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ABSTRACT

Cloud providers are adapting datacenter (DC) capacity to reduce
carbon emissions. With hyperscale datacenters exceeding 100 MW
individually, and in some grids exceeding 15% of power load, DC
adaptation is large enough to harm power grid dynamics, increasing
carbon emissions, power prices, or reduce grid reliability.

To avoid harm, we explore coordination of DC capacity change
varying scope in space and time. In space, coordination scope spans
a single datacenter, a group of datacenters, and datacenters with
the grid. In time, scope ranges from online to day-ahead. We also
consider what DC and grid information is used (e.g. real-time and
day-ahead average carbon, power price, and compute backlog).
For example, in our proposed PlanShare scheme, each datacenter
uses day-ahead information to create a capacity plan and shares it,
allowing global grid optimization (over all loads, over entire day).

We evaluate DC carbon emissions reduction. Results show that
local coordination scope fails to reduce carbon emissions signifi-
cantly (3.2%ś5.4% reduction). Expanding coordination scope to a
set of datacenters improves slightly (4.9%ś7.3%). PlanShare, with
grid-wide coordination and full-day capacity planning, performs
the best. PlanShare reduces DC emissions by 11.6%ś12.6%, 1.56xś
1.26x better than the best local, online approach’s results. PlanShare
also achieves lower cost. We expect these advantages to increase as
renewable generation in power grids increases. Further, a known
full-day DC capacity plan provides a stable target for DC resource
management.
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1 INTRODUCTION

With the commercial success of internet-scale applications and
cloud computing, cloud infrastructure has grown rapidly. A recent
article documented the addition of over 50 datacenters a year by
a single cloud provider [79]. By revenue, Amazon, Microsoft, and
Google’s cloud growth rates have exceeded 30% annually for the
past 5 years [30, 46, 74]. The accelerated digitalization since COVID-
19 [73], and an accelerating adoption of machine learning (aka
artificial intelligence) are both driving an acceleration of datacenter
growth [80, 88]. In 2021, the power consumption of these three cloud
providers exceeded 62 TWh [8, 36, 46], equivalent to the power
consumed by 6.2 million American homes. In 2022 they purchased
14 GW of renewable generation capacity, but not enough to offset
their power use [54]. Some estimates project that datacenter power
consumption will grow to 10% of global electricity use by 2030
[45, 56, 65]. Today’s largest hyperscaler sites are multiple buildings
with total power of 200 MW to 1 GW [3, 9, 34, 69, 79].

In many power grids, datacenters are already major load contrib-
utors. In Virginia, datacenters account for 12% of power consump-
tion (2022), and will reach 18% in 2027 and 22% in 2032 [28, 29].
In Ireland, datacenters account for 14% of national electricity use
(2022) [13] and may be 30% by 2029 [31]. With continued cloud and
artificial intelligence growth, datacenters are expected to exceed
10% or even 20% of load in many power grids [41, 45, 65].

Rapid computing growth raises concerns about carbon emis-
sions [3]. Cloud providers often purchase renewable power (long-
term contracts) or renewable offsets (renewable energy creditsÐ
RECs) to łoffsetž their power use [19, 74]. However, these contracts
are accounting arrangements, not actual power transfers. Despite
such arrangements and even full offsetting, cloud datacenters con-
sume large quantities of fossil-fuel generated power [3, 10]. Worse,
the growth of datacenters can threaten grid stability, blocking DC
projects in Ireland and Northern Virginia’s grids. [47, 48].

Adapting capacity (temporal shifting) to reduce DC carbon emis-
sions has been explored for over a decade [23, 24, 32, 60], and to
reduce power cost [7, 57, 62, 63, 81, 87, 93]. For example, cloud
providers’ ł24×7ž goals to match hourly power use and renewable
generation typically involve temporal shifting [4, 19, 33, 35, 78].
These approaches all seek to align compute load with low-carbon
or low-price power, using online control techniques (see Figure 1).
Such efforts along with those we propose in this paper are increas-
ingly crucial as power grids around the world driven by aggressive
public policy are rapidly decarbonizing by adding new renewable
generation [12, 25, 75, 86].

DC shifting efforts typically focus on internal challenges of DC
resource management. A recent system forces shifting by creating
a daily compute capacity plan to enable compute resource man-
agement [78]. However, most shifting efforts ignore the negative
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Figure 1: Datacenters can adapt power capacity to align com-

pute load with periods of lower carbon emissions.

impacts of varying datacenter capacity on grid dynamics (e.g. trig-
gering unnecessary generator starts and load shedding). With large
datacenters, such impacts are critical. Load shifting schemes that
are productive with small datacenters can be ineffective and even
damage grid performance if used with large datacenters. In Section
3 (Problem), we show an example where such approaches create an
8% increase in datacenter carbon emissions due to overshifting. One
consequence of this new insight is that there is no known solution
to coordinate large-scale datacenter capacity adaptation and power
grids. To explore this new problem, researchers have begun to study
capacity adaptation coupled with power grid models [56, 58, 68].

To avoid the harm and effectively reduce DC carbon emissions
with capacity adaptation, we explore coordination of DC capacity
adaptation that varies in coordination scopeÐspace and time. In
space, we consider spans of a single datacenter, a group of data-
centers, and datacenters with the power grid. In time, we consider
online and day-ahead. We also vary datacenter and grid informa-
tion used (e.g. real-time and day-ahead metrics, compute backlog).
For example, in PlanShare, each datacenter uses day-ahead grid in-
formation to create a full-day capacity plan, and then shares it with
the grid, so the grid can optimize generation and transmission with
a known, but varying datacenter capacity schedule. Our evaluation
reports datacenter carbon emissions reduction relative to the fixed
DC capacity scenario, as well as cost impacts on both datacenters
and other customers.

Specific contributions of the paper include:

• With local coordination scope, we use three grid metrics
(average carbon intensity (ACI), grid price (Price), and lo-
cational marginal price (LMPrice)) for capacity adaptation.
LMPrice is most effective, reducing datacenter carbon emis-
sions 1ś5% vs. ACI and 0.7ś1.5% vs. Price. Exploiting hourly
future price information (+2.3%) and step size (+2.3%) fur-
ther improves local adaptation based on LMPrice, achieving
datacenter carbon reduction of 10%.

• Expanding the coordination scope to a group of datacenters
with a coordinator that limits aggregate behaviors gives
only a small improvement over local adaptation, reducing
datacenter carbon emissions by 7.3%.

• PlanShare, datacenter-grid coordination and full-day capac-
ity planning, achieves greatest benefits, decreasing datacen-
ter carbon emissions by 11.6%ś12.6%. This grid-wide coor-
dination is 1.56xś1.26x better than the best local, online
approach. The key costs (grid dispatch cost, customer power
cost) are also reduced. Further, for datacenters, the 24-hour
capacity plan provides a stable target enabling more efficient
compute resource management. PlanShare satisfies datacen-
ter and power grid objectives.

The remainder of the paper includes Background (Section 2) and
in Section 3 we describe the challenge of adapting large-datacenter
capacity. In Section 4 we discuss datacenter capacity adaptation
approaches. Section 5 introduces the methodology of grid-coupled
simulation. In Section 6 we evaluate carbon reduction of the differ-
ent capacity adaptation approaches, considering impacts on data-
center and non-datacenter grid customers. Finally, in Section 7 and
8, we discuss related work, summarize results, and discuss future
research directions.

