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Abstract. We show how to round any half-integral solution to the
subtour-elimination relaxation for the TSP, while losing a less-than-1.5
factor. Such a rounding algorithm was recently given by Karlin, Klein,
and Oveis Gharan based on sampling from max-entropy distributions.
We build on an approach of Haddadan and Newman to show how sam-
pling from the matroid intersection polytope, and a new use of max-
entropy sampling, can give better guarantees.

1 Introduction

The (symmetric) traveling salesman problem asks: given an graph G = (V, E)
with edge-lengths ¢, > 0, find the shortest tour that visits all vertices at least
once. The Christofides-Serdyukov algorithm [1,10] gives a 3/2-approximation to
this APX-hard problem; this was recently improved to a (3/2 — )-approximation
by the breakthrough work of Karlin, Klein, and Oveis Gharan, where e > 0 [7]. A
related question is: what is the integrality gap of the subtour-elimination polytope
relaxzation for the TSP? Wolsey had adapted the Christofides-Serdyukov analysis
to show an upper bound of 3/2 [12] (also [11]), and there exists a lower bound of
4/3. Building on their above-mentioned work, Karlin, Klein, and Oveis Gharan
gave an integrality gap of 1.5 — &’ for another small constant £ > 0 [5], thereby
making the first progress towards the conjectured optimal value of 4/3 in nearly
half a century.

Both these recent results are based on a randomized version of the
Christofides-Serdyukov algorithm proposed by Oveis Gharan, Saberi, and
Singh [8]. This algorithm first samples a spanning tree (plus perhaps one edge)
from the maz-entropy distribution with marginals matching the LP solution, and
adds an O-join on the odd-degree vertices O in it, thereby getting an Eulerian
spanning subgraph. Since the first step has expected cost equal to that of the LP
solution, these works then bound the cost of this O-join by strictly less than half
the optimal value, or the LP value. The proof uses a cactus-like decomposition
of the min-cuts of the graph with respect to the values z., like in [8].
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Given the 3/2 barrier has been broken, we can ask: what other techniques can
be effective here? How can we make further progress? These questions are interest-
ing even for cases where the LP has additional structure. The half-integral cases
(i.e., points for which x, € {0,1/2,1} for all e) are particularly interesting due
to the Schalekamp, Williamson, and van Zuylen conjecture, which says that the
integrality gap is achieved on instances where the LP has optimal half-integral
solutions [9]. The team of Karlin, Klein, and Oveis Gharan first used their max-
entropy approach to get an integrality gap of 1.49993 for half-integral LP solu-
tions [6], before they moved on to the general case in [7] and obtained an inte-
grality gap of 1.5 — ¢; the latter improvement is considerably smaller than in the
half-integral case. It is natural to ask: can we do better for half-integral instances?

In this paper, we answer this question affirmatively. We show how to get tours
of expected cost of ~ 1.499 times the linear program value using an algorithm
based just on matroid intersection techniques. Moreover, some of these ideas
can also strengthen the max-entropy sampling approach in the half-integral case.
While the matroid intersection approach and the strengthened max-entropy app-
roach each separately yield improvements over the bound in [6], the improvement
obtained by combining these two approaches is slightly better:

Theorem 1.1. Let x be a half-integral solution to the subtour elimination poly-
tope with cost ¢(x). There is a randomized algorithm that rounds x to an integral
solution whose cost is at most (1.5 — ¢) - ¢(x), where € = 0.001695.

We view our work as showing a proof-of-concept of the efficacy of combi-
natorial techniques (matroid intersection, and flow-based charging arguments)
in getting an improvement for the half-integral case. We hope that these tech-
niques, ideally combined with max-entropy sampling techniques, can give further
progress on this central problem.

