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We report the first direct evidence for the axisymmetric standard magnetorotational instability (SMRI)
from a combined experimental and numerical study of a magnetized liquid-metal shear flow in a Taylor-
Couette cell with independently rotating and electrically conducting end caps. When a uniform vertical
magnetic field Bi is applied along the rotation axis, the measured radial magnetic field Br on the inner
cylinder increases linearly with a small magnetic Reynolds number Rm due to the magnetization of the
residue Ekman circulation. Onset of the axisymmetric SMRI is identified from the nonlinear increase of Br

beyond a critical Rm in both experiments and nonlinear numerical simulations. The axisymmetric SMRI
exists only at sufficiently large Rm and intermediate Bi, a feature consistent with theoretical predictions.
Our simulations further show that the axisymmetric SMRI causes the velocity and magnetic fields to
contribute an outward flux of axial angular momentum in the bulk region, just as it should in accretion
disks.
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Astronomical accretion disks consist of Keplerian gas or
plasma flow about a compact massive object such as a
black hole or protostar, and slowly spiraling inward
(accreting) by transporting orbital angular momentum
outward [1]. Being resistant to hydrodynamic turbulence
[2] and at least partially ionized in the presence of a
magnetic field [3], most accretion disks probably transport
angular momentum by magnetohydrodynamic (MHD)
processes, e.g., the magnetorotational instability (MRI)
[4–7] or magnetized winds [8]. Several characteristics in
accretion disks are proposed to be related to MRI, including
turbulence [9–12], dynamo mechanism that sustains an
ordered component of the magnetic field [13–16], and
standing waves responsible for the quasiperiodic oscilla-
tions in the x-ray light curves [17,18]. To date, almost
everything known about astrophysics-related MRI is based
on linear analysis or nonlinear numerical simulations, since
astronomical observations do not resolve it.
Efforts to find the standard version of MRI (SMRI) most

likely to exist in accretion disks are also made in laboratory
experiments. SMRI requires the magnetic field parallel to
the rotation axis. While some analogs have been tested [19–
22], SMRI remains unconfirmed due to technical challenges
and confusions. An earlier claim [23] of the realization of
SMRI was due to confusion by Shercliff layer instability

[24]. Related instabilities involving azimuthal fields have
been experimentally demonstrated: helical MRI [25,26] and
azimuthalMRI [27,28]. Unlike SMRI, these instabilities are
inductionless and require an angular velocity profile ΩðrÞ
steeper than Keplerian, q ¼ −ðr=ΩÞ∂Ω=∂r > 3=2, and
hence are unlikely to be relevant to most astrophysical disks
[29,30]. Most MRI experiments are conducted in a Taylor-
Couette cell consisting of two coaxial cylinders with the gap
between the cylinders filled with liquid metal [26,31] or
plasma [32]. For SMRI, the gap must be wide enough to
ensure themagnetic diffusion time is longer than the rotation
period and the Alfvén crossing time [33,34]. For infinitely
long cylinders of ∂Ω=∂z ¼ 0, ΩðrÞ with q < 2 (“quasi-
Keplerian”) has the viscous-driven (“ideal Couette”) form:
ΩðrÞ ¼ aþ br−2, which is hydrodynamically linearly sta-
ble by Rayleigh’s criterion [35], yet may still be unstable to
SMRI. Here, constants a and b are determined by the
cylinder rotations and ðz; r;ϕÞ are cylindrical coordinates. In
experiments, the motion of the end-cap boundaries does not
match the idealCouette profile andEkman circulation is thus
excited, entailing ∂Ω=∂z ≠ 0 and (at relevant hydrodynamic
Reynolds numbers) some turbulence [36,37].
Here, we report an experimental and numerical search for

