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Abstract

We give a dynamical characterization of measures on the real line with finite log-
arithmic integral. The general case is considered in the setting of evolution groups
generated by de Branges canonical systems. Obtained results are applied to the Dirac
operators and Krein strings.
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1 Introduction
1.1 Nonstationary scattering

In nonstationary scattering theory [58, 68, 84], one studies an evolution group of
unitary operators {U;};er that act on Hilbert space H. Elements X € H are called
states and the set {U; X };cRr is a trajectory of X under the evolution U;. Motivated by
physical heuristics, one sometimes expects that the long-time behavior of U, X, t —
+o00, is asymptotically close to that of UIO Y4, t — Fo00, for certain states Y4 € H,
which depend on X. Here, {U,0 }ter 1s another evolution group of unitary operators
that act on the same Hilbert space H. The scattering operator S defined by S: Y_ —
Y, then recovers the remote future of the process U; X from its past.

For concrete evolution groups U; and U, ,0, proving the existence of the scattering
operator might be a nontrivial problem. In this paper, we address this question in
the context of 2 x 2 canonical Hamiltonian systems on the positive half-axis R} =
[0, +00). They provide a convenient framework for a unifying treatment of classical
equations/operators of mathematical physics, such as one-dimensional Dirac systems,
Krein strings, Jacobi matrices, and Schrodinger operators. In fact, any self-adjoint
operator with a simple spectrum can be realized as a canonical Hamiltonian system
on R, although such a realization is often somewhat implicit. We refer to [69] and
[71] for an introduction to the spectral theory of canonical Hamiltonian systems.
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A canonical Hamiltonian system is defined by its Hamiltonian, which is a 2 x 2
matrix-valued function on R that has the form

"= <hhl :2> ’ H(r) >0, traceH(r)>0, forae. teR,.

The real-valued functions h1, hy, h satisfy hy, ho, h € LllOC R4). If A =0 almost ev-

erywhere on R, we say that # is diagonal. Let J = <(]) _01 ) With each Hamiltonian

‘H one can associate the canonical system,
JX'(t,2) = 7H(D) X (7, 2). (1.1

Here, z € C is a spectral parameter and the derivative is taken in v € R . Canonical
Hamiltonian system (1.1) can be considered as a generalized eigenvalue problem
Dy X = zX for a self-adjoint differential operator

Dy: X7, Y: JX =HY,

densely defined on a certain Hilbert space of functions on R (we give more details in
Sect. 2.1). The self-adjoint operator D, has a simple spectrum. It, therefore, admits
a spectral representation as the multiplication operator by the independent variable in
L?(w), with a canonical choice of the scalar non-negative spectral measure p satis-

fying
du(x)
. 1.2
[Rl+x2 <00 (1.2)

Remarkably, any non-negative Borel measure p satisfying (1.2) is a spectral measure
of Dy for some Hamiltonian #. In particular, the usual Lebesgue measure on R is

the spectral measure of Dy, for the constant Hamiltonian Ho = <(1) ?) on R;.

In our paper, we study dynamics of the unitary evolution group U; = e"Pn gen-
erated by a general Hamiltonian H by comparing it to the “unperturbed” dynamics
governed by UtO = ¢/"PHo._ The latter can be easily reduced to the shift operator on
L%(R), see Sect. A.2. Informally, one of our central results can be summarized as fol-
lows: “scattering for the pair U;, U ,0 takes place if and only if the spectral measure p
of Dy belongs to the Szegd class Sz(R)”. That class consists of Borel non-negative
measures on the real line R whose density with respect to the Lebesgue measure on
R has a finite logarithmic integral:

SZ(R)Z{ILdex—}—MS: /dﬂ(x) <+m,fM
R R

d — . (1.3
x2+1 2yl 7 oo} (13)

The Szegd class is prominent in complex analysis [46, 48], theory of stationary pro-
cesses [27, 38], orthogonal polynomials [74, 75, 77], and statistical physics [20, 76].
We will discuss its appearance in various aspects of scattering for canonical Hamilto-
nian systems: propagation of a single wavepacket (Theorem 2.9 and Theorem 2.19),
existence and completeness of wave operators (Theorem 2.22), dynamical classifica-
tion of spectral types (Theorem 2.24 and Theorem 2.26). We also use our previous
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work to provide an explicit description of Hamiltonians corresponding to spectral
measures in Sz(R) (Proposition 2.8).

Below we discuss how our general theory, summarized in Sect. 2, applies to two
important classes of operators: Dirac systems and Krein strings. In these two cases,
the connection between Szeg6 condition on the spectral measure, propagation of the
wavepacket, and the existence of the wave operators becomes particularly transpar-
ent. The Dirac systems give rise to locally absolutely continuous Hamiltonians H
with det{ =1 on R, and Krein strings are in one-to-one correspondence with di-
agonal Hamiltonians on R . Some figures demonstrating a numerical simulation of
the propagation of waves can be found in Sects. 1.5 and 1.6.

We believe that suitable modifications of Szegd class will appear naturally in other
criteria for scattering in different settings (say, for CMV matrices, Jacobi matrices,
Dirac operators with the positive mass, etc.) if one chooses the unperturbed dynamics
properly (see, e.g., [23, 81]).

1.2 Dirac equation

Define W as the solution to the following Cauchy problem for one-dimensional Dirac
equation on the positive half-line R = [0, +00):

J@D)+ OOV =W, WO0.0=(}), TeRy zeC
(1.4)

(1) _01 ) and the derivative is taken with respect to 7. The potential Q
is 2 x 2 matrix-function with real entries. It is symmetric, has zero trace, and satisfies

Qe Ll (Ry). We will write Q in the form

loc
o=(3 %)

Here, again, J = (

where real-valued functions g and g on Ry satisfy g1, ¢q2 € LlloC (R4). For each

value of the spectral parameter z € C, the solution, W(, z), is a locally absolutely
continuous function on R, with values in C2. It can be considered as the generalized
eigenvector of the Dirac operator

Dp: Z+— JZ' + QZ. (1.6)

The operator D ¢ is a densely defined self-adjoint operator on the Hilbert space
LR ={Z: Ry > C1Z g, o) = /R 120) 2 dr < oo).
+

Its domain consists of locally absolutely continuous functions Z € L?>(R, C?) that
satisfy two conditions: JZ' 4+ QZ € LZ(R+, C2) and (Z(0), (?))Cz = 0. The “free”
Dirac operator, corresponding to the potential Q = 0, will be denoted by Dy.

The one-dimensional Dirac operator (1.6) has its origin in relativistic quantum me-
chanics. It appears after the separation of variables as the radial part of a “full” Dirac
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operator that describes a relativistic particle in a radially symmetric external field in
R3 (see Sect. 4.6 in [80]). In the one-dimensional model, D describes the parti-
cle of unit mass moving in a field defined by a potential g: R — R. That function
q is related to g1 and ¢ in (1.5) by g1 = cos(2 [y g ds) and g2 = —sin(2 ] g ds),
see page 534 in [37], and a discussion at the end of Sect. 4.4. In the theory of com-
pletely integrable systems, the Dirac equation appears as a linear self-adjoint problem
that is used to solve the nonlinear Schrodinger equation. See, e.g., [29], Chap. 1 for
the inverse scattering approach in the theory of nonlinear Schrédinger equation, and
[1, 19, 56] for more on inverse scattering problems.

For every Q € L}OC(R+), there is a unique Borel measure wp on R such that
(x2+ 1)~" e L'(up) such that the generalized Fourier transform

Fo:Z+— % /I;Jr(Z(t), W (t,2))c2dr, ze€C, (1.7)

densely defined on smooth functions with compact support, can be extended to a
unitary map from L*(R4, C?) onto L?(up). That measure is called the main spec-
tral measure of © (. For example, the Lebesgue measure on R is the main spectral
measure for the free Dirac operator . We refer the reader interested in the spec-
tral theory of the one-dimensional Dirac operator to the classical monograph [61].
It can also be considered as a part of a more general spectral theory of canonical
Hamiltonian systems [18, 67, 69, 71].

Given a potential Q € LllOC Ry), welet U, = e/ ¢ and U? = ¢/"®0 in the context
of general problem discussed in Sect. 1.1. These are unitary operators on L>(R., C?)
parameterized by ¢ € R. The unperturbed dynamics U,0 has an explicit form given
by formula (4.9) below. Fix a measurable time-independent “phase function” y on
R, which takes its values on the unitcircle T={z € C:|z|=1}.Let M,: Z+> yZ
denote the multiplication operator on L?(R ., C?) with function y. Set U](,)’ . =M,U

fort > 0 and U)(,)’t = MzU? fort <0.

Definition If the following limits

W(®@0.Do.y) = lim U_,Uy, (1.8)

exist in the strong operator topology, we will call them the modified wave operators
for evolution groups U; and UP . The standard Moller wave operators correspond to
the choice y = 1 on R;..

Studying wave operators is a classical problem in scattering theory, theory of par-
tial differential equations, and mathematical physics (see, e.g., Hormander [34], Kato
[41], Birman and M. Krein [10], Lax and Phillips [58], Yafaev [84], etc.). In our pa-
per, we show that wave operators for D g, D exist if and only if the spectral measure
p belongs to Szegé class (1.3). Specifically, we prove the following two theorems.
Theorem 1.1 Let ® ¢ be the Dirac operator (1.6) with potential Q € LllOC (Ry). As-
sume that for some measurable function y: Ry — T one of the wave operators
Wi (® g, Do, y) exists. Then, the main spectral measure jup of © ¢ belongs to the
Szegd class Sz(R).
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The wave operators W4 (Do, Do, y) are called complete if they are unitary oper-
ators from L?(R,., C?) onto the absolutely continuous subspace Hac(D o) of Dy.

Theorem 1.2 Let © g be the Dirac operator (1.6) with potential Q € LllOC (Ry). As-
sume that the spectral measure pp of © o belongs to the Szegd class Sz(R). Then, the
wave operators W+ (Do, Do, y) exist and are complete for some measurable func-

tion y: Ry — T. Moreover, one can take y = 1 if Q is anti-diagonal, i.e., g1 = 0.

In general, one cannot take y = 1 in Theorem 1.2 as has been shown in [22] (see
discussion after Theorem 14.7 there and Teplyaev’s work [78]). The wave operators
Wi (Do, Do, ¥) can be used to describe asymptotics of evolution in the remote future
given its behavior in the remote past. In the setting of Theorem 1.2, the scattering
operator

S=wi'w_, Wi=Wi(Dg,D0,¥),

defines a unitary map on L?(R,, C?). We prove that it does not depend on y. Our
wave operators are complete and S describes the asymptotic dynamics of a state
Z € Hae(® @) under the evolution U; by

S: Yz Yz, im (|U:Z ~ Up Y7+l 2@, o2 =0. (1.9)

In other words, if U,;Z is asymptotically close to Uj(,)’tY 7.— in the remote past for
some Yz _, then U;Z is asymptotically close to U}(/)’t Yz 4+ in the remote future, hence
Yz.+ = SYz _. Moreover, both Yz 4 and Yz _ are in one-to-one correspondence
with Z because we have Yz + = W 17 and the operators Wy are unitary from
L*(R,, C?) onto Hae(D o). Notice that analogs of wave operator and scattering map
can also be defined in the context of classical Hamiltonian mechanics (see, e.g., [13]).

Paraphrasing Theorem 1.1 and Theorem 1.2, we can now say that the scattering
phenomenon in the sense of (1.9) takes place for the Dirac evolution groups U;, U ,0
if and only if the main spectral measure of D¢ lies in the Szegd class Sz(IR). That
motivates us to introduce the class of potentials

Sz(Dir) = {Q € L], .(R}): the main spectral measure of D is in Sz(R)}.

In previous works [7] and [8], we characterized potentials Q € Sz(Dir). That descrip-
tion is summarized in the following theorem.

Theorem 1.3 Let Q be a potential in LllOC (R4) and Ny be the solution to the Cauchy
problem

ING® +0@ON(@ =0, No@=(p%). TeRs.

Then, Q € Sz(Dir) if and only if

n+2
> (det/ N (T)No(r)dt — 4) < +o00.

n>0
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If, moreover, Q has the form

_(a O _ (9 g
Q—<O —q) or Q_<q O)’ (1.10)

then Q € Sz(Dir) if and only if

n+2 n+2 dr
Z(/ h(r)dr/ %—4> < 400, (1.11)

>0 n n
where h(t) = eszrq(s)ds, T >0.

Previous works provide sufficient conditions for scattering in Dirac evolution and
we will discuss some of them now. We write Q € L?(R,) if the entries of a potential
0 belong to the space LP(Ry). The case Q € Ll(R+) is classical, the existence
and completeness of Wi (D, Do, 1) follow from the general theorems on trace-
class perturbations. Indeed, one can show that the operator (Do +i Yyl (@g+i)7!
belongs to the trace class S 1 (L2(R+, (Cz)) and then use a result of Birman and Krein
(see Theorem 2 in [10] or Theorems XI.8, X1.9 in [68]) which is an extension of the
classical Kato-Rosenblum theorem. In a general setting, the trace class in Birman-
Krein theorem cannot be replaced by any other Schatten class S” (L3R4, C?), p >
1. However, for the Dirac equation, the existence of wave operators was proved under
assumptions much weaker than (D¢ + N~ — ®o + Hle Sl(Lz(]RJr, C2)). For
example, Christ and Kiselev [14] showed that the wave operators Wi (D g, Do, 1)
exist and are complete for Q € LP(Ry), 1 < p < 2. The second author covered the
borderline case in [21]: he proved that the wave operators exist and are complete for
Qe Lz(R+). On L? (R )-scale, the class Lz(R+) is optimal: a well-known result by
Pearson [64], when stated for Dirac equation, says that there exists Q € N~ LP (Ry)
for which the Dirac operator D has empty absolutely continuous spectrum. That
implies Hae(® ) = {0} and the wave operators do not exist in a “‘very strong sense”.
Indeed, there are no isometric operators between L2(R+, C?) and {0} = Hac (D p)!

Previous results indicated a connection between the convergence of logarithmic
integral of the spectral measure pp and the existence of wave operators. The first
author proved [6] that Szegd condition is sufficient for the existence of certain modi-
fied wave operators and one can show that the spectral measure belongs to the Szegd
class Sz(R) for Q € LP(R4), 1 < p <2. In higher dimensions, similar results were
obtained in [57, 73], and [24]. The present paper provides the final answer in the
form of a necessary and sufficient condition for Dirac scattering given both in terms
of spectral data (via Theorem 1.1 and Theorem 1.2) and an explicit condition on po-
tential Q (via Theorem 1.3). We rely on our previous works [6-8, 22], and, more
broadly, on M. Krein’s idea (see [53] and [54]) to use the theory of polynomials or-
thogonal on the unit circle when studying problems of spectral theory. In particular,
Lemma 2.16 that appears later in the text has the counterpart known as “Khrushchev’s
theorem” for orthogonal polynomials (see [43] by Khrushchev).

Consider Q of the form (1.10) with g = S“r’—ga for some «, € R. That class of
potentials, introduced by von Neumann and Wigner in a different context, was exten-
sively studied in the literature (see, e.g., [14] for some references). Different values of
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Fig. 1 The set A in Theorem 1.4 (filled blue). Pairs (o, 8) € A correspond to potentials Q € Sz(Dir). The
set A is open, which demonstrates the stability of the scattering phenomenon in parameters « and g

parameters «, B give rise to highly oscillating, slowly oscillating, periodic, decaying
or growing potentials. The scattering problem for such potentials has been actively
studied (see [3, 4, 26, 63, 82]) in the setting of Schrodinger equation.

Theorem 1.4 Suppose that a potential Q € LIIOC(R+) has the form (1.10), with g =
Sir;—;a on [tg, +00) for some t9 > 0 and o, p € R. Then, Q € Sz(Dir) if and only

(o, B) € A, where
1 1 3
A={a =<0, ,B—a>§}U{oze(0,1), ,3>§}U{ozzl,a+,3>§}
is the open set depicted on Fig. 1.

Most of the results in this paper have a dynamical interpretation. It also appears
that some difficult questions of spectral theory have precise answers in dynamical
terms. Here is one example: as the following theorem shows, the propagation of just
one nontrivial state Z under the Dirac evolution characterizes the absence of the
singular continuous spectrum for the corresponding Dirac operator.

Theorem 1.5 Let D ¢ be the Dirac operator with potential Q € Sz(Dir). The singular
continuous spectrum of D g is empty if and only if

. N 2
hETwTETmT/O Ut ZN 72 c2 .17y 41 =0 (1.12)

for some (and then for every) compactly supported nonzero state Z € L*(R,., C?).
The next theorem shows that in the Szegé case the long-time Dirac evolution of

any state Z € L>(R,, C?) decomposes into three parts: “the bound states part” lo-
calized near the origin, the “scattering part” propagating to infinity with constant
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velocity, and the “singular continuous part” between them. These parts correspond
to the orthogonal projections PppZ, PacZ, PscZ of Z onto the pure point, the ab-
solutely continuous, and the singular continuous subspaces of © g. We provide the
dynamical description of the sizes of these projections (see [15, 45], and [72] for
related results) which makes the connection between spectral type and evolution of
wavepacket transparent.

Theorem 1.6 Let CD% be the Dirac operator with potential Q € Sz(Dir). Then, for
every Z € L>(Ry, C?) we have

. 1T 2 2
lim lim T/o ”UIZ”LZ((CZ’[()’b])dt:HPPPZ”LZ(RJr,(CZ)’

b—+00 T—+00

b—~+00T—+00

. 1T 2 2
lim lim T\/(; ”UZZ||L2((C2,[b,l7b]) dt = ||PSCZ||L2(R+,C2)’

lim lim
b—~400t—>+00

Il Pac

2 _ 2
||UIZ”L2(C2,[[—b,t+b]) - Z||L2(R+,(C2)’

pim  dim U Zl 22 4,400 =0-

There is a large amount of literature in which the spectral types and the corre-
sponding subspaces of an operator were studied in connection to the dynamics it gen-
erates. That can be done for very general setting (see, e.g., the celebrated RAGE the-
orem [68], Theorem XI.115) or for some standard operators of mathematical physics
(see [15] or [45], where the Schrodinger evolution was considered). In Theorems
1.5 and 1.6, we focus on Dirac equation and give a complete dynamical descrip-
tion of classical spectral subspaces in the spirit of RAGE theorem. Again, the Szegd
condition on the spectral measure is central to our analysis as it provides the sharp
asymptotics of U; Py Z which simply does not hold in the general case. For example,
the Dirac equation with constant positive mass has different dispersion relation (see,
e.g., [28]) and the third equality in Theorem 1.6 does not hold for such a model.

We want to make a few remarks about other existing methods. In [65], p. 406,
the scattering for regular stationary Gaussian sequences has been studied in the case
when the spectral measure of the process is purely absolutely continuous and its den-
sity satisfies Szegd condition on the unit circle. That is one example of the general
Lax-Phillips approach, in which the so-called representation theorem (see, e.g., Chap-
ter II in [58]) can be applied to the general unitary groups with both discrete and
continuous time. It provides the abstract scattering operator under the assumption
that the so-called “outgoing” and “incoming” subspaces exist. To define these sub-
spaces for concrete evolution equations, one usually works with compactly supported
perturbations of the canonical operators (e.g., Laplacian, Dirac, etc.). Our methods
give asymptotics of evolution U;Z on the physical side for a large class of Z avoid-
ing such strong assumptions on perturbation Q in (1.4). Also, when viewed on the
spectral side, our technique allows the spectral measures to have essentially arbitrary
nontrivial singular parts as long as these measures are in Szegé class.