Our Techniques. The algorithm is again in the Christofides-Serdyukov frame-
work. It is easiest to explain for the case where the graph (a) has an even number
of vertices, and (b) has no (non-trivial) proper min-cuts with respect to the LP
solution values xz.—specifically, the only sets for which 2:(0S) = 2 correspond to
the singleton cuts. Here, our goal is that each edge is “even” with some prob-
ability: i.e., both of its endpoints have even degree with probability p > 0. In
this case we use an idea due to Haddadan and Newman [3]: we shift and get
a {1/3,1}-valued solution y to the subtour elimination polytope Krgp. Specifi-
cally, we find a random perfect matching M in the support of x, and set y. = 1
for e € M, and /3 otherwise, thereby ensuring E[y] = x. To pick a random tree
from this shifted distribution y, we do one of the following:

1. We pick a random “independent” set M’ of matching edges (so that no edge
in F is incident to two edges of M’). For each ¢/ € M’, we place parti-
tion matroid constraints enforcing that exactly one edge is picked at each
endpoint—which, along with €’ itself, gives degree 2 and thereby makes the
edge even as desired. Finding spanning trees subject to another matroid con-
straint can be implemented using matroid intersection.

2. Or, instead we sample a random spanning tree from the max-entropy distri-
bution, with marginals being the shifted value y. (In contrast, [6] sample trees
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from x itself; our shifting allows us to get stronger notions of evenness than
they do: e.g., we can show that every edge is “even-at-last” with constant
probability, as opposed to having at least one even-at-last edge in each tight
cut with some probabiltiy.)

(Our algorithm randomizes between the two samplers to achieve the best guar-
antees.) For the O-join step, it suffices to give fractional values z, to edges so that
for every odd cut in T, the z-mass leaving the cut is at least 1. In the special case
we consider, each edge only participates in two min-cuts—those corresponding
to its two endpoints. So set z, = ¢¢/3 if e is even, and z¢/2 if not; the only cuts
with z(0S) < 1 are minimum cuts, and these cuts will not show up as O-join
constraints, due to evenness. For this setting, if an edge is even with probability
p, we get a (3/2 — p/6)-approximation!

It remains to get rid of the two simplifying assumptions. To sample trees
when |V is odd (an open question from [3]), we add a new vertex to fix the
parity, and perform local surgery on the solution to get a new TSP solution and
reduce to the even case. The challenge here is to show that the losses incurred
are small, and hence each edge is still even with constant probability.

Finally, what if there are proper tight sets S, i.e., where x(9S) = 2? We use
the cactus decomposition of a graph (also used in [6,8]) to sample spanning trees
from pieces of G with no proper min-cuts, and stitch these trees together. These
pieces are formed by contracting sets of vertices in G, and have a hierachical
structure. Moreover, each such piece is either of the form above (a graph with
no proper min-cuts) for which we have already seen samplers, or else it is a
double-edged cycle (which is easily sampled from). Since each edge may now lie
in many min-cuts, we no longer just want an edge to have both endpoints be
even. Instead, we use an idea from [6] that uses the hierarchical structure on
the pieces considered above. Every edge of the graph is “settled” at exactly one
of these pieces, and we ask for both of its endpoints to have even degree in the
piece at which it is settled. The z. value of such an edge may be lowered from
an initial value of /2 in the O-join without affecting constraints corresponding
to cuts in the piece at which it is settled.

Since cuts at other levels of the hierarchy may now be deficient because of the
lower values of z., we may need to increase the z; values for other “lower” edges
f to satisfy these deficient cuts. This last part requires a charging argument,
showing that each edge e has z, that is strictly smaller than /2 in expectation.
For our samplers, the naive approach of distributing charge uniformly as in [6]
does not work, so we instead formulate this charging as a flow problem.

Due to lack of space we present the simpler samplers and the main algorithm
here, and defer many of the proofs and the details to the full version.

2 Notation and Preliminaries

Given a multigraph G = (V, E'), and aset S C V', let S denote the cut consisting
of the edges connecting S to V' \ S; S and S := V' \ S are called shores of the
cut. A subset S C V is proper if 1 < |S] < |V] —1; a cut 9S is called proper
if the set S is a proper subset. A set S is tight if |0S| equals the size of the
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minimum edge-cut in G. Two sets S and S’ are crossing if SNS’, S\ S', S\ S,
and V'\ (SUS’) are all non-empty.
Define the subtour elimination polytope Krsp(G) C RIFI:

{r >0|z(0v) =2Vv e V,z(3S) > 2V proper S}. (1)

Let = be half-integral and feasible for (1). W.l.o.g. we can focus on solutions
with z, = 1/2 for each e € F, doubling edges if necessary. The support graph G
is then a 4-regular 4-edge-connected (henceforth 4EC) multigraph.

