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The accumulation of certain types of dark matter particles in neutron star cores due to accretion over long
timescales can lead to the formation of a mini black hole. In this scenario, the neutron star is destabilized
and implodes to form a black hole without significantly increasing its mass. When this process occurs in
neutron stars in coalescing binaries, one or both stars might be converted to a black hole before they merge.
Thus, in the mass range of ∼1–2M⊙, the Universe might contain three distinct populations of compact
binaries: one containing only neutron stars, the second population of only black holes, and a third, mixed
population consisting of a neutron star and a black hole. However, it is unlikely to have a mixed population
as the various timescales allow for both neutron stars to remain or collapse within a short timescale. In this
paper, we explore the capability of future gravitational-wave detector networks, including upgrades of
Advanced LIGO and Virgo, and new facilities such as the Cosmic Explorer and Einstein Telescope
(XG network), to discriminate between different populations by measuring the effective tidal deformability
of the binary, which is zero for binary black holes but nonzero for binary neutron stars. Furthermore, we
show that observing the relative abundances of the different populations can be used to infer the timescale
for neutron stars to implode into black holes, and in turn, provide constraints on the particle nature of dark
matter. The XG network will infer the implosion timescale to within an accuracy of 0.01 Gyr at 90%
credible interval and determine the dark matter mass and interaction cross section to within a factor of
2 GeV and 10 cm−2, respectively.

DOI: 10.1103/PhysRevD.107.083037

I. INTRODUCTION AND BACKGROUND

The origin and properties of dark matter (DM) have been
long-standing problems in fundamental physics and cosmol-
ogy. Astronomical observations have increasingly provided
evidence for a nonbaryonic component of matter that either
does not interact electromagnetically with baryons or has a
negligibly small interaction cross section. Consequently, the
presence of DM is inferred due to its gravitational effect on
baryonic matter. Laboratory experiments to detect DM
particles from their weak interaction with baryons have so
far produced null results, as have the observations of decay
products that would result from the annihilation of certain
typesofDMparticles.Although there are a fewplausibleDM
candidates in the Standard Model, theoretical insight into

what they might be in theories beyond the StandardModel is
plentiful and not very constraining. Currently, there is an
effort to look for DM over 60 orders of magnitude in mass,
with candidates ranging from wavelike [1] and particle DM
[2] to macroscopic objects such as primordial black holes
(BHs) [3].
Observations of gravitational waves (GWs) by the Laser

Interferometer Gravitational-Wave Observatory (LIGO)
and Virgo over the past seven years [4–6] have opened
up a new avenue for exploring DM. On the one hand,
detecting BHs of unusually large masses (compared to
astrophysical BHs observed until then) could hint at their
primordial origin [7]. This remains a possibility, although
several astrophysical models can account for the broad
range of BH masses detected by LIGO and Virgo (see, e.g.,
[8,9]). The search for GWs from subsolar mass BHs has so
far been unsuccessful, severely constraining the fraction of
total DM content in primordial BHs [10,11]. If the Universe*dus960@psu.edu
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has no primordial BHs with masses of Oð10M⊙Þ, next-
generation (XG) detectors can set upper limit on their
abundance as a fraction of DM energy density as low as
fPBH ∼Oð10−5Þ, about 2 orders of magnitude lower than
current upper limits in this mass range; if instead
fPBH ≳ 10−4, future GW observations would exclude
fPBH ¼ 0 at the 95% credible interval [12]. The minimum
testable abundance as a fraction of DM energy density
depends on the primordial BH mass and can be as low as
fPBH ∼Oð10−10Þ (see, e.g., Fig. 5 of [13]).
An alternative way to constrain the presence of DM

would be to look for its gravitational drag on the orbits of
BHs and neutron stars (NSs) [14–24]. Additionally, the
presence of an axionic cloud around BHs could extract the
rotational energy from BHs, thereby affecting the spin
distribution of BHs or producing continuous GWs from
newly formed BHs [25,26]. Several authors have explored
the prospect of making such observations [27–30]. In fact,

next-generation ground-based GW observatories, with the
prospect of detecting several binary black hole (BBH)
inspiral events each year with large signal-to-noise ratios
(SNRs), could observe dozens of postmerger axionic
signals [31], confirming or constraining bosons in the
mass range ∼½7 × 10−14; 2 × 10−11% eV [32].
In this paper, we explore the accumulation of bosonic

asymmetric dark matter (ADM) in NS cores that could
eventually form a stable mini BH, grow by Bondi-Hoyle
accretion, and eventually lead NSs to implode and form
BHs, without significantly changing their mass. Two
plausible scenarios are described in Fig. 1. These mech-
anisms could be particularly efficient in regions of large
DM densities, such as the central cores of large galaxies. It
has been suggested that the lack of a sizable population of
pulsars in the core of the Milky Way, where the density of
DM is expected to be particularly high, is because most
of them have imploded to form BHs [33]. While this

FIG. 1. Two plausible scenarios for the formation of BHs by imploding NSs without significantly changing their mass. In the first
scenario, DM particles accumulate, thermalize, and form a self-gravitating object, which collapses to a BH if the number of DM particles
exceeds the Chandrasekhar limit. In the second scenario, when a sufficiently large number of DM particles accumulates, a Bose-Einstein
condensate (BEC) could form under favorable conditions and then collapse to a BH. Once a BH is assembled at the core, it can grow by
accretion of NS matter, eventually leading to the implosion of the NS. The BH forms over a shorter timescale through BEC formation for
DM particles of mass mχ ≤ 2 × 104 GeV. Therefore, we show the timescales with mχ ¼ 2 × 104 GeV for the channel where the
BH forms without a BEC (blue) and with mχ ¼ 1 GeV for the BEC channel (green), assuming a scattering cross section
σχ ¼ 2 × 10−45 cm−2 and ambient DM density ρχ ¼ 1 GeV=cm3.
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explanation might not be the root cause of why the Galactic
Center is deficient of pulsars, future GWobservations could
test if the implosion mechanism operates in NSs, as
described below.
The timescale tcðρχ ; mχ ; σχÞ over which the accumula-

tion of DM eventually makes NSs implode to form BHs
depends on the DM density ρχ in the neighborhood of NSs,
its mass mχ , and its interaction cross section with hadrons
σχ . NSs that live for a time longer than tc will get converted
to BHs, and those that live for a shorter duration will not.
Although isolated NSs can last forever, those in a merging
binary would only live for a time td, called the “delay time,”
before they inspiral and merge to either form (rarely)
supermassive NSs or (frequently) BHs. The delay time
depends on the companion masses and the periapsis and
eccentricity of the binary at the time when it first forms. The
delay time, therefore, is not the same for all binary neutron
stars (BNSs). Instead, the NS binary population is charac-
terized by a certain delay-time distribution PðtdÞ.
The probability distribution PðtdÞ is not well known, but

it is often assumed to scale like PðtdÞ ∝ 1=td [34–38]. The
fraction of the population for which td > tc will be
converted to BHs and the rest will remain as NSs. For
the population of mergers detected with a sufficiently large
SNR, GW observations can determine the fraction of the
BNS population that has been converted to BBHs. This
fraction, if nonzero, can be used to infer the implosion
timescale tcðρχ ; mχ ; σχÞ and hence constrain the parameter
space of local DM density, DM mass, and interaction cross
section. If the population does not contain any BBHs, then
it will be possible to set limits on the very same quantities.
It is quite possible, although unlikely, that BHs in the

mass range of NSs of 1 − 3M⊙ are produced by stellar
evolution or, alternatively, they could be primordial in
origin [39,40]. The current consensus is that massive stars
up to ∼23M⊙ leave behind NSs of masses in the range
1.2 − 2.0M⊙ at the end of their lives, while more massive
stars are likely to leave behind a BH of mass greater than
about ∼5M⊙ [41–45]. Although the primordial Universe
could produce BHs in the mass range of NSs, they should
also produce subsolar mass BHs. A detection of subsolar
mass BHs could hint at the early Universe origin of BHs
with NS masses. Moreover, primordial BHs are expected to
have small spin magnitudes if they do not increase their
spin by coherent accretion [46], while BHs formed from
imploding NSs could have nonzero spins (see, e.g.,
[47,48]). Consequently, it might be possible to discriminate
between the two populations from their spin distributions
[49]. Another proposal to distinguish primordial BHs from
astrophysical compact objects is to use their mass distri-
bution and the redshift evolution of the merger rates by
using LIGO-Virgo-KAGRA and Aþ detections of the
stochastic GW background [50] and possibly (in the future)
Cosmic Explorer and Einstein Telescope observations of
the stochastic background produced by subsolar mass
compact objects [51].

