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We correct the proof of Lemma 3.1 of our paper Ann. Appl. Probab. 30
(2020) 503-525.

Lemma 3.1 asserts that Ey [Z(§,)] — Ex,[Z(X:)] = O~ /?) and Ey,[Z(Fn)] >
Ex, [Z(X,)] for all sufficiently large n. Our proof was not correct: As Benjamin Gunby and
Xiaoyu He pointed out to us, we missed four terms in the computation of equation (3.3).
Those terms contribute a negative amount, so the proof is more delicate. Here is a correct
proof.

The intuition behind the result is that a string with a defect of the type we consider, namely,
a 10 in a string of 01’s, is likely to cause more 11’s in the trace than a string without the defect.
Since the defect in y,, is shifted to the right as compared to the defect in x,,, the defect of y,,
is slightly more likely to “fall into” the test window {[2np +11,..., [2np + \/npq |} of the
trace than is the defect of x,,. More precisely, the difference in probability is of order n~1/2,
In the proof below, we make this intuition rigorous.

PROOF. We assume throughout the proof that k € {[2np + 17, ..., [2np + /npq]}. Let
E(m, k) denote the event that bit m in the input string is copied to position k in the trace.
First observe that

4n
Py, [Fk = Xpy1 = 1= ) Py, [E(m, )] Py, [Fh = Xi1 = L E(m, k)],
m=k
4n
Py, [k =Fir1 = 11= ) Py, [E(m, )] Py, [k = Fier1 = 1| E(m, k)],
m=k
and

m—1

Py, [E(m, k)] =Py, [E(m, k)] =1 —g)fg™™* (k - 1) , melk, ... 4n).

Note that the string x,, centered at m is identical to the string y,, centered at m + 2, except
for two bits at the ends. Therefore, for every m € {k, ..., 3n}, we have

Py, [Xk = Xk+1 = 1| E(m, k)] =Py, [k = Vir1 = HIE(m +2,k)] £ 0% (n),
where 0°(n) denotes something nonnegative that decays at least exponentially fast in n.
Combining this with Px, [E (m, k)] = 0°°(n) for m < k +2 or m > 3n yields
Py, [k = Vi1 = 1] = Py, [Xk = X1 = 1]

3n
= 3 (Po[E(m +2,0)] = Py, [E(m, ©)]) Py, [Fe = Fiet = 1HE(m, b)] £ 0¥ (n).

m=k
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Setting a,, :=gp/(1 —g*) =q/(1 + q) if m is even and a,, := 0 otherwise, we see that

3n
> (P, [E(m+2,k)] — Py, [E(m, k)])am = £0™(n).
m=k

Subtracting this from the previous display gives

Py, [Vk = Vi1 = 11 — Py, [Xk = X1 = 1]

3n
(E.1) =Y (Px,[E(m+2,k)] — Px,[E(m, k)])

m=k
- (P, [Xk = Xk41 = 1E(m, k)] — am) £ 0> (n).
The second factor in the above summand, modulo an additive error of 0°°(n), represents

the difference in probability of the event Xy = Xr4+1 = 1 given E(m, k) for the string x; as
compared to a string without any defect. It takes the following explicit form:

0 if m <2n —3is odd,
g7 "2 (1 —q)? ifm <2n —2is even,
N q> N
(EZ) Pxn[Xk:xk+1:1|E(m’k)]_am% 1+q 1Im=12n s
S if m =2n,
14+g¢
0 if2n+1<m<3n,

where ~ means that we incur an additive error of +0°°(n).
Now let jy be a sufficiently large positive integer that

(E.3) 1—qg—qg*>0.

Note that jo depends on g but can be chosen so that it does not depend on n. We suppose in
the rest of the proof that n > jo. By (E.1) and (E.2),

Py, [Vk = Yi+1 = 1] = Py, [Xk = X1 = 1]
2n

(E.4) > Y (Py,[E(m+2,k)]—Px,[E(m, k)])

m:2n—2j0
- (Py, [Xk = X1 = LIE(m, k)] — am) — 0™ (n).
Form € {2n —2jy, ..., 2n + 2} and with & :=k — 2np, we have

_ £ 1
(E.5) Py [E(m +2,k)] — Py, [E(m, k)] = Py, [E@2n, k)]( + 0<n)>,

ng
because for m € {2n — 2jy, ..., 2n},

Py [E(m, k)] B m—-—k+1)(m—k+2)---2n—k)

Py [EQn, k)] mm+1)---2n—1).-g2n—m

—2np+1 2np+2
(% 2nq)(m 2:115 2nq) (L= m)
o mo omtl - Ly
2n 2n 2n

=1—£Q2n—m)/(2ng) £ O(1/n) + O(£2/n?)
=1-§6@2n—m)/(2nq) = O(1/n);

the same result holds for m € {2n + 1, 2n + 2} by a similar estimate.
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Combining (E.2) and (E.5), we get that the right-hand side of (E.4) is equal to

2
E6) PXH[E(Zn,k)]<ij:O(1)) (U—-g)(l-g—gq Jo)'
nq 1+¢

Summing the left-hand side of (E.4) over k € {[2np + 17, ..., |2np + /npq |} and using the
last display along with Px, [E(2n, k)] = O©(n~Y?%) and (E.3), we get the lower bounds in the
lemma, namely, Ey, [Z (§,)] — Ex,[Z(X,)] = Q(n~'/?) and Ey, [Z(F,)] > Ex, [Z(X)].

It remains to prove the upper bound, namely, Ey, [Z(¥n)] — Ex, [Z(Xy)] = on=Y 2). Let
b denote the absolute value of the right-hand side of (E.2). By (E.1) and (E.2), we have

n

|Pyn[yk = yk-i-l = 1] - Pxn [fk ka—f—l = 1]|
3n
< Y Py [Em+2.0] =P, [Em,D)]| bmn+0F®).
m=[2np—1]
Now sum over k; (2.7) of Lemma 2.2 yields ) ; |Px,[E(m + 2,k)] — Py, [E(m, k)]| =
O(m~1?) = O(m~'/?). In addition, }",, b,,.,, = O(1). Combining these bounds, we arrive
at the upper bound of the lemma. [

We remark that one can get a more precise bound in (E.6) that gives something positive
for all g € (0, 1) simultaneously by not truncating the sum on the right-hand side of (E.1) and
by using a more precise version of (E.5). The result, in fact, gives lower and upper bounds
for the left-hand side of (E.4) of the form

P, [EQn. k)]<% + 0(%)) ' (1111)2.

Finally, we note that in the proof of Proposition 1.4 on page 519, the definitions of X and
Y should be slightly modified: ¢ should be +/c both times.
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