Fact 2.1. If x € Krsp(G), then x|p(v(a)\{r}) 5 in the spanning tree poly-
tope Kspr(G[V(G) \ {r}]) for any r € V, and z/2 is in the perfect matching
polytope Kppr(G) (when |V(G)| is even) and in the O-join dominator polytope
Kjoin(G,0), O CV(G), |O| even, given by:

{z>0]2(05)>1VS CV,|SNO| odd.}.

Lemma 2.1. Consider a sub-partition P = {Py, Pa, ..., P;} of the edge set of G.
Let x be a fractional solution to the spanning tree polytope that satisfies x(P;) < 1
for alli € [t]. The integrality of the matroid intersection polytope implies that we
can efficiently sample from a probability distribution D over spanning trees which
contain at most one edge from each of the parts P;, such that Pr_ple € T] = ..

Let z be in the relative interior of the spanning tree polytope. The max-
entropy distribution is a distribution g of spanning trees that maximizes the
entropy of p subject to P(e € T) = z. [8]. It is a A-uniform spanning tree
distribution and thus is strongly Rayleigh (SR).

Theorem 2.2 (Negative Correlation [8]). Let p be an SR distribution on
spanning trees.

1. Let S be a set of edges and Xg = |SNT|, where T ~ p. Then, Xg ~ Zgl Y;,
where the Y; are independent Bernoulli random variables with success proba-
bilities p; and ), p; = E[Xg] .

2. For any set of edges S and e & S,

(i) E,[Xs] <E,[Xs | Xe =0] <E,[Xg]+PuleeT), and
(i) E,[Xs] —14+Pu(e e T) <E,[Xs | Xe =1] <E,[Xg].

Theorem 2.3 ([4], Corollary 2.1). Let g : {1,...,m} = R and 0 < p < m.
Let By, ..., By, be Bernoulli r.v.s with probabilities pi, . .., p}, that mazimize (or
minimize) Elg(By + ... 4+ Bm)] over all possible success probabilities p; for B;
for which p1 + -+ + pm, = p. Then {p3,...,p5} € {0,2,1} for some z € (0,1).

3 Samplers

We now describe the MAXENT and MATINT samplers for graphs that contain no
proper min-cuts, and give bounds on certain correlations between edges that will
be used in Sect.5 to prove that every edge is “even” with constant probability.
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For lack of space, we focus on the case where |V is even; the case of |V| being
odd is slightly more technical; please see the full version of the paper.

Suppose the graph H = (V, E) is 4-regular and 4EC, contains at least four
vertices, and has no proper min-cuts. H is a simple graph, because parallel edges
between u, v would mean that d({u,v}) is a proper min-cut. Also, all proper cuts
have six or more edges. We are given a dedicated external vertex r € V(H); the
vertices I := V' \ {r} are called internal. (In future sections, r will be given by a
cut hierarchy.) Call the edges in 9r external edges; all other edges are internal.
An internal vertex is called a boundary vertez if it is adjacent to r. An edge is
said to be special if both of its endpoints are non-boundary vertices.

We show two ways to sample a spanning tree on H|[I], the graph induced on
the internal vertices, being faithful to the marginals z., i.e., Pr(e € T) = z, for
all e € E(H) \ Or. Moreover, we want that for each internal edge, both its end-
points have even degree in T with constant probability. This property will allow
us to lower the cost of the O-join in Sect. 6. While both samplers will satisfy this
property, each will do better in certain cases. The MATINT sampler targets spe-
cial edges; it allows us to randomly “hand-pick” edges of this form and enforce
that both of its endpoints have degree 2 in the tree. The MAXENT sampler, on
the other hand, relies on maximizing the randomness of the spanning tree sam-
pled (subject to being faithful to the marginals); negative correlation properties
allow us to obtain the evenness property, specifically, better probabilities than
MATINT for non-special edges, and a worse one for the special edges.

