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Consider continuous-time random walks on Cayley graphs where the rate
assigned to each edge depends only on the corresponding generator. We show
that the limiting speed is monotone increasing in the rates for infinite Cay-
ley graphs that arise from Coxeter systems but not for all Cayley graphs.
On finite Cayley graphs, we show that the distance—in various senses—to
stationarity is monotone decreasing in the rates for Coxeter systems and for
abelian groups but not for all Cayley graphs. We also find several examples
of surprising behaviour in the dependence of the distance to stationarity on
the rates. This includes a counterexample to a conjecture on entropy of Ben-
jamini, Lyons, and Schramm. We also show that the expected distance at any
fixed time for random walks on Z

+ is monotone increasing in the rates for
arbitrary rate functions, which is not true on all of Z. Various intermediate
results are also of interest.

1. Introduction. We are interested in questions arising from the following scenario.
Consider a connected, undirected graph G with each edge e labelled by a nonnegative real
number r(e). A random walk is defined on this graph by associating a Poisson process
(“clock”) with rate r(e) to each edge e. When this clock rings, if the walker is at either
neighbouring vertex, then it moves along the edge e to the other vertex; otherwise it does not
move. We choose the convention that the walk is left-continuous in time, which will be more
convenient to describe our couplings. Note that if G is finite, then the stationary distribution
of this walk is uniform.

Monotonicity in time or in the rate function r := r(·) of the behaviour of such a random
walk is complicated and not always intuitive, primarily because increasing r(e) not only
makes the walk more likely to cross e when at each of its endpoints, but also because it
moves the walk sooner in both directions of traversing e. Let pt (x, y) be the transition prob-
ability from x to y at time t . Note that changing the rate function by a constant factor α is
equivalent to changing the time t to α · t . When x = y and t is fixed, there are examples
where pt (x, x) is not monotone in the rate function (one such is given here in Example 4.7).
Nevertheless, if G is finite, then the average of pt (x, x) over all vertices x of G is mono-
tone, as shown by Benjamini and Schramm [17], Theorem 3.1. In particular, if the graph with
rates is vertex-transitive, then pt (x, x) is monotone decreasing in the rates. This result was
extended in various ways by [1, 14, 23, 24, 29], but all such extensions concerned only return
probabilities.

In a different direction, Karlin and McGregor ([21], equation (45)) considered continuous-
time random walks on Z

+ := {0,1,2, . . . } with arbitrary, symmetric rate functions. It follows
from their result that, for each n ≥ 1, the time to reach n from 0 stochastically decreases
in r. Indeed, they gave an explicit representation of that time as the sum of n independent,
exponential random variables whose rates are the nonzero eigenvalues of the (n+1)×(n+1)

tridiagonal Laplacian matrix �, where �(i, i) := r(i, i + 1) + r(i, i − 1), �(i, i + 1) :=
−r(i, i + 1), �(i, i − 1) := −r(i, i − 1), and all other entries are 0. Because � itself is
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monotone increasing in r in the Loewner order, its eigenvalues are also increasing in the rate
function. (This monotonicity is also what is behind all the results mentioned above on the
return probabilities. We note that [21], equation (45), holds for more general birth and death
chains; [22] gives a representation of transition probabilities via orthogonal polynomials.)
See also [10–12, 27] for other proofs and extensions of the representation [21], equation
(45).

We are motivated by the following observation [25], Exercise 13.24: If the 3-regular tree
is regarded as the standard Cayley graph of the free product of three copies of Z/2Z and the
rates on all edges are 1 except for those corresponding to a fixed generator, where the rates
are ρ, then the limiting rate of escape (i.e., the graph distance from the starting point divided
by the time as time tends to infinity) is

(

3ρ(ρ + 1) + (1 − ρ)

√

16ρ + 9ρ2
)

/(

2(2 + ρ)
)

a.s.

What is interesting about this formula is that it is monotone increasing in ρ but that this
fact is not obvious. Is there a more intuitive explanation for such monotonicity? One might
attempt to answer this via a coupling of two such random walks, where one is always at
distance at least as great as the other, but no such coupling can be Markovian. In fact, even
non-Markovian couplings cannot always have this property; see Proposition 2.37. Other ques-
tions of interest include these: For rates that depend only on the generators for the free prod-
uct of more copies of Z/2Z, does monotonicity still hold? What about other Cayley graphs?
What about other aspects of the random walk behaviour? For example, on a finite graph if
some of the rates are increased, does this necessarily improve the convergence to the sta-
tionary (uniform) distribution? How does the total time spent at each vertex depend on the
rates?