SMRI using a modified Taylor-Couette cell with independ-
ently rotating end caps. Ekman circulation is reduced and
ideal Couette flow is nearly achieved in its bulk region [38].
Copper end caps provide inductive coupling to the fluid,
enabling the nonlinear saturation of SMRI to detectable
levels [39–42]. We find that the axisymmetric (m ¼ 0)
SMRI modes, which occur only at sufficiently large rota-
tions and intermediate magnetic field strengths, have
been detected for the first time. Three-dimensional (3D)
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numerical simulations further show that, with SMRI, there is
a strong outward flux of axial angularmomentum in the bulk
region due to both the velocity and magnetic fields, which is
similar to that in accretion disks.
Details about the experimental setup have been described

elsewhere [40], and here we only mention some key points.
The radii of the inner and outer cylinders (Fig. 1) are r1 ¼
7.06 cm and r2 ¼ 20.3 cm. The cylinder height is H ¼
28.0 cm, giving an aspect ratio Γ≡H=ðr2 − r1Þ ≃ 2.1. The
inner cylinder is composed of five insulating Delrin rings
(green) and two caps (cyan) made of stainless steel (con-
ductivity σs ¼ 1.45 × 106 Ohm−1m−1). These steel caps
have a 1 cmprotruding rims,which help to further reduce the
Ekman circulation [43]. The outer cylinder is made of
stainless steel. A GaInSn eutectic alloy (galinstan) (67%
Ga, 20.5% In, 12.5% Sn, density ρg ¼ 6.36 × 103 kg=m3,
conductivity σg ¼ 3.1 × 106 Ohm−1 m−1), liquid at room
temperature, is used as the working fluid. The angular
velocities of the inner and outer cylinders are Ω1 and Ω2,
respectively. Both the upper and lower end caps are made of
copper (conductivity σc ¼ 6.0 × 107 Ohm−1m−1) and
split into two rings at r3 ¼ 13.5 cm. The inner rings rotate
independently at Ω3. The outer rings are fixed to the
outer cylinder and rotate at Ω2. For results herein,
Ω1∶Ω2∶Ω3 ¼ 1∶0.19∶0.58. Six coils provide a uniform
axial magnetic field Bi ≤ 4800 G. Hall probes on the inner
cylinder with various azimuths at z=H ¼ 0.25 measure the
time series of the local radial magnetic field BrðtÞ.
Dimensionless measures of the rotation and field strength
are the magnetic Reynolds number Rm ¼ r21Ω1=η and the
Lehnert numberB0 ¼ Bi=ðr1Ω1

ffiffiffiffiffiffiffiffiffiμ0ρg
p Þ, which are varied in

the ranges 0.5≲ Rm≲ 4.5 and 0.05≲ B0 ≲ 1.2. Here, μ0 is
the vacuum permeability, ν and η are the kinematic viscosity
and magnetic diffusivity of galinstan, and the magnetic
Prandtl number Pm ¼ ν=η ¼ 1.2 × 10−6. The device spins
up for 2 minutes, which is several times the Ekman spin-up
time (approximately 40 seconds) [37], thus ensuring a
statistically steady flow before the introduction of Bi.
When Bi is applied, the flow relaxes to a new MHD state
that is statistically steady within 2 seconds.
Our 3D simulation uses the code SFEMaNS, which solves

the coupled Maxwell and Navier-Stokes equations using
spectral and finite-element methods in a fluid-solid-vacuum
domain modeled on our experiment [44]. Its main differ-
ence from the experiment is that the Reynolds number
Re ¼ r21Ω1=ν ¼ 103, versus Re ∼ 106 in the experiment.
The simulation also has two stages: it is first run without a
magnetic field to a statistically steady hydrodynamic state,
followed by the imposition of Bi and continuing until the
MHD state saturates. Plots in Fig. 1 show that except in
small regions adjacent to the end-cap ring gaps, q < 2,
indicating hydrodynamically stable (quasi-Keplerian) flow,
as desired. Other details of numerical simulations are given
in the appendix.
Figure 2(a) shows the experimentally measured normal-

ized radial magnetic field, hBri=Bi − hBr;refi=Bi;ref as
functions of Rm, in the saturated MHD state. Here, h…i
represents averages over both time and azimuth. Br;ref and
Bi;ref are the measured radial magnetic field and the
imposed axial magnetic field at the same Rm as hBri
but with B0 ¼ 0.05. Since a weak magnetic field acts as a
passive tracer for the hydrodynamic flow, the nonzero
offset hBr;refi=Bi;ref is mainly contributed by experimental
imperfections, such as a small axial component of the Hall
probe pointing. After the subtraction of hBr;refi=Bi;ref ,
hBri=Bi represents the mean radial magnetic field induced
only by MHD effects. As illustrated by the solid line, for
small Rm, hBri=Bi − hBr;refi=Bi;ref at different B0 increase

FIG. 1. Sketch of the Taylor-Couette cell used in the experi-
ment. The cell has three independently rotatable components: the
inner cylinder (Ω1), the outer-ring-bound outer cylinder (Ω2), and
the upper and lower inner rings (Ω3). Overlaid on the left is the
ϕ-averaged shear profile, q − 2 ¼ −ðr=ΩÞ∂Ω=∂r − 2, in the
statistically steady hydrodynamic state from 3D simulation.
The cylindrical coordinate system used is shown in yellow. This
plot is adopted from Ref. [40].