The above argument assumes that either both NSs will
implode, or neither does. If the time difference between the
formation of the two NSs is large compared to the delay
time td, then it is possible that only one of the NSs gets
converted to a BH, but not its companion. However, this
scenario is likely to be very rare.
The complex evolutionary process leading to NS for-

mation is not completely understood, but stellar evolution
models broadly suggest that NSs form from progenitors
whose mass M lies in the range 8M⊙ ≲M ≲ 23M⊙ [45].
The lifetime of such progenitor stars in the main sequence,
which varies as 10ðM=M⊙Þ−2.5 Gyr [52], would be in the
range 4–55 Myr. The heavier companion would evolve
through the main sequence (MS) first to form a NS,
followed by the lighter progenitor after a delay ΔtMS.
Assuming that the progenitors are drawn from the Salpeter
mass function, i.e., PðmÞ ∝ m−2.3 [53], we find that ΔtMS
has a median value of ∼14 Myr, which is smaller than the
smallest delay time tmin

d ¼ 20 Myr that we will be using in
this work, and likely much smaller than the implosion
timescale tc, which could be as large as billions of years. A
specific binary with delay time td will be seen as a BBH if
tc < td, as a BNS if tc > td þ ΔtMS, or as a neutron star–
black hole (NSBH) system otherwise. In Fig. 2 we plot the
three fractions, and we see that the NSBH population
constitutes at best about 6% of the total, and only over a
small range of values of tc. Consequently, we can safely
assume that either both NSs in a binary would implode to
form BHs, or neither would.
Observations of GWs could potentially discriminate the

BBH population from that of BNSs. In the final moments
before a BNS coalesces, each star experiences the tidal field
of its companion, inducing a time-varying quadrupole
deformation and associated emission of GWs. This is a

FIG. 2. The fraction of BBH and NSBH binaries formed from
the implosion of one or both NSs, compared to the fraction of
BNS systems as a function of the implosion timescale tc. As a
function of tc the NSBH fraction remains negligibly small and
can be ignored.
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high-order post-Newtonian effect—technically a fifth post-
Newtonian effect or a ðv=cÞ10 correction in the orbital
phase evolution of the binary, where v is the orbital speed
and c is the speed of light [54,55]—which becomes
important before the two NSs merge with each other and
will be absent in the case of BBHs [56–59]. Thus, by
measuring the “tidal polarizability,” often referred to as
the “effective tidal deformability,” it will be possible to
ascertain the fraction of the two populations. It will not be
possible to measure tidal deformability with sufficiently
good accuracy for the entire observed population, but only
for a fraction with sufficiently large SNR. In this paper we
explore the sensitivity of future ground-based GW detectors
to constrain the properties of a class of DM particles that
can accumulate in NS cores and cause implosion, given
sufficiently large time.
The rest of the paper is organized as follows. In Sec. II,

we recall how tidal effects are encoded in GWs from BNSs.
In Sec. III, we introduce the various GW detector networks
and the waveform model used in this study and compute
the accuracy with which the tidal deformability of a BNS
can be measured using the Fisher matrix formalism. This
will be followed by a computation in Sec. IVof the relative
rates of BBHs and BNSs, as a function of the unknown
implosion timescale tc needed to form this novel population
of BBHs. It turns out that the most important hyper-
parameter needed in the computation of relative rates is
the implosion timescale tc. Thus, from the measured
relative rates we can infer the implosion timescale, as
shown in Sec. V. In Sec. VI, we discuss the physics of
implosion from DM accretion and the various timescales
involved in the problem, from accumulation of DM
particles to form a mini-BH, through self-gravitation with
or without the formation of a Bose-Einstein condensate, its
growth, and the final implosion of the NS (cf. Fig. 1). In
Sec. VII, we derive the constraints that can be placed on
DM particles if the proposed analysis does not find a single
BBH event in the mass range of 1 − 3M⊙ (which would
imply that the implosion timescale is larger than the Hubble
time) and obtain the properties of bosonic DM particles
assuming a collapse time of 1 Gyr. In Sec. VIII, we briefly
summarize our findings, as well as our plans to apply this
technique to the known population of LIGO-Virgo binary
mergers for a number of implosion scenarios and different
DM candidates. In the Appendix we discuss how variations
in the “true” collapse time affect the inferred bounds.

II. TIDAL INTERACTION TO DISTINGUISH
BINARY NEUTRON STARS FROM BINARY

BLACK HOLES

In this section we will discuss how to distinguish BNS
mergers from BBH mergers using GW observations. An
important difference in the GWs from the coalescence of
BBH and BNS systems is that waves from BNS mergers
have imprinted in them the tidal interaction between the

two bodies, while BBH mergers will have no such
signature [56,60]. Additionally, while BBH mergers leave
behind a BH remnant, BNS mergers could either promptly
form a BH or leave behind a long-lived NS remnant with
neutron-rich relativistic ejecta and a thermonuclear fireball.
In this work, we will only consider the tidal interaction
between the two bodies during the adiabatic inspiral
regime. A merger accompanied by an electromagnetic
afterglow essentially rules out a BBH merger.

A. Tidal deformability

A massive body produces a tidal field. The deformation
induced by the tidal field on other bodies can be expressed
as a multipole expansion, the quadrupole being the dom-
inant multipole. Consider a spherically symmetric NS of
radius R in the tidal field Eij of its companion NS. The
quadrupole deformationQij induced in the star is related to
the tidal field via the tidal deformability as

Qij ¼ −λEij; ð1Þ

where λ≡ − 2
3G k2R

5, R is the star’s radius, and k2 is the
dimensionless tidal Love number. The tidal Love number,
whichmeasures a body’s rigidity, depends on the equation of
state (EOS) of the NS via its compactness C≡Gm=ðc2RÞ,
wherem is themass of the star [61]. ForNS equations of state
considered in this paper, we have k2 ∼ 0.1 [62].
In a binary system of stars orbiting each other, the above

quadrupole deformation is a function of time, which
generates gravitational radiation, modifying the emitted
signal at the fifth post-Newtonian order, inducing a ðv=cÞ10
correction to the dynamics of the system beyond the
dominant quadrupole radiation reaction. In other words,
the tidal interaction dissipates additional orbital energy
into GWs, thus changing the orbital phase evolution of the
waves at ðv=cÞ10 order beyond the quadrupole. This
modification is significant in the final few cycles of the
inspiral and coalescence of a binary and can be detected if
the signal is observed with a high SNR.
The tidal deformability λ has dimensions of kgm2 s2, but

what appears in the post-Newtonian dynamics is the
dimensionless tidal deformability, defined by

Λ≡ c10λ
G4m5

¼ 2

3
k2C−5: ð2Þ

As mentioned before, the Love number k2 generally
decreases with increasing compactness, thus the tidal
deformability falls of steeper than C−5. For candidate
equations of state of NSs Λ decreases with the NS’s mass
and varies over the range ∼½100; 4000% for NS masses in the
range 1.1 − 1.5M⊙ considered in this study (see, e.g.,
Fig. 1 of Ref. [63]), the smallest values corresponding to
largest NS masses and softer equations of state, and largest
values corresponding to smallest masses and stiffer
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equations of state. For BHs, Λ ¼ 0 [56–58]: this is the key
to distinguishing BBH mergers from NSBH and BNS
mergers [64–66].

B. Tidal signature in neutron star binary signal

The GWs produced by BNSs are accurately described by
post-Newtonian theory. We assume NSs have negligibly
small spins and are on quasicircular orbits. These are
reasonable assumptions, as companions in Galactic double
NS systems have negligible spins (based on Ref. [67], see
also Fig. 2.17 of Ref. [68]) and gravitational radiation
backreaction causes orbital eccentricity to decay more
rapidly compared to the orbital separation [69]. In the
Fourier domain, the strain amplitude h̃ðfÞ measured by an
interferometric GW detector in response to an incident
BNS signal on a quasicircular orbit is given by

fh̃ðfÞ ¼ AðfÞeiψPPðfÞþiψTidalðfÞ; ð3Þ

where ψPP and ψTidal are contributions to the Fourier phase
from the point-particle approximation and tidal effects,
respectively, and a factor of f is included to make the right-
hand side dimensionless. The amplitude AðfÞ and the
phase ψPPðfÞ are given by [70]

AðfÞ ¼
ffiffiffiffiffi
5ν
6

r
M
Deff

ðπMfÞ−1=6; ð4Þ

ψPPðfÞ ¼
5

128ν

X2

k¼−5

"
αk þ αkl log

v
v0

#
ðπMfÞk=3; ð5Þ

Deff ¼
4DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
þð1þ cos2 ιÞ2 þ 4F2