Consider a Cayley graph G of a group � generated by a finite set S ⊂ �. Write o for the
identity element and |x| for the graph distance between o and x. Given rs > 0 for each s ∈ S,
let r(e) := rs when e is an edge of G corresponding to s ∈ S. Throughout this paper we will
assume that generating sets are symmetric—that is, if s is a generator, then so is s−1, and that
the corresponding rates rs and rs−1 are equal.

Let (Zt )t≥0 be the corresponding random walk starting from o and σ(r) :=
limt→∞ E[|Zt |]/t be its limiting speed. This limit exists by a well-known subadditivity argu-
ment; the subadditive ergodic theorem also shows that limt→∞ |Zt |/t = σ(r) a.s. Our main
result for infinite graphs is the following.

THEOREM 1.1. If (�,S) is a Coxeter system, then σ(r) is monotone increasing in r. If

(�,S) is irreducible and nonelementary hyperbolic, then σ(r) is strictly increasing in r.

See Corollary 2.19 and Theorem 2.33 for the proofs. Cayley graphs that are trees are
examples of Cayley graphs that arise from Coxeter systems. The theorem does not extend to
all Cayley graphs; see Example 2.14.

We then consider finite Cayley graphs and examine the convergence to stationarity. It is
plausible that increasing some of the rates might always improve the convergence to the
stationary distribution (which is the uniform distribution), but this is not true in general. Our
main positive result on this topic is the following.

THEOREM 1.2. Let (�,S) be a finite Coxeter system. Let r and r′ be two sets of rates on

S with rs ≤ r ′
s for all s ∈ S. Let t > 0. Denote the corresponding transition probabilities by

pt (x, y; r) and pt (x, y; r′). Then pt (o, ·; r) majorizes pt (o, ·; r′) with inequality if r 	= r′.
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This implies that increasing rates leads to distributions that are closer to the stationary
distribution in many senses, including �p for 1 ≤ p ≤ ∞ and relative entropy; see Defini-
tion 3.4 for the definition of majorization and Theorem 3.9 for the proof. The edge graph of
the permutohedron is an example of a Coxeter Cayley graph, where � is a symmetric group.
For certain special Markov chains in discrete time, a much stronger inequality for total vari-
ation distance was proved by [13], Theorem 8.3, which slightly extended a result of [28].
Similar strong inequalities, using what we call refresh rings, hold in our context as well; see
Theorems 2.21 and 3.10.

Despite the impossibility of “perfect” couplings, Markovian couplings will be crucial to
our proofs of Theorems 1.1 and 1.2.

In Section 3 we prove results of this kind for some other special cases, such as for ev-
ery Cayley graph of an abelian group or for any group when distance from stationarity is
measured with either the �2- or �∞-distance. We then discuss examples where increasing a
rate worsens the distance to stationarity, which we find in the Cayley graphs of groups as
small as the dihedral group D5 and the symmetric group S4. How easy it is to find these
examples depends on which �p-distance is used to measure the distance to stationarity. For
instance, we find examples in dihedral groups for p very close to 4, both above and below
4, but are unable to find any for p equal to 4. In the symmetric group S5, we do find exam-
ples for p exactly equal to 4. Hermon and Kozma [18] find examples of generating sets for
symmetric groups where increasing some rates by a tiny amount has the effect of increas-
ing the mixing time by a large amount, which also means that the �1-distance increases by
a large amount. Their examples have unbounded degree as the size of the group tends to
infinity.

A third result goes beyond the setting of Cayley graphs and concerns arbitrary rate func-
tions r but is restricted to the ray graph, that is, the nearest-neighbor graph on Z

+. Our result
complements that of Karlin and McGregor given above.

THEOREM 1.3. With r being an arbitrary positive rate function on the edges of the

nearest-neighbor graph on Z
+ and t > 0, E[|Zt |] is monotone increasing in r.

See Corollary 4.4 for the proof. The theorem does not extend to walks on all of Z; see
Example 4.7.

Another aspect of the behaviour of random walk concerns the entropy: Let ht (x, r) be the
(natural-log) entropy of Zt when started at vertex x. The following conjecture [2], Conjec-
ture 4.11, turns out to be false.

CONJECTURE 1.4. Let G be a finite graph and t > 0. Then |V (G)|−1 ∑

x∈V (G) ht (x, r)

is monotone increasing in r.

For a counterexample, let G be a star with six vertices, all edges but one having rate 1
and the other having rate either 10 or 20. Direct calculation shows that the mean entropies at
time 1 are, respectively, approximately 1.626355024 and 1.626293845. Theorem 1.2 implies
that the conjecture does hold for rates depending on generators in the setting of Coxeter sys-
tems, but changing the generators, even on dihedral groups, can make it fail; see Section 3.2.
However, for the purposes of [2] it would suffice that there be a lower bound on the factor by
which the mean entropy can decrease; we do not know whether this weakened statement is
true.