(b)(a)

FIG. 2. Measured normalized radial magnetic field hBri=Bi
from experiment (a) and simulation (b), as a function of Rm for
different values of B0. The measurements are conducted at the
inner cylinder with z=H ¼ 0.25. The experimental data include
an offset subtraction of hBr;refi=Bi;ref , which does not apply to the
simulation data. The solid lines indicates linear fits to data points
at Rm≲ 2.5 and B0 ¼ 0.2. Solid (open) symbols represent
cases with (without) prominent axisymmetric SMRI, defined
as ψ ≳ 0.005 according to Eq. (1).
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almost linearly with Rm. This is caused by the magneti-
zation of the residual Ekman circulation in the hydro-
dynamic state, which breaks the translational symmetry in
the z direction compared to the case of infinitely long
cylinders [45]. The onset of axisymmetric SMRI at larger
Rm thus can be viewed as an imperfect bifurcation [46],
manifesting as an accelerated increase (a “knee” in the
slope) with Rm in the order parameter such as the radial
magnetic field [39,42]. This “knee” exists only for 0.2≲
B0 ≲ 0.35 and we infer that SMRI is prominent for solid
data points that lie significantly above the linear extrapo-
lation from lower Rm. The “knee” does not exist outside of
this intermediate range for B0. At B0 ¼ 0.1, the linear
increase with Rm continues to the highest Rm ¼ 4.5
achievable in the experiment. For B0 ≳ 0.35, the increase
even becomes slower at larger Rm, and the lack of data
points at Rm≳ 0.35 is due to the power limitation of the
motor controlling Ω2. Figure 2(b) shows that the hBri=Bi
obtained from simulation has a similar Rm dependence as
the experiment, i.e., a “knee” exists only for 0.2≲ B0 ≲
0.35 and disappears at weaker or stronger B0.
Simulations further reveal (Fig. 3) that for Rm ¼ 6, the

axisymmetric SMRI at B0 ¼ 0.2 results in a significant
enhancement of the two vertically stacked circulations in
the middle of the r-z plane in the hydrodynamic state
(B0 ¼ 0), as also observed in two-dimensional (2D) sim-
ulations [42]. This enhancement is greatly reduced at
B0 ¼ 0.5, where SMRI is suppressed by an excessive
magnetic field. Meanwhile, at B0 ¼ 0.2, the enhancement
becomes prominent only for Rm≳ 4 [see Fig. S1 in
Supplemental Material (SM) [47] ], consistent with the
requirement (Rm≳ 3.5) for SMRI shown in Fig. 2(b).
Based on the above findings, we define the amplitude ψ

of the axisymmetric SMRI as

ψ ¼ HðξÞξ; with

ξ ¼ hBri=Bi − ShBr;refi=Bi;ref − ðβ0 þ β1RmÞ: ð1Þ

In Eq. (1), HðxÞ is the Heaviside function. S ¼ 1 for
experimental data, and S ¼ 0 for simulation data. β0 þ
β1Rm is a linear fit to the hBri=Bi − ShBr;refi=Bi;ref at
Rm≲ 2.5 with fixed B0. Here, β0ðB0Þ and β1ðB0Þ are
fitting constants, where jβ0j≲ 0.002 for the best fit. To
prevent the influence of fitting uncertainties on the results,
we empirically choose ψ ≳ 0.005 as the criterion for
prominent SMRI, which is used for solid data points in
Fig. 2. This criterion is consistent with the knee position
identified in our previous 2D simulations [42]. Figure 4
shows that ψ from the experiment and simulation are in
good agreement, both showing the typical characteristics of
axisymmetric SMRI (Rm≳ 3 and Bi ≳ 2000 G). The
relatively small ψ in simulation is likely due to its large
viscosity (small Re) that reduces the MRI magnitudes. On
the other hand, these thresholds are much smaller than the
minimum Rm (Rm≳ 9) and Bi (Bi ≳ 5000 G) required for
the onset of axisymmetric SMRI, which are predicted by
local Wentzel-Kramers-Brillouin analysis or global linear
analysis based on an ideal Couette flow between
two infinitely long cylinders [33,34] (see Fig. S2 in
SM [47]). We attribute this discrepancy to the imperfect
bifurcation nature of the axisymmetric SMRI in our
bounded system: under the combined effect of no-slip
boundary condition and line-tying effect provided by the
conducting end caps, the magnetized Ekman circulation
deviates a base flow from the ideal Couette profile, making
it easier to excite SMRI. To confirm this idea, the stability
of the m ¼ 0 mode in a base flow ΩðrÞ sampled in the