× cos ι
p : ð6Þ

Here M ≡m1 þm2 is the binary’s total mass, m1 and m2

are masses of the companion stars, Fþðθ;ϕ;ψÞ and
F×ðθ;ϕ;ψÞ are the detector antenna pattern functions
[see, e.g., [71]], DL is the luminosity distance to the
source, Deff > DL is the effective distance, ðθ;ϕÞ describe
the position of the source in the sky, ι is the angle between
the line sight to the binary and the orbital angular
momentum, and ψ is the polarization angle. The post-
Newtonian coefficients αk and αkl depend on the symmetric
mass ratio ν≡m1m2=M2, except for the log terms in the
post-Newtonian expansion and the tidal terms, which do
depend on the total mass. The post-Newtonian expansion is
carried out in powers of v=c, where v ¼ ðπMfÞ1=3, and f is
the GW frequency. Relative to the dominant quadrupole
term, the tidal terms occur at the fifth post-Newtonian order
and higher, i.e., a ðv=cÞ10 effect or, equivalently, ðπMfÞ10=3
term in the Fourier phase in Eq. (4) relative to the dominant
term [72]. The dominant tidal contribution to the phase and
the first post-Newtonian corrections are (see, e.g., [73])

ψTidalðfÞ ¼ −
39

2
Λ̃v10 þ

$
6595

364
δΛ̃ −

3115

64
Λ̃
%
v12: ð7Þ

The dominant tidal term at the fifth post-Newtonian order
depends on the mass ratio-weighted sum of the individual
tidal deformabilities, defined as

Λ̃ ¼ 1

26

"
ð1þ 12qÞΛ1 þ

$
1þ 12

q

%
Λ2

#
; ð8aÞ

while the correction at the sixth post-Newtonian order
depends on Λ̃ as well as the difference in the tidal
deformabilities, given by

δΛ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p $
1 −

13272

1319
νþ 8944

1319
ν2
%
ðΛ2 þ Λ1Þ

2

þ
$
1 −

15910

1319
νþ 32850

1319
ν2 þ 3380

1319
ν3
%
ðΛ2 − Λ1Þ

2
:

ð8bÞ

Note that, for NSs of comparable masses, i.e., ν ≃ 1=4, we
have Λ1 ≃ Λ2, Λ̃ ≃ Λ1;2, and δΛ̃ ≃ 0. Thus, the second term
is not only a subdominant post-Newtonian effect—the
expansion coefficient is itself small for most BNSs.
Therefore, we neglect the sixth post-Newtonian correction
in our computations.
While NSs have nonzero tidal deformability, the tidal

deformability for BHs is zero. Tidal parameters can be
inferred from GW signals, but current measurements have
large uncertainties [74,75]. Using GW observations, one
can compute the value of Λ̃ for the binary system and infer
whether the system is a BNS or a BBH [66,76,77].
If the system is a BBH, it could have formed through the

imploding DM channel. This allows us to find constraints
on DM properties. On the other hand, if none of the systems
are concluded to be BBH or NSBH binaries, we can still get
limits for the DM properties.

III. TIDAL DEFORMABILITY MEASUREMENT
WITH GRAVITATIONAL-WAVE DETECTOR

NETWORKS

We now discuss the accuracy with which the effective
tidal deformability Λ̃ can be measured using the GW
signals emitted by coalescing BNSs. We will estimate
the accuracy within the Fisher information matrix formal-
ism [78,79], as implemented in GWBENCH [80]. The two
ingredients needed for the measurement of Λ̃ are (i) a GW
detector network, which we introduce in Sec. III A, and
(ii) the waveform model used in the Fisher matrix, which
we discuss briefly in Sec. III B. Section III C describes the
accuracy with which Λ̃ can be measured with the detector
networks considered in this study.
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A. Detector networks

Several authors have studied the capabilities of
Advanced LIGO and Advanced Virgo in measuring the
tidal deformability of NSs: for a review, see, e.g., [61].
During the second observing run, LIGO and Virgo
observed the first BNS inspiral event with a joint SNR
of 33 [81] which allowed the measurement of Λ̃ to within
an accuracy of σΛ̃ ¼ 630 at 90% credible interval [82], with
some authors ruling out the possibility that this was a BBH
[74], especially when combined with optical and infrared
observations [83]. The second BNS merger event,
GW190425, was observed with a far lower SNR of
12.9, and it did not allow placement of any meaningful
bounds on the tidal deformability of NSs [84]. The
upcoming year-long fourth observing run of the LIGO,
Virgo, and KAGRA detectors is expected to detect a
handful of BNS mergers, but at the current sensitivity this
network will not measure Λ̃ with an accuracy good enough
to conclusively say that tidal effects are absent. We will
therefore restrict ourselves to future upgrades of LIGO,
Virgo, KAGRA, and LIGO-Aundh,1 as well as XG
observatories such as Cosmic Explorer [85] and the
Einstein Telescope [86].
More precisely, we consider three ground-based detector

networks—Aþ, Voyager, and XG—to determine the accu-
racy of measuring the effective tidal deformability, with
particular interest in the XG network, since these observa-
tories will have the required sensitivities to obtain an
informative estimate of the tidal deformability parameter
for BNSs.

(i) The Aþ network comprises five detectors: LIGO-
Hanford, LIGO-Livingston, Virgo, KAGRA, and
LIGO-Aundh at Aþ sensitivity [87].

(ii) The Voyager network consists of LIGO-Hanford,
LIGO-Livingston, and LIGO-Aundh at Voyager
sensitivity [88], with Virgo and KAGRA at Aþ
sensitivities.

(iii) Finally, the XG network includes the Einstein Tele-
scope, one Cosmic Explorer in the U.S., and another
Cosmic Explorer in Australia, as in [80].

B. Binary NS waveform model

As discussed in Sec. II, the signature of tidal deformation
is imprinted in the GWs emitted by an inspiraling BNS
system. The simplest modification of the point-particle post-
Newtonian model in the frequency domain—cf. Eq. (4)—
captures the essence of the tidal effects, but it is not in
agreement with waveforms obtained from numerical simu-
lations of BNS mergers. We adopt the IMRPhenomD_NRTidalv2

waveform model, in which the Fourier amplitude and phase
are given algebraically in closed form [89–91]. This choice

improves the accuracy in the calculation of derivatives of the
waveform with respect to the various parameters, which are
needed to compute the Fisher matrix.
The tidal terms in this model are valid at frequencies as

low as ∼50–100 Hz where Cosmic Explorer and Einstein
Telescope have good sensitivity. The model does not
incorporate the postmerger signal that could be present
if the remnant is a long-lived NS, nor dynamical tides,
which could also be important [92–101], although sub-
dominant compared to the static tides that are included in
the model.
The waveform model is described by ten parameters (see

Table I): the companion masses ðm1; m2Þ, two angles
describing the position of the source in the sky ðα; δÞ,
two angles describing the inclination of the binary’s orbit
and the wave polarization ðι;ψÞ, the luminosity distance of
the source DL (or, equivalently, its redshift z), the effective
tidal parameter Λ̃, the coalescence time tC, and the
coalescence phase ϕC.
In the Fisher matrix approximation, which involves

derivatives with respect to the parameters of the waveform,
the absolute error in the measurement of Λ̃ at leading post-
Newtonian order is the same for all values of Λ̃. This is
because the effective tidal parameter appears linearly in the
waveform model and we have neglected the subdominant
tidal terms. Thus, the error σΛ̃ is determined by the
correlation of Λ̃ with the other waveform parameters and
the loudness of the signal and not any particular value of Λ̃.
To compute the Fisher matrix, without loss of generality we
use a tidal deformability ofΛ1;2 ¼ 2, because a nonzero tidal
deformability value is required to use IMRPhenomD_NRTidalv2.
The NS mass distribution is not known very well, but

accurate measurement of NSs in radio binary pulsars seems
to suggest that they are normally distributed with a standard

TABLE I. Parameter space of BBHs used in this study. In
addition to the detector-frame companion masses and the tidal
deformability of NSs, there are four angles [two describing the
orientation of the binary’s orbit relative to the detector frame
ðι;ψÞ and two for the sky position of the source ðα; δÞ], the
luminosity distance (or, equivalently, redshift z), a fiducial
“arrival time” tC when the strain amplitude of the signal is
largest, and the phase of the signal at that time ϕC.

