
for k € R;;. Thus, y(r, k) = e~ *u(r, k) is defined as well for k € I and w(r, k) =
w(00, k) if r > T. That explains why the right-hand side in (1.4) is well-defined.
The absorption principle also implies that o is purely a.c. on R*. Next, we take
k € Ry and write —u” + Vu = k*u + F. Take an inner product with « and integrate
over [0, T']. Subtracting the resulting identity from its conjugate gives us

_ T
(W (T, k), u(T, k)) — (u(T, k), (T, k)) = (K> —k?) /O lull*dp+ (R F, F) = (F, RiF).

Due to the absorption principle, we can take Imk — O in the last formula. This

gives (1.4) after we take into account that u(r, k) = e y(co, k) for r > T. ]

Remark. One of the key ideas in the proof of Theorem 1.1 is based on the
following observation. Taking the logarithm of both sides in (1.4) gives

log 0/ (k*) = log(kx™") + 2 log || (o0, D).

The function log || w(oo, k)|| is subharmonic in R;; = I x (0, 1) for every closed
interval I C (0, oo). Thus, rough bounds for log || (oo, k)|| in Ry can provide
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the lower bounds for the entropy [, log o(k*)dk, I' C 1 by application of the
mean-value inequality for subharmonic functions. The uniform control over the
logarithmic integral implies the a.c. spectral type by the standard argument. A
serious obstacle we will face is that the good control of || (oo, k)|| is only possible
when Im & is very small. The development of strategy that overcomes this difficulty
was the main motivation to write this note.

Some previous results. In [20], the reader can find an overview of one-
dimensional results related to the topic. The survey papers [4, 17] discuss the
higher-dimensional case. See also [5, 19, 18] for more recent advances. The one-
dimensional Schrodinger with operator-valued potential was extensively studied
in the past and a thorough account of the literature can be found in [8, 9, 10].
The a.c. spectrum of the operator-valued Schrédinger with decaying potential was
studied in the context of hyperbolic pencils in [3]. In particular, it was established
that R* C 0,.(—82 +1V) for a.e. t € R, provided that the operator-valued potential
V satisfies | V|| € L*(R*) N L>®(R").

Motivation. To relate (1.1) to multidimensional problems, consider the three-
dimensional Schrédinger operator — A + V, x € R? which allows the representation

B
(1.5) —o;, — L +V(10)
r

in the spherical coordinates (1, #) € R* x S?>. Here, B stands for the Laplace—
Beltrami operator on S? and the Dirichlet boundary condition is assumed at the
origin. If the higher spherical modes can be neglected, one considers

P_.B

(1.6) H=-5,—" =" +V(10)
r

instead of (1.5), where P,« is an orthogonal projection to the first [#*] spherical
harmonics. Assuming |V(x)| < C(1+|x]|)~7 with y > % and choosing « in a suitable
way, we reduce (1.6) to the form (1.1).

Structure of the paper. The second section contains some a priori estimates
for the solutions to equation (1.3). In the third section, we give the proof of
Theorem 1.1. Some useful estimates on subharmonic functions are collected in
Appendix 1. The second appendix contains general bounds on Green’s function.

Notation.

e If ] is a closed interval on R, ¢; denotes its center and |/| denotes its length;

I, stands for the interval centered at zero with radius r; R* = (0, 00).

e If y is a vector in Hilbert space £?(N), then | || denotes its norm. If V is a

bounded linear operator acting in £?(N), then || V|| denotes its operator norm.

e If ] is a closed interval in R* and 6 > O, then R; 5 :=1 X (0, 9).
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o If ¢, y € (?(N), then (¢, ) refers to the inner product in £2(N).

e For a > 0, we define log, a = max{0, loga}, log_a = min{O0, log a}.

e The symbol C, will indicate a positive constant whose dependence on a
parameter oo we want to emphasize. The actual value of this constant can
change from one formula to another.

e For two non-negative functions fjz), we write fi < f> if there is an absolute
constant C such that fj < Cf, for all values of the arguments of fi). We
define 2 similarly and say that fj ~ > if fi < f» and 5 < fi simultaneously.
If the constant C depends on parameter o, we might write f; <, f>.

e For the set A C R, we denote A% = {E? : E € A}.