Another approach to scattering theory is based on proving the large-t asymptotics
of solutions to (1.4) for Lebesgue almost every spectral parameter z € R. This is an
area of active research (see, e.g., [14, 25, 62], and more recent work [66]).
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1.3 String equation

To define the mathematical model of a vibrating string, one starts with prescribing
its length L € (0, oo] and the non-decreasing right-continuous function M : [0, L) —
R4 . Given & € [0, L), the number M (§) is interpreted as the mass of the [0, £] piece.
Define the Lebesgue-Stieltjes measure m by m[0, £] = M (§) and write its decompo-
sition into the absolutely continuous and singular parts: m = mye + mg = p d€ + mg.
Usually, the function p is referred to as the density of the string. Denote M (L—) =
limg 4z M (§). We will call the [M, L] pair proper if M and L satisfy the following
conditions

L+ M(L—) = oo, (1.13)
0<M(E)<M(L—), Vee(,L). (1.14)

The second condition can be interpreted as the left and the right ends of the string
being “heavy”. The free motion of the vibrating string [M, L] with a given initial
displacement ug: [0, L) — R is described by the solution u = u(&, t) of the string
equation

mE)uy (€, 1) =uge (8, 1), (1.15)
u(€,0) = ug(&), £e[0,L), teR,, (1.16)
u;(£,0) =ug(0,1) =0. (1.17)

Under mild assumptions (1.13)—(1.14), m is essentially an arbitrary non-negative
Borel measure on [0, L) and one needs to explain how to understand equation (1.15).
In Sect. 3, we will define the self-adjoint non-negative operator Sy, the Krein string
operator, which corresponds to the pair [M, L]. Then, the spectral theorem for Sy,
and operator calculus can be used to define the solution u as follows:

u(-, 1) = cos(t+/Sy)uo, uo € L*(m). (1.18)

With this general picture in mind, we mention that if L = 400, m = pd§, and p and
uq satisfy additional regularity assumptions, then our solution u# coincides with the
unique classical solution to the problem

p(é)utl(gvt)zl’tsg(sal)s §€R+, IER+,

that satisfies (1.16) and (1.17). In that case, the value of u (&, t) gives the displacement
of the string at the point £ € [0, L) at the moment ¢ € R where u is the initial real-
valued displacement. Assumption u, (£, 0) = O indicates that the initial velocity is
equal to zero, and the Neumann boundary condition ug (0, #) = 0 says that the left
end is “loose” (see [2] for some background).

In our setup, function u, the solution to (1.15), will be considered as an element of
L?(m) for all t > 0. For m-measurable function f, we introduce its front as

fe[f]1=inf{a € R} : f =0 m-almost everywhere on [a, L)}
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and we will call fr, = fe[u] the wavefront of solution u(-,¢) at time . Using a clas-
sical result by Krein, one can explicitly compute the wavefront of a wave u with
compactly supported initial profile ug. Given a string [M, L], we define two func-
tions:

§
TM(E)=/O p(s)ds, Ly(m) =inf{§ €[0,L) : Ty () = n}

for £ € [0, L), n € R;. In physics literature, the former function is sometimes re-
ferred to as eikonal or optical metric. The subscript “M” above refers to the mass
distribution M of a string. Later in Sect. 2.2 we use similar functions T, Ly for a
canonical Hamiltonian system generated by a Hamiltonian .

Theorem 1.7 Let [M, L] be a proper string and let ugy € L?(m) be a nonzero com-
pactly supported initial profile. Assume that t > 0 is such that Ly (Tp (feo) +t+¢) <
oo for some ¢ > 0. Then, the wavefront of the solution u of (1.15) can be found by
the formula

fr, = Ly (Tm (o) +1). (1.19)

We say that a Borel measure 0 = vdx + o5 on R with the density v and the
singular part og belongs to the Szeg6 class Sz(R,) if (x +1)~' € L!(0) and

logv(x)
R, VX(x +1)

dx > —o0.

To each proper string [M, L], one can associate the unique non-negative Borel mea-
sure o on R with (x + 1)’1 € L' (o) called the main spectral measure of the string
[M, L]. The theorem below provides a dynamical characterization of the Szegé class
SZ(R+).

Theorem 1.8 Let [M, L] be a proper string and let o be its main spectral measure.
Then, o € Sz(Ry) if and only if for some (and then for every) nonzero compactly
supported initial profile ug € L*(m) and for some (and then for every) £ > 0 we have

limsup flu(-, )] ;2
t——+o0

(m, [fr,_e. ry

Put differently, the result says that the spectral measure of a string [M, L] belongs
to Sz(R;) if and only if the part of wave u near its wavefront does not vanish as
t — +o0.

For the homogeneous string with positive constant density, we have L = +o00 and
M : & — po& where pg > 0. In that case, the propagation of the wave with the initial
profile u¢ has the well-known “traveling wave” form given by d’ Alembert’s formula:

M(EJ):“0(5"'“”;“0(5_‘”)’ 10, £>0, a=,00_%, (121)
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where we extended ug to the whole real line R as an even function. Moreover, if
ug € L>(Ry), then

u(g,r)ZMJro(l), t— 400, (1.22)

where the remainder “o(1)” is with respect to the L2(R+)—norm. Below, we prove a
similar result for arbitrary strings with spectral measures in the Szegd class. Define

Sz(Str) = {[M, L] : the main spectral measure of [M, L] is in Sz(R)}.
Consider any two measurable sets 2g(m), Q,c(m) C R that satisfy
Ms(Rac(m)) = [Qs(m)[ =0,  Qac(m) =R \Qs(m), (1.23)

where | E| refers to Lebesgue measure of a set E. In the theorem below, we denote
Agr=[Ly(t—a),Ly(t+a)]fort>a=>0.

Theorem 1.9 Suppose [M, L] is a proper string in the class Sz(Str). Then, for each
ug € L%(m), there exists Gy, € L2(R) such that for every a > 0 we have

M(S,l)=stac(m)(§)'/f%(é)Guo(TM(E)—t)+0(1), t—4oo, (124

with o(1) in L?(m, Ag.1). If, moreover, ug belongs to the absolutely continuous sub-
space Hac(Spr) of the Krein string operator Syy, then (1.24) can be strengthened:
o(1) now holds with respect to L*(m)—norm.

The “traveling wave” G, in Theorem 1.9 can be explicitly written in terms of ug
and Szegd function of the spectral measure of [M, L], see details in Sect. 3. Similar
results were obtained recently in a different setting (see [23] and [24]).

The class Sz(Str) can be described purely in terms of string’s length L and mass
distribution M. That characterization was obtained in [7]. Below, we give somewhat
more general version which has already been applied in the theory of quantum graphs
(see [50)).

Theorem 1.10 Let [M, L] be a proper string, and let {n,} be an increasing sequence
of positive numbers such that c1 < Np4+1 — Ny < c2 for all n > 0 and some positive c1,
2. Then, we have [M, L] € Sz(Str) if and only if \/p ¢ L0, L) and

+00

Z(($n+2 —&EDM (Epy2) — M(Ep) — (g2 — rln)z) < 400, (1.25)

n=0
where &, = Ly ().

The Lax-Phillips scattering theory for vibrating strings (see [58] and [35, 36] for
connections with the theory of Kg-spaces, basis property of exponents, and Regge’s
problem) usually assumes that the string is homogeneous on a half-line & > &, for
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Fig. 2 The upper string has black pieces of length That string does not belong to the class

1
nlog(e+n) -
1

Sz(Str). The bottom string has black pieces of length pYFr—

. It does belong to the class Sz(Str)

some &gy, which places it in Szegd class, and then the solution to problem (1.15)-(1.17)
is studied in the energy norm || - || g defined by (see, e.g., p. 73 in [35])

Wiz = ([T 2as+ [ w2am
E_2 0 & 0 t .

In contrast to that setup, we make no such assumptions on the string. We also find it
more suitable to work in the original space LZ(m).

We end this section with two examples which are discussed in detail in Sect. 3.4. In
the first one, the density p = 1 and we study how the properties of the string depend
on mg, the singular component of m. Measure mg describes the “impurities” in the
material.

Example 1.11 Let [M, oo] be the string with m = d& +mgon R, and let ug € Lz(m)
have compact support, ug # 0. Then,

e, =fro + ¢, t>0.
If mg(R4) = o0, we have [M, oo] ¢ Sz(Str) and
Al GOl 22 (7, -,y = O
for every a > 0. In the case mg(R) < 0o, we have [M, co] € Sz(Str) and
[_132100 flae-, t)||L2(ms,[ft,_a,ftt]) =0,
im0 = Gug = Dl 2(7e,—a. e, =0
for some G, € Lz(R), Gy, #0,and all a > 0.

Example 1.11 shows that the propagation of the wave depends solely on whether
mg (R ) is finite or not.

In our second example, mg(R) = 0 and the density p takes two positive values:
a and b. So, we have

a, T€E,
o(T) = (1.26)
b, TeRL\E,

for some Lebesgue-measurable set £ € R . We interpret such strings as those made
of two types of material (see Fig. 2).
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Example 1.12 The string with mg(R) = 0 and density p of the form (1.26) lies in
Sz(Str) if and only if either a = b (the string is homogeneous) or one of the sets E,
R4\ E has finite Lebesgue measure.

Given that statement, Theorem 1.8 and Theorem 1.9 show that the propagation of
the wave depends only on whether min{|E|, R\ E|} is finite or not.

The paper has four parts. This introduction is followed by the second section which
is focused on canonical systems. The general results obtained in the second part are
applied to Krein strings in the third section and to Dirac operators in the fourth sec-
tion. Finally, the Appendix contains some auxiliary statements and proofs.

1.4 Notation

We use the following notation:

e R, =[0,00),CL={z€eC:Imz>0},C_={zeC:Imz<0}, T={ze€C:
lz] =1}
e We define the direct and inverse Fourier transforms by:

—~ 1 . o 1 .
_ 1 —irE gy =_/ i€ gy R.
fer=—= /R fwedx, f© == [ fwetarn  ge

e The symbol C(R) denotes the set of continuous functions on R.

e The symbol C2°(RR) denotes the set of compactly supported infinitely smooth func-
tions on R. Similarly, the symbol Lg("H) stands for compactly supported functions
in L?(#), and H,. denotes the set of compactly supported elements in the space H
(see Sect. 2.1 for definition of these spaces).

o Wewrite f € L}, (Ry)is [y | f(x)]dx < oo for every r € (0, 00).

e Given a function f € C(R), its support is defined as supp f = {x : f(x) # 0}.

e The symbol C denotes the absolute constant which can change the value from
formula to formula.

e For two non-negative functions f] and f,, we write f1 < f» if there is a constant
C such that f] < Cf; for all values of the arguments of f; and f>. We define 2
similarly and say that f; ~ f» if fi < f2 and f < f) simultaneously. If | f3| < f4,
we will write f3 = O(f4). Given f1 and f>, two real-valued functions defined on
Ry, we write fi = o(f>) when x — +oo if fj = «af> for some function « that
satisfies limy_, yoo ¢ = 0.

e If ;1 is a non-negative Borel measure on the real line and f, g € L?(u), we denote
(f.8)u=Jp f8dp.

e We denote f(x*—) = limys,+ f(x). Similarly, f'(x*—) is the left derivative at
point x*.

e Given any measurable set £ C R, the symbol |E| will denote its Lebesgue mea-
sure.

e Given a set E C R, the symbol xg stands for the characteristic function of E.

e Suppose ¢ is a non-negative Borel measure on R and ¢ = o,¢ + o5 is its decom-
position into the sum of absolutely continuous and singular parts. In this paper,
Qs(0) and Q4 (o) will denote any sets that satisfy

05(Rac(0)) =1R2s(0)[ =0, Raclo) =R\Q(0). (1.27)
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Analogous notation is used for measures defined on R :
05(Qac(0)) = [Q2(0)[ =0,  Qac(0) =R \Qs(0). (1.28)

e Forz e Cy,the symbol J/z always defines the branch of the root such that J/z > 0,
ZE€ R+ .

e Givenaninterval / C Rand f € L'(I), we write (f); = ﬁ f, f dx for an average
of f over I.

o (a,b)r2 = aiby + axb for vectors a, b € C? with coordinates aj, az and by, by,
correspondingly.

e For x > 0, we denote log"‘ x = max (0, logx).

e The entire function f has finite exponential type if

1
type f := limsup M <

+00
|z]— 400 |z]

e We denote diag(a, b) = (g g) a,beC.

e Given a matrix A, we denote its transpose by A’.

e Given a function g, we define the corresponding multiplication operator by g as
Mg: fr>gf.

e The composition of two functions F' and G will be denoted by F o G.

e Given a non-negative non-decreasing function F defined on R, we denote its
generalized inverse as

FOV(x) =inf(y > 0: F(y) > x}

and let FOD (x) = 400 if {y>0: F(y) > x}=0. It can be shown that F&D g
non-decreasing and left-continuous on R . If F is continuous on Ry and F(0) =
0, then F=D(x) = min{y > 0: F(y) = x}, and F(FV(x)) = x provided that
FED(x) < +o0.

1.5 Figure 3: wave propagation for a string in the non-Szeg6 case

The first graph shows the density of the string. For each interval [n,n+ 1] = E, U F,,,
E, carries the density 1, F, carries the density 2, and |F,| ~ 1/+/n+ 1. As time
increases, only a vanishing portion of the wave (shown in the red circle) propagates
with the maximal speed.

1.6 Figure 4: wave propagation for a string in the Szeg6 case

The first graph shows the density of the string. For each interval [n,n 4+ 1] = E, U
F,, E, carries the density 1, F;, carries the density 2. This time, |F,| ~ 1/(n + 1)2.
As time increases, a non-vanishing portion of the wave (shown in the red circle)

propagates with the maximal speed.
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Fig. 3 Wave propagation in the non-Szegg case
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Fig.4 Wave propagation in the Szeg6 case
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2 Canonical Hamiltonian systems
2.1 Some definitions and known results

We first recall some basics of the theory of canonical Hamiltonian systems [69, 71].
As we have seen in the Introduction, a Hamiltonian 4 on the positive half-axis Ry =
[0, 4-00) is a matrix-valued mapping of the form

= <l;zl :2) . H()=0, traceH(r)>0, forae reR,.

The functions hy, h», h are real-valued and belong to LIIOC(RQ. If h =0 almost
everywhere on R, we say that H is diagonal. A Hamiltonian H on R is called

singular if
o0
/ trace H(t)dt = +o0. 2.1
0

A Hamiltonian # is called nontrivial if it is not of the form H = kA where a
non-negative function « is in LllOC (R4) and a constant matrix A > 0 has rank one.
The Hilbert space L2(H) is the set of (equivalence classes of) measurable vector-

functions
o
1200 ={x: Ry - / (H@OX (@), X (@) dr < +o0} [KerH,  (2.2)
0
Ker H = {X: H(t)X(t) =0 for almost all T € R+},

equipped with the inner product

(X. V)23 :/O (H(O)X (1), Y (1)) dr.

An open interval / € Ry is called indivisible for 7{ if there exists a function « and
a nonzero vector e € R? such that A coincides with the operator f > & (f, e)c2e al-
most everywhere on I, and / is the maximal open interval (with respect to inclusion)
having this property. Let J(#H) denote the set of all indivisible intervals of H, and let

H={XeL*H):X=x;onle€I(H), x; eC?}. (2.3)

Since L*(H) is a set of equivalence classes of functions, we say that X = x; on
an interval [ if HX = Hx; almost everywhere on 1. We write L%(”H) and H. for
compactly supported elements in L%(H) and H, respectively.

In this paper, we will only work with Hamiltonians 7 that satisfy the following
three conditions:

(a) H is singular;
(b) for every r > 0, we have (r, +00) ¢ J(H);
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00

(c) there is no ¢ > 0 such that H =« (0 ]

function «.

) almost everywhere on [0, €] for some

Later it will be clear that these assumptions are both convenient and natural for the
kind of problems we consider in this section. We refer to Hamiltonias satisfying (a)-

(c) as proper Hamiltonians.
Fix J = ((1) _01 ) With each Hamiltonian 7, one can associate a self-adjoint dif-
ferential operator

Dy: XY, Y:JX =Y, (2.4)

defined on a certain dense linear subset of the Hilbert space H we will introduce
shortly. Note that if there are two functions Y|, Y, such that JX' = HY| = HY>
almost everywhere on R, then Y] = Y, as elements of H according to (2.2) and
(2.3). Under our assumptions on 7, the domain of Dy, is given by

X is locally absolutely continuous on R,

XeH: JX' =HY forsome Y € H,

(X, () =0,

domDy =

In the first line above, “X is locally absolutely continuous” means that there is a
locally absolutely continuous representative of X and then the boundary value X (0) €
C? is defined for this representative. When considered on dom Dy, the operator Dy,
is in fact a self-adjoint operator densely defined on H (e.g., check Sect. 2 of [71]). Our
assumption (c) is related to the choice of the boundary condition (X (0), (?))(Cz =0
(see Theorem 3 in [71]).

Alternatively, the spectral theory of canonical Hamiltonian systems can be pre-
sented in the language of symmetric linear relations defined on the whole space
L*(H), not just on its subspace H. That approach was pioneered by I. Kats [42].
More details, including historical remarks, can be found in [59, 69].

A Hamiltonian H on R generates a canonical system — the differential equation
of the form

10 =H@OT ), 00,9=(}), TeRy zeC 23

As we mentioned in the Introduction, it can be considered as the eigenvalue problem
for Dy . Indeed, if ®(:, z) € domDyy, then z is a eigenvalue of Dy and O(-, 7) is
an eigenfunction. Since H € LIIOC(RQ, the Cauchy problem (2.5) has the locally
absolutely continuous (with respect to 7) solution ® for each z € C. It is also easy to
see that for fixed T > 0, this solution is an entire C2-valued function with respect to
z. We will use notation ® and ®~ for its entries:

D+
O(t,7) = (g_g 2) . (2.6)
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The Titchmarsh-Weyl transform (or the “generalized Fourier transform”) associated
with H is densely defined by

Wi X — %/()W(H(r)X(r), O(t,2)) 2 dr, ze€C, 2.7

on the set of elements X € H,.. For such X, Wy X is an entire function with respect
to z. It is known (see Sect. 9 in [71] or [83]) that for every singular Hamiltonian there
exists a unique measure i on R such that (1 +x2)~! € L' () and the mapping Wy
is the unitary operator from H onto L?(u). Note that for z € C and X € dom Dy N H,
we have

1 o0 1 e
zwﬁx:ﬁfo <H(T)X(f>,z@(z,z>>czdf:ﬁfo (X(0), 16/ (z, D) 2 d

= %/0 (JX'(1), 0(1, D)2 dT = Wy (Dy X). 2.8)

Therefore, the operator Wy : H — L?(11) diagonalizes D, and w is the spectral
measure for Dy, (see Sect. 8 in [71]). That measure u is often called the main spectral
measure of Dy, or simply the spectral measure of the Hamiltonian .

Take r that satisfies

reRe\ | L (2.9)
1€T(H)

For such r the multiplication operator ¥ — x[o,-1Y by the characteristic function of
[0, r] acts from H to H since the multiplication with such x|o ] is consistent with the
condition that X = x; on I € J(#) in (2.3), the definition of H. Consider the space

B, =WyH,, H,={Y € H:esssuppY C [0, r]}. (2.10)

Since Wy, is a unitary map, the set 3, is a Hilbert space of entire functions with
respect to the inner product

(1, f2u Z/Rflfzdﬂ

inherited from L?(u). It is called the de Branges space generated by the restriction
of H to [0, r]. Given an entire function f, we let ¥ denote the function z — f(Z).
Then, f = f¥ if and only if f is real on the real line R. We can define

E()=0%(n)+i® (n2), ENn0)=0%02-i® (r2), z€C,

(2.11)

where the second formula follows from the fact that ®*(r, z) and ©(r, z) are real

for real z. It is known (see, e.g., Sect. 4.3 in [69]) that E, has no roots in the upper

half-plane C. and that B, admits the following description in terms of the Hardy

space H?(C):

fti

€ HX(Cy),

r

By = {entire f: Ei

€ H2(<c+)} ) (2.12)
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Moreover,

2
dx,  febB,. (2.13)

Alflzdu=/R‘Eir

An immediate corollary of (2.10) and (2.13) is the following nesting property of sub-
spaces B,: if 0 < r; < r and both r| and r; satisfy (2.9), then we have the isometric
inclusion B, C B,,. In particular,

S

2
f[27 -
R RIE

We say that an entire function E is a Hermite-Biehler function if

f

2
dx:/ | f1?du, feB,. (2.14)
Er1 R

r

|[E(2)| > [E()], zeCy. (2.15)

A Hermite-Biehler function E is called regular if

— e H¥(Cy). 2.16
G+ E () (2.16)
For each r > 0, the function E, in (2.11) is known to be a regular Hermite-Biehler
function, see Proposition 6 in [71].

Using description (2.12) of the space B, and formula (2.2), it is easy to check (see

Theorem 4.4 in [69]) that the Hilbert space B, has a reproducing kernel at each point
reC:

1 E,()E,(0) — EXEE(0)
kg, ot 2> —5— 7 ’

- eC. (2.17)
2mi Z—A

The latter means that kg, ) € B, and (f, kp, 3) = f(X) forevery f € B,.
2.2 The Krein-de Branges theorem and front of the wave

Let a proper Hamiltonian # be given. In the context of the general problem con-
sidered in Sect. 1.1, we define the unitary group U; = e/"P# for all 1 € R using the
spectral theorem. In the current subsection, we study evolution U; X for X € H.. We
define the front of X as follows

fe[XT=inf{€ > 0: H(z)X(r) =0 fora.e. T > £}.

For t € R, we will refer to the number ft[U; X] as the wavefront of wave function
UX.