Component mass, m1 and m2 ½1; 2%M⊙
Tidal parametersa, Λ1 and Λ2 2.0
Effective tidal parameter, Λ̃ ð6q2 þ qþ 6ÞΛ1=ð13qÞ
Right ascension, α ½0; 2πÞ
Declination, δ ½−π=2; π=2%
Inclination, ι ½0; π%
Polarization, ψ ½0; 2π%
Redshift, z [0, 10]
Fiducial time of arrival, tC 0
Constant phase offset, ϕC 0

aThese parameters do not directly enter the waveform, but only
the effective tidal deformability Λ̃.

1LIGO-Aundh is the preferred name for the new LIGO-India
observatory, coming up near the town of Aundh in central India.
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deviation that is small compared to the mean (see
[102,103]). The two BNS mergers discovered by LIGO
and Virgo, in particular GW190425 [84], already indicate
that NS masses in merging binaries could be different from
those of Galactic BNSs. There is currently no concrete
distribution that we could use from GW measurements
(see, however, [104]) and hence we draw the companion
masses with a mean value of 1.3M⊙ and a standard
deviation of 0.09M⊙ [103], but with the constraint that
1 ≤ m1; m2 ≤ 2M⊙.
If Λ1 ¼ Λ2 ¼ Λ, then Eq. (8a) leads to

Λ̃ ¼ 6q2 þ qþ 6

13q
Λ:

This implies that for 0.5 ≤ q ≤ 1, which is the range of
q ¼ m2=m1 allowed by the hard upper and lower cutoff of
NS masses, 2 ≤ Λ̃≲ 2.5. The range of Λ̃ is a proxy for the
mass ratio in our sample, and the variation in the meas-
urement error in Λ̃ is determined largely by its correlation
with other parameters and by the SNR.

C. Measurement accuracy of Λ̃
Bayesian inference is the preferred method to estimate

the error in the measurement of parameters, but the long
Markov chains needed for the convergence of the posterior
distribution are expensive and time consuming. For the
exploratory work carried out in this paper, it suffices to
employ the faster Fisher matrix approach. In this approach,
one first computes the Fisher information matrix Γmn
defined by

Γmn ≡ h∂mh̃; ∂nh̃i; ð9Þ

where ∂m denotes the derivative of the waveform with
respect to the parameter λm of the waveform, h̃ðfÞ is the
Fourier transform of the detector response hðtÞ≡
Fþhþ þ F×h×, ðhþ; h×Þ are the two polarization strain

amplitudes, and ha; bi is the scalar product of waveforms a
and b, defined as

ha; bi≡ 4ℜ
Z

fH

fL
aðfÞb'ðfÞ df

ShðfÞ
: ð10Þ

Here ShðfÞ is the noise power spectral density of the
detector in question, and fL and fH are suitably chosen
lower and upper frequency cutoffs. We choose fL ¼ 20 Hz
for the Aþ and Voyager networks and fL ¼ 5 Hz in the
case of the XG network. The upper frequency cutoff is
chosen to be the Nyquist frequency with a sampling rate of
4096 Hz.
The information matrix of a detector network is just the

sum of the individual information matrices: Γmn≡P
A ΓA

mn. The covariance matrix is the inverse of
Γ∶Cmn ¼ ðΓ−1Þmn. By definition the Fisher matrix is
symmetric and so is the covariance matrix. Its diagonal
elements Cmm are the variances in the inference of
parameters λm, and the off-diagonal elements Cmn are
the covariances in parameters λm and λn.
We perform the analysis for a population of BBH sources

with component masses m1; m2 ∈ ½1M⊙; 2M⊙%, distributed
in redshift as described in Sec. IV, up to a maximum
redshift of z ¼ 10. Table I lists the parameters of the binary
population considered in this study. The errors on the
effective tidal deformability σΛ̃ for this population were
computed using the GWBENCH toolkit [80], which performs
Fisher analysis to provide measurement errors on GW
parameters given a network of GW detectors. This provides
the distribution of inferred values of Λ̃ for the cosmic
population of sources. We use σ90%Λ̃ as the criterion to
differentiate between the population of BBHs and BNSs in
this mass range because Λ̃ ¼ 0 for BHs. Therefore, the
confidence with which we can classify a binary as a BBH or
BNS is inversely proportional to the measurement error,
given some Λ̃.

FIG. 3. These plots show σ90%Λ̃ , the 90% confidence interval in the accuracy of measurement of Λ̃, for Aþ (left), Voyager (middle),
and XG (right), as a function of Λ̃ and the SNR (color bar). The measurement accuracy is an order of magnitude better for the XG
network compared to the Aþ network. In XG detectors, half of all events within z ¼ 10 have their tidal deformability constrained to
within σ90%Λ̃ ≲ 100, an order of magnitude larger for than Aþ.
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The 90% confidence interval in the measurement of the
effective tidal deformability for the full population σ90%Λ̃ is
shown in Fig. 3 for the three networks considered in this
study, with the color representing the SNR of the events.
In Fig. 4 we plot the cumulative distribution of σ90%Λ̃ for
the three networks. The Aþ and Voyager networks can
determine the tidal deformability to within σ90%Λ̃ ≃ 100 for
0.05% and 0.5% of the population. The XG network,
on the other hand, can determine Λ̃ to the same accuracy for
30% of the full population. This is a good enough accuracy
to distinguish BNSs from BBHs if the preferred EOS is
stiff, such as ALF2, producing larger NS radii and greater
tidal deformabilities (e.g., Λ̃ ∼ 300 for a 1.4M⊙ NS, which
is true for most NS masses considered in our study).
Smaller errors σ90%Λ̃ ≲ 20 would be required if NSs are
described by a softer EOS, such as APR4, with tidal
deformabilities Λ̃ ∼ 50. A greater measurement accuracy
(i.e., smaller values of σ90%Λ̃ ) requires louder signals, which
means fewer systems can be classified as belonging to one
of the two classes. For example, only the XG network can
measure Λ̃ to better than σ90%Λ̃ < 20. Thus, the measure-
ment accuracy of effective tidal deformability directly
impacts how well we can determine the collapse time
discussed in Sec. V.

IV. MERGER RATES

In this section we discuss how to deduce constraints on
DMmass and interaction cross section based on the observed
merger rate of BNS and BBH systems in the NSmass range.
The constraints follow by comparing the timescale for
conversion of NSs to BHs by DM accumulation tc to the
timescale for coalescence of NSs by gravitational radiation

backreaction td. The timescales in the problem suggest that
either both or neither of the NSs in a binary will be converted
to BHs before they inspiral and merge, so we will not
consider NSBH binaries, but we will derive an equation that
relates an upper limit on the merger rate of BBHs to the
properties of DM particles.

A. Collapse timescales and merger time delays

As we shall discuss in Sec. VI, the timescale tc for NSs to
implode to form BHs largely depends on the properties of
the DM particles: (i) the interaction cross section σχ , (ii) the
DM density at the site of BNSs and their dispersion velocity
(which are both determined by the location of the binary
within a galaxy, being larger at the galactic core and smaller
in the halo), and (iii) the mass of the DM particles mχ . On
the other hand, the timescale td for NSs to coalesce depends
on (i) the eccentricity and semimajor axis when the BNS
first forms, and (ii) the masses of the two NSs [69].
The two NSs in a binary do not form from their stellar

progenitors at the same time. The delay in the formation of
the second NS with respect to the first could be substantial
if the masses of the parent stars are very different. However,
the timescale arguments in Sec. I imply that binaries with
component masses 1M⊙ ≤ m ≤ 2M⊙ will either be BNS or
BBH binaries, and not mixed (NSBH) binaries, so we will
ignore mixed binaries from now on.