2 Two simple estimates obtained from the equation

In this section, we consider the case when supp V C [0, T]and || V(r)|| < A(r+1)77,
y € (g, 1). In later discussion, we will be taking 7' =2",n > ng > 1. Let, e.g., F
be such that

2.1) F=0,..), Wfllzxwy=1, suppfCl[O,1], f=0.

Let o be the spectral measure of F, i.e.,
dop(E
(R.F, F)gc = / orE) e C\R.
E—z
Recall that o is a probability measure and that u = R, F’. Rewrite equation (1.3)
for y as

-V// VW
22 iV
2.2) V= T ok

Lemma 2.1. If1 is any closed interval in R*, a € (0, 1) and k € R; -, then

r> 1.

sup [ w(r, K < Crqo exp2m k)~ =2/%),

r>0

Proof. Since V(r)=0forr> T, y(r, k) = w(T, k)if r > T and we can assume
that r < T. Because [|ull;20.00) < C;(Imk)~! we have "1 1270.00) < C/(Imk)~!
from the equation —u” + Vi = k*u + F. Then, |u||1=j0.00) < C;(Imk)~! as follows
from the standard Sobolev’s embedding. Since ||y (r, k)| = "™ " ||lu(r, k)||, this

gives us the statement of the lemma because
(Imk)r < (Imk)T < (Imk)~1=/@

and
(Im k)~ exp((Im k)~ ~4/*) < C, yexp(2(Im k)~ =4/, 0
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Remark. Notice that this lemma only requires that |V| € L*(R*) and
suppV C [0, T].

Next, we will study w(r, k) when r € [T/2,T]. In particular, we will be
interested in how || w(r, k)|| deviates from || y(T/2, k)|| when r > T/2, k € R, and
Im k is small. Our basic tool is the following integral identity.

Lemma 2.2. Let 1l <a <bandRek > 0,Imk > 0. Then

Imk [? Imk [P
@3) Iy DI+ / 1v/1Pdp = lIya KIP+01=0a=" s / (Vi w)dp
where ; ;
0 = 2k<‘//(b, k), w(b, k)) — 2,;(*//(19, k), v/ (b, k))
and

i
Q2= o

Proof. Take the inner product of both sides in (2.2) with y and integrate

(W (a, k), wla, k) — 2’,;<w(a, k), y/(a, k) .

from a to b. Then, take the real part of the resulting identity. We get

Ly (b, OII?
: b : b Imk b
zlk/ (v, w)dp—zl,;/ (v, w")dp — ;}2 / (Vy, w)dp.

Integration by parts gives the statement of the lemma. (]

= lly(a, K)II* +

Remark. In (2.3), an additional condition V > 0 immediately provides and a
priori estimate on [ ||y/[|I>dp with essentially no assumptions on the decay of V.

The following lemma is straightforward.

Lemma 2.3. Let Y and A be two €*(N)-valued functions defined on [a, 00)
that satisfy | Y|, |1 Y, |All € L?[a, o) and
Y = 2’kY’+A, Imk > 0.
Then,

|KH Al 2214, 00)
2.4 Y|z < ’
( ) ” ”L [a,00) ~> \/I k

Proof. We have Y’ = —2ikY + 2ikA. If ¥ is defined by ¥ := ¢*¥"Y, then
V¥ = —2ik [7° A(s)e**ds. In the end, one has

e < KA 0
s L?la,00) ~5 Imk

Y = —2ike 2 / A(s)e*kds.

r

Applying the convolution bounds, we get our lemma. g
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If T > 1, we arrange for two positive numbers L7 and €7 such that {7 < Lp,
O = T1=2+200 apnd L = 777179 where J; is a positive parameter (e.g., take
o = g — ;). Its choice is possible since y € (_%, 1). Given any closed interval
I c R*, define the set

PC],T = Rl,l N {k 0y <Imk < ,CT}

We will refer to PC; 7 as the zone of perfect control. The reader will see that
this name is justified from the next two results.

Lemma 2.4. For k € PCy 1/, we have
(2.5) Iw(T, DI = 1 w(T/2, DI* (L +€r), e < CT™™
where 6, > 0.