FIG. 3. Time- and ϕ-averaged normalized meridional speedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2r þ u2zÞ

p
=ðr1Ω1Þ from 3D simulations. Streamlines are shown

as cyan curves. The data were obtained at Rm ¼ 6 and different
values of B0, with (a) B0 ¼ 0 (hydrodynamic), (b) B0 ¼ 0.2
(SMRI), and (c) B0 ¼ 0.5.

FIG. 4. Bubble plot of ψ defined in Eq. (1) from experiments
(black) and simulations (orange) in the Ω1-Bi plane with bubble
diameter proportional to ψ and Rm shown on the right. The red
circle indicates the threshold size ψ ¼ 0.005 above which cases
have prominent SMRI. Straight lines show contours of constant
B0. Blue crosses and dots show predictions from global linear
analysis that them ¼ 0mode is stable (crosses) or unstable (dots)
in a ΩðrÞ with q < 2, which is averaged in the bulk
(−0.25 ≤ z=H ≤ 0.25) of the saturated MHD state with the same
Rm and B0 values from simulation.
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saturated MHD state is tested by global linear analyses,
which assume a vertical wavelength of H with insulating
radial boundary conditions. Here, ΩðrÞ is averaged in the
bulk region of cases with B0 ≤ 0.2 only, which guarantees
that q < 2. Our global linear analysis confirms that the
m ¼ 0mode is stable in this ΩðrÞ without a magnetic field,
as expected. For B0 ≥ 0.3, local q > 2 regions shown in
Fig. 1 significantly penetrate into the bulk with the increase
of Rm, making the stability of the m ¼ 0 mode not solely
determined by SMRI and thus no longer an indicator of it
[46]. As indicated by the blue crosses and dots in Fig. 4, the
m ¼ 0mode at B0 ¼ 0.1 is stable for all Rm values studied,
indicating that the magnetic field is too weak to excite
SMRI. For B0 ¼ 0.2, it becomes unstable for Rm≳ 3.5,
implying the onset of SMRI. This finding is consistent with
the emergence of ψ ≳ 0.005 bubbles and thus provides an
independent confirmation of the presence of SMRI.
SMRI-induced outward angular momentum flux [48]

can be examined in our system using simulation data. The
radial flux of the axial angular momentum per unit mass is
defined as [7,39]

Frðr; zÞ ¼ FHðr; zÞ þ FMðr; zÞ

¼ r
"
δurδuϕ − νr

∂

∂r
δΩ −

BrBϕ

ρμ0

#
; ð2Þ

where FH ¼ rðδurδuϕ − νr∂rδΩÞ is the velocity field
contribution and FM ¼ −rBrBϕ=ðρμ0Þ is the magnetic
field contribution. δurðr; zÞ, δuϕðr; zÞ, and δΩðr; zÞ are
the differences between the ϕ-averaged radial velocities,
azimuthal velocities and angular velocities in the saturated
MHD state and the hydrodynamic state. Brðr; zÞ and
Bϕðr; zÞ are the ϕ-averaged radial and azimuthal magnetic
fields in the saturated MHD state. Equation (2) is zero for
the hydrodynamic state and thus represents the radial flux
of axial angular momentum caused only by axisymmetric
MHD effects. To avoid the interference from the most
hydrodynamically unstable (q > 2) regions adjacent to the
ring gaps, we examine Eq. (2) in the bulk region. Figure 5
shows Fr=ðr31Ω2

1Þ profiles at different B0, where their linear
Rm dependence at small Rm has been subtracted; thereby,
all datasets start from zero value and zero slope. This is to
further remove the contribution of the magnetized Ekman
circulation to Fr, similar to Eq. (1). As shown by the solid
symbols, Fr=ðr31Ω2

