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We correct the proof of Lemma 3.1 of our paper Ann. Appl. Probab. 30

(2020) 503–525.

Lemma 3.1 asserts that Eyn[Z(̃yn)] − Exn[Z(̃xn)] = �(n−1/2) and Eyn[Z(̃yn)] >

Exn[Z(̃xn)] for all sufficiently large n. Our proof was not correct: As Benjamin Gunby and

Xiaoyu He pointed out to us, we missed four terms in the computation of equation (3.3).

Those terms contribute a negative amount, so the proof is more delicate. Here is a correct

proof.

The intuition behind the result is that a string with a defect of the type we consider, namely,

a 10 in a string of 01’s, is likely to cause more 11’s in the trace than a string without the defect.

Since the defect in yn is shifted to the right as compared to the defect in xn, the defect of yn

is slightly more likely to “fall into” the test window {�2np + 1�, . . . , �2np + √
npq�} of the

trace than is the defect of xn. More precisely, the difference in probability is of order n−1/2.

In the proof below, we make this intuition rigorous.

PROOF. We assume throughout the proof that k ∈ {�2np + 1�, . . . , �2np + √
npq�}. Let

E(m,k) denote the event that bit m in the input string is copied to position k in the trace.

First observe that

Pxn[x̃k = x̃k+1 = 1] =
4n∑

m=k

Pxn

[
E(m,k)

]
Pxn

[
x̃k = x̃k+1 = 1|E(m,k)

]
,

Pyn[ỹk = ỹk+1 = 1] =
4n∑

m=k

Pyn

[
E(m,k)

]
Pyn

[
ỹk = ỹk+1 = 1|E(m,k)

]
,

and

Pxn

[
E(m,k)

]
= Pyn

[
E(m,k)

]
= (1 − q)kqm−k

(
m − 1

k − 1

)
, m ∈ {k, . . . ,4n}.

Note that the string xn centered at m is identical to the string yn centered at m + 2, except

for two bits at the ends. Therefore, for every m ∈ {k, . . . ,3n}, we have

Pxn

[
x̃k = x̃k+1 = 1|E(m,k)

]
= Pyn

[
ỹk = ỹk+1 = 1|E(m + 2, k)

]
± o∞(n),

where o∞(n) denotes something nonnegative that decays at least exponentially fast in n.

Combining this with Pxn[E(m,k)] = o∞(n) for m < k + 2 or m > 3n yields

Pyn[ỹk = ỹk+1 = 1] − Pxn[x̃k = x̃k+1 = 1]

=
3n∑

m=k

(
Pxn

[
E(m + 2, k)

]
− Pxn

[
E(m,k)

])
Pxn

[
x̃k = x̃k+1 = 1|E(m,k)

]
± o∞(n).
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Setting am := qp/(1 − q2) = q/(1 + q) if m is even and am := 0 otherwise, we see that

3n∑

m=k

(
Pxn

[
E(m + 2, k)

]
− Pxn

[
E(m,k)

])
am = ±o∞(n).

Subtracting this from the previous display gives

Pyn[ỹk = ỹk+1 = 1] − Pxn[x̃k = x̃k+1 = 1]

=
3n∑

m=k

(
Pxn

[
E(m + 2, k)

]
− Pxn

[
E(m,k)

])

·
(
Pxn

[
x̃k = x̃k+1 = 1|E(m,k)

]
− am

)
± o∞(n).

(E.1)

The second factor in the above summand, modulo an additive error of o∞(n), represents

the difference in probability of the event x̃k = x̃k+1 = 1 given E(m,k) for the string xk as

compared to a string without any defect. It takes the following explicit form:

(E.2) Pxn

[
x̃k = x̃k+1 = 1|E(m,k)

]
− am ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if m ≤ 2n − 3 is odd,

q2n−m−2(1 − q)2 if m ≤ 2n − 2 is even,

q2

1 + q
if m = 2n − 1,

−
q

1 + q
if m = 2n,

0 if 2n + 1 ≤ m ≤ 3n,

where ≈ means that we incur an additive error of ±o∞(n).