Proof. We introduce M := sup,. g, lly(r,k)ll. Let k € R;;1. Applying
Lemma 2.3 to (2.2) on the interval [T/2, o), one has

TO.S—y

1/ | oor7/2,00) < CIM\/Imk'

Hence,
T0.5—y

su < C;M? .
P2 101l < C; JImk

a,b>T/

By the same Lemma 2.3,

T0.5—y

19 | 217/2,00) < CIM mi

Taking the supremum in b > T/2 in (2.3) and letting a = T/2, we get

T0.5—y T1—2y) 5

M? — ||w(T/2, 0% < C;(Ami)T ™7 + +
M2 = (T2, 0P < G (amioT! 7 e

Thus, one has

M? = ||w(T/2, ))1*(1 + €7),

(26) T0-5—y T1-2y

< C/(AmiT=7
er < ,((m) +\/Imk+ Im &

) < T

for given k. Now, we can take b = T, a = T/2 in (2.3) and use the bound on M to
get the desired statement. (]
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We just saw that the || (7, k)|| does not change much in » when r € [T/2, T] and
k is fixed in the zone of perfect control. Next, we set up the iteration scheme which
will play the key role in the proof of the main result. Suppose 7, = 2", n > no where
ng is a large parameter which will be fixed later. Given V : |V|| < A(1+r)™7, y > %
we let

(2.7) V(n) =V. XI[0.T,1> H(n) = H(O) + V(n), Yn = e_ikrR(n)’kzF ,

where function F has been chosen in the beginning of this section and
Ry = (Hp — z)~!. The next lemma estimates ,(co, k) in the (n — 1)-th
zone of perfect control.

Lemma 2.5. Let I be a closed interval in R*. Ifk € PCy g, |, then
(00, DIl = llyu-1(00, DII(L +€,), e, < CiT,*

where &, is a positive parameter.

Proof. Recall that w;(T;, k) = y;(00, k) for every j. By the previous lemma, it
is enough to show that

(2.8) lwa(Ta/2, D)) = 11 (00, D1+ OT; %)

where k € PC; 7, , and J3 is a positive fixed number independent of n. To do that,
we will use Lemma 5.2. Recall that Hy,y = Hy—1y+ V - x(r,_,,7,) and

Ry e F = Rp—ny e F — Ry e (V - xi1,-1, 1) R 1) 02 F.

Multiply both sides by e~*" and recall the definition of y, in (2.7). Since
Wn—1(r, k) = wu—_1(00, k) for r € [T,—1,00) and k is in the zone of perfect con-
trol, we can apply Lemma 5.2 to R, 2. This yields

lYn(T0/2, k) = yu_1(00, K|

T”
< gl _1(OO,k)||/ e IMO(T1—clp=Tu-D)=P) =7 4
2.9 v - P

< T, (Amk) ™ yu—1 (00, K) ||
< T 72wy (00, K,

because k € PCy 1, ,. Putting together (2.8) and (2.9) gives the desired result. [
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3 Iteration and the proof of the main theorem

Recall that F is chosen to satisfy (2.1). First, we need an auxiliary lemma.

Lemma 3.1. Suppose ||V|| € L™®°(R") and v, is defined as in (2.7). Then,

sup / (00, x + iy)[Pdx < 00, inf / log [| (00, x + iv) [ Pdx > —00
O<y<1JI 0<y<l Jj

for every closed interval I C R*.

Proof. Since V() is compactly supported, y, (o0, k) has continuous extension
to any closed interval on the real line, and y, = 0. It is also analytic in k in
every rectangle R;; so the lemma follows from, e.g., the mean-value estimate for
subharmonic function log ||y, (o0, k)||. [

To begin the iterative process which will be the key to the proof of our main
result, we start with taking I, any closed interval in R*. Then, for this I, we choose
no € N, a fixed large parameter whose dependence on / will be specified later, and
define two numbers A,,, and B, as follows:

A, = sup /Ilwno(oo,xﬂy)llzdx,
0<y<Lp, JI

3.1)