1Þ becomes positive only for Rm≳ 3.5
with B0 ¼ 0.2 and Rm≳ 3 with B0 ¼ 0.3, a parameter
range consistent with that for prominent SMRI [see
Fig. 2(b)]. This finding thereby indicates that the SMRI
causes an outward flux of axial angular momentum in the
bulk of our system, in line with predictions for accretion
disks. Further analysis reveals that SMRI results in positive
values for both FH and FM, implying that both velocity and
magnetic fields contribute outward angular momentum
fluxes (see the Appendix for more details). It is also found

that FH is an order of magnitude larger than FM. This is
possibly due to the small Rm and large Re regime studied
here, where the SMRI can induce only small changes to the
imposed magnetic field.
To summarize, we have presented the first convincing

experimental evidence for axisymmetric SMRI in a modi-
fied Taylor-Couette cell using liquid metal. By measuring
the radial magnetic field at the inner cylinder with a proper
background subtraction, the m ¼ 0 SMRI is characterized
by the nonlinear increase of the hBri=Bi as a function of
Rm at fixed values of B0. Such increases become prominent
only under the conditions of a sufficiently large Rm and an
intermediate Bi, a feature resembling the typical require-
ments for SMRI predicted by linear theories. The exper-
imentally identified SMRI is confirmed independently by
3D numerical simulations in the same geometry. The
simulation further reveals that the SMRI produces an
outward radial flux of axial angular momentum in the
bulk region, an effect similar to that in the accretion disk,
further confirming its existence.
Further investigations are needed to fully characterize the

reported axisymmetric SMRI and its effects on the liquid-
metal flow. To study detailed temporal evolution, an
appropriate way is needed to remove the dynamic radial
magnetic field induced by the transient azimuthal currents
in conducting end caps and liquid metal, as well as the
magnetized Ekman circulation, when Bi is imposed. Using
ultrasonic Doppler velocimetry and Hall probe arrays,
different components of velocity and magnetic fields,
and their correlations, inside the liquid metal flow will
be measured, providing a way to experimentally verify the
outward angular momentum transport, as well as the
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FIG. 5. (a) Calculated normalized radial flux of axial angular
momentum Fr=ðr31Ω2

1Þ, as a function of Rm with fixed values
of B0 from 3D simulations. The data are time and volume
averages over the bulk region with 1 ≤ r=r1 ≤ 3 and
−0.25 ≤ z=H ≤ 0.25. For each dataset, we have subtracted
the linear dependence of Fr=ðr31Ω2

1Þ on Rm determined by a
linear fit to the data at Rm ≲ 2.5. Solid (open) symbols
represent cases with (without) significant positive (outward)
angular momentum flux, defined as Fr=ðr31Ω2

1Þ≳ 10−4.
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SMRI-induced inward jet in the midplane that has been
predicted by recent 2D simulations [42,46]. To overcome
the differences in Re between experiments and simulations,
simulations with Re closer to experiments should be
explored, perhaps with an entropy-viscosity method in
SFEMaNS [49]. Nonaxisymmetric modes in our system are
also of interest, especially for their possible connection to
the nonaxisymmetric SMRI in a narrow gap between two
infinitely long cylinders predicted recently by a linear
theory [50], although the latter has a different geometry.
Finally, 2D linear eigenmode calculations of the saturated
MHD state in whichΩ depends on both r and z can provide
physical insights of the m ¼ 0 stability beyond 1D global
linear analyses to differentiate between SMRI and hydro-
dynamic instability.

Digital data associated with this work are available from
DataSpace at Princeton University [51].
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Appendix A: Numerical simulation setup.—The simu-
lation configuration has been described in detail elsewhere
[39,41,42], and only some key points are mentioned here.
The SFEMaNS code uses a Fourier spectral method in the
azimuth and finite elements in the meridional plane. As in
the experiment, a cylindrical coordinate system is adopted
in 3D simulations with the origin at the geometric center of
the Taylor-Couette cell. In the simulation, we set
r2=r1 ¼ 3, r3=r1 ¼ 2, H=r1 ¼ 4 and the radius of the
inner cylinder rim rrim=r1 ¼ 1.15. The length, time, veloc-
ity, magnetic field, and electrical conductivity are normal-
ized, respectively, by r1, Ω−1