Our samplers will depend on the parity of |V|: when |V| is even, the MATINT
sampler in Sect. 3.1 was given by [3, Theorem 13]. They left the case of odd |V
as an open problem, which we solve.

3.1 Samplers for Even |V (H)|

Since H is 4-regular and 4EC and |V (H)| is even, setting a value of 1/4 = z¢/2
on each edge gives a solution to Kpy/(H) by Fact 2.1.

1. Sample a perfect matching M s.t. P(e € M) =1/4 = z/2 for all e € E(H).

2. Define a new fractional solution y (that depends on M): set y. = 1 fore € M,
and y. = 1/3 otherwise. We have y € Krgp(H) (and hence y|; € Kgpr(H[I])
by Fact 2.1): indeed, each vertex has y(0v) =14 3-1/3 = 2 because M is a
perfect matching. Moreover, every proper cut U in H has at least six edges,
so y(0U) > |0U| - 1/3 > 2. Furthermore,

Enlye] = Y4-143/4-1/3 =1/2 = x,. (2)

3. Sample a spanning tree faithful to the marginals y, using one of two samplers:
(a) MAXENT Sampler: Sample from the max-entropy distribution on span-
ning trees with marginals y. (Since y may not be in the relative interior

of the spanning tree polytope, contract the 1-valued edges to obtain
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Fig. 1. The matching M consists of the green and brown edges; one possible choice of
M’ has edges {a,c} in brown, and the constraints are placed on the edges adjacent to
those in M’ (marked in gray).

a 6-regular, 1/3-uniform solution. This may have nontrivial min-cuts, so
once again use a cactus hierarchy to decompose the graph into pieces (see
Sect. 4.1); the induced solution on each piece is in the relative interior of
the spanning tree polytope. For each piece, sample a A-uniform spanning
tree that preserves marginals, and then stitch these trees together.)

(b) MATINT Sampler:

i. Color the edges of M using 7 colors such that no edge of H is adjacent
to two edges of M having the same color; e.g., greedily 7-color the
6-regular graph H/M. Let M’ be one of these color classes picked
uniformly at random. So P(e € M') = /28, and P(OvNM' # @) = /7
see Fig. 1.

ii. For each edge ¢ = uwv € M’, let L., and R,, be the sets of edges
incident at u and v other than e. Note that |L,,| = |Ry..| = 3. Place
partition matroid constraints y(L,,) < 1 and y(Ry,) < 1 on each of
these sets. Finally, restrict the partition constraints to the internal
edges of H; this means some of these constraints are no longer tight
for the solution y.

(¢) Given the sub-matching M’ C M, and the partition matroid M on the
internal edges defined using M’, use Lemma 2.1 to sample a tree on
H[V\{r}] (i-e., on the internal vertices and edges of H) with marginals
Ye, subject to this partition matroid M.

Conditioned on the matching M, we have P(e € T'| M) = y,; now using (2), we
have P(e € T') = x, for all e € (E'\ Or).

The main idea for the odd case is to duplicate the external vertex with a
pair of parallel edges between these copies. Since this gives a graph with proper
min-cuts, we cannot apply shifting naively. Instead we perform “local surgery”
on the LP solution to get a feasible fractional spanning tree. Showing that these
changes still give us a tree with good evenness properties requires some care,
and the ideas are deferred to the full version for lack of space.
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3.2 Correlation Properties of Samplers

Let T be a tree sampled using either the MATINT or the MAXENT sampler.
The following claims will be used to prove the evenness property in Sect. 5. Each
table gives lower bounds on the corresponding probabilities for each sampler.