The next theorem gives the formula for the wavefront in terms of two auxiliary
functions T (t) and Ly (n). For 7, n € Ry, they are defined as follows

Ty(7) = /O " JAetHGYds. Ly = Ty, V() =inf{r = 0: Ty (r) = n}.
(2.18)
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L4, is the generalized inverse of T3 and, if n > 0 and the set {t > 0: Ty () > n} is
empty, we let Ly;(n) = +oc. The latter can happen only if +/detH € L' (R.). No-
tice that Ty (L (n)) = n provided that n > 0 and L3 (n) < +00. Moreover, when
detH > 0 almost everywhere on R, we have L1, (T% (7)) = t for each 7 > 0. Infor-
mally, for every tp > 0, the quantity T3 (7p) is equal to the time it takes for a wave
U, X to travel from 0 to the point 7o.

Later in the text, an element X € H is called real if both components of X are
real-valued.

Theorem 2.1 Let X € H, be real, Ty (ft[X]) = a, a > 0. Assume that t € R \ {0} is
such that there is ¢ > 0 such that L3;(|t| +a + €) < oo. Then,

felUi X]= Ly (t| +a), fl(Us +U_)X]= Ly (|t| +a). (2.19)
In particular, we have

Ty (jelU: XT) =t +a, Ty (el(U; + U-)X]) =t] +a,
for every such t.

Recall that g denotes the inverse Fourier transform of a function g as defined in
Sect. 1.4. Consider the sets

E0.000 =1{&: § € CZX(R), suppg € (0, 00)},

. (2.20)
& =1{g: g€ CE(R), suppg C (—b,b)}.

To obtain Theorem 2.1, we will need a few results from complex analysis. For the
proof of the following theorem, see Sect. 4.2 in [27] or Theorem A.6 in [22].

Theorem 2.2 (Krein-Wiener theorem) Let i be a measure on R such that (1 +
x2)~Ve LY(w). Then, u € Sz(R) if and only if £0,00) is not dense in L3(w).

For the proof of the following theorem, see Sect. 6.4 in [27], p. 241.

Theorem 2.3 (Krein's alternative) Let i be a measure on R such that (1 +x2)~! e
Ll(,u). Take any b > 0. Then, either the set clost(u) ﬂ8>0 Ep+e coincides with
L?(w) or it is equal (in L*(w)) to the set of all entire functions of type at most b
that belong to LZ(M) when restricted to the real line.

The proof of Theorem 2.3 in [27] contains a step “Z’ C I” because I’ is closed
provided it is not dense in L%(w)” (we use the notation on p- 110 of that book). The
reader can find a more detailed proof to that claim in Appendix II of [6] (see formula
(65) in the proof of Proposition 2.5 on p. 300 therein). In turn, Appendix II of [6]
uses ideas from Sect. 5.2 of [11].

The next result was announced by M. Krein in [52] and was proved independently
by de Branges [17]. A short proof by Romanov can be found in Sect. 6 of [71], see
also Sect. 5in [9].
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Theorem 2.4 (Direct Krein-de Branges theorem on exponential type) For every r
that satisfies (2.9), the entire functions in the space B, defined by (2.10) have the first
order and a finite exponential type. Moreover,

1 E. (i
Ty(r) = max{type f. f € B,) = type Ey = lim 2Ll

(2.21)
y—>—+00 y

for the Hermite-Biehler function E, in (2.11) generating B, .
The following result is folklore. See Appendix II in [6] for its proof.

Theorem 2.5 (Inverse Krein-de Branges theorem on exponential type) Let H be a
proper Hamiltonian on R and let i be its spectral measure. If the set &y is not dense
in L*>(w) for some b > 0, then the completion of £, with respect to the inner product
of L*(w) coincides with B, for r = Ly ().

For Krein strings, the next statement was proved in Sect. 6.4 of [27]. We give a
sketch of a similar argument in the case of canonical systems and their de Branges
spaces.

Proposition 2.6 Let H be a proper Hamiltonian on Ry and let p be its spec-
tral measure. Assume that for some positive b and ¢, we have Ly (b 4 ¢) < o0.
Let B denote the set of all entire functions of exponential type at most b that be-
long to L2(|ELH(b+8)(x)|’2) when restricted to the real line. Then, B = B;, for
ro =lims o L1/ (b + 8). In particular, we have B C Bp,, (b+¢)-

Proof By (2.16), the measure u = |ELH(1,+8)|_2 dx belongs to the class Sz(R).
Using Theorem 2.2 and Theorem 2.3 for this choice of u, we see that the set B
is a Hilbert space of entire functions with respect to the inner product inherited
from L2(|E Ly (b+¢) | =2 dx). Moreover, B3 satisfies the “axiomatic” description of de
Branges spaces summarized in the following properties:

(A1) whenever f isin the space and has a non-real zero w, the function i:—:ﬁ is in
the space and has the same norm as f;

(Ay) for every non-real number w, the evaluation functional f — f(w) is continu-
ous;

(A3) the function f¥ belongs to the space whenever f belongs to the space and it
always has the same norm as f.

For the proof of (A3), see formula (65), p. 300, in [6]. Notice that I3 satisfies an addi-
tional property: the function z w belongs to B for every f € B and A € C.
In other words, B is the so-called regular de Branges space isometrically embedded
in L2(|EL,,(p+¢)| " dx). The same is true for every space B, r € Ry \ U ey -
Then, the de Branges ordering theorem for regular spaces states that for every r > 0
we have either 5 C B, or B, C B. Take rg as in the statement of the proposition.
Comparing the maximal exponential types of functions in B and By ,, (54 for posi-
tive ¢’ and using Theorem 2.4, we get

Bc ﬂ B, (prey = Wi (ﬂ HLH(bJre')) =Wy H,y =By,.

&'>0 e’'>0
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On the other hand, for every f € B,,, we have f € L2(|ELH(1,+8)|_2 dx) by (2.14)
and rype f < Ty(ro) = b by (2.21). Hence, B;, € B and the result follows. O

Proposition 2.7 For X € H,, Wy X is an entire function of finite exponential type
which can be computed by the formula

felX]
type Wy X = Ty (fr[X]) = / VdetH(r)dr. (2.22)
0

Proof Take an element X € H,. The definition of Wy shows that Wy, X is an entire
function. By Theorem 2.4, YWy, X has first order and is of finite exponential type.
Moreover, by Theorem 2.4, we have type Wy X < Ty (ft[X]). To prove that this in-
equality is in fact equality, assume that type Wy X < T2 (fe[X]). Then, there is a
number r < fe[X] such that type Wy X < Ty (r) < Ty (Je[X]) and Ly (Ty(r)) =7r.
Consider the space B of all entire functions f of exponential type at most type Wy X
such that f belongs to L2(|EL,,(1,¢y| 2dx) = L*(|E,|~dx). Proposition 2.6
shows that B C By, (13, () = Br. Since Wy X € B by construction, it follows that
X belongs to W;[]Br = H,. The latter contradicts that r < jt[X] and so (2.22)
holds. O

Now, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 We will do the proof for U; X, the argument for (U; + U_;) X is
identical. Consider a real element X € H, and set f = Wy X. Since X isreal, f is an
entire function taking real values on R and so f = f*. From (2.22), one has type f =
Ty (je[X]) = a. We claim that function f is of a bounded type both in the lower
and upper half-planes C... Indeed, if we put E(z) = OF(ft[X], z) +iO~ (ft[X], 2),
then E is an entire function of bounded type in C, and it has no zeroes there (see
Theorem 4.19 in [69]). Similarly, E* is an entire functions of bounded type in C_
without zeroes in C_. From (2.12), we get f/E € H>(C,) and f/E® € H*(C_).
Since functions in H2(C4) have bounded type in C, the product f = E - (f/E) =
E*® . (f/E*) has bounded type in C as well and the claim is proved. For every entire
function which is of bounded type in both C; and C_, its exponential type can be
computed by the formula

type f = limsup logmax (| f(iy)l, If(—iy)l), (2.23)

y—+00 y

(we sketch the proof of that known identity in Sect. A.3). In our case, |f(iy)| =
| f(—iy)| and the same formula gives type(e’* f) = |t| 4+ a. By our assumption,
there exists € > 0 such that L3 (|| + a 4+ &) < oo. Then, by Proposition 2.6,
the set of all entire functions of exponential type at most |f| 4+ a that belong to
L2(|ELH(|,|+H+8)|_2 dx) coincides with B, where r = lims_0 s>0 Ly ([t| + a + 3).
Note that by (2.14) we have

/‘ e f(x) 2 '/" fx) d
X < 00.
EpLy (t1+a+te)(x) Er (t)+ate)(X)
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It follows that ¢/’* f € B,. Let Y € H, be such that Wy Y = ¢/'* f. By the spec-
tral theorem, we have Wy (U; X) = ¢'* f and that function is an element of L?(11).
Therefore, we have Wy (U; X) = WyY in L?(u), and hence U;X = Y belongs
to H,. In particular, there exists a representative of U;X in LE(H) and we have
Wy (U X)(2) = e”zf(z) everywhere in C. Then,

type Wy (U, X) = type(e''® f) = |t| +a.

The formula (2.22) gives Ty (fe[U; X]) = |t| + a. Hence, Ly (|t| + a) < fe[U;X] by
the definition of function Ly, (n). If the solution 7 to the equation Ty (t) = |t| + a is
unique, then we immediately have ft[U;X] =t = L3 (|¢| + a). In the general case,
for every ¢ # 0 we can find a sequence t, such that #,, — ¢, || < |t| and the equation
T3 (t) = |t,| + a has unique solution for each n (here we use the fact that t # 0).
Notice that, by the spectral theorem,

. T ityx itx —
rllinz U, X = U X 2030y = t’lllglt [(e™" —e )f”LZ(u) =0.

Since ft[U;, X1 = Ly (|ty| + a) < Ly (|t| + a), we obtain fe[U;X] < Ly (|¢t| + a).
Hence, jt[U; X]= Ly (|¢t| + a) and the proof is finished. O

2.3 Spectral measures in Szeg6 class and their dynamical characterization

Recall that a measure i = w dx + s on R with the absolutely continuous part w dx
and the singular part pg belongs to the Szegd class Sz(R) if 2+ 1D teL'(w) and

/logw(x)
———dx > —o0.
R x2+1

Since (x> 4+ 1)~! € L' (), the last condition is in fact equivalent to
We now define a class of Hamiltonians as follows

1
el L'(R).

Sz(CS) = {7—[ : ‘H is proper and its main spectral measure is in SZ(R)}.

The class Sz(CS) was characterized in [8] (for Dirac and Schrodinger operators, sim-
ilar results were obtained in [22] and [44]). Assuming that +/detH ¢ Ll(R+), we
define

- o Ly (n+2)
KH) =) [ det H(t)dt —4). (2.24)
L
n=0 H(n)

It can be shown that all terms in this series are non-negative. In particular, /E('H) €
R4 U {+o0} is well-defined but could be +o00, in general. In [8], we proved that

H € Sz(CS) «= vdetH ¢ L'(R;) and K(H) < +oc. (2.25)

The partition in (2.24) does not have to be done over the integer lattice {0, 1,2, ...}.
In fact, we have the following result.
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Proposition 2.8 Consider any monotonically increasing sequence 0 = ap < o] <
ay < --- of real numbers {o,} such that 0 < C| < ay41 — oy < Cy for all n. Then,

H € Sz(CS) <= VdetH ¢ L' (R;) and

e Ly (ap42) (226)
Z det/ H(r)dt — (ap42 — Otn)2 < 400.
n=0 Ly (o)

For completeness, we give the proof of this result in Sect. A.1.

Recall our convention to write L3 (n) = 400 for some 1 > 0 if there isno t > 0
such that T3/ (t) > 7. In the following theorem, we regard [+o00, +00] as the empty
set. We also use notation ||| ;2.7 gy for the norm of a function xsY in L*(H) on
R, where xs denotes the characteristic function of a measurable set S C R. Our
next result gives a dynamical characterization of Sz(CS). In particular, it says that the
property H € Sz(CS) can be established by observing the dynamics of U; X near its
wavefront for any real nonzero X € H,.

We will need the following notation: given three parameters ¢, s, £ that satisfy
s,£>0and [t|+5 — € >0, we define Ag s, =[Ly(|t]+s—0), Ly(lt] +5)].

Theorem 2.9 Let H be a proper Hamiltonian. Suppose H € Sz(CS) and X is any real
nonzero element in H.. Define a = Ty (fe[X]). Then, we have

%E&ég”U’X”LZ(H»AMJ) > O (227)

for all £ > 0. Conversely, suppose there is X € H. such that one of the following two
conditions holds

lim sup ”UIX”LZ(H,AZ,H,,) >0, lim sup ”U—IX”LZ(H,AZ_,‘,,) >0, (2.28)

t—+00 t—+00

for some £ > 0 and a = Ty (fe[X]) < +00. Then, H € Sz(CS).

Remark 2.10 Combining this result with Theorem 2.19 below, one can conclude that
condition H € Sz(CS) actually implies that the limits lim— 400 [|U X || 23, Atar)
exist and are positive for every £ > 0 as long as X is real-valued.

Proof Suppose that the first bound in (2.28) holds for some X € H.. Each component
of X can be written as a sum of its real and imaginary parts X = Xg 4+ i Xy, so

0 <limsup ||U; X ”LZ(H,Ae,a.t)

t—>+00

<limsup ||U;Xr ”LZ(H,AZ,a.I) +limsup U X1l 234, a0,.,)-
t> 400 t—>+00

Thus, we can assume that X is, e.g., real without loss of generality. Then, ~/detH ¢
LI(R+) since otherwise Ay 4, =¥ for large ¢. Theorem 2.1 implies

nf{|U; X — Zl| 23y :supp Z S [0, Ly (t +a — OV = Ui XN 234,800
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By the spectral theorem, it means that the function f =Wy X satisfies

1imsup< inf ||e”xf - “||L2(u)> >0, r=Lyt+a—20),

t—400 \UEDSr

where r > 0 and B, is defined by (2.10). Theorem 2.5 claims that 3, coincides with
the closure in Lz(u) of the linear manifold & 4,—, defined by (2.20). It follows that

lim sup (inf{ne—"(“—Wf —hllp2g h e L'(R), e C(R),
t—+0o0

supph C (—=2(t +a — £),0)}) > 0.
The infimum above is a non-increasing function in ¢, hence
inf{lle ™" @=O% f — Rl 21 h € L'R), h € C°(R), supph C (—00,0)} > 0.

Now, Theorem 2.2 implies p € Sz(R) and, therefore, H € Sz(CS). Similarly,
limsup, , oo Ui X123, a,,,) >0 gives H € Sz(CS).

Conversely, suppose that H € Sz(CS). Then, n € Sz(R). Arguing by contradic-
tion, let X be a real element in H, such that Ty (f¢[X]) = a, a > 0, and either

%l{)ﬂﬁgof” UIX”LZ(H,A(,(;J) =0 or }E)n}g'lUtX||L2(H>ALa,t) =0 (229)

for some £ > 0. Assume that the first limit is zero, the othep case can be handled
similarly. Consider the function f =W X and denote g = ¢ =9 £ Using Theo-
rem 2.1 as in the first part of the proof, we obtain

.. . itx o _ _ _
(2.29):>£1Ln£.10f(ul€nlgr||e f ulle(M)) 0, r=Lyt+a—-21),

and
inf{llg =l 204y h € L'(R), h e C(R), supph € (—00,0)} =0.  (2.30)

Recall the decomposition of © = wdx + ug of w into the absolutely continuous and
singular parts. Now we use assumption u € Sz(R). Let O be an outer function in C_
such that |O]> = w almost everywhere on R in the sense of non-tangential boundary
values. Then, (2.30) gives

inf{[|gO — hO|l 2w, :h € L'(R), h € C°(R), supph C (—00, 0)} = 0.

That implies, in particular, that g, when restricted to the real line, is L%(R) function
whose Fourier transform is supported on the negative half-line. In the proof of Theo-
rem 2.1, we showed that f is of a bounded type in C_ and C and that f = f*. Then,
g is also of bounded type there and, therefore, it is in fact an element of H>(C_).
By the Lebesgue dominated convergence theorem, the function O satisfies

log |O(—i 1
log[OCint _ —/1og|0(x)|de=o.
y=>+00 y y=+oo Ty Jr x24y2
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The same argument applies to the outer factor of g© in its Smirnov-Nevanlinna fac-
torization. As a consequence, if gO = I - O is the inner-outer factorization of gO in
C_, we have

i loglg(=iy)| . log|g(—iy)O(—iy)|
imsup —————— =limsup
y—>+00 y y—+00 y
log|I(—iy) - O1(—i
limsup PEHE O _ oy
y—>+oo y

due to the fact that || < 1 on C_. On the other hand, we have

log |g(—i log | f(—i
limsup BB _ 4y limsup BTN
y=teo Y y—>+00 y

—a+{+type f, (2.32)

because f is an entire function of bounded type in both C; and C_, f = f¥, and
hence we can use Lemma A.l1. However type f = Ty (jt[X]) = a by (2.22), and
we have got a contradiction of (2.31) and (2.32) if £ > 0. Thus, for u € Sz(R) we
always have liminf;, 400 Ui X123 A, ) > 0. Analogously, one can show that
liminf, oo NU- XN 23, a0 400) is equal to

inf{[le" "0 f — )l 2,y h € L'R), ke CZ(R), supph S (0, 00)},

for f =WyX, which implies liminf;— oo |U—-+ Xl 12(3(,a,,,) > O for every u €
Sz(R). h O

We have the following two corollaries.

Corollary 2.11 Let H be a proper Hamiltonian. Suppose H is not in the class Sz(CS).
Then, we have

i UX 2000, =00 b= [Laglltl =b), Lyt +5)]  (2.33)

forallb>0andall X € H.

Remark 2.12 If Ly(|t| — b) = +oc for some ¢ and b in the formula for A, then
1U: X123, A, ,) = O by definition.

Proof of Corollary 2.11 Arguing by contradiction, suppose there is some X € H and
b > 0 such that, e.g.,

lim sup ”UtXlle(H,Ab,t) > 0. (234)

t——+00

Given an arbitrary ¢ > 0, there is X; € H such that

X — Xe“LZ(’H) <&, Ty(FrlX:D =ar < +oo.
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Choosing ¢ such that ¢ < %lim SUP; s 100 Ui X p2(34,p,,,)» We get

lim sup Ui Xellr234, 0y ) > 0 (2.35)

t——+00

since U, preserves the norm L2(H). By Theorem 2.1, ft[U; X,] < L3 (|t| +as). Now,
we apply the second part of the Theorem 2.9 to X,. Given a, and b, we can find / so
large that (2.35) yields

limsup ||U; X ||L2(7-L,At,ae,t) >0

t——+00

and, therefore, u € Sz(R) which gives a contradiction. The case when t — —o0 can
be handled similarly. g

Corollary 2.13 Let H be a proper Hamiltonian. Suppose ‘H € Sz(CS) and X is any
real nonzero element in H,. Define a = Ty (ft[X]). Then, we have

liminf | (U + U= Xl 2340, > 0 (2.36)

for all £ > 0. Conversely, suppose there is real X € H,. such that

llm sup || (Ul + U_I)X”LZ(H,A({JLI) > O, (237)

t—+00

for some £ > 0 and, again, a = Ty (ft[X]). Then, H € Sz(CS).
Proof Suppose (2.37) holds. If H ¢ Sz(CS), then
Jm UX N 20,8000 =, M I XN 2234, =0

by the previous theorem. Since ||(U; + U,,)XIILz(H’Ae ) = ”UtX”LZ(H,Ae T
IU-: Xl 12(3, A, , ,)» We get a contradiction. Conversely, suppose

liminf |(Ur + U-0)Xll 24,8, =0 (238)

for some £ > 0. Again, consider the function f =Wy X and denote g = e~1@~02 f,
As in the proof of Theorem 2.9, we have

. . . ; 7't
hmlnf( inf & f—(u—e" xf)||Lz(M)> =0.

t—>+00 \uel3,

That gives (2.30) and the rest of the argument repeats the proof of the Theorem 2.9.
O

2.4 Long-time asymptotics of the evolution in Szegd case: preliminaries
In the rest of the section, we are going to study the long-time behavior of the group

U, = ¢! Dx . To this end, we need to do some additional work first. In this subsec-
tion, we collect all necessary definitions and auxiliary results. In many places, the
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presentation follows [7, 8] and [6], where one can find more details and references.
Let H be a singular Hamiltonian on Ry and let ¢ = (gf) be the solution of the

Cauchy problem J &' (z, 7) = 7H®(t, 2), B (0, 7) = (‘1’) r €R., 7 € C. Recall that
0= (gf) solves the same differential equation but satisfies different boundary con-

dition: ®(0, z) = (é) The Titchmarsh-Weyl function of any singular Hamiltonian

00

‘H, which is not equal to « (0 |

) a.e. on R, for some function «, is defined by

. P (r,2)
m(z) = rllr-il-]oo m, zeCy. (2.39)

That function is analytic and takes C into its closure C . The Herglotz representa-
tion of m has the form

o= [ (=)o b ke zeC Qo)
T Jr\x—z x-+1

where p is called the main spectral measure of H, by > 0, and ag € R. Given proper

‘H, define H, by t — H(t + r) for every r > 0. Let m,, u,, b,, a, denote the

Titchmarsh-Weyl function of H,, its spectral measure, and the coefficients in the

Herglotz representation (2.40) for m,.. Define

[ dp
IH<r>=Immr<z)=;Ax§;1 +br.