B. Binary neutron star merger rate

LIGO and Virgo have so far observed two BNS mergers:
GW170817 at a distance of 40þ8

−14 Mpc [81] and GW190425
at a distance of 159þ69

−72 Mpc [84], both at 90% credible
interval (CI). Since they are both at very low redshift, the
merger rate determined from them is essentially the local
(i.e., z ¼ 0) rate. The local rate for BNSs inferred from the
third Gravitational-Wave Transient Catalog [6] is R0 ¼
660þ1040

−530 Gpc−3 yr−1 at 90% CI [105], under the assumption
of a multisource model including BNS, NSBH, and BBH
subpopulations.
The merger rate evolves with redshift because (i) the star

formation rate varies as a function of redshift; (ii) BNSs that
form at a certain redshift do not merge immediately, but
only after a delay time td, and hence at a different redshift;
and (iii) the metallicity evolves with redshift, affecting the
mass function and formation rate of compact binaries. In
this study, we will ignore the effect of metallicity, as it plays
a greater role in the case of BBHs and is less likely to affect
the merger rate of BNSs [34,106–108]. We will assume the
star formation rate ψðzÞ (SFR) given by Ref. [109],

ψðzjαF; βF; CFÞ ∝
ð1þ zÞαF

1þ
&
1þz
CF

'
βF
; ð11Þ

with ðαF; βF; CFÞ ¼ ð2.7; 5.6; 2.9Þ. We assume that the
merger rate is the same as the SFR except that binaries

FIG. 4. Cumulative distribution function (CDF) of the error in
the measurement of effective tidal deformability in the three
detector networks considered in this study. Notice that the
fraction of events detected with an error σ90%Λ̃ ≃ 100 is 0.05%,
0.5%, and 30% in the Aþ, Voyager, and XG networks,
respectively.
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that form at redshift zf merge at redshift z after a delay td,
with a corresponding redshift intervalΔz ¼ zf − z. Given a
redshift z at which merger rate is required and the time
delay td, the redshift zf at which the binary forms can be
found by solving

td ¼
1

H0

Z
zf

z

dz0

ð1þ z0ÞEðz0Þ
; EðzÞ ¼ΩΛ þΩMð1þ zÞ3;

ð12Þ

where ΩM and ΩΛ are the DM and dark energy densities,
respectively, and we have assumed a flat universe in which
dark energy is interpreted as a cosmological constant [110].
Now, the merger rate density _nðzÞ as a function of redshift
can be computed by integrating the SFR over all delay
times, the delay-time probability function PðtdÞ serving as
a weighting factor,

_nðzÞ ¼ A
Z

tmax
d

tmin
d

ψðzfðz; tdÞÞPðtdÞdtd; ð13Þ

where zf is found using Eq. (12). The delay-time distri-
bution is not very well known, and we take it to be the
Jeffrey’s prior PðtdÞ ∝ t−1d extending over the range
½tmin
d ; tmax

d %, with the normalization

Z
tmax
d

tmin
d

PðtdÞdtd ¼ 1:

The constant A in Eq. (13) is chosen such that _nð0Þ ¼ R0,

A ¼ R0R tmax
d

tmin
d

ψðzfð0; tdÞÞPðtdÞdtd
: ð14Þ

If NSs in a binary implode to form BHs within a collapse
time tc that lies between the minimum and maximum delay
times, i.e., tmin

d < tc < tmax
d , then the total merger rate

density in Eq. (13) is the sum of the BNS and BBH merger
rates, i.e., _ntotal ¼ _nBNS þ _nBBH, where

_nðzÞBNS ¼ A
Z

tc

tmin
d

ψðzfðz; tdÞÞPðtdÞdtd; ð15Þ

_nðzÞBBH ¼ A
Z

tmax
d

tc
ψðzfðz; tdÞÞPðtdÞdtd: ð16Þ

The left panel of Fig. 5 shows the merger rate of BBHs
formed by implosion as a function of redshift for different
choices of the collapse time tc (in gigayears). The shaded
region for each choice of tc represents the uncertainty in the
local merger rate of BNS found using the latest GW catalog,
which is in the range 130 ≤ R0 ≤ 1700 Gpc−3 yr−1 [105]. If
the collapse time is less than the smallest delay time, then all
BNSs are converted to BBHs, and the entire BNS population
will be observed as BBHs. If, on the other hand, the collapse
time is larger than the largest delay time, noBNS is converted
to BBH. The observed population will be a mixture of BNS
and BBH for values of the collapse time in between these
extremes.
The merger rate d _N in a cosmological volume dVc

(redshift range dz), as measured by an observer at z ¼ 0, is
_N ¼ _nðzÞdVc=ð1þ zÞ, where a factor (1þ z) accounts for
the time dilation between observers at redshift z and

FIG. 5. Left: merger rate density of BBHs formed by implosion as a function of redshift for several values of the collapse time tc from
0.02 to 10 Gyr, as given in the legend (in gigayears). Right: the number of BNS and BBHmergers per yearN ¼ _NT, T ¼ 1 yr, in Earth’s
frame as a function of the collapse time tc. Not all of these would be observable by a detector network, but only those above a certain
SNR threshold. The shaded regions in both panels correspond to the 90% credible interval for the local BNS merger rate for the
multisource model in [105].
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redshift 0. Thus, the merger rate within some redshift z as
measured by an observer at z ¼ 0 is given by

_N ¼
Z

z

0

_nðz0Þ
1þ z0

dVc

dz0
dz0: ð17Þ

In our simulations we distribute sources as a function of
redshift using the above equation. The right panel of Fig. 5
shows the number of BNS and BBH mergers in the
Universe per year N ¼ _NT, with T ¼ 1 yr, in Earth’s
frame, as a function of the collapse time tc. If tc < tmin

d
every BNS will be converted to a BBH, while tc > tmax

d
would imply none will be converted. At intermediate values
of tc we expect to observe, among all mergers, some that
are BBHs.
A detector network only observes those mergers that

stand above the detector noise at an acceptably low false
alarm rate (say, one false event per year). Thus, the merger
rate observable by a detector network _Nobs is

_Nobs ¼
Z

z

0

_nðz0Þ
1þ z0

dVc

dz0
ϵðz0Þdz0: ð18Þ

Here ϵðzÞ is the detection efficiency of a network as a
function of redshift, to be discussed below. It measures the
fraction of events detected by a given detector network
subject to one or more conditions. At the outset, we require
an event’s SNR to be larger than a preset threshold ρT to
make a high-confidence detection. For the current network
of LIGO/Virgo/KAGRA detectors, a SNR threshold of
ρT ¼ 10 assures that the false alarm rate is no more than a
few per year.
In this work we not only wish to make high-confidence

detections, but additionally select only those events for
which the effective tidal deformability can be measured
with a good accuracy—good enough to distinguish BBH
mergers (for which Λ̃ ¼ 0) from BNS mergers (for which

Λ̃ > Λ̃NS
min ≫ 0). To this end, we require the 90% credible

interval σ90%Λ̃ in the measurement of Λ̃ to be less than a
preset threshold σΛ̃T

, i.e., σ90%Λ̃ < σΛ̃T
, and choose the

threshold so that it is (significantly) smaller than the
smallest value of the effective tidal deformability of BNSs,

σΛ̃T
≪ Λ̃NS

min ≡ min
m1;m2

Λ̃ðm1; m2Þ;

wherem1 andm2 are the companion masses. This condition
guarantees that a merger is correctly classified as a BNS or
a BBH merger with high confidence. Typically, NSs with
the largest masses and softest equations of state have the
smallest tidal deformability. For equations of state that are
still viable, the smallest value of Λ̃ varies over the range
Λ̃ ∈ ½10; 200% [63]. We present our results for several values
of the threshold σΛ̃T

restricting the value to be less than 100.
With the conditions on SNR and Λ̃ imposed, the

efficiency of a detector network is given by

ϵðzÞ ¼ 1

N

XN

i¼1

Π
$
ρ
ρT

− 1jz
%
Π
$
σΛ̃T

σΛ̃
− 1jz

%
; ð19Þ

where the sum is over the full population of BNSs and
ΠðxjzÞ denotes the Heaviside step function: ΠðxjzÞ ¼ 0 if
x ≤ 0, and ΠðxjzÞ ¼ 1 if x > 0 given some redshift z.
The number of BBH mergers observed up to some

redshift z in an observing period T is given by

NBBH ¼ _NBBHT ¼ T
Z

z

0

_nðz0ÞBBH
1þ z0

dVc

dz0
ϵðz0Þdz0; ð20Þ

and similarly for BNSs. Therefore, the number of BBHs we
expect to observe in this mass spectrum not only depends
on the sensitivity of GW detectors and searches, but also
on how well we can measure the tidal effects from these

FIG. 6. The number of BBH mergers as a function of collapse time tc for several values of the threshold σΛ̃T
on the estimated error in

Λ̃, for five years of observing time.
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observations. A single detection with some assumed
measurement efficiency for Λ̃ provides a limit on tc which
can be used to infer DM properties using Eqs. (33)
and (39).
Figure 6 shows the number of BBH mergers observable

by a detector network over a five-year duration, NBBH ¼
_NBBHT with T ¼ 5 yr, as a function of the collapse time tc
for different choices of the threshold σΛ̃T

(from 10 to 100)
and for the Aþ, Voyager, and XG detector networks
described in Sec. III. The imminent upgrade of LIGO
and Virgo detectors could identify tens to hundreds of
BBHs if the collapse time is in the range of 100Myr to 1 Gyr
over an observational period of five years, but this network is
more likely to acquire about a year’s worth of data. The
Voyager network increases these numbers by an order of
magnitude, while the XG network of Einstein Telescope and
Cosmic Explorer will observe several orders of magnitude
more BH binaries compared to the other networks. As we
shall see later, the larger fraction of systems that can be
clearly identified as BBH helps in placing tighter constraints
on DM mass and interaction cross section.