Lemma 3.1. If f, g are internal edges incident to a vertex v, then

Probability Statement | MATINT | MAXENT
P(TNn{f g} =2) Yo Yo
P ni{f,g} ={r}) Yo 12/72

Lemma 3.2. If edges e, f, g, h incident to a vertex v are all internal, then

Probability Statement | MATINT | MAXENT
P(TN{e.fig. b} =2) 2% 5

Lemma 3.3. For an internal edge e = uv:

(a) if both endpoints are non-boundary vertices, then

Probability Statement | MATINT | MAXENT
P(|or(u)| = |0r(v)| =2) | /36 128/6561

(b) if both u,v are boundary vertices, then

Probability Statement MATINT | MAXENT

P(exactly one of u, v has odd degree in T') | 1/9 5/18

To give a sense of the techniques, we give the proof for the last statement
above when |V (H)| is even. The other proofs are similar in flavor, please see the
full version.

Proof (Lemma 3.3a, Even Case). The MATINT claims: The event happens when
e € M’, which happens w.p. 1/28, which is at least 1/36.

The MAXENT claims: Condition on e € M. Let S; = 0(u) \ e and S = 9(v) \ e.
Denote S1 = {a, b, c}. Lower bound P(|S; NT| = 1) using Theorem 2.3: E[|S1 N
T =3-1Y3=1,sP(S1NT| =1) >3-13- (2/3)2/3 = 4/9. Consider the
distribution over the edges in Sy conditioned on a € T'; this distribution is also
SR. By Theorem 2.2, 1/3 < E[Xg, | X, = 1] < 1. Applying Theorem 2.2 twice
more,

1/3 < E[X52 | Xoe=1,Xp.= O] <1+ 1/3 + 1/3 = 5/3.

By Theorem 2.3, P(Xg, =1| X, =1,X3.=0)>3-1/9- (8/9)> = 64/243. Using
symmetry, we obtain P(Xg, = 1A Xg, =1Ae € M) > 64/243-4/9-1/4 > 128/6561.
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4 Sampling Algorithm for General Solutions

Now that we can sample a spanning tree from a graph with no proper min-cuts,
we introduce the algorithm to sample a spanning tree plus one edge (an rq tree)
from a 4-regular, 4EC graph, perhaps with proper min-cuts.

W.l.o.g., assume that the graph G = (V, E)) has a set of three special vertices
{ro, w0, v}, with each pair rg, ug and rg, vg having a pair of edges between them
(used in line 18).(We can introduce dummy nodes to ensure this property, which
is for simplicity—it guarantees that the top set in the cut hierarchy is a cycle
set.) Define a double cycle to be a cycle graph in which each edge is replaced by
a pair of parallel edges, and call each such pair partner edges.

Algorithm 1. Sampling Algorithm for a Half-Integral Solution

1: let G be the support graph of a half-integral solution .
2: let T = 2.
3: while 3 a proper tight set of G not crossed by another proper tight set do
4: let S be a minimal such set (and choose S such that rg & .5).
5: Define G' = G/(V'\ S).
6: if G’ is a double cycle then
7 Label S a cycle set.
8: sample a random edge from each set of partner edges in G[S]; add
these edges to T'.
9: else // G’ has no proper min-cuts (Lemma 4.1).
10: Label S a degree set.
11: if G’ = K5 then
12: sample a random path on G[S]
13: else
14: W.p. A, let u be the MAXENT distribution over E(S)
15: W.p. 1 — A, let u be the MATINT distribution.
16: sample a spanning tree on G[S] from p and add its edges to T.

17: let G=G/S

18: Due to rg, ug, vg, at this point G is a double cycle (Lemma 4.1). Sample one
edge between each pair of adjacent vertices in G.

As in [6], we refer to the sets in line 4 as critical sets. The algorithm sam-
ples from the same pieces as in [6], with the key differences being randomizing
between the MATINT and MAXENT samplers as well as a critical optimization
for K5’s (the latter will become clear later and in the full version of the paper).

Lemma 4.1. Algorithm 1 is well-defined: In every iteration of Algorithm 1, G’
1s either a double cycle or a graph with no proper min-cuts, and graph remaining
at the end of the algorithm (line 18) is a double cycle.