Ry (r) =Rem; (i) = ay,
_l logw; (x)
Tutr) = [ 5

where u, = w,dx + p,s. It is well-known that R4 is identically zero if the
Hamiltonian 7 is diagonal (see, e.g., Lemma 2.2 in [7]). The quantity Ky (r) =
logZy(r) — Jy(r), r = 0 is called the entropy function of . Jensen’s inequality
gives Kz (r) = 0 for all r > 0 and we have K (0) < oo if and only if 1 € Sz(R). In
[6], it was proved that p € Sz(R) implies g (r) < oo for every r € Ry. Moreover,
the function /Cy; is absolutely continuous, non-increasing, lim,_, . K7y = 0, and

ICo I L1y y = K3 (0), (2.41)

see Lemma 2.3 and Lemma 2.4 in [6]. We will need an auxiliary matrix-function G

=L o VIn ) “\ 0 N ) 7

For H = (};: :2 ), the formula

eI Rk )

—Rathi +h  (R3h1 —2Ragh + ha) [Ty
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holds. It was proved in Lemma 2.4 of [6], that for every H whose spectral measure is
in the Szeg6 class Sz(R), the function Ky satisfies

Ky = 2+/detH — trace(G™)*HG ™. (2.43)

Recall that ® = ©O(z, z) is the solution of the Cauchy problem (2.5). Define @(r, 7)) =
G(1)O(1,2), E-(z) = 0% (1,2) +i07 (1, 2), and E7(z) = OF(1,2) —i®~ (1, 2).

Lemma 2.14 We have
E.(2)E; () — EXQEE (V) = Er(2)E. (V) — EF()EE (L)
forallz,L € C, 7t >0.

Proof Take z, A € C, T > 0. We have
s = L = 1 0\ [E@)\ [E:™)
Ez<z>Er<A>—E§(z>E§(A>=<< )( )( >>
0 —1)J\Ei@ ) \Em)/.,
Ry Ot (1,2) Ot (r, 1)
= <’ (@—<m>> ’ <©—<r,x>>>@

+ +
=2 <G*(t)JG(T) (8—&3) ’ (g—g’ﬁ»@'

For every 7 > 0, the matrix G(r) has real entries and unit determinant which gives
G*(t)JG(t) = J. Thus, we have

E NE (0 — FEAEEOD) — _0i 071 (,2) Ot (t, 1)
E.(2)E.(0) — EXQEL () = 21<J<®(T’Z)>’<®(tv)\))>(cz

= E:(E: (1) — EE@QE (W)
and that proves the statement. g

Since E; is Hermite-Biehler function, taking z = A in the last lemma implies that
E is Hermite-Biehler function as well, and hence it has no zeroes in C. Define
o, € T such that o E; (i) > 0 and put

Py(x) =™ EL (D), Pi()=a;d™E (),  zeC, 120

(2.44)
As in Sect. 4 of [6], we call ﬁt and 13;* the regularized Krein’s orthogonal entire
functions generated by . To some extent, the introduction of these functions will
allow us to use ideas of the theory of polynomials orthogonal on the unit circle, see,
e.g., Lemma 2.16 below. Both ®t, &, ®F, and O are entire functions of finite
exponential type (see, e.g., Lemma 17 in [71]) so 132, and Fi"r have finite exponential
type as well. Their basic properties were studied in the papers [6, 8] and we discuss
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some of them now. From the definition, it is immediate that i’;"r satisfies relation
|1’32>"r )| = |Er (x)] for x € R. Therefore, by Theorem 1.3 in [6] we have

log | P*(x)|72 —1
lim f |log| 7 ()] ogwl (2.45)
T—>00 R

xZ+1
The formula (2.17) and the Lemma 2.14 yield

1 Ec@E() - EZQEL()

C. 2.46
2mi Z—A © ( )

kg, (2) =—

Consider now the “shifted” Hilbert space ¢/ 7#(")? 3, . From (2.46), we conclude that
its reproducing kernel at A € C is given by

e THROGC) B () E. (M) — EX@)EL ()

KI,A(Z)Z_ i Z— A

, (2.47)

1 PR@PL0) = Pr@ P ()
27i z—A '

In the case when det = 1, the following result was obtained in Lemma 4.1 of [6]
where the expression for o was found in terms of Z3; and Ry.

Lemma 2.15 For every T > 0, the function ﬁz*r is outer in C.

Proof Recall that E, is a Hermite-Biehler function. By definition, it can be written

as

. E.Ry+i@yu+1)— EX Ry +i(Ty — 1))
E. = 2.48
v 2T (248)

# .
E. R E: RH+1(IH_1)
= R T 1 1l ).
2:\/1;{( mtint ))( ETRH+i(IH+l))

The formula (2.21) says

log|E. (i
type ET — llmsupw —
y—>-+00

Ty (7).

Since Z3; > 0 and |E§/Er| <1inCy,weget|(Ry+i@y—1D)/ Ry +i(Ty +
1))| < 1and

log |E, (i
lim sup M — Ty (). (2.49)

y—>—+00

The formula (2.48) shows that I_:?f is a linear combination of E; and E?, two func-
tions of exponential type 7%(7), and so its exponential type is at most 73 (7). Thus,
identity (2.49) gives type E; = Ty (7).
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Recall again that E. is Hermite-Biehler function. If it has no roots in C_, then
E. = Ce~ ™2 with some nonzero constant C. Hence, Pz*r is a positive constant

and we are done. If E does havS a root in C_, we call it A and argue as follows.
Since E; (1) =0, we also have P>, (1) = 0 by definition. Formula (2.47) takes the
form

P (2) Py (x
K, ;)= —ﬁ % (2.50)
Function K 5(z) is a reproducing kernel of /"<, at point A. Thus, K ; be-
longs to this space and, by (2.12), K ; = e/ T2 E ¢ with some g € Hy(C). The
function E is of bounded type in C;.. Hence, K ; is also of bounded type there. We
know that Igz*t is entire and has no roots in C because E, is Hermite-Bichler and
has no roots there. Hence, Smirnov-Nevanlinna factorization of K 5 can be written

as K_j5 = éeicz(’), where & € T is a constant, ¢ € R, and O is outer. Since

log |OGy)|

lim =0,
y—>—+00 y
we also have
log K. 5 (iy) log | P (i
—C = llm Sup M — limsup M — O’
y——+00 y y—+00 y

where (2.49), (2.50), and the definition of ﬁz*r have been used. Since ¢ = 0, we get
K, 5 = &0 and the formula (2.50) along with normalization P (i) > 0 prove the
lemma. O

Given a measure u = wdx + s in Sz(R), we denote by D, its Szeg6 function:

M(Z)-exp( /log\/w(x <——L)dx), 2eCy.  (2.51)

7z x24+1

In other words, D,, is the outer function in C such that D, (i) > 0 and |D,L|2 =w
almost everywhere on the real line R in the sense of non-tangential boundary values.
The following lemma will play a key role later on.

Lemma 2.16 Let u = wdx + us be a measure in Sz(R), and let ﬁf, ﬁr* be its regu-
larized Krein’s orthogonal entire functions. Then,

lim P}(z)=D,'(2), (2.52)
T—>00
lim P;(z) =0, (2.53)
T—>00

uniformly on compacts in C4, and
|P *(x) ?,
Jim [ O =0, @54)
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lim

T—>00

w(x)dx =0. (2.55)

/ |P}(x) — D' ()
R x2+1

Proof Formula (2.45) gives (2.52) after comparing the multiplicative representations
for outer functions P} and D;l. Let B; be defined by (2.10). The standard variational
property of the reproducing kernel yields

1Kzl 20 = supfl fF )] : f € THOBe | fll 200 < 1) (2.56)

We claim that |[|K7 5|72, is non-decreasing in 7 € R4 To prove it, we first notice

that the space e”’ZBLH(b) coincides with the completion in Lz(u) of the set ¢!%2&,
for every fixed b > 0 according to Theorem 2.5. It follows that

1K Lag) 1200y = sup{l £ Q)= f € €7, 1 fll 12 < 1}- (2.57)
Since e!?12&),, C e!P228),, if by < by, we have

1K Ly 1), 2 220 < 1K Ly ko), 2 12205 (2.58)
provided that 0 < by < b,. Now, take arbitrary positive T > 0 and let b = T3 (7). We

have B; € (o0 Bryt0+¢) S Ne=0 clos 2,y Ep+e With the last inclusion following

from Theorem 2.5. Hence, ¢! T#(D:B. € N, _, clos;2,,) (€028, ). From (2.56),
(2.57), and (2.58), we get K7 llp2(y) < infes0 | KLy b+e),nllp2(y)- Finally, if we
have 11 < 1 for which Ty (7)) = Ty (12) = b, then By, C By, and (2.56) yields

1Ko allz2gy < 1Keallzzgn
in that situation too. Putting together all cases, we get our claim. Therefore,
| Kz,3 1l 2, is non-decreasing in T € R.. In particular, we have
Tll)rgo | Kz 2 ”LZ(M) = nlggo ||KLH(n),A||L2(u)‘
By the Krein-Wiener theorem (combine formulas (9.9), (9.13), and (9.14) in [22]),
we have

1 D)2

lim || K 120 =
Jim 1K L)1 0200 = -

’

where the convergence is uniform on compact sets in C.. Since K ; is a reproducing
kernel, one has

1P 0P = [P WP
4 ImA

1K e s O = Kea () = (2.59)

for every t > 0. It follows that

PSP = 1P )P

. T 2 T 2
Tll)néo dr Tm A - 'L’li>ngo ”KT,A ”LZ(M) - bli)ngo ”KL'H (b)’)‘||L2(pL)
L 1Dy~
=i l;m)» (2.60)
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holds locally uniformly in C;. Combined with (2.52), that implies (2.53). From
(2.45) and Jensen’s inequality, we get

* 2 2
= 1im exp(n/ log(| P} (x)] u)(x)) )<11ms up = | P (x)] A ).
R

T—>00 +1 t—oo T JR 2+1
(2.61)
On the other hand, one can write
Py L PEPEG)
x+i L2(w) |P.:.k(l)| x+i L2(0)
V| PePra) — PP ‘@(i)_ Py
= PG| x+i g PO I+l
_ 1 P*Pr(i) — P, P, (i) +‘ﬁr(i) | P
|Pf*(l)| x+l Lz(u) P.;k(l) x+l LZ(M)
(2.62)
Relations (2.52) and (2.53) yield lim; _, ;o | P; (i)/ P*(i)| = 0. We also have
~ — ~ |2
limsup - | FEPE@ — PePe@ CA i sup n’ 1Kol
~— ; —~—— [ K¢/2,ill72
o0 |PX(i)|? X+ 260 too | PF(i)[2 L2 (1)
259 .. Ilgf*(i)lz—|13r(i)|2
=" limsup ~—
T—>00 |P;k(l)|2
=T7TT.

That identity, along with (2.62), yields ﬁ*/(x +i) € L?(u) and lim SUP; o0 ||ﬁ*/
(x+0)>? < m. Moreover, the inequality in (2.61) is, in fact, equality, and we get

L2(p) —
P2 ()2 B
r_)oo - / e du(x)=1. (2.63)
Next, we claim that
1 [ Prx)Dy(x) S

Given the properties of P, P*, this is nearly obvious. However, in the next few lines, we
give the proof of (2.64). Indeed as showed in Lemma 2.15 above, P; P* is outer in Cy.
Then, the function P* D, /(z +i) lies in N.(C4) and has non- tangentlal boundary
values in LZ(R) thanks to the following bound
[ Pr)Du(x) |
—F\ d
R x+i

P*(x)|2 2.63
< | PF(x)] du(x)(<)oo
R x2+1
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Hence, P*D, /(z + i) is in N4 (C4) N L2(R) = H2(Cy) (see the discussion after
Theorem 5.4 in [32] concerning the last equality of sets). Therefore, the function f
defined by

i—z
i+z

eD

f& =P*2)Du(z), ze€Cy, E=

belongs to the Hardy space H?(DD) in the open unit disk ID as established in Chapter
VL.C in [47]. The mean-value formula for functions in HZ(D) yields

1

A f(e’g)dé £(0).
T

That gives (2.64), when written in terms of z.
Having proved (2.64), we can write

1 [ 1PF(x) = D (x)? )
7 Jr X241 IDu)["dx
Dk 2
_1 deﬂ—me(ﬁ:(iwﬂ(i)). (2.65)

7 Jr x241
Notice now that

/ |P*(x>DM(x>|2dx+ | P¥(x )|2 / | P¥(x >|2

x24+1 mJe 2241 dis(x) = 2+1 )

and the right-hand side converges to 1 when T — oo by (2.63). Then,
lim_ (1 —2Re(Pf(i)Du(i)) = —

by (2.52). Thus, (2.65) yields

|PX(x) — D' (x)? P*(x)?
0<hmsup(ﬂ/R xxz_’_l; i |Dy ()P dx + — R% Ms(X)>=

Therefore, (2.54) and (2.55) follow. O

The Lemmas 2.17 and 2.18 below are not new. We give their proofs for the reader’s
convenience.

Lemma 2.17 Let ‘H be a proper Hamiltonian on R. Then, the set domDy N H, is
dense in H.

Proof Consider the linear manifold of functions X € H for which there is L € R \
Urez(#)! such that X can be written as follows

L
X(t)= Jfr H(s)Y(s)ds, <L ’
0, T>L

YeH: suppY C[0,L], (Y,((l)))Lz(H)zo.
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In the proof of Theorem 3 in [71], it was showed that if Xo € H is orthogonal to
that linear manifold, then 7 Xo = 0 almost everywhere on R (we apply Theorem 3

01
on some interval [0, €], since we study only such Hamiltonians in our paper). That
implies this manifold is dense in H. On the other hand, every X in that manifold has
compact support and

of [71] to Hamiltonians 7 that do not coincide with those that are equal to k (O 0)

x©, (O)ez =%, 7 (M2 == (§ iz =0.
Therefore, X € dom Dy N H.. The lemma follows. Il

Let # be a proper Hamiltonian on R, and let H be the Hilbert space generated
by H. On functions X € L%(H), define

Wit X > % [Ooom(r)xm, O(t,2))c2dr,  zeC. (2.66)

Note that VNVH coincides with Wy on H. Denote by Py the orthogonal projector in
L?(#) to H. The orthogonal complement L?(?) & H consists of functions X that
satisfy the following conditions: X =0 on Ry \ |, csn) | and

/K(‘L’)(X(‘C),el)czdtzo, H(z) =« (), er)c2er, tel, ] €eJ(H),
I

where ¢; € R2, llerllgz =1, and ¥ > 0 a.e. on each I. It follows that Py : L*(H) —
H coincides with the operator

X (1), teR A\ Ujseaa I- [ (@)X (1), e)c2dT
X cr =
Yresapcixier, T €Ureag s Jrx(@dr

Indeed, this operator is linear, vanishes on L2(7-[) © H, and acts as an identity on H
because yx;(er + e}) = xsey in Lz(’}-[) for every vector e,L e C? orthogonal to e. As
a consequence, if r € Ry \ U]ej(?—[) I and supp X C [0, 7], then supp Py X C [0, r].
‘We use this observation in the formula (2.67) below.

Lemma2.18 Let H be a proper Hamiltonian on Ry and let ju be its spectral measure.
We have Wy, IWH Py and ”W'HX”LZ(//,) < IXllz2(3) for every X € L2(H).

Proof Consider X € L2(7-[) such that supp X C [0, r], where r is not in the interior
of an indivisible interval (that is, r € R4 \ | [€3(H) I). Then, taking any z € C, we
have

W X)(2) = (X, 0(. 2)) 12030y = (X. X10.1OC. D) 12034 -

If I is an indivisible interval, we have H(t) = «(1)(:, ej)c2e; with some vector
e; € R2, llerligz =1 for v € I. Equation J®'(t, z) = zk (t)(O(7,2), e1)c2er, T € 1
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implies ©'(t, z) = —zx(t)(O (1, 2), er)c2 Jer, T € I. Since (Jey, er)c2 =0, we have
(®'(1,z2),er)c2 =0, and hence (©(t, z),er)c2 is constant in © on I. That gives
X[0,,1©(,2) € H for every z in a sense that ®(t, z) is constant on each / when
considered as an element of L?(#) defined in (2.2). Thus, we have

(X, x10.,19C, 2 2y = (Pa X, X10.19C, D) 2y = Wy PrX)(2).  (2.67)

That gives ||VTJHX||L2(M) <1 Xllg2(3) and W;LIVT/HX = Py X. The set of X we con-
sidered is dense in L?(#) and the operator Wy, is unitary. Therefore, the lemma is
true for all X € L2(H). O

2.5 Long-time asymptotics of the evolution in Szegd case: the main result

Recall that we study the evolution U;X when X € H and ¢+ — £o0o. We will de-
scribe U; X in terms of the “free” evolution Ut0 Yx 4+ of some states Yy 4+ € Lz(”H,o)

as t — oo, where Ut0 is generated by “free” Hamiltonian Ho = ( (1) (1)) on R, . Note

that Uy, U? act on different Hilbert spaces and an identification is needed to relate
the “perturbed” and “free” dynamics governed by U; and Uto, respectively. First, we
observe that given a pair of real states X € H., Y € Lg(?—[o) such that Ty (je[X]) = a
and fr[Y] = a for some a > 0, the Theorem 2.1 yields

fe[U; X1 = Ly (1] +a) = fe[(UPY) (T ()], t € R\{0}.

Thus, when ¢ varies in the interval (0, #y), the wavefronts of U; X and (Uto Y)(Ty ()
simultaneously propagate from L, (a) to L (o + a). That provides an intuition how
to map UtOY into L2(#). First, we introduce the non-negative matrix-function H,,:

(detH(r))_Q’H(r), 7 detH(7) > 0,
00, T :detH(r) =0.

Ha(r) =

Then,

1
(det?-[(r))47-£’%(r), - detH(t) > 0,
0, T:detH(r) =0.

Ha 2 (v) = (2.68)

It is instructive to note that det’H,(t) = 1 for every t that satisfies detH(r) > 0.
Second, we fix a measurable function y : Ry — T. Finally, for everyr e Rand Y €
L2(H,y), define

Y (OH L @OWOY (TR, 120,

ﬁB,zY: T T
Y (OHL 2 (@)UY (T (1),  t<O.

(2.69)

The role of the “phase function” y will become clear in Theorem 2.19 below. Given
definition (2.69), we get several important properties of the evolution U)(,)y S
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(A) the dynamics ﬁ;)’tY has an explicit expression in terms of Y, H, y;

Indeed, that follows from the explicit formula for Uto Y which we obtain in Lemma
2.21 below.

(B) if fe[X] = fe[Y (T ()] for some real states X € H., Y € L?(Ho), then
feU0, Y1 =f[U; X1,  t €R\{0}.
That is the direct consequence of Theorem 2.1.
(C) The map ﬁ;(/),z is an isometry:
770 v2 _ 2
”Uy,[Y”LZ('H) - ”Y”LZ(’HO)

The last relation comes from a change of variables:

1T Y 17230, =fR T}, @)UY (T (2)), ULV ) (T3 (1)) d

0 2 2
= 1U2Y a0y = 1Y 12230,

where T;{ = +/detH is the derivative of the locally absolutely continuous function
Ty.
(D) The map 17}(,), sends L?(Hp) into H.

Indeed, for every Y € L%(Hy) we have U 3 .Y =0 on each indivisible interval. There-
fore, Ran (7)(,)’, CH.
We aim to prove the following result.

Theorem 2.19 Let H € Sz(CS). Then, there exists a function y : Ry — T such that
the following assertion holds. For every X € H, there are unique Yx 4+ € L*(Ho)
such that for every b > 0, we have

. ~0 _
im UX = U, Yyl 204a,,) = 0 (2.70)

where Ap; = [LH(|t| —b), Ly (|t + b)]. These Yx + can be computed by the for-
mulas

Yx+ =Wy (facDp),  Yx.— =Wy (facDy), 2.71)

where =Wy X, fac = f * XQue(n)- Moreover, if H is diagonal, then one can take
y=1onRy.