V. INFERENCE OF COLLAPSE TIME

In this section we elucidate how to infer the average time
it takes for a NS to collapse to a BH due to accretion of DM.
Let us first note a caveat in our argument: what GWs can
infer is the relative abundance of BBHs versus BNSs. If
BHs with companion masses in the 1 − 2M⊙ range form by
unknown astrophysical processes or in the primordial
Universe, they will be part of the BH population in this
mass range and will be indistinguishable from the pop-
ulation that formed from the implosion of NSs due to
accumulation of DM. First, we assume that stellar evolution

cannot produce BHs in this mass range. Second, if
primordial BHs exist then there is no fundamental reason
they should only appear in this mass range. In particular, we
expect subsolar mass BBHs to exist as well [111,112]. In
the absence of such a population we can be fairly confident
(although not certain) that stellar mass BHs in the 1 − 2M⊙
range are not of primordial origin. At present, there is no
preference for any of these scenarios, so we will proceed
with the assumption that any detections of BBHs with BNS
masses formed by the implosion of NSs.
Under this assumption, it is straightforward to deduce the

collapse time from the observed population of BBHs and
BNSs. For illustration, we assume that the true collapse
time is tc ¼ 1 Gyr. Given tc, Eq. (16) gives the local
merger rate density, which could then be used in Eq. (20) to
compute the number of BBHs expected to be detected over
an observational period T in a detector network whose
detection efficiency is ϵðzÞ, as defined in Eq. (19). Since the
rate is Poisson distributed, the number of detections NBBH
would be uncertain by

ffiffiffiffiffiffiffiffiffiffiffi
NBBH

p
, and the relative error scales

like 1=
ffiffiffiffiffiffiffiffiffiffiffi
NBBH

p
.

The left panel of Fig. 7 shows the expected number of
BBHs in different detector networks, together with the rate
uncertainty in our simulation. The relative uncertainty will,
obviously, be larger for less sensitive detectors, and this
impacts how well the collapse time can be deduced. The
right panel of Fig. 7 shows the collapse time deduced from
the rate posterior plotted on the left. In reality, we would
determine the number of BBH mergers given the collapse
time and network efficiency [i.e., NBBHðtc; ϵðzÞÞ% and
interpolate this function to determine tc from NBBH for a
given network efficiency ϵðzÞ. It is clear that XG detectors
will be able to constrain the collapse time far better than the
Aþ network.

FIG. 7. Left: Gaussian distribution for the observed number of BBHs for σ90%Λ̃T
¼ 100 and tc ¼ 1 Gyr. Right: inferred distribution of tc

from NBBH for the three detector networks under consideration and an observing period of five years. The dashed lines show the 90%
credible intervals for the distributions of tc from NBBH.
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VI. IMPLOSION OF NEUTRON STARS BY
ACCUMULATION OF DARK MATTER

The inferred collapse time of NSs into BHs from GW
observations is model agnostic. These limits can constrain
the particle properties of DM in scenarios where DM
particles get captured in NS cores. In this section, we
illustrate how we can constrain the asymmetric DM
scenario under certain simplified assumptions using pre-
viously derived limits on the collapse time.
In the asymmetric DM scenario, DM particles do not

self-annihilate due to the assumed asymmetry between the
number density of particles and antiparticles. Therefore, the
capture and accumulation of DM particles in the core of
NSs could lead to the formation of a BH at the NS core,
leading to the potential implosion of the host star. Here we
examine this scenario in the case of noninteracting bosonic
DM, because the bosonic Chandrasekhar limit is much
lower than that for fermions, implying that bosonic DM
undergoes gravitational collapse sooner than fermionic
DM. Indeed, the number of fermionic and bosonic particles
corresponding to the Chandrasekhar mass for a DM particle
of mass mχ are given, respectively, by

Nfermionic
Chandra ≃ 1.8 × 1057

$
GeV
mχ

%
3

; ð21Þ

Nbosonic
Chandra ≃ 1.5 × 1038

$
GeV
mχ

%
2

: ð22Þ

We also note that, due to the dispersion velocities of DM,
the NS gravity alone cannot capture DM particles, and
some dissipative mechanism involving the interaction of
DM with hadrons would be needed. For the species of DM
considered in this paper, DM particles are assumed to
interact with hadrons through the weak interaction.
However, the accumulation of DM particles over the
lifetime of the NS for the accretion rate considered in this
paper will not significantly increase its mass.

A. Dark matter capture by neutron stars

The ambient DM attracted by the NS’s gravity is
captured if its trajectory intersects the star, and it loses
energy through its interactions with baryons and leptons.
The capture rate of DM by gravitating bodies such as Earth
and the Sun was first computed in [113] and a general
analytic theory was developed in [114]. These calculations
have been refined to include the effects of matter degen-
eracy in estimating the capture rates of NSs [115,116].
Most recently, the calculations have been further improved
to include general relativistic corrections and provide a
consistent treatment of several different operator structures
that define the interaction between nucleons and DM [117].
The capture rate, in general, depends on the ambient

energy density of DM ρχ , the DM scattering cross section

off targets in the NSs σ, the number density of targets ntðrÞ,
the escape velocity in the NS at radius r, vðrÞ, the DM
velocity dispersion far away from the star vχ, and the
velocity of the NS v'. In what follows, we adopt the result
derived in [117] to obtain the total capture rate for DM in
the mass range 1–106 GeV and a constant cross section σ.
In this mass range, Pauli blocking suppression of

scattering is unimportant, but the momentum transfer
involved in DM-nucleon scattering q ≃mχv, where v ¼
vesc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM'=R'

p
¼ 0.6c is the velocity of the infalling

DM, is large. Consequently, corrections due to the finite
size of the nucleon included through proper treatment of the
nucleon form factors can play a role [118]. Further, the
composition of matter and the modification of baryons at
high density are also relevant when DM couples to a
nucleon property (such as its scalar, pseudoscalar, or axial
charge) that can be altered in the dense medium [118,119].
These findings imply that the capture rate will depend on
how DM couples to baryons and the composition of the
NSs. However, for a given scenario in which the mass of the
DM, the form of its coupling to nucleons, and the NS
structure and composition have been specified, it is still
possible to define an effective cross section σ and write the
total capture rate as

CNS ¼ CgeomMin
"
σ
σth

; 1
#
; ð23Þ

where

Cgeom ¼ πR2
'
ρχ
mχ

v' Erf
" ffiffiffi

3

2

r
v'
vχ

#
ðv2esc=v2'Þ

1 − ðv2esc=c2Þ
ð24Þ

is the geometric capture rate that includes the effect of
gravitational focusing in general relativity, and

σth ¼
πR2

'
Ntξ

ð25Þ

is the threshold value of the cross section required to ensure
that the DM particles traversing the NS have at least one
collision. Here, Nt is the total number of target particles in
the NS, and

ξ ¼ 4π
Nt

Z
R'

0
r2dr

ffiffiffiffiffiffiffiffiffiffiffi
grrðtÞ

p
ntðrÞ

1 − gttðrÞ
1 − gttðR'Þ

gttðR'Þ
gttðrÞ

; ð26Þ

where gtt and grr are temporal and spatial components of
the Schwarzschild metric. The dimensionless number ξ ≈
Oð1Þ and its precise value depends on the structure of the
NS and the density profile of targets in the NS interior.
For a typical NS with mass M' ≃ 1.4M⊙, radius

R' ¼ 12 km, and total baryon number Nt ≃ 2 × 1057,
assuming that ξ ≈ 1, the threshold cross section
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σth ≈ 2 × 10−45 cm2. For this case, the accumulation of
DM in a NS at rest, i.e., v' ¼ 0, is given by

NχðtÞ ¼
ffiffiffiffiffiffi
6π

p
R2
'
ρχ
mχ

ðv2esc=vχÞ
1 − ðv2esc=c2Þ

Min
"
σ
σth

; 1
#
t: ð27Þ

Using vesc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM'=R'

p
¼ 0.6c, and a DM velocity

dispersion vχ ¼ 220 km=s, we obtain

NχðtÞ ¼ 2.9 × 1043
ρχ
ρ0

$
GeV
mχ

%
Min

"
σ
σth

; 1
#

t
1010 yr

; ð28Þ

where ρ0 ¼ 1 GeV=cm3 is our choice for the fiducial DM
density.