By, = sup /logllt//no(oo,x+iy)||dx.
O<y<Lr, J1

From the last lemma, one knows that A,, < oo and B,, > —oo for every ny. Next,
we define the sequence of intervals {/;)}, n > ny by conditions

(3.2) Loy =1, cr,=cr,  Uwl=Hu-1] — 27,

and 7, =7, ", where0 < v < 0.01(=y+1+061)s0o L, = T,ﬁ’_l_(sl L1,=T,", see

Figure 1. Notice that
S g=Y 2~ g2

n=>ngp n=>ngp

and lim,,,_, 27" = 0. Therefore, if I is given, we can always arrange for ng large
enough that £7, < 1 and that there is L)

(3.3) ¢y =t Ao © [Vl lim 1Nyl = 0.

n>ng

Let us collect what we already know about the sequence { ,,} below:
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n—1

n—1

Clp-1y = €l I, Iy

L(ng)

Figure 1. Rl(n—l)sTn—l and Rl(n),Tn‘

¢ Rough upper bound, Lemma 2.1:
3.4 lyn(o0, K| < CU', @) expUm k)~ =**), k€ Ry ¢, ,

where I’ can be chosen as any open interval in R* that contains /,,) = I. The
parameter o is related to y by a = 1 +d; — .

e The first step: by construction, A,,, and B,,, are defined for every ny.

o Estimate in the zone of perfect control, Lemma 2.5: if k € PC(I, T,—1),

then
(3.5 (00, D)l = llya—i1(00, D1 +€,), €] < CT, .
e Uniform bounds on the real line, formula (1.4): for every I’ C R*, we
get
(3.6) sup | [lyn(oo, )I2dk < Cy.

n>ng JI'

To control y, (00, k) in Ry, ¢, , one can use apriori estimates (3.4), (3.6) along
with (3.5). To interpolate the bounds on y,(co, k) from the zone of perfect control
all the way to Ry, ¢, , we will use a few estimates on the subharmonic functions
that are collected and proved in the Appendix for the reader’s convenience. Our
immediate goal is to prove the following lemma.

Lemma 3.2. For every closed interval J C R*, we have the estimates

(3.7) limsup sup | wn(o0, x + iy)||2dx < 00

n—oo O<y<Lr, JJ

and

(3.8)  Nya(oo, x+in)|> < Cy(1+y™' +(Ly, =07, x€J,0 <y <Ly,
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Proof. We start with any interval / and define the sequence {/,} as before in
(3.2). For each n > ng, one lets

. ] 2
A, = sup | wa(o0, x +iy)||“dx.
O<y<Ly, Y1

We will control how A,, changes when n is increased by one. Givenn — 1 and A,,_1,
the goal is to estimate A,,. To do that, we apply (3.5) and write

sup / (o0, x + iv) | Pdx

lr <y<LTn—l 1(,,71)

n—1

< (1+€)? sup / | wn—1(00, x + iy)||*dx

lr,_ <y<Lr,_, Y-y

n—1

<A,_1(1+€)%
Next, we apply (3.4), (3.6), and Lemma 4.3 withx = (1 —a)/a, 0 ~ 7, €, ~ L7, _,,

€ =10, , to get

sup | wn(o0, x + iy)||2dx <Cr+ O(T,,_‘54(1 +Cp+A,_1)), 04>0.
0<y<[7‘n71 I(,,)

In the end, we have
A, < max{Cp + O(T,;*(1 + Cp + Ap_1)), Ape1 (1 + O(T2))}

with positive d4 and Js. That is supplemented by fixing A,,. The previous bound
yields
Ay < Apmi (L4 O(T9)) + O(T )

and A, < C/A,,. Consequently,

(3.9) limsup sup [ [ly.(0o, x+iy)[%dx < oo.

n—o00 0<y<LTn I(”())

Due to (3.3), we can start with any J, choose I that contains it and then ng so large
that I,,, contains J too. That will give us the first statement of the lemma. Now,
the bound (3.8) follows from (4.8). ]

Lemma 3.3. For every closed interval J C R*, we have an estimate
(3.10) liginf/log | wn(o0, k)||dk > —o0.
n oo J
Proof. As in the previous proof, we define

B,:= inf [ log|yn(co,x+iy)lldx.