2 BACKGROUND

2.1 Growth of Cloud Datacenters in Power Grids

Hyperscale cloud providers (e.g. Amazon, Microsoft, Google, Al-
ibaba) are building larger and more datacenters to meet the needs
of digitalization, which accelerated since the COVID-19 pandemic
[29, 73, 82]. The rapid growth of hyperscale cloud industry is re-
flected in its power consumption: 1% of worldwide power con-
sumption in 2018, projections suggest it could exceed 10% by 2030
[45, 56, 65]. Similar rapid growth rates are also supported by cor-
porate renewable power purchase data [46, 74].

As a result, datacenters have become the key driver of new
electric power demand, direct cause of new emissions, as well as
construction of power plants, transmission, and energy storage
infrastructure [28, 47, 70]. In regions where datacenters account
for large fraction of power consumption (e.g. VirginiaÐ12% in 2022
and 22% in 10 years, IrelandÐ14% in 2022 and 30% by 2029), the
challenges in grid operation and decarbonization have become
evident. For example, Ireland’s state grid operator is canceling
datacenter projects [48] unless the datacenters bring their own
renewable generation or adapt their power demand. Similar story
is happening in more and more parts of the world as the scale and
reach of datacenters continue to grow [3, 41, 45, 47, 65].

From the cloud provider perspective, such exponential growth in
datacenter power consumption first translates into growing power
cost, as power price [5] don’t decrease at the same speed. Also, it
raises concern about carbon emissions growth. Obscured by carbon
offset or renewable purchase, additional datacenters can still result
in more fossil fuel consumption if the load is not aligned with
renewable generation [10, 27, 31]. To improve sustainability, Google
and Microsoft seek to hourly match their datacenter power capacity
with renewable generation (24×7, 100/100/0 [35, 46]), with attempts
such as capacity adaptation [78]. While the current scale of load
change is only a few percent of capacity [78], it is expected to
increase in future (discussed in Section 5.2). Furthermore, such
adaptation behaviors can disturb the grid even at a small percentage
of capacity. There are already reports of power variations from
supercomputers (all on or all off) affecting grid stability [83]. For
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gigawatt cloud datacenters, a 10% load change produces a 100 MW
swing, similar to the dynamic range we study; a 40% load change,
which is not unusual for some diurnal peak to trough, would be
400 MW!

2.2 Dynamics of a Renewable-based Power Grid

Aligned with the carbon reduction goals (e.g. halved by 2030 and
net-zero by 2050 [66]) that seek to limit global warming, recent
years have seen the rise of renewable sources in energymix of many
power grids across the world, such as 34% in California (2021), 27%
in China (2020), and 22% in Europe (2020). There are more ambitious
goals for this decade. For example, California aims at 60% renewable
fraction by 2030 [22], and Germany plans to phase out coal power
plants (30% of electricity supply in 2021) by 2030 [89].

Integrating intermittent renewable sources (mainly wind and
solar) is challenging for the power grid. For example, renewable
generation can be wasted due to temporal mismatch with energy
demand and transmission limits, producing both negative-priced
power (aka stranded power) [16, 43, 55] and evenłcurtailmentž [11,
16, 18, 39, 40, 55] where the renewable generation is wasted (not
used by the power grid). A complementary problem is generation
shortage, such as under extreme weather (heat, storms) where
wind or solar generation can be dramatically lower. One potential
solution to this challenge is to increase supply or demand flexibility,
and corresponding methods include energy storage and adaptive
loads [43, 71].
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Figure 2: CAISO’s Daily Average Carbon Intensity and Price

Variation, 2022/05/02. Left: Average Carbon Intensity (kg

CO2/MWh), Right: Grid Price ($/MWh). Source: CAISO.

The growth and intermittency of renewable generation produce
time-varying grid metrics, such as carbon intensity (carbon emis-
sions per MWh energy consumption) and power price. For example,
in California’s power grid, the average carbon intensity keeps low
during the daytime when solar generation dominates, but it climbs
up to about 200 kg CO2/MWh as natural gas generators are up
(Figure 2, left). In addition, as wind and solar generation is usu-
ally bid low due to zero fuel cost, the power price correlates with
carbon intensity. The price can drop to near zero when there is
excess renewable generation (Figure 2, right)! Adaptive loads such
as datacenters, electric vehicles, and smart appliances may exploit
such variation to reduce their carbon emissions or power cost.

3 PROBLEM

Cloud datacenters seek to reduce carbon emissions by aligning
power use with plentiful renewable generation (low-carbon power).

However, the carbon-intensity of grid power is determined by com-
plex interaction of load, transmission, available generators and their
ramping rate-limits. Grid dynamics can be opaque because power
grids are a critical infrastructure and power markets have fierce
economic competition. Together, these factors limit the real-time
telemetry available to guide capacity adaptation. Therefore, it is
challenging for large-scale cloud datacenters to dynamically choose
capacities that reliably reduce carbon emissions. Often, load shifts
achieve only a fraction of anticipated benefits, or worse, they can
harm themselves or other customers by increasing prices or carbon
emissions.

One example of this problem is łovershiftingž. Simulating a
Spring day with our grid model (Figure 3), with intelligent local
control based on grid average carbon intensity (ACI) [20, 64], all
datacenters decrease capacity at hour 5 (4 am) and increase capac-
ity at hour 15 (2 pm), causing the entire grid’s ACI to increase by
a total equivalent to 8% of datacenter daily carbon emissions (vs.
fixed capacity)! Why is overshifting a problem? The local capac-
ity control of the datacenters reacts to a shared metric in unison,
increasing or decreasing capacity at the same time (2nd row). The
large capacity changes, combined across datacenters, oversubscribe
the opportunity. In order to maintain grid balance, the market
responds by dispatching additional generation (fossil-fuel!), and
thereby increasing carbon emissions.

Figure 3: Overshifting: local, online adaptation using average

carbon intensity (ACI) shown in the Top increases datacenter

carbon emissions by 8% (Middle) because they all make the

same capacity adaptation (Bottom).

Thus the challenge for datacenters is: How to adapt capacity

to reduce operational carbon emissions? That is, how to align
power use with low-carbon opportunity without disturbing the
grid. To achieve this, capacity adaptation must:

(1) Identify opportunity: how to find the right times to increase
and decrease capacity to reduce their carbon emissions?
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(2) Avoid contention or overshifting: how to share the opportu-
nity with other potential adaptive loads in the grid? (avoid
oversubscribing the opportunity)

(3) Avoid harming others: how to ensure capacity adaptation
does not harm othersÐload participants (consumers, other
companies, other datacenters) by increasing prices or carbon
emissions, or generators and grid resilience?

4 APPROACH

To address the challenges, we explore different datacenter capacity
adaptation approaches and couple them to grid simulations to eval-
uate the realized impacts. The approaches vary in two dimensions
of coordination scope: space and time. The space ranges from a
single datacenter to a group and then to datacenters with the grid.
The time includes online (real-time) to day-ahead (24 hours). In
Figure 4, we illustrate three spatial scopes of coordination. We also
vary the datacenter and grid information used for coordination.
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Figure 4: AdaptationApproaches vary in Coordination Scope.

Representing a classes of control techniques in previous work,
local adaptation (Figure 4, left) makes hourly decisions using real-
time and future metrics from the grid. Our studies of local adapta-
tion show the limitations of these approaches. But first, we compare
grid metrics (e.g. average carbon intensity, power price) that data-
centers can use to drive local capacity adaptation.