We will prove the following theorem in Sect.6. This in turn gives Theorem
1.1.
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Theorem 4.1. Let T be the ro-tree chosen from Algorithm 1, and O be the set
of odd degree vertices in T'. The expected cost of the minimum cost O-join for T
is at most (Y2 —¢) - c(x).

4.1 The Cut Hierarchy

To lower the cost of the O-join, we need a complete description of the min-cuts of
G, which will be achieved by the implicit hierarchy of sets Algorithm 1 induces.
This hierarchical decomposition is the same as the one used in [6]; however, here
we give an explicit way to construct the hierarchy of tight cuts. The hierarchy is
given by a rooted tree 7 = (Vr, E7).! The node set Vi corresponds to all critical
sets found by the algorithm, along with a root node and leaf nodes labelled the
vertices in Vg \ {ro}. If S is a critical set, we label the node in V7 with S, where
we view S C Vi and not Vg . The root node is labelled Vi \ {ro}. A node S
is a child of §' if S € S’ and S’ is the first superset of S contracted after S
in the algorithm. Also, the root node is a parent of all nodes corresponding to
critical sets that are not strictly contained in any other critical set. Each leaf
node is a child of the smallest critical set that contains it. Observe that vertex
sets labelling the children of a node are a partition of the vertex set labelling
that node. A node in Vi is a cycle or degree node if the corresponding critical
set labelling it is a cycle or degree set. (We take the root node as a cycle node.
The leaf nodes are not labelled as degree or cycle nodes see Fig. 2.)

G

Fig. 2. A portion of the cut hierarchy 7 and the local multigraph G{(S)).

Let S C Vg be a set labelling a node in 7. Define the local multigraph G{(.S))
to be the following graph: take G and contract the subsets of Vi labelling the
children of S in 7 down to single vertices and contract S to a single vertex
vg. Remove any self-loops. The vertex vg is called the external vertex; all other
vertices are called internal vertices. An internal vertex is called a boundary vertex
if it is adjacent to the external vertex. The edges in G{(S)) \vg are called internal
edges. Observe G((S)) is precisely the graph G’ in line 5 of Algorithm 1 when S
is a critical set, and is a double cycle when S = Vi \ {ro}.

! Since there are several graphs under consideration, the vertex set of G is called Vg.
Moreover, for clarity, we refer to elements of Vi as vertices, and elements of Vi as
nodes.
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Properties of 7

1. Let S C Vg be a set labelling a node in 7. If S is a degree node in 7, then
G({(S)) has at least five vertices and no proper min-cuts. If S is a cycle node
in 7, then G((S)) is exactly a double cycle. These are by Lemma 4.1.

2. Algorithm 1 can be restated: For each non-leaf node S in 7', sample a random
path on G{(S)) \ vg if it is a double cycle or K5; otherwise use the MAXENT
or MATINT samplers w.p. A and 1 — A, respectively, on G{(S)) \ vs.

3. For a degree set S, the graph G{(S) having no proper min-cuts implies that
it has no parallel edges. In particular, no vertex has parallel edges to the
external vertex in G((S)). Hence we get the following:

Corollary 4.1. For a set S labeling a non-leaf node in T and any internal
vertex v € G{(S)): if S is a cycle set then |vNOS| € {0,2}, and if S is a degree
set then |0v N 0S| € {0,1}.

The cactus representation of min-cuts [2] translates to the following complete
characterization of the min-cuts of G in terms of local multigraphs.

Lemma 4.2. Any min-cut in G is either (a) 0S for some node S in T, or
(b) 0X where X is obtained as follows: for some cycle set S in T, X is the
union of vertices corresponding to some contiguous segment of the cycle G{(S)).

5 Analysis Part I: The Even-at-Last Property

We now define a notion of evenness for every edge in G that will allow us to
reduce the cost of the O-join in Sect.6. In the case where G has no proper
min-cuts, we called an edge even if both of its endpoints were even in T. The
general definition of evenness extends this idea, but now depends on where an
edge belongs in the hierarchy 7. Specifically, we say an edge e € E(G) is settled
at S if S is the (unique) set such that e is an internal edge of G({(S)); call S the
last set of e. If S is a degree or cycle set, we call e a degree edge or cycle edge.
Let S be the last set of e, and T{(S)) be the restriction of T' to G{(S)).