Remark 2.20 In Theorem 2.19, we do not assume that X has compact support or
belongs to the absolutely continuous subspace of Dy, .
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We start with providing an explicit formula for the evolution UtO . Let Dy, be
the self-adjoint operator on L2(Hp) = LZ(RJr, C?) corresponding to Hy. We have
Ut0 = ¢/"PHo . The main spectral measure of Dy, is equal to the Lebesgue measure
on R and

y (r) cos(tz)
(WHO ¥)(@) = f / y;(t) (—sin(rzi))>(czdr’ zeC,

for every function ¥ = <§ ;) in L%(R+, C? = Lg(?—[o). Recall that 7 denotes the

Fourier transform of a function 4 € L2(R).

Lemma 2.21 Let h € L2(R) and Y = (E) € L2(Ho) be defined by Wy, Y = h.

Extend yj to all of R as an even function and y, as an odd function. Then, for every
t e Rand t e Ry, we have

1 ~ 1 1 ~ 1
UY)(r) = 7§h(t —1) (_l.) + 7§h(—(r +1)) <l> (2.72)
21( it =) +yi(r+1) >+1<i(yz(t—t)—yz(t+t)))
2\ it —1) —y(r+1)) 2\ nE@—0+n+1 )’
(2.73)

where the integrals are understood in L*(R)-sense. In particular, we have

1 ~ 1 ~
U@ = —he =) (L)+om, W@ = ST (§)+(Z(71i;

when t — +o00 and o(1) is understood in L*(Hy)-sense.

Proof We claim that

W) () = ﬁ /Re’(t_’)xh(x)dx (L)+ % /Re’(’“)xh(x)dx (1)
(2.75)
where the integrals are understood in L?(R)-sense. To prove (2.75), we first assume
that & € L'(R) N L2(R). Denote the right-hand side of (2.75) by Z;. Notice that the
integrals in the right-hand side of (2.75) converge absolutely. We only need to check
that the images of U,OY and Z; under Wy, coincide. Indeed,

Wiy, (UY)(5) =€ h(s) = — lim / / =X p(x) dx dt

r—>o0

1 " 1 cos(ts) i(t—1)
“5e ( /0 ((5): ())s [ rneo aar
1 . ' 1 cos(ts) i(t+
+ . rlﬂ’go (/(; <(, ) ’ (7sin(m))>(c2 A;el(t D¥p(x)dx dt
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=Wa, Z1)(s),

for almost all s € R where the limits are understood in the LZ(R)-sense. Since
L'(R) N L?(R) is dense in L?(R), we can extend (2.75) to all of L>(R) by conti-
nuity. The formula (2.72) is immediate from (2.75) if we use the notation for Fourier
transform Fmally, taking r = 01n (2.72) gives y1(t) = (h(r) +h( r))/\/_ yz(r) =
—l(h(r) h( ‘L'))/\/— 2 and the formula (2.73) follows. Since lim;_, ||h( (t +
Nr2w,) =0, we get the first limit in (2.74). The second one can be proved simi-
larly. g

The free dynamics UtO is known to be reducible to the shift operator on the real
line. We recall that construction in Sect. A.2.

Proof of Theorem 2.19 Existence of Yx .

From Lemma 2.17, we know that the set dom Dy N H, is dense in H. We start
the proof by considering X € domDy, N H,. Recall that b > 0 is a number and xa,,
denotes the characteristic function of the interval Aj ;. Put f =Wy X and let fue =
[ XQue()» fs = f + Xay(uw)- By the spectral theorem, for every t € R and A € C we
have

1 -
Wa(xa,, Ui X) (W) = E/A (H(Ui X (1), ©(z, 1))c2 dT
bt

1 -
= ﬁ(UtX» XAp, e, )“))LZ(H)

(" fo ki, 8y 0) 120y (2.76)

where
1 .
ky,np o (x) = ﬁWH(XAb,,Qa(', A))
= l/ (H(t)O(z, 1), O(1, x)) 2 dT, x eR. (2.77)
4 Ap,;

We are going to study the asymptotic behavior of (2.76) when t — 00 using repre-
sentation (2.77). Let G be the matrix function from (2.42). Fix T € Ap; and set

1 __ 1 _
G1=< 11), ‘l’l:EG lGl ((1))1 \IIZZEG 1G1 (?) (278)

Recall that ﬁ,, 131*, o are defined in (2.44). On the real line R, we have

E,+Eu 1 B, —iTy (T)x
o=c¢"'_2_.)=-¢""¢, (%) =4——G"'G @ b,
ETZE 2 E-L— 2 atPZ'L’

=@ e THOYPE W) gy THOVES Wy, (2.79)

@ Springer



R. Bessonov, S. Denisov

We continue by getting the estimates on [[\W1|l72¢ A, ,) and [[W2ll12¢3, 4, - Note
that ’ ’

4(HWY, W)z +4(HY2, W) 2

={ro71a1(5). 67101 (o)) + (107101 (1) 76 (1)

= trace GT(Gfl)*HG*] G =2trace(G™HY*HG™!

due to the fact that GlG’f =2 (é (1)) Using this calculation and relation (2.43), we
get

20101172034 w, ) + 20920720 ) = /A trace (G~)*HG ™" dv
bt

= ”IC;{llLl(Ab,t)-’_zA VdetHdT,
b,t

because /gy is a non-increasing function. Note that if [¢| > b, we have
fAb,t VdetHdt =Ty (Ly(|t|+ b)) — Ty (Ly(t] — b)) = ([t| +b) — (jt| —b) =
Thus, for such r we have

209101723, ) + 209207200 0, < K3 L1 Ry + 20 (2.80)

Next, we study the inner product (2.76) using (2.77). We need some auxiliary bounds
first. By applying the spectral theorem, we have (x + i) f € L?(11). Relations (2.54)
and (2.55), along with Cauchy-Schwarz inequality, imply that

~, |P;,<x>|2
R|fs(x)P2,<x)|dus If(X)I + Ddp — 0,
and that

2
( fR | fac () (P5 (x)w(x) — D_,L<x)>|dx> <

_ —1 2
(/ 1f PG +1)du> (/' 200~ D ) (X)dx)—>0,

when t — 00. Since ‘H € Sz(CS), we get lim,_, oo L7 (s) = +00. Thus, recalling that
= |DH|2dx + us, one has

lim (/ e"“*TH)"f(x)F;t(x)du(x)—/ ei(tT”)xfac(x)DM(x)dx> =0 (2.81)
R R

—>00

uniformly in T € Ap ;. Similarly, (x +i) f € Lz(y,), relations (2.54), (2.55) and the
Riemann-Lebesgue lemma imply

Jim TR () P2 (x)du(x)— lim / HATH O £ () D, (x) dx
— 100 R
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=0, (2.82)

uniformly with respect to T € Ay, ;. That follows from the inclusion facD_M e L'(R)
which is immediate from our assumptions on f and the bound

2
(/ |fac(x)DM(x>|dx) 5(/ . ) (/ @2 +1)du(x)><oo
R +1

Taking into account (2.76) and (2.79), we see that Wy (xa,, U; X) (1) equals

(eitx f ku,Ab.,,k)LZ(ﬂ)

= l/ N f() | (H(T)O(T, ), O(t, X)) 2 dT dn(x)
T JR Apy
=l// ¢ £ O (H(DO (T, x), O, 1)) o dt dis(x)
R Ab,t
_L / / ¢ () (H ()@ THOYBE W], O(1, 1)) 2 dT dju(x)
Ab,t
+ l/ / eitxf(x)(’H(‘C)[areiTH(r)xﬁz*r‘l’z], O(r, )_‘»(CZ drdu(x)
T IR A,

_ _/ (a,/ ei(lTH(f))Xfac(x)D_u(x)dx) (H()W1, O(t, 1))dT + R(, 1),
Abt R

where R(t,A) = R(t, L) + Ry(¢, 1),

1 . ~ . -
Rl (L )\’) — _/ ar (/ el(l*TH(T))fo;r d,bL(.x) _ / el(th’H(T))XfacDM dx)
T Apt R R

x (H(x)V¥y, ©(t, 1))dt

and
Ry(t, 1) = l/ a0y (/ ei<f+TH<f>>Xf(x)ﬁ_;(x)du(x)> (H(x)Wy, O(1, 1)) d7
s Apt R

Observe that by (2.81) and (2.82) both R(¢, 1) and R»(¢, 1) can be represented in
the form

Rio(t, ) = (H(@)Y120. 1), O, D)) dT = Wi (Ap Y12 (M),

\/_ Aps

where v 2(f,) = k1 2(¢, )W 2 for some functions «12(¢, ) such that we have
lim— 100 ll€1,2(7, )llLo(a,,) = 0. Estimate (2.80) shows that the quantities
IW12ll2234,,,) are uniformly bounded with respect to r € Ry, hence
limy— 400 |1 2(2, ’)”LZ(H,A;,V,) = 0. Therefore, we have lim;—, 4 o0 | R(7, )|l 2(,) = 0
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by Lemma 2.18. Summarizing, we see that

~  (ArXA,, i(t— — -
Wi (xa,, UrX) = Wy (W | IO fae @)Dy dx - G ‘(r)(_l,.))
+o(1),

as t — 400 with o(1) in L?(u) (the function under VT/H depends on 1). Applying
W;{] and using Lemma 2.18, we get

arXAh,,
N
+o(1), (2.83)

(XA, Ut X) () = Py ( ei(l—TH(f))Xfac(x)mdx . G_l(‘L') (l,))
R

with o(1) in H. Similar reasoning gives

a'L'XAb,,
N
+o(),

(X2, Ui X)(7) = Pn ( TR £ () Dy (x)dx -G~ (T) (3))
R

when ¢t — —o0.

Having established this asymptotics, we want to relate the integral in the right-
hand side of (2.83) to the free evolution one finds in (2.70). To this end, we first
define Yx 4 € L?(H,) by the relations Wi Yx,+ = facD_ By the spectral theorem,
we have (x +1i) f € Lz(u) So, the inclusion fac e LY(R) N L2(R) and property
(D) shows that xa,, U +Yx + can be considered as an element of H for every choice
of the phase functlon y To understand this function better, we notice that (2.75)
implies

1 L _
U Yx)(TH() = 7= fR T fo Ddx - ()

! AT O ¢ T gy (]
+ﬁ/m<e " facDde~<i), (2.84)
where the integrals converge absolutely. Riemann-Lebesgue lemma gives
lim [ TN g (x)D,(x)dx =0 (2.85)
t—+00 R

uniformly with respect to T € R4. Next, we indicate how the phase function y is
chosen in (2.70). For a.e. T > 0, we have H(t) > 0 and det G(t) = 1 so Lemma A.2
allows us to choose ¢(t) € [0, 27) such that

VH((T)G™ l(r)zw(r) (2.86)

That ¢ is Lebesgue-measurable. Observe that for u € [0, 2) we have

e (jl) =(cosu—|—isinu)(71i) =X_, (—11> =31 (jl)
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We can then choose measurable y so that |y (r)] =1 on Ry and

roz (L) =7 (1) (2.87)
ie.,
(1) =a e 0. (2.88)

Note also that for the rotation matrix X, from Lemma A.2 we can use the definition
of W1 and W, in (2.78) to get

sup ||xA,,1,G—1z;1(§)||Lz(H)s4||w1||Lz(H,Ab.,)+4||%||L2<H,A,,_,), (2.89)
uel0,2r] '

where the right-hand side is uniformly bounded by (2.80). Then, (2.84), (2.85), and
(2.89) imply

Y (0xa,, G~ T, L (U Yx 1) (T (1))

Y (T XAy, i —
_ 27\/; Rez(z TH(‘E))XfacDM dx -G~ (f)z B ( ) +o(1),
287) AT XAy _ —_— _
( ;\/_11 l(l TH(T))xfacD;.L d.x . G l(f) <ll) + 0(1)’ (290)

with o(1) in L2(H) as t — +00. Combining this with (2.83), we obtain
X, (DUX @) = P (7Ot (DG Eg b (UPYx ) (T () = 0
t — +o0, (2.91)

in H. Similarly, for the same choice of y and Yy _ defined by Wy, Yx — = facD

we have
V(T)E(p(-[) ( ) =0z (ll) )

by taking conjugation of (2.87) and
X, (DUX @) = P (YO, (DG Sk (UPYx, ) (T () = 0
t —> —00,

in H. Consider the set Agt = Ap; N {r: detH(r) = 0} and denote A/bt =Ap; \
Ag ;- Recall the formula (2.90) and note that

—1 1 2
Ixag, 67" (1) W2 = 419102 0
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Similarly to (2.80), we have
2
2 59, = Wl +2 [ VARUHLAT = W3l
b,t

which tends to zero as t — +oo thanks to (2.41). Together with (2.83) this yields

Jim llxa - UrX|ig =0. (2.92)

We also have ”XAO ﬁ,Ony,_kllH = 0 by the definition of (7[(?),. From (2.91), it is

now clear that the relatlon
v x -0, Yx 4+ lr2@e,n,,) = 0 t — +00, (2.93)
is equivalent to the relation
1Pa (00, G 55 WPk ) (Toe()) = TP Yl 2y = O
t — 400.

S~ince ﬁt?y Yx + belongs to H by the definition of ﬁfy, we have Py ﬁSVYX,+ =
U0 y Vx4 Moreover, one gets [|PuY |23, Ay = 1Y [l z203, AL for every Y €
L2(7-l) because the operator Y — x AL, Y is the orthogonal pI'O]CCtOI‘ in L?(#) onto
a subspace in H. Therefore, (2.93) w1ll follow if we prove

ly G5 WUPYx ) (T () — y VAtHH ™3 (U x ) (T (Dl 2, a0,
as t — +oo. Similarly,
WX =T, Yx N2ga,,) —> 0. t— —o0,
follows from
1767125 WUPYx, )Ty () — 7 VATHH 2 (UPYx, )Tl 230, = O,
ast — —oo. Since |y| =1 on R, we only need to prove

IG™ S, U0V x, ) (T ()) — Vet HH ™2 (U Y x, ) (Tr (Dl 2, a0,
(2.94)
where t — Fo00. Noting that ”X”LZ(H’AL) = ||\/ﬂX||L2(Ho,A;H)’ we see that the

norm in (2.94) is equal to

=G s, = Vet HH ) (UYx ) T ) 2

= [[VHG 5, — Vet H] W Yx ) THO) | 1240 )
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Thus, (2.94) can be rewritten further in the form

[V — VaetV]WYx ) (Ty ()| Loy, = 0 (2.95)

where the matrix-function V is defined by V = vHG ™! Xy, !, Recall that V > 0 by
the choice of ¢ we made in (2.86). For each t € A}M, let e1(7) and e(7) denote the
orthonormal eigenvectors of V (t) corresponding to the eigenvalues A1 (t) and A (7).
Then, for every vector e = cie1(t) + c2e2(7) in C2, we have

1V = Vdet V)elZ, = (h1() = Va1 (DA2(0))?[er]?
+ (2 (0) = VA (0r @) e

< (@) = 2a(m)llellZa

due to the fact that
(a —~ab)* + (b — vab)* = (a + b)(v/a — Vb)* < (Va+Vb)*(Va — Vb)?
= (a — b)>.

On the other hand,

(M (1) — A2(1))? = trace(V?) — 2det V.

Since V2 = V*V, we can write that trace V2 = trace(E(p(G_l)*HG_lEvjl) =
trace((G~1)*HG™1). So,

(A1(7) = A2(1))? = trace(G™H*HG ™) — 2v/det H = —K,

as follows from (2.43). Since U,OYXi € L°®(Hy), dist(0, A;,’t) — 00, and IC;{ €
L! (R4), we see that (2.95) holds. Hence, Yx + satisfy (2.70).

Now, consider the case where X € H is an arbitrary element (that is, we do not
assume now that X € domDy N H.). Lemma 2.17 allows us to find X,, € dom Dy N
H_ such that

X = lim X,

n—o0

and this limit is in L2(#{)-norm. Let ¥ x,,.+ be the corresponding elements of L2(Ho):
if fu = Wy (Xy), then Yx, 1 = Wi (Dy  XQuew)s Yo~ = Wigh (D -
XQae())> and

1Y, + 1 220200) = Wi (VX - 2@y = 1 fa Dyt X Qe 12w
= Wl = 1Xnll 230

A similar relation holds for Yy, . Since {X,} converges to X, the sequence f,
converges to f = WyX in L*(w). In particular, (f, — f)Du - XQue(n) — 0 and
(fn = Dy + XQuey — 0 in L2(R). The sequences {Yx, +} converge and we
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denote Yy + = 1im, o0 Yx, +. In fact, Yx 1 = Wy (f Dy - X)) and Yx - =
W;{é (f Dy - XQae(1))> Which proves (2.71). Moreover, for each ¢ we have

107, (Vx,) = Uy (Y, D3 gy = 1Y%, = Yx 329y,

by (C). Now, given that (2.70) holds for every X,, we can extend (2.70) to all X by
the standard approximation argument.

Uniqueness of Yx +.

We will prove uniqueness of Yx 4, the argument for Yx _ is similar. Suppose that
Yx + and YX + both satisfy (2.70) for some X € H. Denote Yo = Yx + — YX + and
let i be such that Wy Yo = h. We have

: 70
im DY, Yoll2gea,) =0 Aba=[Lytl = b). Lyc(lt| + )],

for every b > 0. By Lemma 2.21, we have

oy _ I =~ 1 1~ |
U Yo_ﬁh(r—t)-(_i>+ﬁh(—(t+t))-<i). (2.96)
Then,
L4 (t+D) - ~
lim Vet H(T) ([(Tr (t) — 1) + h(—(Ty (1) + 1))

—>+00 Ly (t—b)
+ [A(Tx(t) — 1) — h(—(T(2) + 1)|*) dT =0,

and, after changing variables,

t+b b
0— lim |h(s—t)|2ds=/ o) ? dr.
—b —b

t——+00 t

Since b is arbitrary, we get 7 =0a.e.onR. Hence, h = 0 a.e. which gives Yo = 0 and
so Yx 4 is defined uniquely by X.

To complete the proof, it remains to check that «; =1 and G(r) > O for ev-
ery T € Ry in the case when H is diagonal. Then, y(t) = 1 as well by (2.88).
We have Ry (t) =0, t € Ry, for any diagonal Hamiltonian H, see Lemma 2.2
in [7]. Then, G(7) is a diagonal matrix with positive entries for every t € R4, in
particular, G(t) > 0. Suppose for a moment that det? = 1 almost everywhere on
Ry. Then, formula (42) in [6] for z =i together with the relation Ry = 0 says
that (e TE;(i)) = —IC;_[(r)e"E (i). Since Eo(i) > 0, this shows that for such
Hamiltonians H we have E,(i) > 0, 7 € R,. That implies a; = 1 for all T € R;..
Now let H € Sz(CS) be a diagonal Hamiltonian such that det?{ > 0 almost every-
where on R.. Define the new Hamiltonian H: T (detH(LH(r)))*%H(LH(t)),
det?—i =1 on R . The function 7 — ®(L(7), z) then solves Cauchy problem (2.5)
for H. The previous reasoning shows that for the corresponding coefficient &; we
have &; =1, T € Ry. But & = ay,,(r), and we see that a; = 1 for all diagonal
Hamiltonians ‘H € Sz(CS) such that det{ > 0 almost everywhere on R . Then, the
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general case follows via an approximation argument by considering Hamiltonians of
the form H, =¢ ((1) (1)) + H, and letting ¢ — 0. 0

2.6 Scattering and wave operators

The following theorem answers the question: does the asymptotics Yx + of a state X
under the evolution U; determine the state X itself? It also strengthens Theorem 2.19.

Theorem 2.22 Let ‘H € Sz(CS), let Dy be the corresponding self-adjoint operator
(2.4) on H, and let p = wdx + g be the main spectral measure for H. Then, the
strong wave operators

W= lim U~'0°

t—=+o00 vt

(2.97)

exist and are complete, i.e., they are correctly defined (the limits are understood in the
strong operator topology) and unitary as operators from L?(H) onto the absolutely
continuous subspace Hye of D3y. Moreover, if X € H, Yx + are defined by (2.71) and
Pac denotes the orthogonal projection in H onto the absolutely continuous subspace
of Dy, then we have WiYx 4+ = PacX. Hence, Yx + determine PacX uniquely and
we have Yx, + = Yx, + in Theorem 2.19 if and only if Pac X1 = PacX2. The scattering
operator

S=Wi'wo,  S:Yx_> Yy,

is a unitary operator on L*(Hy), and its spectral representation takes the form
-1 _ Eu 2
WHOSWHOfO =5 fo, foe L“(R), (2.98)
"

where D, is the Szegd function of . In particular, the operator S does not depend
on the choice of the phase function y in Theorem 2.19.