1 , Ω1r1, Ω1r1
ffiffiffiffiffiffiffiffiffiμ0ρg

p , and σg,
where ρg and σg are the density and conductivity of
galinstan. In order to mimic the experiment, the entire
computation domain is divided into three coupled domains,
including a fluid domain for galinstan, a solid domain for
end caps, and a spherical vacuum domain with a radius of
20r1 surrounding them. For all runs, the Reynolds number
is fixed at 1000 so the magnetic Prandtl number increases
linearly with Rm.
Figure 6(a) shows the mesh in a quarter of the meridional

plane, and meshes with different colors that belong to
different domains. The fluid domain has 100 × 200 tri-
angular finite elements in the meridional plane. Thirty-two
spectral azimuthal modes are resolved in the azimuthal
direction, which is sufficient for the axisymmetric proper-
ties studied here, as the volume-averaged energy of all
m ≥ 1modes in the total velocity and magnetic fields are at

least 4 orders of magnitude smaller than the energy of the
m ¼ 0 mode, and the azimuth-averaged velocity and
magnetic fields do not change with doubling (64) the
number of modes. Figure 6(b) reveals that the solid domain
is further divided into two subdomains with one for the
stainless steel inner cylinder rim (yellow) and the other for
the copper end cap (blue). The 3D SFEMaNS code has also
been validated against previous experiments investigating
the nonaxisymmetric Stewartson-Shercliff layer instability
in our system [40,41].
No-slip boundary condition is applied at all fluid-solid

interfaces. Conductivity of different components of the end
cap is adopted: σc ¼ 19.4σg for copper and σs ¼ 0.468σg
for stainless steel. Insulating boundary conditions are used
for the inner and outer cylinders. For each run, the
simulation starts from a piecewise-solid-body rotation that
follows the angular speeds of end-cap components. We first
run the hydrodynamic stage for 400 dimensionless time,
which is 5 times the Ekman spin-up time at Re ¼ 1000 and
thereby long enough for the flow to reach a statistically
steady state [37]. The axial magnetic field is then imposed
and lasts for another 400 dimensionless time, and a
saturated MHD state is reached after the first 100 dimen-
sionless time. All data presented in the main text are based
on time averages in the saturated MHD state.

Appendix B: Analysis of FH and FM.—Figure 7(a) shows
that for calculated FHðRmÞ=ðr31Ω2

1Þ as a function of Rm, a
“knee” exists only for high Rm with 0.2≲ B0 < 0.35, i.e.,
FH=ðr31Ω2

1Þ increases faster as Rm increases. This indicates
that SMRI prompts the velocity field to generate an
outward angular momentum flux, which occupies the
middle part of the bulk, and rapidly decays in magnitude
and shrinks in area at high B0 (see Fig. S3 in SM [47]).

FIG. 6. Mesh assignment in a quarter section of the meridional
plane (a) and an enlarged portion around the Taylor-Couette cell
with rotational speeds of different components marked (b).
Colors indicate different domains with purple as the fluid, blue
as the copper end cap, yellow as the stainless steel rim of the inner
cylinder, and red as the vacuum. The black dashed line in
(b) indicates the boundary between the inner and outer rings.
This plot is adopted from Ref. [42].

PHYSICAL REVIEW LETTERS 129, 115001 (2022)

115001-5



Similarly, Fig. 7(b) shows that a “knee” occurs FM=ðr31Ω2
1Þ

profiles at high Rmwith 0.2≲ B0 < 0.35, corresponding to
an outward flux contributed by the magnetic field. It is
found that compared with FH, FM is an order of magnitude
smaller and the “knee” in it requires higher Rm. This is
probably due to the small Rm and large Re regime studied
here, where the SMRI can induce only small changes to the
imposed magnetic field. When the magnetic field is strong
(B0 ≳ 0.35), the bulk-averaged FM=ðr31Ω2

1Þ shown in
Fig. 7(b) is negative (inward) and decreases with Rm.
This could be caused by the magnetized Ekman circulation,
which originates from regions close to the inner rings and
penetrates into the central bulk region at high B0 (see
Fig. S4 in SM [47]). To avoid this effect, in Fig. 7(c) the
FM=ðr31Ω2

1Þ is averaged only in a local domain close to the
inner cylinder, which can well single out the outward flux
caused by SMRI without any inward flux.
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