Other monotonicity results for random walks include [30] and [26], which study mono-
tonicity in time of pt (x, y)/pt (x, x), and [8], which studies the expected range of symmetric
random walks on Z

d when extra steps are included deterministically.
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2. Coxeter systems.

2.1. Background on Coxeter systems. A Coxeter system (W,S) is a group W with gener-
ators S defined by a presentation of the form 〈S | ∀s, s′ ∈ S (ss′)m(s,s′)〉, where each m(s, s′)
is either a positive integer or ∞. Each m(s, s) is equal to 1, and m(s, s′) ≥ 2 for s 	= s′.
When m(s, s′) = ∞, the interpretation is that no such relation is imposed. In particular, all
generators are involutions. Furthermore, m(s, s ′) ∈ {1,2} iff s and s ′ commute. As always in
this paper we assume that S is finite. It is customary to denote Coxeter groups with the letter
W (for “Weyl”), and we will do that in order to make it easier to discern which of our re-
sults apply to Coxeter groups. Coxeter groups are abstractions of reflection groups; dihedral
and symmetric groups are simple examples. Section 1.2 of [3] is devoted to these and other
examples.

We always use right Cayley graphs: the vertex set is a group �, and the unoriented edges
are {{x, xs};x ∈ �, s ∈ S}. One could use multigraphs, but nothing would change for our
questions of interest. The Cayley diagram of a group � with generators S is the corresponding
Cayley graph with edges labelled by the corresponding generator; if the generator is not an
involution, then also the edge is given an orientation so that multiplication (on the right) by the
generator maps the tail of the edge to the head. For γ ∈ �, we write Lγ for left multiplication
by γ , which is an automorphism of the Cayley diagram of �.

If (W,S) is a Coxeter system, then the Cayley graph of W with respect to S has many
nice symmetry properties. One simple property is that the Cayley graph is bipartite, because
all relations give even-length cycles. When G is a bipartite Cayley graph and L is a left
multiplication that interchanges the endpoints of some edge, then we call L a reflection. We
also call the set M of edges preserved by L a wall, a hyperplane, or a mirror. A key property
for our purposes is the following, which will allow us to use arguments akin to the well-known
reflection principle for one-dimensional random walks and Brownian motion.

LEMMA 2.1. Let w and ws be two adjacent vertices in the Cayley graph of a Coxeter

system, (W,S). Let M be the set of edges preserved by the automorphism L := Lwsw−1 . The

map L interchanges the endpoints of each edge of M . The wall M separates the vertices

closer to w from those closer to ws. Suppose that |w| < |ws|; then for all v ∈ W , v is closer

to w than to ws iff |v| < |Lv|.

These properties of walls are well known, but not all are easy to find explicitly stated in this
form. Because they are crucial to our results, we provide a proof. Denote the shortest-path
metric in a graph by dist.

PROOF. Let G be the Cayley graph. Refer to vertices closer to w than to ws as white and
the others as black; also, call an edge grey if its endpoints have different colours. If y is white
and z is black, then every path from y to z must include a grey edge.

Merely because G is a bipartite graph, no vertex is equidistant from w and ws. Because
L preserves distances and interchanges w and ws, it, therefore, also interchanges white and
black vertices. In particular, every preserved edge is grey, and the endpoints of grey edges are
interchanged. We need to use more than bipartiteness to show that all grey edges belong to
the wall.

Let (x, xs ′) be a grey edge with x white. First, merely by bipartiteness, dist(w,x) =
dist(ws, xs′). We may write this last conclusion as |w−1x| = |sw−1xs′|. Suppose that w is a
reduced word for w−1x. Then sws′ is a longer word that, when reduced, has the same length
as w. By the deletion condition of Coxeter systems ([3], Proposition 1.4.7, [19], Corollary 5.8,
or [9], Theorem 3.2.17), there are two letters from sws′ that can be deleted in order to obtain a
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reduced word for the same element. Since x is white and ws is black, |sw−1x| = |w−1x|+1,
and so the word sw must be reduced; similarly, the word ws′ is reduced. Checking cases then
reveals that the two letters to delete must be the initial s and the final s ′, which yields the
word w. In other words, sw−1xs′ = w−1x. Another way to say this is that Lwsw−1x = xs′. In
particular, (x, xs′) belongs to the wall, as claimed.