O<y<Lr, Iy
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We will control how B,, changes when # is increased by one. Given B,_; and the
previous lemma, we want to estimate B,. To control log || w,(c0, x + iy)|| in the
upper part of Ry, 7,, we use estimates in PC(I,—1, T,—1). Applying (3.5), one has

inf / log | (00, x + i)l dx

0, <yl Sy

(31D =0+, inf [ loglyi(oo s il

tr,_ <y<Lr, 1)
= 0(6:1) +By-1.
and

inf 0g || y/u(00, x + i)l dx

ng—l <y<Lry, Iiny

=0(e,) + inf / log || wu—1(00, x + iy)||dx.

tr,_, <y<Lr, Iy

n—1

Notice that for the chosen range of y we have

/, log || yn_1(00, x + iv)lldx
(n)

- / log | yn_1(00, x + i) dx — / log [| Va1 (00, x+ iy

In—1) Tn—1)\w)

and
—/ log [|yp—1(00, x +iy)||dx > —/ log, || w—1(00, x +iy)||dx.
Tn—v)\ln) Ln—v)\lm)

Then,
1
/ log, [lwn—1(00, x +iy)lldx <
I(n—l)\l(n)

as follows from the estimate log, ¢ < |¢|, Cauchy—Schwarz inequality, (3.7), and
the bound |7,y \I(n—1)| < 7. In the end, we get

1

inf / log || wa(00, x + iy)|ldx > B,—1 + O(7;) + O(€,,).
lr,_ <y<Lr, Iy

To control the integral for the smaller values of y, i.e., wheny < {r,_,, we apply

Lemma4.4 withe; = L7, €2 = 267, , and 6 ~ 7,. The base of the smaller rectangle

is /() and the base of the larger one is /,—;). Given Lemma 3.2, we can write

inf / log || y,(00, x + iy)lldx

O<y<{’Tn_l Iy

> (1+O(T; %)) log ||y, (00, x +2ilz, ,)||dx — O(T; ).

Iy
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with positive d¢ and J;. For the integral on the right-hand side, apply (3.11). In
the end, one has

B, > (1+O(T;®)B,_1 + O(T,;®), 5> 0, > 0.
Consequently, liminf,_, o, B, > —oo and thus

lim inf log || w,(00, x)||dx > —o0.

n— 0o I

Since

/ log | (00, )lldx = / log_ || ya(00, ) ldx + / log, || (00, X)lldx

Iy Iy Ly

and (3.6) guarantees that lim sup,,_, . fl(") log, ||wn(00, x)||dx < oo, we have

liminf/ log_ || wu(o0, x)||dx > liminf/ log_ ||wn(o0, k)||dk > —o0.
n— 00 f(%) n— 00 I
The reasoning given at the end of the proof of the previous lemma can be used
again to deduce (3.10). ]

The last two results provide the crucial estimates for | (o0, k)|| when
Imk € (0,L7,). They control the behavior of |[(R, F)(r)|l for large r with-
out giving precise asymptotics for (R, ,2F)(r). That, however, is enough to prove
Theorem 1.1.

Proof of Theorem 1.1. Take any closed interval J C R* and recall that
Vi) = V- xr<1,. Define o) r, the spectral measure of F relative to Hy,y = HO+ V.
The spectral measure of F relative to H is op. Then, the previous lemma yields

n—oo

lim inf N log o(,y (E)dE > —00.

Since lim,,, o ||[Rn),.F' — R.F|l3c =0, z € C*, we get o(,),r = or in the weak-(x)
sense. Hence (see [12], Section 5),

/A2 log 6-dE > —o0

which implies that A2 supports the a.c. spectrum of the original H. Since A was
arbitrary, we get the statement of the theorem. ([l
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4 Appendix 1: some estimates on subharmonic func-
tions

For the reader’s convenience, we collect some elementary estimates on subhar-
monic functions in this appendix. Start with the estimates for the subharmonic
function of a thin isosceles trapezoid. We denote this trapezoid by T; . s where
the height is €, the side angles at the lower base are both equal to z/f, and the
projection of the upper base to the real line is a given interval I C R. First, we will
need some estimates on the harmonic measure of that trapezoid. It is instructive
to start with giving the exact formula for the harmonic measure of the infinite tube
which is an “infinitely long” rectangle. If Cyl. := {k : 0 < Imk < €}, then the
density of the harmonic measure on its lower side is