At times, local adaptation can increase carbon emissions (e.g.
overshifting in Figure 3). We consider use of an external coordina-
tor that coordinates a group of datacenters to eliminate the harm
(Figure 4, middle). In this scheme, each DC makes an hourly request
to adapt capacity, and the external coordinator limits the group’s
total capacity change.

Finally, we consider a new approach that expands coordination
scope to the entire grid. In this approach each DC plans aheadÐ
making a binding capacity plan 24 hours in advance based on fore-
cast grid information, and shares the capacity planwith the grid.
The plan provides datacenter load certainty to the grid, enabling it
to optimize generation and transmission scheduling under dynamic
constraints that span single or many hours.

We introduce the algorithms for each approach, evaluating them
in Section 6. We report DC carbon reduction with realistic levels of
wind generation and datacenter load fractions (3.5%ś14%), framing
what could happen today or in the next 5ś10 years. For clarity
of exposition, we focus on a 30-DC scenario, representing about
10% of grid load that approximates the current levels in Northern
Virginia (12%) or Ireland (14%), and vary the wind penetration

(ratio of average wind generation to grid energy demand) from 15%
to 60% (2015 levelś2050 target). We also report how DC capacity
adapatation creates grid impacts on power prices and how the
impacts correlate with datacenter capacity change.

5 DATACENTER AND GRID-COUPLED
SIMULATION METHODOLOGY

This section describes the framework for evaluating the datacenter
capacity adaptation approaches. Datacenters adapt capacity to grid
metrics (Section 5.1), respecting the capacity flexibility constraints
(Section 5.2). Resulting time-varying loads affect the dynamics (e.g.
pricing, generation) in the power grid (Section 5.3).

5.1 Grid Metrics for DC Capacity Adaptation

Power grids have complex dynamics, so the łbestž grid metric1 for
reducing carbon emissions is an open research question [20, 58].
A good metric should enable carbon reduction and be available in
most or all power grids. We consider several candidates:

• Average carbon intensity or ACI (kg CO2/MWh) is the
carbon emissions per MWh energy consumption in the grid.
Derived from fuel mix, ACI is usually only available from un-
validated 3rd parties (e.g. Electricity Maps [64]) in a fraction
of the world’s grids.

• Grid price or Price ($/MWh) is power price in a grid or
region (e.g. łhub pricež). Renewable generator often bids low,
causing power price to be correlated with carbon intensity
(Figure 2). Price information is widely available in day-ahead
and real-time markets.

• Locational marginal price or LMPrice ($/MWh) is the
price at a specific node in the power grid. LMPrice reflects
local properties such as nearby renewables and grid trans-
mission constraints. LMPrice is widely-available.

Recently, researchers and companies [59, 90] have proposed
marginal carbon intensity as a metric. We do not consider it, as it
is not widely available, and tied to proprietary market strategy.

5.2 Modeling Datacenter Capacity Flexibility

Datacenter capacity flexbility defines the variation structure of
capacity. We assume that every datacenter can adjust capacity (cap)
within a dynamic range and defer workload (backlog), but must
catch up within a 24-hour day (Figure 5), formally:

𝑐𝑎𝑝𝑚𝑖𝑛 ≤ 𝑐𝑎𝑝𝑖,𝑡 ≤ 𝑐𝑎𝑝𝑚𝑎𝑥 , ∀𝑖, 𝑡 (1)

𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡 = 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡−1 + (𝑎𝑣𝑔𝐶𝑎𝑝 − 𝑐𝑎𝑝𝑖,𝑡 ) (2)

𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,24 = 0, ∀𝑖 (3)

These flexibility constraints are common in datacenter carbon-
aware capacity adaptation studies [4, 56, 78].

Datacenter capacity variation can harm a datacenter’s computa-

tion performance [95] and even power markets. We consider a step
size limit that bounds hour-to-hour datacenter capacity change:

|𝑐𝑎𝑝𝑖,𝑡 − 𝑐𝑎𝑝𝑖,𝑡−1 | ≤ 𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒, ∀𝑖, 𝑡 (4)

DC attributes used are shown in Table 1. The resource utiliza-
tion and capacity assumptions are typical of hyperscale datacenters

1Sometimes, these are called grid łsignalsž for load adaptation.
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Figure 5: Datacenter Capacity Flexibility Model.

[3, 34, 69, 85]. We present results from the [0.4, 1.0] dynamic range
which combines the largest potential benefits, but also overshifting
challenges. High fractions of deferrable workload reflect the in-
dustry’s published workload papers. Google’s BorgTNG trace [85]
shows flexible jobs with 24-hour completion SLO (service level ob-
jective) make up about 40% of the resource usage; delay-insensitive
VMs (virtual machines) account for about 68% of resource usage
among Microsoft Azure VM workload [21]; in Meta, 60% of batch
jobs can be flexibly scheduled within a day [4]. It’s likely that
the workload flexibility continues to grow due to emerging batch
workloads like machine learning model training. In addition, the
potential deployment of long-duration energy storage is a comple-
mentary solution to datacenter capacity adaptation [49].

Table 1: Configurations of Datacenter Attributes

Attribute Configuration(s)
Maximum Capacity 200 MW
Average Utilization Level 70%
Average Capacity (𝑎𝑣𝑔𝐶𝑎𝑝) 140 MW
Dynamic Range [0.6, 0.8], [0.4, 1.0]
Step Size 10, 20, 40, 80, 120 MW/h

5.3 Power Grid Model

We evaluate DC adaptation approaches coupled to a realistic grid
model. Grid operation (day-ahead planning or real-time operation)
is simulated by solving the direct-current optimal power flow (DC-
OPF) problem in [50, 56] and Appendix A, which minimizes the grid
dispatch cost in one-day time horizon with hourly intervals, subject
to typical grid constraints. The grid metrics for carbon optimization
(ACI, Price, LMPrice) are derived from the OPF solutions. With
lower generation costs and curtailment penalties that encourage
use, renewable generators produce low prices when dispatched at
the margin, capturing the the correlation between carbon metrics
and power price in the real world (Figure 2).

The grid topology is a reduced California power system (CAISO)
consisting of 225 buses, 375 transmission lines, 130 thermal genera-
tors (31.2 GW total capacity), 11 non-wind renewable power plants,
5 wind power plants, and 40 loads. Power can also be imported at 5

boundary buses. This model is originally from [72] and has been
used to assess the impact of dynamic datacenter capacity manage-
ment in [50, 56]. We select wind as the major renewable generation
source as it presents more intra-day variation that leads to more
diverse capacity adaptation behaviors. Besides, it can model the
wind-dominant power grids such as ERCOT (Electric Reliability
Council of Texas) and SPP (Southwest Power Pool). To get higher
wind penetration, the wind generation are scaled up equally at
current sites, assuming those sites can be expanded or equipped
with higher-capacity wind turbines [76].

There are 8 base load, imports, and non-wind renewable gen-
eration profiles that cover the four seasons (Spring, Summer, Fall,
Winter) and weekday/weekend (WD/WE). Figure 6 shows how
each load profile varies in a day, with the average spanning from
23,780 MW (WinterWE) to 31,089 MW (SummerWD). We assume
high accuracy of base load and renewable generation forecast, so
the day-ahead and real-time OPF share the same deterministic load
and renewable generation profiles.

(a) Spring (b) Summer (c) Fall (d) Winter

Figure 6: Grid Base (Non-DC) Load Profiles.