B. Thermalization and formation of a mini black hole

The captured DM particles continue to scatter and
eventually thermalize with NS matter. A general analysis
of thermalization is challenging because the DM energy
decreases over several orders of magnitude during this
process. At low energy, matter degeneracy and correlations
due to strong interactions between baryons can substan-
tially alter the scattering rate [120,121]. For scattering off
neutrons with a constant cross section, the thermalization
time for the DM masses of interest is

tth ≃ 3750 yr
γ

ð1þ γÞ2

$
2 × 10−45 cm2

σχ

%$
105 K
T

%
; ð29Þ

where γ ¼ mχ=mn, and mn is the neutron mass [120].
Upon thermalization, the radius of the DM sphere is

determined by the temperature and the gravitational poten-
tial of the NS [120]

rth ≈ 2.2 m
$

T
105 K

%
1=2

$
1 GeV
mχ

%
1=2

: ð30Þ

When the mass density of bosonic DM exceeds that of
baryons, the DM becomes self-gravitating. This occurs
when the total number of DM particles exceeds

Nself ≃ 4.8 × 1046
$
GeV
mχ

%
5=2

$
T

105 K

%
3=2

: ð31Þ

The self-gravitatingDM sphere collapses to form aBHwhen
its mass exceeds the Chandrasekhar limit for bosonic matter,
i.e., if Nself > Nbosonic

Chandra. Using Eq. (21), we can deduce that
Nself > Nbosonic

Chandra for mχ ≤ 1017 GeVðT=105 KÞ3. Thus, for
the mass range mχ ∈ ½1; 106% GeV considered here, a mini-
BH of mass

MBH ¼ mχNself ≃ 4.8 × 1046
$
GeV
mχ

%
3=2

$
T

105 K

%
3=2

GeV

ð32Þ

forms at time

tBH ¼ Nself

Cgeom
Max

"
σth
σ
; 1
#

≈ 1013
$
ρ0
ρχ

%$
GeV
mχ

%
3=2

Max
"
σth
σ
; 1
#
yr ð33Þ

when NχðtBHÞ ¼ Nself . For ρχ ≃ ρ0, collapse occurs at
t < 1010 yr for mχ ≳ 100 GeV.

C. Bose-Einstein condensation

In the preceding discussion, we neglected the formation
of a Bose-Einstein condensate of DM. Earlier work has
shown that a BEC can accelerate BH formation for bosonic
DM with mass mχ < mBEC, where mBEC ≃ 2 × 104 GeV
for T ¼ 105 K and mBEC ≃ 5 × 103 GeV for T ¼ 106 K
[115,122]. We briefly summarize their findings below.
When the critical temperature for BEC of DM

TC ¼ 2π
mχ

$
3NχðtÞ

4πr3thζð3=2Þ

%
2=3

ð34Þ

exceeds the NS temperature, a condensate forms at the core
within a radius

rBEC ¼ 1.5 × 10−4 cm
$
1 GeV
mχ

%
1=2

ð35Þ

which is much smaller than rth. This occurs when the total
number of accumulated DM,

NχðtÞ ¼ NC ¼ 1036
$

T
105 K

%
3

; ð36Þ

and the number of DM particles in the condensate,

NBECðtÞ ¼ NχðtÞ − NχðtÞ
$
T
TC

%
3=2

¼ NχðtÞ − NC; ð37Þ

increase at the accretion rate on timescales that are large
compared to the thermalization time. TheBECbecomes self-
gravitating when NBEC > 4πr3BECρB=mχ ≈ 1028ðGeV=mχÞ.
Since NBEC ≪ Nbosonic

Chandra for the mass range of interest, the
self-gravitating BEC is stable, and the time required for it to
collapse is obtained as a solution to NχðtBECBH Þ ¼
Nbosonic

Chandra þ NC. We find that a BH of mass

CONSTRAINING PROPERTIES OF ASYMMETRIC DARK MATTER … PHYS. REV. D 107, 083037 (2023)

083037-13



MBEC
BH ¼ mχNbosonic

Chandra ≃ 1.5 × 1038
$
GeV
mχ

%
GeV ð38Þ

forms at a time

tBECBH ¼ Nbosonic
Chandra þ NC

Cgeom
Max

"
σth
σ
; 1
#

≈ 5.2 × 104
$
ρ0
ρχ

%$
GeV
mχ

%
Max

"
σth
σ
; 1
#

×
"
1þ 2

3

$
mχ

10 GeV

%
2
$

T
105 K

%
3
#
yr: ð39Þ

At T ¼ 105 K, this equation implies tBECBH < tBH for
mχ < 2 × 104 GeV, and BEC greatly reduces the time for
BH formation in this mass range. For example, when
mχ ¼ 1 GeV, the BEC reduces the collapse time by
≈108 yr. Consequently, mini-BH formation is possible
within theUniverse’s lifetime for the rangeofDMconsidered
in this study (mχ ¼ 1 − 106 GeV).

D. Growth of the black hole due to accretion of baryons

The mini-BH continues to grow if the Bondi-Hoyle
accretion rate, _Macc ¼ 4πλsðGMBH=v2s Þ2ρCvs, exceeds the
Hawking evaporation rate, _Mevap ¼ ð15360πG2M2

BHÞ−1,
where vs is the sound speed, ρC is the central baryon
density of the NS surrounding the BH, MBH is the mass of
the BH at the star’s core, and λs is a dimensionless constant
that depends on the EOS of matter in the NS core. The
growth is possible only if the BH reaches a critical mass,

Mcrit
BH ≃ 1.3 × 1037

$
vs
0.3c

%
3=4

$
1015g=cm3

λsρB

%
1=4

GeV: ð40Þ

The analysis of BH growth rates presented in
Refs. [115,122] use λs ¼ 1=4, corresponding to a poly-
tropic index Γ ¼ 5=3. Since the EOS of the NS core is
expected to be stiff, with Γ ≃ 2 and vs ≃ c=

ffiffiffi
3

p
, there has

been much recent work on understanding Bondi-Hoyle
accretion under these conditions [123–128]. These studies
suggest λs ≃ 1.3 for realistic NS equations of state.
For the scenario in which a BH forms without a BEC

intermediate state, i.e., for mχ ≳mBEC, from Eqs. (32) and
(40) we find that MBH > Mcrit

BH for the mass range of
interest. In the scenario that involves a BEC intermediate
state, i.e., formχ < mBEC, comparing Eqs. (38) and (40) we
find that MBH > Mcrit

BH is only satisfied for mχ ≲ 10 GeV.
For larger mχ the BH evaporates, because the accretion of
baryons cannot keep pace with mass loss from Hawking
radiation.

E. Growth due to dark matter accretion

If the thermalization time is short compared to the
BH Hawking evaporation time tHaw ¼ 15360πG2M3

BH=
3 ≃ 5 × 104 yrð100 GeV=mχÞ3, DM accreting onto the
NS reaches the BEC efficiently. The maximal impact
parameter for DM capture is larger than the radius of the
BEC, and DM particles reaching the BEC can feed the
growth of theBHat a rate _MDM ¼ CNSt if Hawking radiation
does not disrupt the BEC [115]. Direct heating ofDMwill be
absent if the dark sector does not contain mediator particles
with mass less than the Hawking temperature THaw ¼
1=ð8πGMBHÞ. Further, even when DM is directly heated
byHawking radiation, the change in its temperaturewould be
negligible if it can thermalize with baryons quickly [115].
In this case, _MDM ¼ CNSt > _Mevap, and the accretion of
DM prevents BH evaporation for heavier masses [115].
Comparing the timescales for thermalization and evapora-
tion, we find that DM accretion can prevent BH evaporation
for mχ ≲ 4 × 103ðσχ=σthÞðT=105 KÞ GeV.

F. Neutron star implosion timescale

The timescale for a mini-BH to devour the entire NS by
Bondi-Hoyle accretion has been computed recently for the
stiff EOS expected in NS cores [124]. For a realistic NS
model, they estimate this timescale to be given by

tdev ≃ 0.3
$
1046 GeV

MBH

%
yr; ð41Þ

where MBH is the mass of the initial mini-BH. For large
DM mass, i.e., mχ > mBEC where mBEC ≃ 2 × 104 GeV at
T ¼ 105 K, the NS is destroyed on a timescale
t ≈ 6 × 10−2ðmχ=GeVÞ3=2ð105 K=TÞ3=2 yr. For mχ <
mBEC (which involves a BEC intermediate state), the NS
is destroyed on a timescale t ≈ 3.2 × 107ðmχ=GeVÞ yr.