: -1
@.1) () = 1 sin(we™"y)

, 1eR, k=x+iye Cyle.
2¢€ cosh(re=1(x — 1)) — cos(me~ly) € x+iy € Cyle

That formula can be verified directly. Let I' := 87,3 =T'{ U--- U Ty, where I'y
is an upper base, I'; the lower base, I'; the left leg, and I'y the right leg of the
trapezoid. Denote the harmonic measure at point k by wy.

Lemma 4.1. Suppose that T’y = [0, 2] and the positive parameters B, €, 0 are
chosen such that B> 2,8~ 1, € < * K 1, k =x+1iy € R2-6.050 and & € T.
Then, the derivative of the harmonic measure in the corresponding trapezoid with

respect to its arclength satisfies

€%y
4.2 = el 4 <
( ) é: s+ €l e 1s a)k(é:) ~ COSh(?Z'G_l(X _ S))’
/ y
4.3 = T <
( ) é s € 25 wk(é) = ﬂ((s_x)2+y2)o
i / (Xf)ﬁ_ly
“4.4) E=1"F e Ty, wi () < Cﬂ(tz +x2)p’
(4.5) E=2+1""D e Ty, x < 1 Wi (&) < Cpyt?1.

Proof. See Figure 2.

Recall the following monotonicity property of harmonic measure. If Q; C Q,
and E C 0€21 M 082, then wy q,(E) < wy.q,(E) for k € Q ([6], p. 36) where wy o
denotes the harmonic measure at point & relative to the domain Q. This monotonic-
ity helps us get the required upper bounds by comparing with the harmonic measure
of an angle, an infinite cylinder, or a half-plane. We obtain (4.2) by comparing
with an infinite cylinder, and (4.3) by comparing with the upper half-plane. The
other two formulas are deduced by making a comparison with an infinite angle. [
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I
I'3 Ty
€
/B k I T
0 0 1 2—9 2

Figure 2. € < 6> <« 1.

Remark. The estimates in the upper part of the rectangle can be obtained in
a similar way.

We will need the following result later. Recall that I, denotes the interval on
the real line with radius r centered at the origin.

Lemma 4.2. Suppose the positive parameters €, €1, 0 satisfy
2¢; < € <52<<1

and let wy be a harmonic measure for Ry, ¢,. Then, for k = x + ie;, we have

4.6) sup

I€l<1—=6

[ 1= 1‘ Seqt.

I

Proof. The required density of harmonic measure can be written via harmonic
measure of an infinite cylinder through proper extension from /;.5 to R. The
resulting formula shows that the contribution from the left and right sides of the
rectangle are exponentially small and the desired density can be well approximated
by the density of the harmonic measure of the infinite cylinder. Then, we use
formula (4.1) to obtain the required bound. ]

Lemma 4.3. Suppose the positive parameters €, €, and 0 satisfy
26, <€ <0 K 1.

Assume that h is an €*(N)-valued function holomorphic in Ry, .1, continuousin Ry, 1,
and

“4.7) AR < Cexp(Co(Imk)™), keRyi, 1 <k, k~1.
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1"+
€]
k 2
7/(2K) —(1+0)y1 0 1 1+06 7/(2x)
Figure 3.

Then, we have

IhGx+in* < Ce(1+y'A+ (61 — ) 'B),

(4.8) 1+
A= / k)|, B = / Gt + ie) | 2dr,
L —1—0

provided thatk = x +iy € Ry , ;. Moreover,
*2

1
4.9) sup / |A(x + iy)||2dx <A+ C,Cezel_l(A + B +¢€)).

O<y<ez 1

Proof. See Figure 3.