To reflect the impact of wind variation, for each season, we use
100 wind scenarios (Figure 7) shared by the weekday and weekend.
The wind generation tends to be higher in the late night and early
morning, which is a misalignment with load and can be opportuni-
ties for datacenter capacity adaptation.

(a) Spring (b) Summer (c) Fall (d) Winter

Figure 7: Used Wind Scenarios (15% Penetration). Red lines

represent average wind scenarios for each season.

Datacenters are added to random buses in the grid (with loads
added to the base load profiles), which reflects the fact that datacen-
ter site selection is more based on business considerations external
to the power grid (e.g. tax breaks, jobs, internet hookups, etc.).

5.4 Evaluation Metrics

Our evaluation metrics cover both datacenter goals and impacts on
the grid and other grid customers:
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• Datacenter Carbon Reduction.We vary only datacenter
capacity, and thus attribute the grid carbon reduction to DC
capacity adaptation, reporting it as percentage reduction in
datacenter operational carbon emissions:

(𝑔𝑟𝑖𝑑𝐶𝑎𝑟𝑏𝑜𝑛𝑓 𝑖𝑥𝑒𝑑−𝑐𝑎𝑝 − 𝑔𝑟𝑖𝑑𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛)

𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝐶𝑎𝑟𝑏𝑜𝑛𝑓 𝑖𝑥𝑒𝑑−𝑐𝑎𝑝
∗ 100%

and grid carbon emissions are calculated as:

𝑔𝑟𝑖𝑑𝐶𝑎𝑟𝑏𝑜𝑛 =

24∑︁
𝑡=1

𝑔𝑒𝑛𝑓 ,𝑡 ∗ 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑓

where 𝑔𝑒𝑛𝑓 ,𝑡 is generation from fuel 𝑓 in the 𝑡-th hour. Fuel
emission rates are from US EPA eGrid database [6, 42] and
listed in Appendix B. 𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝐶𝑎𝑟𝑏𝑜𝑛 with fixed-capacity
DCs is calculated using the grid emission rate.

• Grid Dispatch Cost ($) is the objective for DC-OPF mini-
mization and a figure of merit for grid operation.

• Datacenter Average Power Price ($/MWh) is how much
the datacenter would pay for power considering the location
of datacenter and the time when power is consumed. For
multiple datacenters, we compute the average.

• Non-datacenterCustomerAverage Power Price ($/MWh)

is the average power price across grid customers other than
datacenters, weighted by power demand.

• Datacenter Average Capacity Variation (MW/h) is de-
fined as the average change in power capacity of a datacen-
ter between adjacent one-hour periods, the lower the better.
More formally:

1

23

24∑︁
𝑡=2

|𝑐𝑎𝑝𝑖,𝑡 − 𝑐𝑎𝑝𝑖,𝑡−1 |

where 𝑐𝑎𝑝𝑖,𝑡 denotes the capacity of datacenter 𝑖 at time 𝑡 .

Conventional datacenters operate at fixed capacity; we use this as
the baseline when examining the impacts of datacenter capacity
adaptation.

5.5 Experiment Setup

Given the 100 wind scenarios for each day type, our simulation is
equivalent to simulating a total of 800 days [72]. For each day, we
vary the wind penetration level and simulate datacenter operation
using different capacity adaptation algorithms. The results reported
in Section 6 are the average of 8 day types (weighted for the number
of weekdays and weekend days) and varied wind scenarios.

We used Julia 1.5.2 with JuMP v0.21.5 [26] to implement the grid
simulation and solved grid OPF with Gurobi Optimizer v9.0 [38].

6 EVALUATING DATACENTER CAPACITY
ADAPTATION APPROACHES

We explore datacenter capacity adaptation algorithms for each of
the three approaches in Section 4. Evaluation uses a full grid simu-
lation and results are compared to datacenters with fixed-capacity
(no capacity adaptation). While we have studied many scenarios,
for clarity we show a single representative scenario (30 200-MW
datacenters and dynamic range of [0.4, 1.0]). In this scenario, dat-
acenters are 10% of grid load, less than in leading-edge grids, but
realistic for dozens of grids throughout the world in the near future.

6.1 No Coordination (Local Scope)

With local, online capacity adaptation, each datacenter makes real-
time capacity decisions independently based on current and fu-
ture grid metrics. We employ a dynamic programming algorithm
that makes hourly decisions using current value of metric and
its daily average, and refer to local adaptation based on differ-
ent metrics by ł<Metric> (Avg)ž. The algorithm selects amongst
{𝑎𝑣𝑔𝐶𝑎𝑝, 𝑎𝑣𝑔𝐶𝑎𝑝 ±dynamic range/2} to minimize the expectation:

𝑐𝑎𝑝𝑖,𝑡 ∗𝑚𝑒𝑡𝑟𝑖𝑐𝑖,𝑡 + (𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡−1 + 𝑎𝑣𝑔𝐶𝑎𝑝 − 𝑐𝑎𝑝𝑖,𝑡 ) ∗𝑚𝑒𝑡𝑟𝑖𝑐𝑖

which can be either carbon emissions or power cost. The 𝑏𝑎𝑐𝑘𝑙𝑜𝑔
is then updated given the determined power capacity.

Datacenter capacity adaptation is coupled to grid dispatch (OPF
optimization), as below, where datacenters are denoted by 𝑖 , and
hours by 𝑡 :

(1) For all i,t: 𝑐𝑎𝑝𝑖,𝑡 = 𝑎𝑣𝑔𝐶𝑎𝑝 (neutral initial condition).
(2) Solve grid OPF with {𝑐𝑎𝑝𝑖,𝑡 }, defining𝑚𝑒𝑡𝑟𝑖𝑐𝑖,𝑡 as day-ahead

information.
(3) At the beginning of 𝑡 = 1, ..., 24-th hour, each datacenter

adapts capacity 𝑐𝑎𝑝𝑖,𝑡 based on the metrics.
(4) Then the grid solves OPF with updated datacenter capacities

{𝑐𝑎𝑝𝑖,𝑡 } (real-time operation).
(5) This new OPF solution redefines𝑚𝑒𝑡𝑟𝑖𝑐𝑖,𝑡 (realized) and for

the future (i.e. [𝑡 + 1, ..., 24]).

6.1.1 Comparing Grid Metrics. We evaluate the effectiveness of
different grid metrics used for adaptationÐaverage carbon intensity
(ACI), grid price (Price), and locational marginal price (LMPrice).
LMPrice consistently outperforms ACI and Price (Figure 8).
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Figure 8: DC Carbon Reduction with Adaptation based on

Carbon Intensity, Grid Price, and Locational-Marginal Price.

The x-axis in Figure 8 is (15%ś60% wind penetration) and repre-
sents expected progress of renewable generation; for calibration we
use the expected timing of this change for ERCOT as a reference.
We use this x-axis in many figures. We also plot standard deviation
across daily variation in renewable generation (wind scenarios) as
łwhiskersž. Each specific wind scenario typically produces corre-
lated results for different algorithms, so these whiskers capture
variability, not uncertainty.

At 15% wind, online adaptation fails to reduce carbon-emissions
because generation supply is tight, and oversubscription happens
during low-carbon periods. Higher wind penetration provides more
opportunity, enabling online adaptation using LMPrice to reduce
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datacenter carbon emissions by 5.4% (60% wind), consistently out-
performing ACI (+5.4%) and Price (+1.4%), Our broader studies show
that price metrics work better generally, and finer-grained pricing
works best.