1. A degree edge e is called even-at-last (EAL) if both its endpoints have even
degree in T{(.S)).

2. For a cycle edge e = wuw, the graph G{S)) \ {vg} is a chain of vertices
Vg, ..., UV, .. ., Uy, With consecutive vertices connected by two parallel edges.
Let C :={vy,...,u}, and C' := {v,...,v,} be a partition of this chain. The
cuts 9C' and 9C’ are called the canonical cuts for e. Cycle edge e is called
even-at-last (EAL) if both canonical cuts are crossed an even number of times
by T{(S); in other words, if there is exactly one edge in T{(S)) from each of
the two pairs of external partner edges leaving vy and v,..

Informally, a degree edge is EAL in the general case if it is even in the tree
at the level at which it is settled. Let e be settled at a degree set S. We say
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that e is special if both of its endpoints are non-boundary vertices in G{(S)) and
half-special if exactly one of its endpoints is a boundary vertex in G{(S)). The
key property used in Sect. 6 to reduce each z. in the fractional O-join is:

Theorem 5.1 (The Even-at-Last Property). The table below gives lower
bounds on the probability that special, half-special, and all other types of degree
edges are EAL in each of the two samplers.

special  half-special other degree edges
MATINT /36 /21 1/18
MAXENT 128/6561 4/27 12/144

Moreover, a cycle edge is EAL w.p. at least A -12/144 + (1 — \) - 1/18.

Proof. Let e be settled at S. Let Ts be the spanning tree sampled on the internal
vertices of G{(S)) (in Algorithm 1, the spanning tree sampled on G[S]). We show
the proof when S is a degree set.

1. If e is special, then Lemma 3.3(a) gives the bounds in the table.

2. Suppose one of the endpoints of e = uwv (say ) is a boundary vertex in .S, with
edge f incident to u leaving S. By Lemma 3.2, the other endpoint v is even
in Tg w.p. 2/21 for the MATINT sampler and 8/27 for the MAXENT sampler.
Moreover, the edge f is chosen at a higher level than S and is therefore
independent of T, and hence can make the degree of u even w.p. 1/2. Thus e
is EAL w.p. /21 for the MATINT sampler and 4/27 for the MAXENT sampler.

3. Suppose both endpoints of e are boundary vertices of S, with edges f,g
leaving S. Let g— be the probability that the degrees of vertices u,v in the
tree Ty chosen within S have the same parity, and ¢ = 1 — ¢—. Now, when
S is contracted and we choose a ro-tree 77 on the graph G/S consistent with
the marginals, let p— be the probability that either both or neither of f, g are
chosen in 7", and px = 1 — p—. Hence

P(e EAL) = QooP11 T QoeP10 + QeoP01 + GeePo0 = 1/2(17:(]: + p#Q#)v (3)

where G0, Goe, Geo and gee correspond to different parity combinations of w
and v in Ts and pgog, Po1, P10, P11 correspond to whether f and g are chosen
in T”. The second equality follows from symmetry.
(a) If f, g are settled at different levels, then they are independent. This gives
p— = px = 1/2, and hence P(e EAL) = 1/4 regardless of the sampler.
(b) If f,g have the same last set which is a degree set, then by Lemma 3.1
P11, Po1, P1o = /9. By symmetry, poo > /9. So (3) gives P(e EAL) > 1/o.
(c) If f,g have the same last set which is a cycle set, consider the case
where f,g are partners, in which case p» = 1. Now (3) implies that
P(e EAL) = a#/2, which by Lemma 3.3(b) is > 1/2- 1/9 = 1/18 in the
MATINT sampler, and 1/2 - 5/18 = 5/36 in the MAXENT sampler. If f, g
are not partners, then they are chosen independently, in which case again
p= = px = 1/2, and hence P(e FAL) = 1/4.