We can assume 7 =% 0. Let k = x+1iy € R,1 Consider the isosceles

0,€1°
*2
trapezoid Tp,,, ¢,,z/(2). Denote its upper base by I'" and its lower base by I'". We
write the mean-value inequality for the subharmonic function 2 log, ||| and use

the estimate (4.4) on the density of harmonic measure on the legs to get

2log, Al < 2 / ] log, |l/lde
0

T145.€1,m/(2K)

< Coyo e 42 / log, |lla,(@)dé
r+ur-
< Co+2 / log, [|Allw,(&)dé
r+ur-

where we have applied the given estimates on ||k|| along with €; < §°. Define
Q(k) = max{1, ||k|} and notice that log Q =log, O > 0 so

logQ® < Cy+ / (log Q)| (E)dE < Co+ / (log QM)
r+ur- r+ur-
M= o > x|r-ur-.
leoxlr-ur+l
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Taking the exponential of both sides and using Jensen’s inequality
exp (/logfdu> < /fdu, lull = 1

Jr-ur QO (OdE .

lleoklr-ur+l

we get
0% < C,

For considered k, we have ||wg|r-ur+|| ~ 1. Thus,

2
NK1+/ P T

146 1, _
./ @ I +ien)]Pde

—1-s (£ —x)2 +(e1 —y)?

1+0
< 1+C(y—‘/1 IRIPdE + (€1 _y>—1/_1_6 ||h(é+iel>||2df).

To obtain (4.9), we take k € R;, ., and apply the mean-value inequality to subhar-
monic function ||k(k)||? inside the domain RI1 5.c;- The symbol F;'I ,.¢, Will stand
+5 +9 >

for an upper base of this rectangle. Then,

IR < / 1211 dex

3R11+’5 €1
2

(4.10)
<1+ [ WPoj@ds [ IPe@de

1+9 I 5.€1
2 1-*-2

To estimate the first term, we use (4.8). That gives

0.561
< 1 -l Xyt
IN,C/0 (1+t7A+(er — 1) B)(( 2+t2)2)dt

xy(er — 1)

< —3
o2 + (e — t)z)z)dt Sk (A+B+¢€))yeo

+ /ﬂ (1+1'A+ () — t)_lB)(
0

.561

as follows from (4.8) and the estimates for the harmonic measure of the rectangle.
For the last term in the right hand side of (4.10), one employs the bound on the
harmonic measure to write

(4.11) /r+

1
1+

1+

IIhllzwL(f)dé*S/ IA(E + ien)II? “

1-3 cosh(zey ! (x — &) @

9 €1
2
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Next, we integrate (4.10) in x € I;. Integration of (4.11) yields

AV

I 5.
1+2

1+ 5 61—2))
< h j dx |d
N/;l_g || (é+161)” (/1; Cosh(n_el—](x 5)) x) é
< Byey .

||h||2w;(é>d§) dx

The second term on the right-hand side of (4.10) contributes

2 2 , 5
/,(/, Il “’k(@dﬁ)d’cf/, Ml (/hwk@dg)dxs/h TR

¢
1 1+2

where the estimate |

Ty
(&) <
KOS (e p ey
was used. Combining the bounds, we get (4.9) after our assumption €; < &7 is
taken into account. O

Lemma 4.4. Suppose the positive parameters €, €; and 6 are chosen such
that €2 < €;|loge;|, €; < 6% and § < 1. Assume that the £>(N)-valued function h
is holomorphic in Ry, ¢,, h € C(Ry,;.¢,), h # 0,

W= sup / h(x + iy) | dx,

O<y<e S

Ih()? < Ly~ +(e1 — )™, k=x+iy€Ry,,, L>2.

Then, we have

inf log [|A(x + iy)|ldx > (1 + 0(6261_1)) (/ log ||A(x + iep)||dx — 11) .
I

O<y<er/2 Li_s
Il < Cleaer (W + [log L| + | log €1]) + (6W)*).

Proof. Itis enough to prove

4.12) / log ||h(x)|ldx > (1 + 0(6261_1))(/ log ||A(x + iep)||dx — 11).
11,,5 Il

Take k = x + ie;, x € I, and apply the mean-value inequality to the subharmonic
function log ||k|| within Ry, . We define I'j = {k : Rek € [.5,Imk = €},
I'y ={k:Imk € (0,€1),k € ORy,,;.¢,}, I'3 = {k: Rek € I,5,Imk = 0}. Check
Figure 4.
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€1
k
| €
5 —1 5 0 1
Figure 4. € < € < 6> <« 1.
We get

@.13) | togllllden = log Ihtx + )| - E1 — Ex.