To illustrate, Figure 9 shows a single-day timeline. The graphs
show that the grid-wide signals, ACI and Price, create uniform,
lockstep datacenter behavior, maximizing the load swings for the
grid. In contrast, the locational metric, LMPrice, produces diverse
behaviors as each datacenter reacts to local pricing that reflects
grid constraints such as transmission and generator ramping.

Figure 9: Global vs. Local metrics (LMPrice) create different

DC capacity adaptation (bottom). Local produces DC adapta-

tion variety. (Fall Weekday, 30% Wind Penetration)

6.1.2 Improving Local Online Adaptation. Using LMPrice, we next
explore how to improve local-scope adaptation by adding finer-
resolution price , better forecasts, and smoothing capacity changes.

Using the day-ahead hourly locational prices at the DC site
(price array {predLMP𝑖,𝑡 }, 𝑡 = 1, ..., 24), in the 𝑗-th hour, datacenter
𝑖 performs dynamic programming on the price array {𝑝𝑖,𝑡 } with:

𝑝𝑖,𝑡 =

{
LMP𝑖, 𝑗 , if 𝑡 = 𝑗 and 𝑗 ≠ 1

predLMP𝑖,𝑡 , otherwise
, 𝑡 = 𝑗, ..., 24

where LMP𝑖, 𝑗 is the real-time price after {𝑐𝑎𝑝𝑖, 𝑗−1} are set. The
dynamic programming algorithm produces a capacity array based
on the following recurrence formula:

𝑐𝑜𝑠𝑡𝑖 (𝑛, 𝑡, 𝑐𝑎𝑝) = 𝑐𝑎𝑝 ∗ 𝑝𝑖,𝑡 +min
𝑐𝑎𝑝′

{𝑐𝑜𝑠𝑡𝑖 (𝑛 + 𝑐𝑎𝑝 − 𝑎𝑣𝑔𝐶𝑎𝑝, 𝑡 − 1, 𝑐𝑎𝑝′)

| |𝑐𝑎𝑝 − 𝑐𝑎𝑝′ | ≤ 𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒}

(5)

where 𝑐𝑜𝑠𝑡𝑖 (𝑛, 𝑡, 𝑐𝑎𝑝) denotes the minimum power cost of the sub-
problem ending at 𝑡-th hour with backlog𝑛 and capacity level 𝑐𝑎𝑝 in
the 𝑡-th hour. Following the convention of dynamic programming,
the resulting capacity array is obtained through backtracking from
𝑚𝑖𝑛({𝑐𝑜𝑠𝑡𝑖 (0, 24, 𝑐𝑎𝑝) | 𝑐𝑎𝑝𝑚𝑖𝑛 ≤ 𝑐𝑎𝑝 ≤ 𝑐𝑎𝑝𝑚𝑎𝑥 }), which is the
optimal cost subject to the constraints defined in Section 5.2. The
datacenter takes the first element of the solution array (the last
in backtracking) as 𝑐𝑎𝑝𝑖,𝑡Ðsimilar to the receding horizon control
[51] but with a fixed horizon. This algorithm models:

Forecasts (Future Information).We use hourly LMPrice from
the day-ahead market as a price forecast. It is refined in other

markets (e.g. hourly, 15-minute, 5-minute, real-time) as the time
approaches until the final OPF determines the dispatch, prices, etc.
Adding this informationÐthe full 24 hours of day-ahead pricesÐis
reflected in LMPrice (Hourly).

Step Size (Smoothed Capacity). Online adaptation can cause
large datacenter capacity fluctuations, harming both datacenter
computing efficiency and the grid (generation dispatch, carbon
intensity, price). To smooth these large capacity changes, we limit
hour-to-hour DC capacity change with a maximum step size.

Using detailed future price information, we empirically deter-
mined that a step size of 40 MW/h for LMPrice (Hourly), and un-
bounded for LMPrice (Avg) that yield the largest carbon reduction.
50% of the improvement from LMPrice (Avg) to LMPrice (Hourly)
is due to price information and 50% to step size (Figure 10).

In Figure 10, LMPrice (6hr + Avg) reflects progressively intro-
duced future information, which is given hourly information for
the next 6 hours but only daily average after that. For 30% wind
penetration, 6 hours’ information enables 2.6% reduction and 24
hours’ a 4.2% reduction in datacenter carbon emissions. These grow
to 3.5% and 4.6% respectively at 60% wind penetration. Ultimately
LMPrice (Hourly) delivers 10% of DC carbon reduction.
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Figure 10: Datacenter Carbon Reduction with varied future

LMPrice information (Day average, 6hr detailed, 24hr de-

tailed).

6.2 Coordinating a Group of Datacenters

Independently controlled DCs can react together, when decisions
are based on grid-wide or other strongly-correlated metrics, pro-
ducing a large aggregate power capacity change. We have seen
LMPrice is better, but even its correlation across sites can produces
synchronized DC capacity changes that are difficult for the grid
to manage. Addressing this, we add an external limiter, called łco-
ordinatorž, to mitigate the harm. In LMPrice (Avg)-Coord, each
datacenter runs independent online control algorithm and then
submits their adaptation to a coordinator. The coordinator limits
total power change for a set of datacenters, using a quota:

(1) Generate a random permutation of datacenters.
(2) For each datacenter, if 𝑐ℎ𝑎𝑛𝑔𝑒 ≤ 𝑞𝑢𝑜𝑡𝑎 then accept, 𝑞𝑢𝑜𝑡𝑎 =

𝑞𝑢𝑜𝑡𝑎 − 𝑐ℎ𝑎𝑛𝑔𝑒 ; else, reject.

If local controllers were unable to get their requested change,
they must update their backlogs accordingly.

Figure 11 shows DC carbon reduction with varied coordinator
quotas (3600ś1200 MW/h). Each line represents a different wind
penetration level. Coordination improves performance, mitigating
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Figure 11: Datacenter Carbon Reduction vs. Coordinator

Quota for three wind penetration levels.

overshifting harm at 15-60% wind penetration: on each line, all
the points reflect greater carbon reduction than the leftmost oneÐ
LMPrice (Avg), and steady improvement as the quota is tightened.
The benefit for datacenters is larger when the overshifting is more
evident under tight generation (15% wind penetration), improving
DC carbon reduction by 2.3%. These benefits are smaller than those
achieved by exploiting future price information, such as LMPrice
(Hourly), which yields a 50% higher DC carbon reduction.

Multiple Coordinators. In many geographic areas, there are mul-
tiple cloud providers (e.g. Northern Virginia, Texas, Ireland, or
China’s Ningxia), and each cloud provider has multiple datacenter
sites in that area. As competitors, they may not be willing to share
a coordinator. To model this multi-coordinator scenario, we assume
there are 2 or 3 coordinators in the grid, each coordinating 10 or 15
DCs. We use an overall quota of 1200 MW/h, and divide it equally
across the coordinators.

Increasing the number of coordinators further decreases DC car-
bon emissions. The reason for this is narrower coordinator scope
with datacenter load quantization increases the smoothness of total
datacenter load, but the improvements are small. 3 coordinators pro-
duce improvements up to 0.7% of DC carbon emissions, achieving
7.3% of DC carbon reduction at 60% wind penetration.