Now let j0 be a sufficiently large positive integer that

(E.3) 1 − q − q2j0 > 0.

Note that j0 depends on q but can be chosen so that it does not depend on n. We suppose in

the rest of the proof that n > j0. By (E.1) and (E.2),

Pyn[ỹk = ỹk+1 = 1] − Pxn[x̃k = x̃k+1 = 1]

≥
2n∑

m=2n−2j0

(
Pxn

[
E(m + 2, k)

]
− Pxn

[
E(m,k)

])

·
(
Pxn

[
x̃k = x̃k+1 = 1|E(m,k)

]
− am

)
− o∞(n).

(E.4)

For m ∈ {2n − 2j0, . . . ,2n + 2} and with ξ := k − 2np, we have

(E.5) Pxn

[
E(m + 2, k)

]
− Pxn

[
E(m,k)

]
= Pxn

[
E(2n, k)

]( ξ

nq
± O

(
1

n

))
,

because for m ∈ {2n − 2j0, . . . ,2n},
Pxn[E(m,k)]
Pxn[E(2n, k)]

=
(m − k + 1)(m − k + 2) · · · (2n − k)

m(m + 1) · · · (2n − 1) · q2n−m

=
(
m−2np+1

2nq
− ξ

2nq
)(

m−2np+2
2nq

− ξ
2nq

) · · · (1 − ξ
2nq

)

m
2n

· m+1
2n

· · · (1 − 1
2n

)

= 1 − ξ(2n − m)/(2nq) ± O(1/n) ± O
(
ξ2/n2)

= 1 − ξ(2n − m)/(2nq) ± O(1/n);
the same result holds for m ∈ {2n + 1,2n + 2} by a similar estimate.
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Combining (E.2) and (E.5), we get that the right-hand side of (E.4) is equal to

(E.6) Pxn

[
E(2n, k)

]( ξ

nq
± O

(
1

n

))
·
(1 − q)(1 − q − q2j0)

1 + q
.

Summing the left-hand side of (E.4) over k ∈ {�2np + 1�, . . . , �2np + √
npq�} and using the

last display along with Pxn[E(2n, k)] = �(n−1/2) and (E.3), we get the lower bounds in the

lemma, namely, Eyn[Z(̃yn)] − Exn[Z(̃xn)] = �(n−1/2) and Eyn[Z(̃yn)] > Exn[Z(̃xn)].
It remains to prove the upper bound, namely, Eyn[Z(̃yn)] − Exn[Z(̃xn)] = O(n−1/2). Let

bm,n denote the absolute value of the right-hand side of (E.2). By (E.1) and (E.2), we have
∣∣Pyn[ỹk = ỹk+1 = 1] − Pxn[x̃k = x̃k+1 = 1]

∣∣

≤
3n∑

m=�2np−1�

∣∣Pxn

[
E(m + 2, k)

]
− Pxn

[
E(m,k)

]∣∣ · bm,n + o∞(n).

Now sum over k; (2.7) of Lemma 2.2 yields
∑

k |Pxn[E(m + 2, k)] − Pxn[E(m,k)]| =
O(m−1/2) = O(n−1/2). In addition,

∑
m bm,n = O(1). Combining these bounds, we arrive

at the upper bound of the lemma. �

We remark that one can get a more precise bound in (E.6) that gives something positive

for all q ∈ (0,1) simultaneously by not truncating the sum on the right-hand side of (E.1) and

by using a more precise version of (E.5). The result, in fact, gives lower and upper bounds

for the left-hand side of (E.4) of the form

Pxn

[
E(2n, k)

]( ξ

nq
± O

(
1

n

))
·
(1 − q)2

1 + q
.

Finally, we note that in the proof of Proposition 1.4 on page 519, the definitions of X and

Y should be slightly modified: c should be
√

c both times.
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