Proof Let us first prove that the limit in (2.97) exists as t — +o00. The argument for
t — —oo is similar. In fact, we claim that for an arbitrary X, we have

lim U700, Yx 1 = PacX. (2.99)

t—>—+00 4

Indeed, denoting Ay ; = [Ly (|t| — b), L (]¢t| + b)] for some positive numbers b, we
have

Ut_l U;(/),tYX,+ = Ut_IXAb.t U;(/),tYX,+ + Ut_IXRJr\Ab,r U;(/),tYX,+
= U Xy, U X + U7 (g, U Yt — Xy, Ur X)
+ Ut71XR+\Ah,t U)(/),tYX,+-

To get our claim, it is enough to prove that
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(@) Timp, oo limsup, , oo xR \A,, Uy Yx 41220 =0
(b) 1imy s o0 X8y, U Y4 — Xay, U X |l 23 = 0 for every b > 0,

(c) limp_ 400 lim Sup, 1 ||Ut7]XAb_, UX— PacX”LZ(H) =0.
Clearly, (b) is just a restatement of Theorem 2.19. To check (a), observe that

IxR\Ap, U0 Yx -l 202y = /H% \ Vet H(D) UL Yx 4 (T () 132 d
+ Ab,t

= f 1U2Yx + (DI d.
Ry \[lt]=b,|t]+b]

Now, (2.74) yields (a). It remains to prove (c). First, notice that
17 X80, Ur X = PacX17230) = X4, (U X = Us Pac X172 3
+ i \ay, Ut PacX 1723

By Theorem 2.19, we have Yx 4+ = Yp,.x,+ and, therefore, lim;_, 4 o0 ||XA1,,, (U, X —
Ut PacX) ”Lz('H) = 0 Finally,

X \8p, Ut PacX 173 = 10t PacX 17234 = 1Xay, Ur PacX 323,
= 1PacX 17230 = 1Xa, Ur PacX 1723
and, by Theorem 2.19,

hm Sup(”PaCX”LZ(fH) ”XA]” Ut PaCXHiZ(’H))

t—+00

= 1PacX13230) = liminf lxa, , Uy Ypuex 41172,
= 1 PacX 17234y = BN Y Paex 17230y = 1XR A8, U7 Yescx 417230
By (2.71), we get
1T Y e, + 117 234 = 1 Pac X I (2.100)
y,t 4+ PacX,+ LZ(H) ac L2(’H) .
and

b—I:Too ltlgiup xR \A, UV tYPacx +1lL2(3) =0
follows from (a). Hence, we get (c).

Then, (2.71) implies, in particular, that the map Vy: X — Yx 4 is the unitary
map from Hye onto L2(’H0). So, lim;_, 40 UI_IU)(,)JY exists for every Y € LZ(HO)
and lim_, oo U U9, Y = Y1 'Y

Summarizing, we have proved that the strong wave operator W, in (2.97) exists
and W Yx + = PacX for every X, where Yy 4 is defined as in Theorem 2.19. Anal-
ogously, one can check the existence of the wave operator W_ and prove the formula
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W_Yx _ = PacX. All other assertions of the theorem are simple consequences of
these two facts. O

The following corollary implies, in particular, that if Szegd measure p is purely
a.c., then every X € H propagates and the global L?(#) asymptotics holds for U, X.
The reader can compare it to Theorem 2.19 which establishes the asymptotics over
the finite interval.

Corollary 2.23 Let H be a Hamiltonian of class Sz(CS). Then, there exists a phase
function y such that the following assertion holds. For every X € Hyc, there are
uniquely defined Yy 4 € L*(Ho) such that

lim |U;x — U2 Yx =l 2 =0, (2.101)
Moreover, if H is diagonal, then one can take y =1 on R...
Proof Indeed, if X € Hyc, then X = Py X, and (2.101) is equivalent to
im[[PacX = U7 Yy tll 2 =0,
that holds by Theorem 2.22. g
2.7 Dynamical classification of spectral types

Our analysis allows to detect the spectral types of D; by observing the long-time
dynamics of U;.

Suppose X € H is given. Denote the orthogonal projections to absolutely contin-
uous, singular continuous, and pure point subspaces of Dy by Pac, Psc, and Pyp,
respectively. Our next result gives the dynamical characterization of whether X has
nontrivial projections to any of these subspaces.

Theorem 2.24 Let H € Sz(CS). Then, for every X € H we have

. 1T 2 2
ym Am T /0 U X231 10,25 n) 47 = 1 Ppp X230 (2102)
. 1T 2 2
h_I:I_EOOTEIEOOT/(; ”UIX”LZ(H,[L'H(b),L;.L(I—h)]) dt = ”PSCX”LZ(H)’ (2103)
. . 2 — 2
bETOO tllinoo ” UtX“LZ(H,[LH(I—b),LH(t+b)]) - ” PacX||L2(H)’ (2104)
b_liTOO [—l)l—qn—’loo ||UtX”LZ(H,[LH(tJFh),JFOO)) e O (2105)

The analogous statements hold when t — +o0 is replaced by t — —o0.

Proof We start with proving (2.105). Given X and ¢ > 0, we can find X, € H, such
that || X — X¢ll12(3) < &. From Theorem 2.1, we get

lim limsup ||U; X —0.
b—>—+00 T—>+o§” ! 5||L2(7‘[,[LH(b+t),+oo))
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Therefore,

lim sup lim sup ”UIX||L2(H,[LH(}7+I‘),+OO))
b—+o0 t—>+00

< lim sup lim sup ||U; (X — X€)||L2(H,[LH(b+t),+oo))
b—+o00 t—+00

+ lim sup lim sup WUt Xell 223, [ Ly (p41),+00)) = &
b——+o0o t—>+00
because [|[Ur(X — Xe)llp2y) = II1X — Xellp2¢) < €. Since ¢ is arbitrary, we get
(2.105).

Formula (2.104) is immediate from Theorem 2.19.

To prove (2.102), we apply Lemma A.3 from Sect. A.5. Take A >0and b e Ry \
U, eaiy I Let P Ay be the orthogonal projection associated with the spectral
decomposition of D;. We claim that the operator x[o 5] P—a,A] 1S compact in H.
Indeed, this follows from the formula

_X10,61(7)
X[O,b](f)(P[—A,A]X)(T)—7ﬁ /[_A’A]®(T,x)(WHX)(X)d/L(X)

and the fact that the set {f[_A Al O(t,x)WxyX)du: || X||g <1} is precompact in
CI0, b] by Arzela-Ascoli theorem. Hence, by Lemma A.3 applied to Hilbert space
H, operator D3, and A = x[o0,»], one has

e
lim T/ ||X[O,b]UtP[—A,A]X”iz(y_[)dt =y ||X[o,b]P{E,-}P[—A,A]Xllizm),
0 -

T—oo
J

where P(g;) is orthogonal projection corresponding to eigenvalue E; of Dy and the
sum is done over all eigenvalues. Taking b to infinity (see Corollary 2 in [70]), we
have

b—o00T—00

S B
lim lim T/ ”X[O,b]UtP[—A,A]X”iz('H)dt:”PppP[—A,A]X”iz(rH)» (2.106)
0

for every X. Now, taking A — oo, we get (2.102).
We are left with showing (2.103). Fix any X and b > 0. Then,

2 _ 2 2
X W20y =NV X 204,10, L0 F IV X W22 G4 12000 Lac—00)

+ U XI5 +1UXI3,

(H,[L3(t=b), Ly (t4+D)]) (H,[Ly(1+D),00))"

We also have
U X 13230 = 1X172 30 = 1 PacX 17230, + 1 PscX 11723 + I Pop X 11723

Subtracting one identity from the other and taking the Cesaro mean, we get

b—00T—00

. . 1 (T 2 2
lim lim (T/o Ut XN 204 1Ly ), g —yn @~ 1PseX 2y | =0,
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as follows from already established (2.102), (2.104), and (2.105). The arguments for
t — —oo are identical. Il

We will need the following technical lemma later in the text.

Lemma 2.25 Suppose H is a proper Hamiltonian, r € R \ UIefi(H) I, XeH is
supported on [0, r], and (X, (é))LZ(H) #0.If Y is defined by

Y(tr)=0, t>r,

Y(r)=J /r’H(s)X(s)ds, T <r, (2.107)

then X and PyY satisfy |Wy X)(x)|? + Wy PrY)(x)|> > 0 for all x € R. Such X
and Y exist.

Proof First, observe that

. (D)= [ s (1) = (3 (1), 20

Second, notice that ® (7, 0) = (1)

lemma. Suppose x is such that x # 0 and (W X)(x) = 0. Observe that, by Lemma
2.18, Wy Y =Wy PgY. Then,

) and so Wy X)(0) # 0 given assumptions of the

r

ﬁ~WHY=/ <HY,®(r,x))Czdr=—x—1/ (JY, 0/ (z, x)) dT
0 0

! (—<Y<o>, (et [ v W””‘“"’)
0
0

=7 (= O, (§))e + VAV ) £ 0,

where we used (2.107) and our other assumptions. Finally, since H is proper, we can
always find X that satisfies all conditions and define Y accordingly. For example,

(1 _ (- frr h(s)ds
X_(()) Ko, Y= (ffrhl(S)dS) S X107
is one possible choice. O
Theorem 2.24 gives a dynamical description of spectral types for each element
X but it does not tell how to detect the presence of pure point, singular continuous,

and absolutely continuous spectral types for Dy, itself. We will address it in the next
theorem. Recall that Ay, is defined as Ay = [ Ly (| — b), Ly (|t| + b)] for b > 0.
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Theorem 2.26 Let H be a Hamiltonian of class Sz(CS). Then, the following holds
true.

(A) If the singular spectrum of ‘H is empty, then

lim  tim VXl 20,8, = 1X 12200 (2.108)

b—+oot—

forevery X € H.
(B) If there is some X € H, for which

) . 1
hETmTETooT/O 10X 234 [Lag(b). Ly —by)) 41 = 0- (2.109)

then Dy has no singular continuous spectrum.
(C) Let vectors X and Y be defined as in Lemma 2.25. If both of the equalities

blil;’l:loo }lmlnf”U[X”LZ(H Apy) — ”X”LZ(H)’ (21 10)
Hm minf U P Y 2,8, = 1Y 1200 2.111)

hold, then the singular spectrum of Dy is empty.
(D) Let vectors X and Y be defined as in Lemma 2.25. If both of the equalities

. 1T )
lim  lim T/o 10X 07234 10.Lag oy 41 = 0 (2.112)

b—+00 T—+00

. 1T )
lim lim Tfo U Y1230, 10. Ly 1) 42 = O- (2.113)

b—~+00T—+o00
hold, then Dy has no bound states.

We get the same conclusions if the limits t — 400 are replaced by t — —o0.

Proof Suppose the singular spectrum is empty, then X = Pa X and our claim follows
from (2.105).

Then, suppose X € H, is such that (2.109) holds. Recalling Theorem 2.19, con-
sider f = Wy X. Represent the measure u = (ac + (s as a sum of absolutely contin-
uous and singular components and further write fts = ftsc + [pp as a sum of singular
continuous and pure point parts. Then, (2.103) gives

/ /P djise =0.
R

On the other hand, f is an entire function that can have only countably many zeroes
in C. Therefore, | f| > 0 a.e. with respect to g and so pge = 0.

To show (C), we only need to prove that (2.110), (2.111) imply that the spectrum
of H is purely absolutely continuous. If f := Wy X and g := Wy PrY, then (2.110)
and (2.111) give

[(|f|2+|g|2)dus=
R
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That, however, contradicts Lemma 2.25 unless ug(R) = 0.
Finally, to get (D), we notice that (2.112), (2.113) and (2.102) give PppX =
PppY =0 which can be rewritten as

/R (12 + 1g1P) dripp =0,

where, again, f =Wy X and g = Wy Py Y. Since f and g are entire functions that
have no common zeroes by Lemma 2.25, we get ppp = 0.
The arguments for t — —oo are identical. 0

3 Krein strings

The theory of Krein strings goes back to works by M. Krein [51] and Feller [30].
In this section, we recall some basic definitions and facts, explain the connection
between Krein strings and diagonal canonical systems, and use it to translate some
results obtained in the previous section to the new setting.

3.1 Krein strings

Let 0 < L < oo and M be a non-decreasing right-continuous function on (—oo, L),
satisfying M (&) =0, & < 0. The Lebesgue-Stieltjes measure m on [0, L) is defined
by m[0, £] = M (£). We write its decomposition into the absolutely continuous and
singular parts as m = mye +mg = p(§) d€ + mg. Recall that in our notation M (L—) =
limg 4z M (&) and we call the [M, L] pair proper if M and L satisfy the following
conditions

L+ M(L—) =00, 3.1)
0<M(E)<M(L-), VEe(0,L). (3.2)

These two conditions are very natural from the point of view of spectral theory [39].
They guarantee that the spectral measure o of the string operator is unique in the
class of spectral measures with non-negative support. Additionally, they make sure
that the map [M, L] — o is injective. In this paper, we will work with proper [M, L]
pairs only. Let us consider functions ¢, ¥ defined by the integral equations

¢, ) =1 —zf (& = 5)p(s, 2) dm(s),
[0.€]

VE )=k —zf & — ) (s, 2) dm(s),
[0,£]

where & € [0, L), z € C. Itis customary to extend ¢ and ¥ to (—o0, 0) by ¢(&,z) =1
and ¥ (&, z) = & where £ < 0. These functions are uniquely determined by the string
[M, L] and they define the Titchmarsh-Weyl function ¢ of [M, L] by

YD)
1@ =11 e

z € C\[0, 00), (3.3)
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see formula (2.21) in [40] or Theorem 10.1 in [39]. That function ¢ has the unique
integral representation

q(2) =f da(/\), z € C\[0, 00), (3.4)
Ry A—2Z

where o, the main (or orthogonal) spectral measure of the string [M, L], is a non-
negative Borel measure on R satisfying condition

/ do(X)
< 00
R, 1+24

We emphasize (see [39]) that a proper string is in the limit-point case if and only if

/[0 i £2dm = +o0. (3.5)

However, when the integral in (3.5) is finite and we are in limit-circle case, the main
spectral measure with non-negative support is unique and is given by (3.3). Later in
the text, we will focus on strings [M, L] in Szegd class. For this type of strings, the
condition (3.5) is always satisfied.

Similarly to (2.7), one can define the generalized Fourier transform associated
with the string [M, L]:

L
Uy v /0 v(E)pE. ) dmE),  zeC, (3.6)

starting with functions v € Lg(m) that have compact support in [0, L). It is known
(see Sect. 10 in [39]) that U{y; can be extended to the unitary operator from L%(m)
onto L2(o). The inverse map is given by (see formula (2.25) in [40])

v=Uﬁ}](UMv)=/(; P&, M) Unv)X)do(2), £€[0,L),

where the last integral can be first densely defined on L%(a) and then extended to all
of L?(o). Let us define the Krein string operator Sy, by

Sy ZU&IM)LUM,

where dom Sy :={v € L?(m) : MylUyv € Lz(a)} and we recall that M, f is a func-
tion in A which is equal to Af (). Clearly, Sy is a self-adjoint operator in L?(m).

3.2 Connection between Krein strings and canonical systems with diagonal
Hamiltonians

Suppose [M, L] is a proper string. Consider the increasing function N: & — & +
M (&) on [0, L) and let n denote the corresponding measure, n[0, £] = N (&) for £ €
[0, L). Condition (3.1) is equivalent to N (L—) = +o00. Define the function NGED ag
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generalized inverse of N, see Sect. 1.4. Using the fact that N is strictly increasing,
one can show that N=1 is continuous on R, and we have N"D(N(&)) = & for
every & € [0, L). Recall that p is the density of the absolutely continuous part of m,
so that m = p d§ + my. Define two functions on R :

L, it NCD(T) € Qq(m).
a(r) = NED . 37
{ %, otherwise.
and
0 if NV (1) € Qs(m),
o= ; herwi ) (3.8)
T+p(NCD ()’ otherwise,

Given «, 8, define H, = diag(«, B). If H. is proper, we let

T o0 suplx: £(x)=¢}
sm:/ B(s)ds, L:/ B(s)ds, M(g):/ a(s)ds, &<L.
0 0 0

3.9)
We now collect some facts related to the well-known connection between Krein
strings and diagonal canonical systems. The first of them can be found in [33] (see
Sect. 8 in Chap. 6), p. 239 in [27], or [40].

Lemma 3.1 Formulas (3.7), (3.8), and (3.9) establish the bijection [M,L]
diag(c, B) between proper [M, L] pairs and proper Hamiltonians H, = diag(c, B)
with unit trace.

We want to make one comment here. The references [27, 33], an [40] explain that
connection for the general strings and diagonal Hamiltonians. However, one can see
that the proper strings correspond to proper Hamiltonians. Indeed, the assumption

that the left end of the string is heavy is equivalent to the condition that the Hamil-

00
01

making the assumption that L 4+ M (L—) = 4-oc and the right end is heavy is equiv-

tonian H, = diag(c, B) is not equal to ( ) on [0, ] with some ¢ > 0. Moreover,

alent to saying that H, is not equal to either (8 (1)) or <(1) g) on (79, 0o0) for some

70 > 0.
For the proof of the following result, check Theorem 4.2 in [40].

Lemma 3.2 Let [M, L] and H. be the string and its corresponding Hamiltonian ob-
tained via the bijection in Lemma 3.1. Then, for the corresponding Titchmarsh-Weyl
functions q, m, we have

2q(z5) =my(z), zeCT. (3.10)
Consequently, the spectral measures o, Ly of [M, L], H, satisfy
T
ne(Er, Ea)) = 2o (BT, E3D), ia(10}) =70 (0D (3.11)

forall 0 < Ey < Ej3.

@ Springer



R. Bessonov, S. Denisov

Relation (3.11) shows that the operators D%_[* and Sy are unitarily equivalent. The
unitary equivalence is given via the explicit operator Y in the lemma below.

Lemma 3.3 Ler [M, L] and H. be the string and its corresponding Hamiltonian
obtained via the bijection in Lemma 3.1. Then, the map Y: v € L*(m) > X =
(v o N 0 is a unitary map onto the subspace {X = (X1, X2)! € H : X» =0}
of the space L2(H,). Moreover,

T7'Dj, Y =S (3.12)

Let us give a sketch of the proof of this well-known fact. The map T is correctly
defined and unitary due to (3.7), (3.8) and the change of variables in the Lebesgue-
Stieltjes integral:

L %)
/ [v(€)[*dm = / (N () Pa(r)dr.
0 0

To prove (3.12), it is convenient to work on the spectral side of both Sy and Dy, . We
will check that D%_[* Tu&lg = TSMZ/IATIIg for every g € L*(o) such that Ag € L?(o),
where o is the main spectral measure of [M, L]. The monodromy matrix of H, has
the form

((-)**'(r,z) <I>j;(r,z))
O, (t,2) ©,(7,2)

=< 9,27 ZIIf(E,zZ))
Tl e PE-D )’

for details, see, e.g., Lemma 4.1 in [40]. Then, we obtain

e=ND(p), (3.13)

t
(YU, ) (7)) = ( / gMe(NTV (1), 1) do, 0)

R+
t
:<l/g(x2)®j(r,x)du*,0> =Wy (r i),
T Jr -

using the fact that g(xz) is even, measure p4 in (3.11) is even, and ®, (7, x) is odd
in x. We see that

g(x?)
N

Notice that, thanks to (3.11), the map g(A) — g(1%)//7 is a unitary map of L?(c)
onto to the set of even functions in L% (). Hence, TZ/{ATII g belongs to the domain of

D%{* if g, Ag € L*(0). Moreover, for v =U,,' g we have

Wi, T Uy, ) (x) = (3.14)

G4 5 gx?)
= "x° —

2 2 —1
Wy, Dy Tv= (WH*DH*WH*)WH*TU N (3.15)
On the other hand, (3.14) also yields
2
Wi T Syv =x7- g\(/xﬁ). (3.16)
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The comparison of (3.15) and (3.16) now gives D%_[*Tu;llg = TSMUATIlg, as de-
sired.

3.3 Wave equation for Krein strings

The vibration of the proper string with parameters [M, L] is governed by the follow-
ing formal hyperbolic Cauchy problem:

Uy +Syu=0, u( 0 =up€), u;E0=0, u'0—,1)=0, (3.17)

where ug is the initial displacement of the string, its initial velocity is equal to zero,
and the Neumann boundary condition u'(0—, ) = 0 indicates that its left end is
“loose”. In this paper, we will only study solutions to (3.17) given by the formula

u(€, 1) = cos(t/Sy)ug, uo € L*(m), (3.18)

where cos(14/Syy) is defined via spectral theorem:
cos(ty/Sy)ug = Z/I&l <cos(tﬁ)(UMuo)(A)).