VII. CONSTRAINING DARK MATTER
PROPERTIES FROM THE IMPLOSION

TIMESCALE

As discussed before, GWobservations can determine the
relative abundance of BBHs and BNSs, which allows us to
infer the implosion timescale tc. The posterior distribution
of tc, or the lower bound on tc if GW observations cannot
conclusively measure a nonzero BBH rate, can be used to
constrain a region in the space of DM mass, interaction
cross section, and dispersion velocity in the vicinity of
merger. To illustrate the sensitivity of this method, we
assume that the time it takes for DM particle capture to
form a BH of critical mass Mcrit

BH is approximately equal to
the total collapse time tc of the NS to form a BH through
this channel. Furthermore, for illustration, we assume
that tc ¼ 1 Gyr.
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Figure 8 shows the constraint on the DM particle mass
mχ and the DM-baryon interaction cross section σχ for the
inferred collapse times shown in Fig. 7 and three values of
the DM density: ρχ ¼ 1, 10, and 100 GeV=m3. In all cases,
the dispersion velocity is assumed to be 200 km=s. As
discussed earlier in Sec. VI A, the limits on the effective
cross section shown in Fig. 8 can be used to constrain
specific DM scenarios in which the nature of the DM
coupling to baryons is defined. Corrections due to the
baryon form factors and the modification of baryonic
properties at high density need to be accounted for in
deriving the limits on the DM-baryon cross section. For the
heaviest DM considered in this work, the suppression of the
scattering cross section due to the form factors can be quite
significant, resulting in bounds that are 2–3 orders of
magnitude weaker [118]. However, such a detailed analy-
sis, which is beyond the scope of this work, will also
depend on the composition and distribution of baryons in
the NS [119]. The precision of the inference of DM

parameters is directly related to how precisely we can
deduce the collapse time from the observed number of
BBH mergers and the measured Λ̃ from the GW signal.
Compared to the Aþ network, the XG network of Cosmic
Explorer and Einstein Telescope can improve the width of
the distribution by almost a factor of 10. From Fig. 9, these
constraints are competitive with those of direct detection
DM experiments, such as the LUX-ZEPLIN (LZ) experi-
ment [129], over the entire range ofmχ . Note, however, that
constraints placed by the LZ experiment in this mass range
are insensitive to corrections due to the nucleon form
factors, since the momentum transfer is small for DM
scattering in terrestrial experiments. The effect of variations
in the true collapse time on the inferred bounds is discussed
in the Appendix.

VIII. CONCLUSIONS AND FUTURE PROSPECTS

In the last decade, direct detection experiments for DM
have proven to be successful in constraining the parameter
space for weakly interacting massive particles (WIMPs) as
well as axionic DM [129–133]. Microlensing surveys
[134,135] and calculations from dwarf-galaxy dynamics
[136,137], as well as searches for subsolar mass compact
binary mergers in GW data [10,11,112,138] have probed
the DM compact object parameter space, deriving limits on
the abundance of DM in these objects and on their mass
spectrum.
In this work, we present a method to combine measure-

ments from GWobservations with the particle properties of
DM, especially in the WIMP mass range, through the
observation (or lack thereof) of a novel population of BBHs
in the mass range 1M⊙ ≤ m ≤ 2M⊙. With XG ground-
based GW detectors, our ability to measure the effective
tidal deformability will improve tremendously, as shown
in Fig. 4. With this refinement, we expect to identify a
significant number of BBH mergers in this mass range,
if this population exists in the Universe. The observed
number of mergers can potentially constrain the implosion
time of NSs if these BHs form from the collapse of old NSs

FIG. 8. Distribution for the mass mχ ∈ ½10−1; 2.5 × 105% GeV and scattering cross section σχ inferred from the collapse time derived
from the observed number of BBHs by the detector networks considered in Fig. 7. Here we consider the scenario where the NS implodes
without the formation of a BEC state for mχ ≥ 2 × 104 GeV, shown in gray. For mχ < 2 × 104 GeV, NS implosion occurs at shorter
timescales through the formation of a BEC. We use ρχ ¼ ½1; 10; 100% GeV=cm3.

FIG. 9. Comparison between the constraints obtained for mχ ∈
½1; 104% GeV with the lowest ambient DM density considered in
this work (ρχ ¼ 1 Gev=cm3) with the latest constraints from the
direct detection experiment, LZ [129].
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due to the presence of a mini-BH at their cores. If the mini-
BH forms through the accumulation of DM in the cores of
NSs over their lifetime, the collapse time can then inform us
on DM particle properties.
We illustrate how this mechanism works. We report

limits on the effective DM-baryon cross section defined by
Eq. (23) in a scenario where asymmetric DM is captured
through scattering within NS cores to form a self-
gravitating mass that collapses to produce a BH. As
expected, the constraints are more precise in the case of
XG GW detectors, which is a direct consequence of how
precisely the binary’s effective tidal deformability, and
hence the collapse time, is inferred from the observed
number of BBH mergers.
One potential issue is the degeneracy with primordial

BHs, which could also populate this spectrum of masses.
One possible way to remove the degeneracy involves
accurate spin measurements to distinguish between the
two formation channels. Furthermore, if primordial BHs
contribute to the supersolar mass range, we would also
expect to observe some subsolar mass primordial BHs. The
absence of observed old NSs also complements the
observation of BHs formed from imploding NSs. In this
work, we show how effectively GW detections can not only
constrain DM interactions, but also rule out models that
allow for NSs to implode through DM accumulation if no
such population is observed in the future.
Multimessenger measurements could help distinguish

BBH from BNS mergers. However, Rubin will observe
BNS mergers only up to a redshift of z ¼ 0.3, while XG
detectors will have much deeper reach, extending beyond
z ¼ 2 (see, e.g., [80], Fig. 2), implying that only ∼1% of all
BNS mergers detectable in GWs will have EM counter-
parts. As we have shown in Fig. 3, XG detectors can
measure the tidal deformability parameter with high fidelity
for most of the sources they observe. Consequently,

including multimessenger observations will only margin-
ally improve the limits on DM properties.

ACKNOWLEDGMENTS

We thank K. Belczynski for useful discussions on BNS
delay times, as well as M. Baryakhtar and T. Slatyer for
discussions on the DM scenarios considered in this paper.
D. S. and B. S. S. were supported in part by NSF Grants
No. PHY-1836779, No. PHY-2012083, No. AST-2006384,
and No. PHY-2207638. A. G. is supported by NSF
Grant No. AST-2205920. E. B. is supported by
NSF Grants No. AST-2006538, No. PHY-2207502,
No. PHY-090003, and No. PHY20043, and NASA Grants
No. 19-ATP19-0051, No. 20-LPS20-0011, and No. 21-
ATP21-0010. This research project was conducted using
computational resources at the Maryland Advanced
Research Computing Center (MARCC). S. R. is supported
by the U.S. Department of Energy under Award No. DE-
FG02- 00ER41132 and National Science Foundation’s
Physics Frontier Center: The Network for Neutrinos,
Nuclear Astrophysics, and Symmetries. Part of the work
by E. B. and B. S. S. was performed at the Aspen Center for
Physics, which is supported by National Science Foundation
Grant No. PHY-1607611. This research was also supported
in part by the National Science Foundation under Grant
No. NSF PHY-1748958.

APPENDIX: EFFECT OF COLLAPSE
TIME AND DARK MATTER DENSITY

ON THE DERIVED LIMITS

In Secs. V and VII, as an illustration of the method, we
have assumed tc ¼ 1 Gyr to derive the distribution of
merger rates and the resulting constraints on the DM
scattering cross section σχ and mass mχ . Here, we discuss

FIG. 10. Left: median NBBH for σ90%Λ̃T
¼ 100 and for range of values of the true collapse time tc. Right: inferred median of tc from the

NBBH distributions for the three detector networks under consideration and for an observing period of five years. The colored bands
correspond to the 90% credible intervals for the distributions of tc and NBBH.
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FIG. 11. Distribution of the mass mχ ∈ ½10−1; 2.5 × 105% GeV and scattering cross section σχ for benchmark values of ρχ ¼
½1; 10; 100% GeV=cm3 (left to right) and tc ¼ ½0.1; 0.5; 1; 5; 7.5% Gyr (top to bottom).
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the effect of varying the collapse time and the DM
density ρχ.
In Fig. 10 (left panel) we show that, as the collapse time

increases, the number of observed BBH mergers decreases
(as expected) for all detector networks. The right panel
shows that the errors in the inferred collapse time are much
higher for Aþ due to the lower number of expected
observable events. For the XG network, the collapse time
is inferred most accurately (as expected).

In Fig. 11 we show how the derived limits on the mass
and scattering cross section of the DM particles vary as we
change ρχ and the true collapse time tc. The constraints on
σχ become more stringent as tc and ρχ increase. In addition,
the dispersion in the limits derived for Aþ and Voyager
reduces as tc increases. This is because when tc is large, the
number of expected observable mergers is closer to the total
merger rate, and the merger rate densities peak at small
redshifts.
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