6.3 Coordination with the Grid: Capacity Plan
Sharing

Adaptive datacenters cause grid problems as their large power
changes are unpredictable and strain generator ramp constraints.
Further, unplanned adaptation can produce rapid changes in com-
pute capacity, making it difficult for cloud resource managers to
be efficient. In view of these insights, we expand the space scope
to datacenter-grid cooperation and time scope to day-ahead (plan-
ning), proposing a new approachÐPlanShare: datacenters create
a 24-hour adapted capacity plan based on LMPrice in day-ahead
grid market [44] ahead of operating day, and then share the plan
with the grid. This allows the grid to optimize globally based on
the DC information. Formally, with datacenters denoted by 𝑖 and
hours denoted by 𝑡 :

(1) For all i,t: 𝑐𝑎𝑝𝑖,𝑡 = 𝑎𝑣𝑔𝐶𝑎𝑝 (neutral initial condition).
(2) Solve grid OPF with {𝑐𝑎𝑝𝑖,𝑡 }, defining initial LMP𝑖,𝑡 as day-

ahead information.

(3) Each DC makes 24-hour adaptation plan using LMPrice
(Hourly)’s dynamic programming algorithm and shares it
with the grid.

(4) Solve grid OPF for [1, ..., 24] with adapted {𝑐𝑎𝑝𝑖,𝑡 } to model
the next day’s operationÐthe datacenter must follow the
full-day capacity plan it shares with the power grid.

Figure 12 compares PlanShare and the local, online approaches.
The results show the benefits of plan sharing with the grid. Using
essentially the same adaptation algorithm (comparison of behaviors
shown in Figure 13), and on less accurate information, by working
with the grid, PlanShare reduces DC carbon emissions by up to
12.6% (1.6% grid carbon reduction if normalized to grid carbon
emissions). This is 1.26x better than the best local, online adaptation
result, and the advantage is even higher (1.56x) with today’s wind
penetration levels (30%). By contributing its adaptation plan to
the grid optimizationÐin advance and as a committed scheduleÐ
PlanShare dramatically improves the datacenter carbon emissions
reduction that can be achieved.
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Figure 13: PlanShare produces similar aggregate DC capacity

(Top) but sharing information with the grid produces 8x

larger DC emissions reduction (Bottom). (Fall WD Example)

Sensitivity to Length of Shared Plan. Having demonstrated the
benefits of a practical scheme (24-hour day-ahead plans are available
in many power grids), we explore how much DC plan informa-

tion is needed by the grid?We vary the length of the DC capacity
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plan shared from 1 to 24 hours, reporting results in Figure 14. In-
terestingly, a single hour advance plan is enough for PlanShare
to match the performance of LMPrice (Hourly), the best online
approach, despite the fact that PlanShare has no online adaptation;
the full 24-hour capacity plan is fixed. As the length of plan is in-
creased to 3, 6, and 12 hours, the benefit of plan sharing increases
significantly, reaching the large benefits previously highlighted in
Figure 12.
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6.4 Datacenter Adaptation Impacts beyond
Carbon

Datacenter capacity adaption produces other impacts on the grid
customers and datacenter operation. We study several here.

Grid Dispatch Cost. We compare the grid dispatch cost of differ-
ent approaches in Figure 15. Local, online datacenter adaptation
approaches can increase grid dispatch cost at lower wind pene-
tration (up to 6% increase by ACI (Avg)). PlanShare successfully
eliminates this grid performance damage, decreasing grid dispatch
cost by as much as 2.5%. The reduction is attributed to decreased
generation cost and renewable curtailment penalties. Datacenter
capacity adaptation and grid-wide optimization given the shared
plans enable this.
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Datacenter Power Cost. Adaptive datacenters affect power pricing
in the grid. In Figure 16a, results show that local, online adaptation
can cause significant power prices increases of $20 to $50/MWh,
corresponding to 59%ś490% increase in power cost. This is because
locally controlled adaptation clashes with grid constraints and dy-
namics (overshifting in Section 3), and it is likely a major deterrent

for datacenter adoption. In contrast, sharing the datacenter’s capac-
ity plan in advance as in PlanShare decreases average power price
stably, up to 30% compared with the fixed-capacity scenario.
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Figure 16: Change in Average Power Price for Different Grid

Customers.

Non-DC Customer Power Cost. In Figure 16b, We explore how
adapting datacenter capacity impacts other (non-DC) customers.
Local approaches, including ACI (Avg) and LMPrice (Avg), signifi-
cantly increase the price for non-DC customers, especially for lower
wind penetration with less excess renewable generation (LMPrice
(Hourly) also increases price at 15% wind). Datacenters as growing
consumers of power are already subject to growing scrutiny and
negative publicity. Pricing hard to other customers has the potential
to cause a backlash, so datacenters should be careful about deploy-
ing such local, online adaptive capacity control. PlanShare avoids
this price harm for non-DC customers at all wind penetration levels.

Datacenter Capacity Variation. Capacity variation is a critical
concern for datacenter operators as it affects workload efficiency of
the available capacity. Using the average capacity variation metric
(see Section 5), Figure 17 shows DC carbon reduction on y-axis
and capacity variation on x-axis. As before, DC carbon reduction
is relative to the fixed-capacity scenario, and capacity variation
(MW/h) is normalized to the maximum capacity (200 MW). An ideal
adaptation approachwould fall in the upper-left corner (high carbon
reduction, low capacity variation). Each line connnects results as
wind penetration increases for a given adaptation approach.

The plot clearly shows how the higher-performing adaptation
techniques exploit increased changes to adapt to the changing grid
carbon properties. The progression from ACI (Avg) to LMPrice
(Avg) to LMPrice (Hourly) shows a tradeoff of carbon reduction for
online capacity variation. Achieving the greatest carbon reduction,
PlanShare does require greater capacity variation. However, it’s
worth noting that PlanShare fixes the capacity plan in advance,
so the resource manager has a statically known resource schedule
at the start of the day, facilitating compute workload scheduling.
Scheduling studies and other proposals [78, 94, 95] argue for the
benefits of known capacity information. For example, with 24-hour
capacity information, the cloud workloads see little performance
(e.g. goodput, job wait time) degradation at 60% dynamic range
compared with the fixed capacity scenario[94].
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Table 2: Summary of Datacenter Capacity Adaptation Approaches

ACI LMPrice LMPrice PlanShare PlanShare
(Avg) (Avg) (Hourly) (1 hour) (24 hours)

DC Carbon Reduction ś neutral + + ++
DC Power Cost ś ś ś neutral + ++
DC Capacity Variation + + neutral neutral neutral
Grid Dispatch Cost ś neutral + + ++
Other Customers (non-DC)
Power Cost

ś ś ś neutral + ++

Figure 17: DC Carbon Reduction and Capacity Variation.

6.5 Summary

Table 2 summarizes the impacts of datacenter capacity adaptation
in different metrics, where ł+ž means advantage and łśž means
disadvantage. The weakest performance plan sharing approachÐ
PlanShare with 1 hour’s shared planÐmatches and outperforms all
of the other approaches. And, as we can see in Figure 14, PlanShare
with 24-hour adaptation plan outperforms others significantly and
is by far the best, delivering the greatest DC carbon reduction while
enabling datacenter resource managers to have known capacity
plans. To conclude, PlanShare satisfies both datacenter (carbon and
cost reduction, computing efficiency) and power grid objectives
(cost reduction and fairness).