Function « is understood as element in C(R, L%(m)) N L (R, L%(m)) in the stan-
dard mixed-norm notation. Let us notice that assumption 1 € dom Sy, implies that
u is strong solution which means that it is twice strongly continuously differentiable
function of  in the topology of Hilbert space L?(m) and that it satisfies equation for
every t > 0 and initial conditions for t = 0 (see [5], p. 225). The uniqueness of such
strong solution follows immediately from the self-adjointness of Sy (see [5], Theo-
rem 6.2 on p. 229). Assumption ug € dom Sy, for real-valued ug guarantees that the
energy is finite since

E(z):l/ (u? 4 (Spu)u)dm
2 Jio,)

= % / A(cos2(tv/A) + sin2(tVR)) - Unyug) do

0
1
= S IV Smuoll72( < 00

Thus, one can argue that real initial data ug € dom Sy give rise to solutions that make
physical sense. Since u is a linear operator of u(, we can assume that u is real when
studying the dynamics of u.

Using spectral theorem, formula (3.18) can be rewritten as follows. Let u be de-
fined by (3.18) and U; be an evolution for the canonical system with the Hamiltonian
‘H, = diag(o, B) in which « and 8 are obtained by formulas (3.7) and (3.8). Then,

1
(“6”) =3 (wx® + - x)0), (3.19)
where X (1) = (“0<N((;1)(T))>, e=ND@), r>0.

@ Springer



R. Bessonov, S. Denisov

Proof of Theorem 1.7 A change of variables in Lebesgue-Stieltjes integral gives

Tm(E) = /O Va)Bdl =Ty, (v), &=N"D(0), (3.20)

if the string [M, L] and the Hamiltonian H, are related as in Lemma 3.1. The proof
is now immediate from (3.19), (3.20), and Theorem 2.1. O

Remark 3.4 1If the number Ly, (¢ 4+ a) in (2.19) is an endpoint of indivisible interval,
it must be its left endpoint by definition. Hence, Theorem 2.1 and the formula for
operator Y show that |u(-, t)”Lz(m,{ft,}) =0, i.e., the wavefront as a point never

carries a positive L?(m)—norm of solution.

The Theorem 1.7 can be applied to many models. The vibration of the classical in-
finite Stieltjes string with beads of equal masses connected by massless wire exhibits
infinite speed of propagation (see, e.g., [79], p.25) and that example corresponds to
p=0and mg = Z?O:O 8(& — j) where 8(&) denotes the unit point-mass at zero. The
formula (1.19) for the front of the wave confirms our intuition that the wave prop-
agates instantaneously through the intervals on which p = 0. In fact, it shows that
the presence of nontrivial mg on such an interval plays no role in that phenomenon.
For example, if p =1 for £ ¢ [, B], 0 <o < B < o0 and p =0 on [«, B], then the
formula (1.19) yields

s tcr:a_fto

ftz ft0+t, t <fer,
! B+t, t>te

as along as fry < a. Observe that we have fr, =« at the critical time #¢r since Ly
is left-continuous.

Recall that the measure o = vm + o5 on R with the density v and the singular
part o belongs to the Szegd class Sz(R) if (x + D~'e L' (o) and

logv(x)
R, V/X(x +1)

A simple change of variables shows that o € Sz(R ) if and only if u, € Sz(R), where
s is taken from Lemma 3.2. In the Introduction, the class of strings for which the
spectral measure is Szegd was called Sz(Str) and it was characterized in Theorem
1.10. The following result gives its dynamical description and has Theorem 1.8 as a
corollary.

dx > —o0.

Theorem 3.5 Suppose [M, L] is a proper string. If there is ug € Lg(m) such that

Hmsup ull2gm a,, ) >0 Arar=[Lu+a—0,Lyt+a)], (321)

t——+00
then [M, L] € Sz(Str). Here, a = Ty (fry). Conversely, if [M, L] € Sz(Str), then

timinf el 2, ) > 0 (3.22)
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for every ug € Lg(m) not equal to zero identically and for every £ > 0. Here, again,
a =Ty (fry).

Proof That follows from Corollary 2.13 and (3.19). Il

Remark 3.6 Combined with the Theorem 3.7 below, we conclude that (3.22) can be
strengthened to

;E?oo ||u||L2(m,Al,a,t) >0
for every £ > 0.

The solution to (3.17) for the homogeneous string [M, L] = [d§, o] is given ex-
plicitly via d’ Alembert’s formula:

_ uo(§€ +1)+uo§ —1)
2 ,

Vtouo (3.23)
where u is extended to R as even function. Note that V,OMO = @ +o0(1),t —> o0,
with o(1) in L2(R.). Hence, the evolution is equivalent to translation when ¢ — +o0.

For general strings, we need to introduce the modified dynamics. Given y € L?(R),
we let

~ 1
V0y: & 7 XQac(m) (€) pTHE) - y(Tw () — 1), £€[0,L). (3.24)

A change of variables gives || ‘71‘0)’||L2(m) <IyllL2my-If o € Sz(R4) and o = vdx +
o5, then its Szeg6 function is defined by

_ D)
=

where the measure (i, given by (3.11), is the spectral measure of Hamiltonian H..
Notice that | D, ()\)|2 = v(A) for a.e. A > 0 in the sense of non-tangential boundary
values. In the case when [M, L] € Sz(Str), we can obtain the asymptotics of u near
its wavefront. The following result implies Theorem 1.9 from the Introduction.

D, (2) 7€ C\Ry,

Theorem 3.7 Suppose [M, L] € Sz(Str). Then, there is a map ug — G, from L?(m)
to L*(R), such that for every fixed positive a we have

. ~0 _
Jim = VEGuoll L2 Ly -a). Ly e+ay)) = 0 (3.25)
The function G, satisfies |Gy, ”iZ(R) =2||uo,ac ||iz(m) , where ug ¢ is the orthogonal

projection of ug to the absolutely continuous subspace Hye(Spr) of Sy. Moreover, if
ug € Hae(Spy), then

: 70
im = VGl 2y = 0. (3.26)
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Proof We will prove that (3.25) and (3.26) hold with the following choice of the
function G,:

1 Re(Dy (@)e! ™) gae(ct)
Guy(n) = ﬁ/ﬂ% Va Sac da, g:=UpUo, gac:=g " XQuc(o)-
! (3.27)

Fix a > 0 and choose b > a. Define H, by formulas (3.7), (3.8) and note that H, €
Sz(CS). Set X = Yug and let, as above, € = N~V (1) for T > 0. Formula (3.19) and
Theorem 2.19 give

1
<u(% f)) _ 5((Utx)(r) + (U_;X)(T)>

1 1
= EH*,ﬁ(f)(U,()YX,+ + U2, Yx ) (Ty, (1) +o(D), (3.28)

as t — 400, with o(1) in L2(H, Ap,), where

()
! «® | T B >0,

H;Z(T) = a(r) \ 4
o (59)
0, T: B(D)a(r) =0,

is the matrix from (2.68), and f =Wy, X, fac = f - XQac(u)» WHo Y X+ = facDp,»
Wi, Yx,— = facDy,. Applying (2.74), we obtain

1 0 0 U (+ 1 V 1
S Wi Yx+ +UZ Y (1) = Wi <h+(f -1 (—i) +h_(t—1) <l)) +o(1),

as t — +o0, with o(1) in L2(H,) and hi = facDu,, h— = facDy,. In other words,
we have

1 A —t
E(UPYX,++U9,YX,_>(r)=< f(g )> +o(l), 1 +oo,
where o(1) is in L2(Hg) and
1 .
A =— Re(D My dx, eR.
7(m 2ﬁ/];§fac(x) e(Dy, (x)e™ ") dx n
The formula (3.28) implies

(”(‘% ”) —Hoa (o) (Af(T”’b(’) - ”) RO R (T, (1) + Rag (D),

(3.29)
where [[R1 Il 23y + IR2: 0 22¢2.0,,) = O as £ — +o00. Note that considering
£ € Qac(m) for which p(£€) > 0 is the same as considering those T > 0 for which
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detH.(t) = a(r)B(tr) > 0. Moreover, for such & and T we have

1
P ) = (%) L Tu®) =T ().

So, one can rewrite relation (3.29) in the form

(“@’ )= X 04 T () = ”) = H ARy (T, (0)) 4 Ras (1)
0 : T A+

or in the form

~ _ 1
T(uC, 1) = V1) (1) = M 2(O R (Ty, (7)) + Ro s (7),

with y =2A. Since b > a, the mapping T sends L2(m, [Ly(t —a), Ly (t +a)])
into a subset of L2(H, Ay ;). Noting that

_1
Ha i - (R1s 0 Try,) + Roillp2a,a,,) < IRl L2349 + IR2,e I L234,0p ) = O

t — 400,

we see that (3.25) holds with G,, =y = 2A. If we put g = Upuo, then g and f
are related to each other by f(x) = g(x?)/ /7 according to (3.14). By construction,
the function f is even, and D, (—x) = D, (x) almost everywhere on R since 1 is
even. After changing variables x> = o, we obtain

1 .
Guy(n) = ﬁéfac(x)Re(Du*(x)e”"’)dx

1 ac(@) Re(Dy (ar)e! V) p
= — o,
v Jr, Ja

as in (3.27). We also have
1Guo 72 gy = 4N A f117 2@y = 21 facl 72, = 20 PacX 172,
= 2[lu0.acl 72y = 2l18acl 725

where in the second identity we have used the formula

1 . 1 .
Ar(n) = ﬁéfac(X)Re(Du*(x)e’x")dx= ﬁéfac(x)DW(X)e””dx,

in which the integrals are understood in the L2?(R)-sense. Finally, Corollary 2.23
implies (3.26). Il
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3.4 Examples

In this subsection, we explain how the general results can be applied to two examples
considered in the Introduction.

Example 1.11: strings for which p = 1. Consider the case when L = oo and p = 1.
For the associated measure m, we get

dm =d& + dmg, (3.30)
where mg is any singular measure. If mg = 0, then the solution u is given by (3.23).
The models described by our choice of M are numerous, e.g., think about the beads

with masses {m} placed at points {§;},§p < & < --- connected by the string with a
uniform density equal to one.

One might want to know how the presence of “impurities” encoded by mg changes
the character of wave propagation. The general results from the previous subsection
can be reformulated as follows. From Theorem 1.7, we immediately get

Proposition 3.8 Ifug € L2(m) is nonzero, then ft, = fvy + .

Clearly, the front propagates with the same linear speed regardless of the nature of
mg. For M that satisfy p = 1, it was established (see [7]), that

mg(Ry) <00 <0 € Sz(R4). (3.31)
In the next two statements, we describe how the dynamics of # depends on ms.
Proposition 3.9 If [|uoll 12(m) > O, ftg < 00, and ms(R) = oo, then
el 2 e, (e, —a. e, = 0

Jor every fixed a > 0. Conversely, if there is uq that satisfies |\uo|l2(m) > 0, ftg < 00,
and

llm Sup ”u”Lz(m,[ft,—a,ft,]) > O
—>00

for some fixed a > 0, then mg(R,) < o0.

Proof That follows from the Theorem 3.5 and (3.31). O

The next result shows that the condition mg(R) < oo guarantees that part of the
wave propagates like a traveling wave in (3.23). In that theorem, P,. denotes the
orthogonal projection to Hae(Syr).
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Proposition 3.10 In the case when mg(R ) < oo, we have
tii?oo (s Ol 2 (g, [1—a,i+a1) = 0 (3.32)

t—lglil-loo lu(-, 1) — Guo(' - t)”Lz[t—a,t—i-a] =0,

for some G,, € LZ(R) and all a > 0. Moreover, |Gy, ”LZ(R) > 0 if and only if
Pacug # 0. If ug is not identically equal to zero and has compact support, then
Pycug # 0.

Proof These results are contained in Theorem 3.5, Theorem 3.7, and (3.31). O
The statements made in Example 1.11 in Introduction now follow.

Example 1.12: strings made of two types of material. For another example, let us
consider a string m = pd& on R, with no singular part whose density p takes two
positive values: a and b. Specifically,

a, T€E,
p(t)= (3.33)
b, TER+\E,

for some Lebesgue-measurable set £ C R. We interpret such strings as those made
from two types of material. Despite the relative simplicity, the model when p takes

only two positive values can have a nontrivial spectrum, e.g., a spectrum with gap
structure if p is periodic (see also [16] for analysis of related problems on the graphs).

In Example 1.12 of Introduction, we claimed

Proposition 3.11 Suppose a # b. We have o € Sz(R,) if and only if either
HE: p(§) =a}| <ocor|{§: p(§) =D}| < oo.

Proof We will apply Theorem 1.10 with properly chosen {5, }. Define 1, by

n =/ V(@) dt.
0

Thus, &, =n,n=0,1,.... Since p takes values a and b, we always have condition
0<C1<r]”+1—77n<C2, n=0,1,2,...

satisfied. For each n > 0, we have

a, 1€k,
T)= 3.34
p(D) {b’ e (334)
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where |E, | =6, |Fy|=1—=6,,and E, C [n,n+ 1), F,, C[n,n+ 1). Then,

n+2
2/ p(t)dt =2a(8, + dnt1) +2b(2 — 8y — Sn+1)
n
=4b+2(a — b)(Sp + 8pt1)

and

n+2 2
( / ¢p(r)dr) = Vb + (Va — VD)8 + 8,41))*
= 4b 4+ 4Vb(a — Vb) (8 + 8nt1)
+ (Va — Vb2 (8 + 8 1)

If we denote

n+2 n42 2
An=2f p(r)dt—(/ \/p(r)dr) , n=>0,

then the straightforward calculation shows
Ap=2(a —b)(n + dnt1)
— @Vb(Va = Vb)Y +8ur1) + (Va = Vb)Y (8p +8u11)%)
= (Va = Vb)* 2 = 8y = 8u1) (8n + 8u1)-

Then, the string satisfies conditions in the left-hand side of (1.25) if and only if either
a=>bor

o0
D @ =80 = 8u11)(Bn + 8ug1) < 00. (3.35)
n=0
Next, if either
o0 o0
[E|=) |Es|=) 8 <00 (3.36)
n=0 n=0
or
o0 o
IEC|=Z|Fn|=Z(1—8n)<oo, (3.37)
n=0 n=0

then (3.35) converges. Conversely, the convergence of the series (3.35) implies that

Jim (2 =8y —8n41) (8 + 8p41) = 0. (3.38)
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Since §, € [0, 1] for each n, one can not have §; + §;+1 <& and 2 — (6 + Sk+1) < &
simultaneously if [k —/| =1 and ¢ < % Hence, (3.38) gives that either lim,,— 6, =
0 or lim,,_, 5o (1 — 8,) = 0. In the former case, (3.35) is equivalent to (3.36) and in the
latter case, it is equivalent to (3.37). Il

Remark 3.12 Taking b = 0 in (3.34), one gets a string made of one type of material
which can be distributed with “gaps” over R . The application of Theorem 1.10 with
n, =n,n=0,1,... yields the similar result. Namely, o € Sz(R..) if and only if

I{§: p(§) =0} < oo.
Indeed, in that case condition (1.25) reads (recall that &, = Ly(n) and F =

{&:p(6)=0}

> (2va2 — &) —4) <oo. (3.39)

n=0

Since
&n
= ﬁfo KEds = Ja(E, — |10, &1 F)).

one has /a|[0, &,]1 N F| = i/a&, — n so the sum in (3.39) converges if and only if
Z;’O:O [[€n, En2]N F| < 00. Since lim,— o &, = +00, the last condition is equivalent
to | F| < oo. Notice that if | F| = oo in the last example, adding singular measure mg
can not place o in Sz(R ). Indeed, inserting mg does not change the grid {&,} but it
increases M (&,42) — M (&,) in (1.25) making the total sum diverge.

4 Dirac operators

We start this section by recalling the definition of the one-dimensional Dirac operator.
Then, we make the connection to canonical systems and explain how the results from
the second section can be applied to prove the theorems stated in Sect. 1.2.

4.1 Dirac operators
Recall that the one-dimensional Dirac operator © o on R is defined by
. 0 -1 q q
Do:Z—JZ'+0Z, J=<10), Q=(q;,§1). “.D

Here the functions ¢, ¢» are real and belong to Llloc(RJr). The “free” Dirac operator

with potential Q = 0 will be denoted by D¢. The domain of D ¢ is given by
Z is locally absolutely continuous on R,
domDgy={zel’R, C}: JZ'+0Z¢ L*R4, CY),
), (§))e2 =0.
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With this domain, the operator © ¢ is a densely defined self-adjoint operator on
L2(R+, (CZ), see Sect. 8.6 in [61] or [12] for recent developments. Let W denote
the generalized eigenvector of D g:

I+ QU@ =29, YO0.0=(}), 120, zeC 42

where the derivative is taken with respect to 7. Then, there exists a unique Borel
measure ;p on Ry such that the generalized Fourier transform

Fo: Z+— % R+(Z(t), V(t,2))c2dr, zeC, (4.3)

densely defined on L%(RJF, C?), can be extended to a unitary operator from
L*(R4, C?) to L%(up). That measure is called the main spectral measure of D .
One can see that D and Dy, are the same operators acting on the same Hilbert
space L2(R,, C?) and giving rise to identical generalized eigenvectors, generalized
Fourier transforms, and main spectral measures (cf. (4.2), (4.3) and (2.5), (2.7)).

4.2 The reduction of Dirac operator to a canonical system and the Szeg6
condition

The following result is well-known, see, e.g., Sect. 2.4 in [6].

Lemma 4.1 Let Q € LlloC (R4) be as in (4.1), and let the matrix-valued function Ny

be the solution of the Cauchy problem
JNY(T)+ Q(1)No(1) =0, 120, No(0)= (5‘1’). “.4)

Denote by Dy the self-adjoint operator on H corresponding to the canonical system
generated by the Hamiltonian H = N§No. Then, the main spectral measures of the
operators D : L’(R4,C%) — L2(R4, C?) and Dy : H — H coincide. In particu-
lar, the operators ® ¢ and Dy are unitary equivalent and the unitary equivalence is
given by the operator V : X — NoX, which is a unitary map from H to L*(R,., C?).
Moreover, we have Wy = FgV.

An important property of the locally absolutely continuous Hamiltonian H =
Ny No in the previous lemma is that it has unit determinant everywhere on R.
Indeed, the Wronskian in problem (4.4) is constant so det No(7) = det No(0) = 1.
Hence,

detH(z) =1, Ty(r)=r, Lym=n t,neRy, 4.5
for the corresponding functions T3y and L, introduced in (2.18). The identity

det No(t) = 1 has other important implications. First, in the polar decomposition
No = O|Np| the matrix | Ng| satisfies

INol = /N No="H2, det|No|=detH? = (detH)? =1
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and the rotation matrix O is defined uniquely and is locally absolutely continuous.
Second, the space H coincides with L?(#) defined in (2.2). Moreover, if function
X is compactly supported, then V X is also compactly supported and their supports
coincide.

The spectral measures p of the Dirac operators define a proper subset of all
Poisson-finite measures on the real line that generate the canonical systems as dis-
cussed in the second section. Some of them belong to the Szeg6 class. Thanks to the
characterization (2.25), we have the following proposition (see Corollary 1.4 in [8]):

Proposition 4.2 The condition N§Ny € Sz(CS) is necessary and sufficient for the
spectral measure wp of the Dirac operator to satisfy up € Sz(R).

Checking that NjNo € Sz(CS) is not always easy. However, in many cases, the
application of our proposition is straightforward.

Proposition 4.3 Suppose that the potential Q with entries in LllOC (R4) has the form

Q=<g _0q> or Q:(Z g). (4.6)

Then, for the spectral measure wp of the corresponding Dirac operator D g we have
up € Sz(R) <= N§Ny € Sz(CS)
n+2 n+2 dt
= > (/ h(t)dr/ = —4) <0, 4.7
o \Un n h()

where h(t) = ezfor"(s)ds, T>n.

Proof The first equivalence has already been discussed and we need to show the
second one. For the potentials Q of the form (4.6), define g(t) = ]Ot q(s)ds. Then,
solving the problem (4.4) to find Ny is easy. That gives

_ (coshg(r) sinhg(r) e 8® 0
NO(T)_(sinhg(t) coshg(t)) or NO(T)_( 0 eg(f))’

respectively. Therefore, for H = N(’)‘ No, we have

__(cosh2g(t) sinh2g(7) B =280 0
H(T)_(sinth(r) cosh2g(r)) or 7‘“”-( 0 o )

In both cases det’H = 1 on R, and the straightforward calculation yields

n+2 n+2 n+2
det/ H(t)dt =/ ezg(f)dr/ e 220 gr
n n n

n+2 n+2 1
=/n h(r)dr/n mdr.