The proof for cycle sets follows similar lines, and is in the full version.
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6 Analysis Part II: The O-Join and Charging

To prove Theorem 4.1, we construct an O-join for the random tree T', and bound
its expected cost via a charging argument. The structure of here is similar to
[6]; however, we use a flow-based approach to perform the charging instead of
the naive one, and also use our stronger property that every edge is EAL with
constant probability (versus the weaker property obtained in [6] that every tight
cut contains an EAL edge with constant probability).

Let O denote the (random set of) odd-degree vertices in T'. The dominant of
the O-join polytope Kjoin(G,O) is given by

{2(0S) > 1|V¥S CV,|0S N T| odd.}.

This polytope is integral, so it suffices to show the ezistence of a fractional O-
join solution z € Kjein (G, O) with low expected cost. (The expectation is taken
over O.)

To construct the fractional O-join z, we begin with z = /2. Notice that
z(0S) > 1 is a tight constraint when S is a min-cut. For any e that is EAL in T
we first flip a biased coin to know whether to reduce z.: the purpose of the coin
flips is to “flatten” the probability of reducing z. to the bound given by Theorem
5.1 on the probability that e is EAL. Now the amount of the reduction in z,
depends on whether e is a degree or cycle edge; the amount is later optimized
by the solution to a linear program. In the case of the cycle edge, we are able to
reduce an edge by the full 1/12; degree edges cannot be reduced as drastically.

However, these reductions may make z infeasible, and we need to fix that.
Indeed, suppose f is EAL and that we reduce zy. Say f is settled at S. If S is
a degree set, then the only min-cuts of G{(S)) are the degree cuts. So the only
min-cuts that the edge f is part of in G{(S)) are the degree cuts of its endpoints;
call them U,V, in G{(S)) (U and V are vertices in G{(S)) representing sets U
and V in G). But since |0U NT| and |0V N T| are both even by definition of
EAL, we need not worry that reducing z; causes z(OU) > 1 and z(9V) > 1 to
be violated. Likewise, if S is a cycle set, then by definition of EAL all min-cuts
S’ in G((S)) containing e have [0S’ NT| even, so again we need not worry.

Since f is only an internal edge for its last set S, the only cuts S’ for which
the constraint z(9S’) > 1, |05’ NT| odd, may be violated as a result of reducing
zy are cuts represented in lower levels of the hierarchy. Specifically, lef f be an
external edge for some G{(X)) (meaning X is lower in the hierarchy 7 than S)
and S’ be a min-cut of G{{X)) (either a degree cut or a canonical cut). By Lemma
4.2, cuts of the form S’ are the only cuts that may be deficient as a result of
reducing z;. Call the internal edges of 95’ lower edges. When z; is reduced and
|0S" NT| is odd, we must distribute an increase (charge) over the lower edges
totalling the amount by which zy is reduced, so that 2(0S") = 1.

Fix edge e, say with last set S. We need to show that in expectation the
charge it receives from external edges in G{(S)) is strictly less than the initial
expected reduction to z.. External edges bring in charge to internal edges and
Corollary 4.1 says that every vertex in a critical set can have at 0, 1, or 2 external
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edges (and there are 4 external edges). When e is a cycle edge, we distribute
charge from an external edge evenly between e and its partner. When e is a
degree edge, charge will be optimally distributed according to a maximum-flow
solution. Specifically, in order to minimize the maximum charge given on any
edge, we bipartize G{(S)) into H = (L, R): the vertices in L and R represent
external and internal edges, respectively, and the edges of H are those pairs of
edges in G((S)) which are adjacent. Each vertex in L releases a unit of charge
and each vertex in R absorbs at most ¢ units of charge.

The problem of optimally distributing charge reduces to finding the smallest
constant ¢ such that there exists a flow with capacity at most c. An argument
based on Hall’s condition characterizes precisely when a flow distributing ¢ units
of charge to internal edges exists. In order to optimize the constant ¢ (found
to be 1/2), the case where G((S)) = K5 happens to be a bottleneck; hence, we
treat the K5 case separately in order to gain from the max-flow formulation,
by choosing a very natural sampling method for it, and then reducing its edges
differently from those of other degree sets.
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