7 DISCUSSION AND RELATED WORK

To the best of our knowledge, this is the first paper that explores the
coordination scope for datacenter capacity adaptation and proposes
sharing datacenter capacity plans with the grid to reduce opera-
tional carbon emissions. Given LMPrice metric availability, and
cloud practice making day-ahead adapted capacity plan [78], our
PlanShare approach is feasible. Some cloud providers may be reluc-
tant to share their daily capacity plan with the grid for proprietary
reasons. But it’s worth pointing out that each datacenter’s local
grid (e.g. Dominion Energy, PGE) already knows DC’s historical
power consumption, going back days, months, and years. Further,
if the cloud DCs wanted to intentionally mask their compute load,
they could still do so with on-site batteries or even generators.

We review related work below:

Datacenter Capacity Adaptation (Shaping). Early ideas like łfollow-
the-moonžłchase-the-windž propose to shift datacenter workload
to a time or place with low energy prices or carbon emissions [1],
exploiting variations of grid dynamics. The DC capacity adapta-
tion explored in this paper addresses a widely studied subset of
these ideasÐtemporal load shaping or shifting, which typically
employ sophisticated online control or optimization techniques
[24, 57, 60, 63]. An additional variant is to manage colocated energy
storage [7, 32, 81, 87, 93]. This work assumes datacenters are small
loads (grid trace-based studies or DC-only evaluation), and doesn’t
model the impact of DC dynamic capacity changes on the grid, not
to mention coupled impacts on carbon, prices, generation, etc. In
this paper, a collection of hyperscale datacenters (200 MW each)
coupled to a power grid model is essential to capturing their direct
impacts on grid dispatch.

Recent cloud industry goals include ł24×7ž or ł100/100/0ž hourly
matching of DC power consumption with carbon-free generation
[35, 46]. These efforts explore application and resource-management
load shifting based on varying power carbon-intensity[78], do not
assess impact on power grids. For example, Google’s carbon-aware
computing [78], creates day-ahead capacity plan (called a virtual
capacity curves (VCC)) to enable efficient DC resource management.
But the VCC is not shared with the power grid.

Another dimension of load shifting is spatial or geographic, with
similar goals [37, 52, 61, 77, 98, 99, 101, 102]. This promising direc-
tion is beyond the scope of our paper.

Datacenters in Demand Response. Datacenters’ ability to delay
workload (e.g. defer batch jobs) can be used to participate in demand-
response programs, reducing capacity during peak periods accord-
ing to requests from the grid. Such participation can reduce DC
power cost, and research has explored how to balance this benefit
while respecting service-level objectives (SLO) [53, 62]. Further
efforts in this area design sophisticated markets that incentivize
DC operators and even their colocation tenants to participate in
demand response [14, 15, 84, 96, 100].

Demand response is designed for emergency reduction in load
to protect grid stability. As a result, actions are rare, and the power
reduction is small relative to the total power consumption [67].
In contrast, we consider multiple datacenters’ active, continuous
capacity adaptation for reducing operational carbon emissions with
dynamic range up to 60% of capacity.

Grid-coupled Datacenter Adaptation. As early as 2015, Yang, Wol-
ski, and Chien proposed Zero-carbon Cloud, a novel approach that
proposed building datacenters as dispatchable loads controlled by
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the grid to harness excess carbon-free power [17, 91, 92], and the
grid benefits including decreased dispatch cost and renewable cur-
tailment are reported in a study including a grid model [50]. Com-
mercial efforts at gigawatt-scale based on Zero-carbon Cloud ideas
are under construction in ERCOT/Texas [2]. Other efforts include
exploring the grid benefits of temporal or spatial load shifting
[59, 68, 97]. [58] studies what grid metrics can effectively guide
carbon-aware spatial load shifting. While also showing locational
marginal price is effective, they claim locational mariginal carbon
emissions is better, which, however, is not broadly available today.

This paper builds on the insights of [56]. The authors showed
that without modeling the grid’s dynamics, the carbon emission
projections could be significantly wrong. Thus, it’s necessary to
include grid models in studies of large-scale temporal workload
shifting. However, that work provides no solution to coordinated
management of datacenters and power grids.

8 SUMMARY AND FUTUREWORK

Cloud providers are adapting datacenter capacity to renewable
generation to reduce carbon emissions. However, for today’s large
cloud datacenters, the numerous prior techniques based on indepen-
dent, online control fail to reduce emissions and can harm the grid.
To find a robust solution, we explore the coordination of adapta-
tion, varying scopes in time and space. With the local coordination
scope, locational marginal price (LMPrice) is identified as a widely
available and the most effective grid metric for datacenter capacity
adaptation. Expanding the scope to grid-wide coordination and
day-ahead planning, we propose a solutionÐPlanShare, where each
datacenter creates a capacity plan based on day-ahead grid metric,
and then shares it with the grid. This approach enables DCs to
achieve greater emissions reduction (12.6%), lower average power
prices (-30%), and more predictable capacity from planning (and
thus better internal utilization). PlanShare even eliminates harm to
other customers in the grid. We are optimistic that as power grids
are increasingly dominated by renewable generation the techniques
studied here will enable datacenters to balance the efficient delivery
of cloud computingwith helping balance and decarbonize the power
grids. As datacenters growÐfueled by artificial intelligence, perva-
sive intelligent control, commerce, and entertainmentÐbeyond 10
and 20 percent of power grid load, these techniques will be essen-
tial not only for the power grid, but for the continued growth of
computing.

Several exciting future directions for research include: First, how
to create compute load flexibility and respond to capacity change,
while respecting service-level objectives (SLO)? The resource man-
agers and applications today lack a clear cost metric, and further it’s
unclear what types and extents of flexibility are possible or valuable.
Second, we have focused on temporal capacity adaptation, but it’s
also interesting to explore spatial shifting combined with day-ahead
capacity plan schedules. Third, how can we balance datacenter pri-
vacy considerations with the clear benefit of sharing capacity plan
information? Finally, as the world progresses to higher levels of
renewable generation and computing power consumption, it will
be essential to reconsider the techniques proposed here.
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A DIRECT-CURRENT OPTIMAL POWER
FLOW FORMULATION

Wemodel the grid operation using the direct-current optimal power
flow (DC-OPF) model. Notations in this model are listed below:

Table 3: DC-OPF Notation: Sets

Notation Description Notation Description
D (D𝑛) Demand loads (at bus𝑛) G (G𝑛) Generators (at bus 𝑛)
I (I𝑛) Import points (at bus 𝑛) L Transmission lines
L+
𝑛/L

−
𝑛 Transmission lines

to/from bus 𝑛
N Buses

R (R𝑛) Renewable generators
(at bus 𝑛)

T Time periods

W (W𝑛) Wind farms (at bus 𝑛) 𝐷𝐶 (𝐷𝐶𝑛) Datacenters (at bus 𝑛)