So, H € Sz(CS) if and only if (4.7) holds. The result follows. Il
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Remark 4.4 Propositions 4.2 and 4.3 imply Theorem 1.3.
4.3 The evolution for Dirac equation and Mgller wave (modified wave) operators

The self-adjoint operator © o defines a unitary evolution €0 Lemma 4.1 above
gives the connection between ¢'”2¢ and evolution e/?P# for canonical systems.

Lemma4.5 If H = N} No, then ¢'®¢ = Ve'Prv =1 forallt e R.
For every Z in L>(R4., C?) = L*(H,) we again define the front as
fe[Z] = inf{r > 0: Z(s) = 0 for almost every s > 7}.

Notice that all elements of Ny are real-valued so Z has real components if and only
if X = V~1Z has real components.

Proposition 4.6 For every real Z € LZ(R+, C?) and every t € R, we have
fe[e!®0Z] = 1] + fr[Z).
Proof That follows from Theorem 2.1 and formula (4.5). O

Remark 4.7 For an arbitrary Z € LE(RJF, C?), we can write each of its components
as a sum of real and imaginary parts. Then, Proposition 4.6 gives ft[e”@Q Z1<|t|+
fe[Z] for all r € R.

We will also need the following proposition.

Proposition 4.8 Let i be the spectral measure of the Dirac operator ® g. Suppose
w ¢ Sz(R). Then, for every Z € L*(R,., C?), we have

li

it@g _
im (e Z 22 o) -p o461 = 0

for every b > 0.

Proof That follows from Corollary 2.11 and formula (4.5). U

Proof of Theorem 1.1 Take a nonzero function ¥ € L>(R,, C?). Set
Zy+=Wi(Dg, Do, y)Y = tiiglooe’”QQMye”@OY,

and notice that 1Zy+ 2, c2) = 1Yl 2ry c2) > 0. That yields

Jim IMy ™20y — ™0 Zy ||;2m, c2) =0. (4.8)
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Formula (2.73) for Y = <§1 ) can be recast as
2

4o (VY _ 1 NneE-—n+n@+0n
6} 2\ —i(Yi(r — 1) = Yi(z +1))

1 (i(Ya(r — 1) — Ya(T + 1))
+_< Yo(t —t) + Ya(Tr +1) ) TRy, 4.9)

where Y; € L2(R.) is extended to the whole real line R as an even function and Y>
is extended as odd function. That gives

liminf || "®0y >0
lim inf Il 222, 1—b,1+b1)

for large enough b. From (4.8), one gets liminf,_, o [|¢/®¢ Zy 222, (t—b.1+b]) >
0. Now we have p € Sz(R) by Proposition 4.8. The case when ¢+ — —oo can be
handled similarly. 0

Remark 4.9 Notice that we have used the existence of lim,_, 4o e/ i)QM eitPoy
for just one nonzero element ¥ € L>(R, C?) in the proof of Theorem 1.1.

Proof of Theorem 1.2 Assume that the main spectral measure up of Do is in the
Szegd class. By Lemma 4.1, i p coincides with the spectral measure of the Hamilto-
nian H = NNy generated by the solution of equation J N(; + ONog =0, No(0) =

((1) (1)) Taking into account (4.5), Theorem 2.22 tells us that for some function

vo: Ry — T and for every Y € L*>(Ho) = L*>(R.., C?), the limits

lim e ”D”M o H™ ”DHOY hm e ”D“M JH™ 261 PHyy
t—>—+00

exist in the norm of LZ(”H). Since D7y, = Do, that implies existence of the limit

lim Ve~ ”D”M oH ™ 36iPHoy = lim e_”gQVM o H 2 3eitP0y

t—+00 t—+00

in L>(R, C?). Note that (No(r)’H_% (t))*(No(r)'H_% (1)) is the identity matrix for
each T € R. Since

det(No(DH™ 2 () =1,  teR,,

it follows that the operator Y > V”H’% Y on L?>(R,, C?) coincides with the multi-
plication operator by a 2 x 2 matrix-valued function of the form

[ cose(t) sing(t)
Z(P(T)_ <_Sin§0(f) COS@(T))’ (p(‘L’)E[O, 27T)

LY _ [ cosp—ising \_ _iof 1
2“’(—i)_<—sin(p—icos<p)_e —i)"

We have
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Formula (4.9) shows that when ¢ — 400, for every Y € L2(R+, (Cz) we have

Jif Do <g) _ w (_1,) + w (_11> +o(l),

where o(1) is with respect to L?*(R,, C%)—-norm. Therefore,
eiPe VMVO’H_%e”@OY = €_it©QMyoe—iw€i[DOY +o(D), t— +00
and the limit

— T —itDg it®g
Wi(®g,D0,y)Y tilglooe Mye Y
exists in LZ(R, C?) for all Y € L2(R,, C?) if we take y = ype?. The existence
of the wave operator W, (Do, D, y) follows. Arguing similarly, one can prove the

existence of W_(D o, Dy, y) with the modification to the dynamics given by M.
Moreover, the proof shows that

Ran Wi (D9, Do, y) = V(Ran W(Dyy, Dy, v)) = JZIWH(Hac(@H))
=Fg' (L (1tac) = Hae(D ),
where (g = wdx is the absolutely continuous part of the measure w and u = up.
In other words, the wave operators W4 (Do, 9o, y) are complete. It is also clear

from the proof that our construction gives y = 1 in the case where Q is anti-diagonal
(q1=0). [

Proof of Theorem 1.5 Given Lemma 4.5, Theorem 1.5 is a direct consequence of The-
orem 2.24 and Theorem 2.26. O

Proof of Theorem 1.6 Given Lemma 4.5, Theorem 1.6 follows from Theorem 2.24.
O

4.4 Wiegner-von Neumann potentials
In this subsection, we prove Theorem 1.4. Let us recall its statement for convenience:

Suppose that a potential Q € L} (Ry) has the form (4.6), with q = “;‘—ﬂra on

loc

[0, +00) for some ty > 0 and a, B € R. Then, Q € Sz(Dir) if and only (a, ) € A,
where

1 1 3
A={a <0, ﬂ—a>§}U{ae(0,1), ,8>§}U{oezl, a+,8>§}
is the open set depicted on Fig. 1.

We will need a variant of Korey’s estimate from [49]. Recall that we use notation

(fyr=q Jy f)dx.
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Lemma 4.10 Suppose I = [a, b] and measurable function f: I — R satisfies
ey =1+e  e€l0,1]. (4.10)
Then,
(ILf = (il <ceve, (4.11)
for a universal constant c.
Proof In [49], formula (3.7), Korey shows that
(Nr-exp(—(in=1+¢.  &el0.1],

implies (|f — m(f)|) < CVe', where m;(f) denotes a median of f over I. By
Jensen’s inequality, exp (—(f)1) < (e~} ;. Therefore, (4.10) implies

(ILf =mi()]) < Ce.

Now, for every ¢’ € R, we have

(Uf = < fF =i+ 1d =l =2 f =

Taking ¢’ = my(f) finishes our proof. 0

For integer n > 0, we let I,, = [n, n + 2]. Given real-valued g € Llloc (R4), denote
gn(0) =2 [ q(s)ds.

Proposition 4.11 Iflim,_ ;o0 |l gn ”LOO(I}'!) =0, then
Z(/ egndr/ e 8 dt —4) <00 <= Z/ lgn — (gn>1n|2df < 400.
n>0 In In n>0 In

4.12)

Proof Set g, = gn — (gx)1, and notice that
(€)1, - (78", = (€¥1)y, - (e78n),.

Then, since lim,— o0 [|8x [l Lo,y = 0, we use Taylor expansion to get

o - 1 [ -
/eig"drzzi/gndr+—/gﬁdf+0</ |gn|3dt)’
I I, 2 I In

as n — +oo. It follows that

/ez’"dt/ e_g"dt=4+2/ §,%(t)dr+0(/ g;,%(r)dt>,
Iy Iy I I

which proves the required claim. O
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Proof of Theorem 1.4 Recall Proposition 4.3, Theorems 1.1 and 1.2. To prove our re-
sult, we only need to establish the range of parameters « and § for which the condi-

tion
> (/ 8 dt/ e S dt —4) <00 (4.13)
I)l In

n>0

is satisfied, where g, is defined right before the Proposition 4.11. For an integer
n >max(l, tg) and y = (¢« + 8 — 1)/, we have

ag,(x) _a/"‘ sint® dr—/xa sinyd
2 n b ne YV Y

o

o

X X

siny

cos y
- 4 yr+

y}’

I xasmyd 4.14
—J/(J/-l-)namy (4.14)

n% n%

Let us consider several cases.

Case ¢ > 1, o + B > 1. In this case y > 0 and we are in the setting of Proposition
4.11. Note that

. x¥ x® .

siny siny
sup |—y — 7 —y(y+1)/ —5dy
xel, yy+1 no ne yy+2

1 2
=0 (T(HU) e £2(N).

Thus, we only need to control the sum of dispersions

¥ Pl

n>1 n>1

cosx®
x*V

cosx® <cosx°‘>
x*Y XV 11,

)

Set n =ay +« — 1, and note that n > y > 0. Similarly to (4.14), we have

f cos(x%) 1 <sin(n +2)*  sinn®
dx =— —
In

Xy o (n+2)n n'

) +0m™"T™%

and n~""% € £2(N). So, the question reduces to the convergence of the series

2« . a a2
2 cos“ x sin(n 4 2) sinn
E (20[ /;,1 2ay dx — ( ) I . (4.16)

n>1

Notice first thate > 1, ¢ + 8 > % implies 2ay > 1 and 2 > 1. We get convergence
in that situation and (4.13) holds.

We claim that foro > 1, l <o+ S < %, the series diverges and (4.13) does not
hold. Indeed, in that case, one has

2 ..
CoSs~ X _ _ _
5 dx ~n72 p P =on"2*), n— oo,
1, X7
n
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and we get the claim because 2ay < 1.

It is only left to consider« =1 and 0 < 8 < % In that case, y = 8, and

cosx <C0ix >1 = n_ﬁ(cosx — (cosx)y, )+ O(n_ﬂ_l).
X n

xVY
Since {(cosx — {cos x)ln)z)ln ~1land B < %, the series (4.15) diverges.
To summarize, if « > 1 and o + 8 > 1, then (4.13) holds if and only if & + 8 > %

Case a > 1, o + B < 1. We will show that (4.13) fails for this range of parameters.
Suppose, on the contrary, that (4.13) holds. Then, estimate (4.11) gives

Z (/; }gn - <gn)1,,

n>1

2
dx) < 00. 4.17)

Recall that y = (0 + B — 1)/« < 0. Integration by parts gives

ogn(x) —a/x sin ¥
n

2 g—dt=n"""cosn —x"* cosx® + Oy,
T

and

o
§<gn)1,, =n"% cosn® + O (n~ 2D+l

Hence, uniformly in x € I,,, we have

= x| cosx?¥|+ O(n e TD+y,

o
3 |gn(x) — (gn)1,

Since

/ x " cosx¥|dx + O(n~ T+ > e (/ |cosx*|dx + O(n“"“))
I, I

and

inf/ |cosx¥|ldx>C >0 (4.18)
n 1)1

for every @ > 1, the terms in series (4.17) can be estimated from below by cn~ve >
¢ > 0 for large n. So, (4.13) doesnotholdif« > 1l anda + 8 < 1.

Caseax € (0,1), 8 < % We are going to show that (4.13) fails for this range of pa-
rameters. Assume, as before, that (4.13) holds, so that the sum in (4.17) is finite.
Applying the mean-value theorem, we see that

2
> (/I 180 () — g i) dx) “ oo

n>1
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for some points x, € I,,. For each n > 0, one can choose an interval A, C I,, of length
% such that dist(x,, A,) > %. Then, again by the mean-value theorem (this time — on
the interval A,), there exist points X;, € A, such that

2
Z lgn (%) — gn(xn)|2 < Z (/; lgn(x) — gn(xn)| dx) < Q.

n>1 n>1

We see that

2

n>1

)?rz 1 o 2
MY il <o (4.19)
X 12

n

Since sint% — sinn® = O(n""l) for t € I,,, we have

/f" sinr"‘d /Y" dt
‘E —_—
Xn Tﬁ Xn Tﬁ

Given that 8 < %, we have J, ~ n—P because x, and X, are at least %-distance apart.

> |sinn®| - J, — O(m®~ ' 1), Iy =

The sequence {%n"‘} is uniformly distributed mod 1 (see, e.g., Section 1.3 in [55]).
Therefore, there is Ny so that for every N > Ny, we will have a bound

|sinn®| > 0.01
for at least % integer numbers n € [N, 2N]. Therefore, since @ € (0, 1),

2N 2
3 ‘| sinn®| - Jy — 01 up)| > N128,
n=N

Since 8 < %, limy_ o0 N'728 is either equal to 1 or is infinite and we have a contra-
diction with (4.19). Therefore, (4.13) fails.

Casex e (0,1),8 > % We have

24x <4 LA WP LA !
Z , 8n x < Z 1 g 'L'_ﬂ x =< Z ! T_ﬂ xSSZnTﬂ<OO
n>1%"" n>1%""n n>1 n n>1

Hence, (4.13) is true for this range of parameters by Proposition 4.11.
Casea <0, —a > % For this range of parameters, we have
> [ g s X
, S L)
n>1""" n>1

due to the fact that sin y is comparable to y when y € [0, 1]. Using Proposition 4.11,

we conclude that (4.13) holds if 8 —« > %
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Caseax <0, —a =< % We claim that (4.13) fails in that situation. Arguing as in the
case when @ € (0, 1) and 8 < %, we assume that (4.13) is true and obtain

D 1gn(En) — gn(x)I” < o0, (4.20)

n>1

for some points x,, X, € I,, such that |x — x| > 1/4. Then,

n 2 T sin T 2
an(rx—ﬁ) < Z (/ 72=B dr) < Z / 5 dt| <oo
n>0 n>0 Xn n>0 'Y T
which leads to a contradiction. O

We end this section with one more example of an oscillating potential Q €
Sz(Dir). As we mentioned in Sect. 1.2 of the Introduction, a simplest “physical” in-
terpretation of the Dirac operator D ¢ is that it describes the one-dimensional particle
of unit mass moving in a field defined by a potential Q of the form

T T
Q:(q1 q2>’ q1=c0s<2/ qu), q2=—sin<2f qu),
92 —q1 0 0
4.21

where ¢ : Ry — R. It is natural to ask if there exist potentials Q € Sz(Dir) that can
be written that way. Since ql2 + q22 =1 on R4, we cannot have Q € L”(R;) for any
p < oc. In particular, the standard summability test (see the discussion after Theorem
1.3)

e |J L"(Ry) = Q eSz(Dir)
pell,2]

does not give any example of such a potential Q. However, Proposition 4.11 can be
used to construct such examples. Indeed, let us consider

a@=cos(FDET) =0, o) =—sin(FDFT),  reRry,

where [e”] stands for the integer part of e”. Due to high oscillation of ¢», Proposition
4.11 applies and the corresponding potential Q = (Z; 21) = ( qu ({)2) belongs to
Sz(Dir). Then, one can construct its small perturbation of the form (4.21) which

belongs to Sz(Dir) (the Theorem 1.3 can be used for that approximation argument).

Appendix

In this Appendix, we collect a few auxiliary results and prove some statements made
in the main text.
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A.1 Proof of Proposition 2.8

The modification of the proofs in [8] yields the statement. Alternatively, one can
argue as follows. First, we claim that (2.25) implies (2.26) for «, = An with any
A > 0. Indeed, if m; and p, denote Titchmarsh-Weyl function and spectral measure,
respectively, of canonical system with Hamiltonian (A7), then mj (z) = m1 (A~ 'z)
as follows from (1-5) in [8]. Now, it is enough to observe that i, € Sz(R) <= u| €
Sz(R).

Second, we claim that, given intervals I~ C I, |I| =1, and ¢ € (0, 1], the follow-
ing implication holds

det/?—[(t)dt —l=e=det | H()dt—|I")*<e, (A.1)
1 1~

for every non-negative Hamiltonian A that satisfies det{ = 1 a.e. on /. Indeed, de-
note A = fr Hdt and B = fﬁ ‘Hdt where I =1~ U I™. Then, we get (see, e.g.,
(A-1)in [8]):

detA>|I"%, detB>|IT?
and
det(A+ B)=1+¢.

Minkowski inequality for determinants yields

det(A + B) > (v/det A + +/det B)®.
Denoting +/det A = x and +/det B =y, we get
1
x+y<(+e2, [ |+UT=1, [ |<x, [IF|<y.

That implies (draw the corresponding domains on the plane), that |/~ | <x <|I7| +
Ce. Taking the square of the last bound yields the estimate on the right-hand side of
(A.1).

Now, if detH = 1 a.e., the statement in (2.26) holds by combining these two
claims. Indeed, suppose u € Sz(R4) and we are given sequence {«,}. Then, there
is A such that every interval [«;,, o, 4+2] is inside one of the intervals [Al, A(I 4+ 2)] or
[A( — 1), A(I + 1)] for some /. Since the sum in (2.26) converges for {o;} = {Al}, we
can apply (A.1) (with dilated and translated interval /) to get condition in the left-
hand side of (2.26) satisfied for {«,}. Conversely, if the sum in (2.26) converges for
some {a,}, then there is suitable A such that each interval [An, A(n 4+ 2)] is covered
by either [«;, 0j42] or [oy—1, 1] for some /. Thus, applying (A.1) again, we get
that the sum in (2.26) converges with {«,} = {An} and u € Sz(R). The case of gen-
eral H follows by making the change of variables in T and using an approximation
argument. O
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A.2 Free evolution for canonical systems and Dirac operators

Recall that ®g = Dy;,. We now show that the free evolution for these operators is, in
fact, equivalent to the shift on the real line and that relation is algebraic. To this end,
we work in terms of Dirac operator and perform two elementary unitary transforma-
tions

N -1 _(—id; 0 1 (i-1
Do=-7"20z= (" 5). z=2(i2))

Here, 0, stands for the differentiation operator. Operator ’)50, taken with suitable
boundary condition at 0: f;(0) =if2(0), is self-adjoint on the same Hilbert space

(g) € L?>(R,, C?). If one further maps

fi _Jhk, x>0,
(1‘2)'_)g()6)_{lfz(—x)7 x <0,

then, ®¢ becomes unitary equivalent to —id, on L?(R) with e'% g = g(x +1), which
is the standard shift operator.

A.3 A formula for exponential type

Lemma A.1 [f entire function f has bounded type both in C and C_, then its expo-
nential type can be computed by the formula

e logmax(|fG@y)], | f(=iy)])
type f =limsup .
)7—>+00 y

(A2)

Proof Let us apply Theorem 2 in Lecture 16 of [60]. It says that for every entire
function f of bounded type in C; and C_ we have

log|f(2)| =01y +o0(z]), y >0,
log|f(z)|=0_y+o(z]), y <0,

outside of a set of disks {z € C: |z — a;| < r;} of finite view (the latter means

that 3, % < 00). Here 04 € R and y = Imz. Take ¢ > 0 and denote o =
J

max (o, —o_). By the maximum principle for subharmonic functions, we have

log| f(2) = (o +&)lyl+o(lz])

everywhere in C as z — o0. Therefore, we have type f < o. On the other hand, the
set of disks of finite view cannot fill any half-axis, hence

. log | fGy)l . log | f(y)|
o4 =limsup ————, —o_ =limsup —————,
y——+00 y y——00 [y
which proves the statement. O
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A.4 Rotation matrices
The following result in the linear algebra has been used in the main text.

Lemma A.2 For every real 2 x 2 matrix A with non-negative determinant, there is a
rotation matrix Ly of the form

[ cosp  sing
E‘/’_<—singo cosgo)’ ¢ €10,2m),

such that £,A > 0.

Proof This is immediate from the proof of the polar decomposition given in [31], p.
2176. d

A.5 Robinson’s theorem

In the main text, we used the following variation of a result by Robinson [70], which
is based on ideas dating back to Ruelle’s work [72].

Lemma A.3 Suppose H is a Hilbert space, D is a densely defined self-adjoint opera-
tor, and Pa denotes the orthogonal projector for D relative to a set A CR. If Aisa
bounded operator on H and AP[_ a] is compact for some A > 0, then

R Y L
pim /0 1Ae"P Pa s IPdt =) I APE; Pa a¥r I
J

for every y € H, where Pg; denotes the orthogonal projection on the eigenspace
that corresponds to eigenvalue E j and the sum is over all eigenvalues {E;} of D.

Proof The proof is an application of Theorem 2 in [70] to operator D Pj_ a, o] With the
perturbation taken as A Pl_a A] where both DP_; A} and AP|_x A are considered
as operators acting on H. U
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