I
where

E = / log, hlldey, Es = / log, ||Alldeo.
I I

One applies the given estimates on % and the estimates on a harmonic measure to

bound E](g)l

E> < (IlogL| + | loge Do eler,
€y

cosh(re ! (x — &)) de

E < / log, |A( +ie1)]
1+

Now, we integrate (4.13) in x over /; and recall that I'3 = I;,s. That gives

6_2)1 1
deg/ log, ||A(& + i€r) (/ ! dx>d§§ Wayer!.
/h s [ o tnerient (g o ye;

Then,

/(/ 10g||h||da)k>dx
I I1+s
- [ 1og ||h||< / w;dx)dé
Is I

< (14 0(exer ) / log [|Alldx
Ii—s

+0(6261_1))/ log, ||h||dx+/ log, ||h||(/ a);(dx>d§
Li-s Livs\I1-s I

<(1+ 0(6261_1))/ log ||Alldx + Ceze; ' W2 + C log, ||h|ldé
Li-s Lies\1—s
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after we use the bound (4.6) from Lemma 4.2. Finally,
/ log, ||hlldé < Ce)W26%2
Livs\1-s

by Cauchy—Schwarz inequality. Combining the obtained estimates, we get the
statement of the lemma. (]

S Appendix 2: rough bounds on Green’s function

We need the following standard bounds “a la Combes-Thomas” (see, e.g., [7]) for
Green’s function G(7, p, k?) of H = H® + V. In this section, we assume that [ is a
fixed closed interval in R* and k € Ry ;.

Lemma 5.1. Suppose ||V||r~®+ < co. Then, we have
(5.1) I1Gr p, K] < Cre*20mOl=]

fO}’ all k € R]jl, Imk > C1||V||Loo(R+) with some C; > 0 and C; > 0.

Proof. This is immediate from the analysis of the perturbation identity for the
Green’s kernel G:

G, p, k) = GO, p, k) — / h GO, & FHV(OGE, p, KDdE.
0

Multiply both sides by ¢%3ImI"=2l and apply the contraction mapping principle in
L*®(R* x R*). We use (1.2) to get

o0
Il [ oy ) e 0NN < Ve (I )
0

and (5.1) follows provided Imk > Cy|| V|| 1®+) With suitable C;. (|

Finally, we can focus on the lemma we need in the main text.

Lemma 5.2. Let |V|| < A(1+r)"7, H=HY +V, k € R;1, where I is a closed
interval in R*, y € (0,1), and T > 1. Then, there are positive T-independent
constants C, C and c such that

|G(r, p, k)| < Ce=cmAir=rl

forImk > C;T77,05T <r <T,and0.5T < p < T.
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Proof. Define H' = —&>+V- Krs 11 By the previous lemma, the corresponding

”

Green’s kernel G’ satisfies the bound
(5.2) G (. p, K)|| < Ce™0-5ambIr—pl

if Imk > C;T77. Next, we again write the second resolvent identity

3T
Gmmﬁ:Gmmﬁ—A G(r, & KOV(OG (&, p, KdE.

For the first term, we use (5.2). To estimate the second one, we apply a general
bound: for every 4 € I, one has

IRzhll @) < CUIR:Al 2@ + 1 (R2h) | 2gey) < Cra(Amk) ™ |7l 2

which follows from Sobolev’s embedding, the equation for R;2h, and the Spectral
Theorem. Then, since r, p € [0.57, T], one deduces

T e
< C],)L(In’lk)_1 (/ e—(Imk)|g_p|d§)
0

< Cp;(Im k)2 01UmAT,

3T
HA G(r, & RWVOG &, p, Ve

Since Imk > C,T77 and y € (0, 1), we have (Imk)~2¢=010mbT o Ce—c1mT
with positive ¢;. The result now follows because e~¢IMOT < p=cdmblp—rl with
positive ¢ provided that 0.5T < r,p < T. (I
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