Table 4: DC-OPF Notation: Parameters

Notation Description Notation Description
𝐵𝑙 Susceptance of trans-

mission line 𝑙
𝐶𝑖 Generation cost of gen-

erator 𝑖
𝐶𝑑
𝑗 Load-shedding penalty

at load 𝑗

𝐶𝑤
𝑖 Curtailment penalty at

wind farm 𝑖

𝐶𝑚
𝑖 Curtailment penalty at

import point 𝑖
𝐶𝑟
𝑖 Curtailment penalty at

renewable 𝑖
𝐷 𝑗,𝑡 Demand load of con-

sumer 𝑗 at time 𝑡
𝐹𝑚𝑎𝑥
𝑙

Maximum power flow
of transmission line 𝑙

𝑀𝑖,𝑡 Power production of
import 𝑖 at time 𝑡

𝑃𝑚𝑎𝑥
𝑖 Maximum power out-

put of generator 𝑖
𝑅𝑖,𝑡 Power production of re-

newable 𝑖 at time 𝑡
𝑅𝑈𝑖 Ramp-up limit of gener-

ator 𝑖
𝑅𝐷𝑖 Ramp-down limit of

generator 𝑖
𝑊𝑤,𝑡 Power from wind farm

𝑤 at time 𝑡
Θ
𝑚𝑖𝑛
𝑛,𝑡 Minimum phase angle

at bus 𝑛 at time 𝑡
Θ
𝑚𝑎𝑥
𝑛,𝑡 Maximum phase angle

at bus 𝑛 at time 𝑡

Table 5: DC-OPF Notation: Decision Variables

Notation Description Notation Description
𝑑 𝑗,𝑡 Load shedding at load 𝑗

at time 𝑡
𝑓𝑙,𝑡 Power flow of line 𝑙 at

time 𝑡
𝑚𝑖,𝑡 Curtailment at import 𝑖

at time 𝑡
𝑝𝑖,𝑡 Power from generator 𝑖

at time 𝑡
𝑟𝑖,𝑡 Curtailment at renew-

able 𝑖 at time 𝑡
𝑤𝑖,𝑡 Curtailment at wind

farm 𝑖 at time 𝑡
𝜃𝑛,𝑡 Phase angle at bus 𝑛 at

time 𝑡

Datacenter capacity levels 𝑐𝑎𝑝𝑖,𝑡 are external decisions by the
datacenters or coordinator(s). The power grid solves the DC-OPF
model (one-day time horizon with hourly intervals in our studies),

212



e-Energy ’23, June 20ś23, 2023, Orlando, FL, USA Liuzixuan Lin and Andrew A. Chien

minimizing the dispatch cost (6a) that consists of generation cost,
load shedding penalty, and curtailment penalties:

min

∑︁
𝑡 ∈T

©­«
∑︁
𝑖∈G

𝐶𝑖𝑝𝑖,𝑡 +
∑︁
𝑗∈D

𝐶𝑑
𝑗 𝑑 𝑗,𝑡 +

∑︁
𝑖∈I

𝐶𝑚
𝑖 𝑚𝑖,𝑡

+
∑︁
𝑖∈W

𝐶𝑤
𝑖 𝑤𝑖,𝑡 +

∑︁
𝑖∈R

𝐶𝑟
𝑖 𝑟𝑖,𝑡

)
(6a)

s.t.
∑︁
𝑙∈L+

𝑛

𝑓𝑙,𝑡 −
∑︁
𝑙∈L−

𝑛

𝑓𝑙,𝑡 +
∑︁
𝑖∈G𝑛

𝑝𝑖,𝑡 +
∑︁
𝑖∈I𝑛

(𝑀𝑖,𝑡 −𝑚𝑖,𝑡 )

+
∑︁

𝑖∈W𝑛

(𝑊𝑖,𝑡 −𝑤𝑖,𝑡 ) +
∑︁
𝑖∈R𝑛

(𝑅𝑖,𝑡 − 𝑟𝑖,𝑡 )

=

∑︁
𝑗∈D𝑛

(𝐷 𝑗,𝑡 − 𝑑 𝑗,𝑡 ) +
∑︁

𝑖∈𝐷𝐶𝑛

𝑐𝑎𝑝𝑖,𝑡 , ∀𝑛 ∈ N , 𝑡 ∈ T , (6b)

𝑓𝑙,𝑡 = 𝐵𝑙 (𝜃𝑛,𝑡 − 𝜃𝑚,𝑡 ), ∀𝑙 = (𝑚,𝑛) ∈ L, 𝑡 ∈ T , (6c)

− 𝐹𝑚𝑎𝑥
𝑙

≤ 𝑓𝑙,𝑡 ≤ 𝐹𝑚𝑎𝑥
𝑙

, ∀𝑙 ∈ L, 𝑡 ∈ T , (6d)

Θ
𝑚𝑖𝑛
𝑛 ≤ 𝜃𝑛,𝑡 ≤ Θ

𝑚𝑎𝑥
𝑛 ∀𝑛 ∈ N , 𝑡 ∈ T , (6e)

− 𝑅𝐷𝑖 ≤ 𝑝𝑖,𝑡 − 𝑝𝑖,𝑡−1 ≤ 𝑅𝑈𝑖 , ∀𝑖 ∈ G, 𝑡 ∈ T , (6f)

0 ≤ 𝑝𝑖,𝑡 ≤ 𝑃𝑚𝑎𝑥
𝑖 , ∀𝑖 ∈ G, 𝑡 ∈ T , (6g)

0 ≤ 𝑑 𝑗,𝑡 ≤ 𝐷 𝑗,𝑡 , ∀𝑗 ∈ D, 𝑡 ∈ T , (6h)

0 ≤ 𝑚𝑖,𝑡 ≤ 𝑀𝑗,𝑡 , ∀𝑖 ∈ I, 𝑡 ∈ T , (6i)

0 ≤ 𝑤𝑖,𝑡 ≤𝑊𝑗,𝑡 , ∀𝑖 ∈ W, 𝑡 ∈ T , (6j)

0 ≤ 𝑟𝑖,𝑡 ≤ 𝑅 𝑗,𝑡 , ∀𝑖 ∈ R, 𝑡 ∈ T . (6k)

The generation sources include conventional thermal power
plants (e.g. gas, nuclear, coal), non-wind renewables (e.g. hydro),
imports, and wind power plants. Due to long-term commitments
for imports or goal of reducing carbon emissions with renewables,
the imports and renewables are non-dispatchable as in [50] but
can be curtailed at the cost of 𝐶𝑚

𝑖 and 𝐶𝑟
𝑖 $/MWh (𝐶𝑤

𝑖 $/MWh for
wind) respectively. Sometimes the power supply may not meet
the demand, and each unit of load shedding (not served load) is
at the cost of value of lost load (VOLL) 𝐶𝑑

𝑗 . In this paper, the unit
generation cost is 1/2/4 $/MWh for nuclear/coal/gas. The penalties
are 500/100/1,000 $/MWh for import/wind/non-wind renewables
curtailment, 1,000 $/MWh for load shedding.

The constraints are typical for DC-OPF. Constraint 6b represents
the balance constraint at each bus, whose associated dual value is
the locational marginal price (LMPrice) at that bus, indicating mar-
ginal cost of adding 1 MW load at a specific location, so the price
can go negative/high when curtailment/load shedding happens.
Constraints 6cś6e represent how the power flow (6c) is determined
given the line capacity (6d) and phase angle (6e) limits. Constraint
6f limits conventional power plants’ rate of ramping up/down gen-
eration. Constraints 6gś6k bound the conventional generation, load
shedding, and curtailments (6iś6k) respectively.

B FUEL CARBON EMISSION RATES

Below are the fuel carbon emission rates (carbon emissions per
MWh energy generated from that fuel) we use to calculate carbon
emissions:

Table 6: Carbon Emission Rates of Different Fuels [6, 42]

Generation Type Carbon Emission Rate (kg CO2/MWh)
Coal 895.2

Natural Gas 388.9
Oil 877.6

Dual-fuel 633.3
Nuclear 0

Geothermal 107.6
Biomass 0
Hydro 0
Wind 0
Import 428
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