Finally, suppose that o is white. If v is white, then let (x, xs′) ∈ M be an edge belonging to
a geodesic from o to Lv. We have |v| ≤ dist(o, x) + dist(x, v) = dist(o, x) + dist(xs ′,Lv) =
|Lv| − 1 < |Lv|. If v is, instead, black, then Lv is white, so |Lv| < |L(Lv)| = |v|. �

COROLLARY 2.2. Let (W,S) be a Coxeter system. The set of reflections equals the set

of left multiplications Lwsw−1 for w ∈ W and s ∈ S. If a, b ∈ S and w,x ∈ W , then (w,wa)

and (x, xb) belong to the same wall iff waw−1 = xbx−1.

PROOF. It is clear that Lwsw−1 interchanges the endpoints of the edge (w,ws), and,
conversely, if Lγ interchanges those endpoints, then γw = ws, that is, γ = wsw−1. For the
last statement in the corollary, if the two edges belong to the same wall, defined, say, by a
reflection Lγ , then by Lemma 2.1, γw = wa and γ x = xb, whence waw−1 = γ = xbx−1.
The converse is proved similarly. �

Thus, there is a natural bijection between reflections and walls. We will identify a wall
M with the (disconnected) graph formed by the edges E(M) in the wall and their endpoints
V (M).

In the case of a free Coxeter group (i.e., the free product of copies of Z/2Z), whose Cayley
graph is a tree, walls are the same as single edges. Figure 1 shows the Cayley diagram of
the Coxeter group 〈a, b, c | a2, b2, c2, (ab)7, (bc)2, (ca)3〉 corresponding to reflections in the
sides of a hyperbolic triangle of angles (π/2, π/3, π/7). Each white geodesic crosses through
the edges of a wall. Note that, in this case, each wall contains edges corresponding to each of
the three generators.

When we prove strict monotonicity of speed in the rates, we will need the following three
lemmas, the first two of which are well known.

LEMMA 2.3. Let M be a wall in a Coxeter Cayley graph. Then every geodesic uses at

most one edge in M .

PROOF. It suffices to show that if (w,wa), (v, vb) ∈ M both belong to a path from w to
v, then there is a shorter path from w to v. Indeed, if P is a subpath from wa to vb, then the
path obtained from P by applying the reflection in M is a path from w to v that is shorter by
at least two edges. �

LEMMA 2.4. Let (W,S) be a Coxeter system. There is some finite K such that for every

wall M , every geodesic between two vertices of M stays within distance K of M .

PROOF. By the parallel-wall theorem of Brink and Howlett ([4] or [7], Theorem C), there
is some K so that for any pair (w,M), where w is a vertex at distance at least K from a wall
M , there is some other wall M ′ 	= M that separates w from M . By Lemma 2.3 no geodesic
between vertices of M can cross M ′, whence it cannot go farther than K from M . �

LEMMA 2.5. Let M be a wall in a Coxeter system (W,S). Let WM := {w ∈ W ;
LwV (M) = V (M)}. Then WM acts quasi-transitively by graph automorphisms of M ; in other

words, there are only finitely many orbits in V (M) under the left action of WM . Moreover,
the orbit of w ∈ V (M) is {v ∈ V (M); (v, vs) ∈ E(M)}, where s is the generator for which

(w,ws) ∈ E(M).
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FIG. 1. A portion of the Cayley graph of the (2,3,7)-triangle group, drawn by Matthias Weber. Edges are

coloured red, light blue, or light brown according to the corresponding generator. Each dark blue face corresponds

to a relation. Each white geodesic corresponds to a wall.

PROOF. Suppose that (w,ws), (v, vs) ∈ E(M). Clearly, Lvw−1 carries the first edge to
the second. We claim that vw−1 ∈ WM . To prove our claim, let (x, xa) ∈ E(M). We have
wsw−1 = vsv−1 = xax−1 by Corollary 2.2, whence vw−1xa(vw−1x)−1 = vsv−1 so that,
indeed, (vw−1x, vw−1xa) ∈ E(M). Therefore, for each pair of edges in M corresponding to
the same generator, there is an element of WM that takes one edge to the other. Since S is
finite, it follows that this action is quasi-transitive. Finally, since left multiplications preserve
the Cayley diagram, the orbit of w cannot be any larger than what is claimed. �

2.2. Monotonicity of speed. A key technical device we will use to construct our cou-
plings is the following alternative way to generate our random walks.

DEFINITION 2.6. If an edge e has an attached Poisson clock of rate r , we will generally
consider this process as being controlled by a Poisson clock of rate 2r , and when this new
clock rings, there is a 1

2 chance that the original clock rings, otherwise nothing happens. We
will reserve the upper case R (for “refresh time”) for this Poisson process of twice the rate,
with subscripts denoting the edge in question, for instance, Re. We may use a fair coin flip to
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decide whether the original clock rings; if so, we will say the coin flip is “move,” otherwise
that the coin flip is “stay.” Alternatively, if the walk is at an endpoint of e at the time that Re

rings, then we may randomise the walk immediately after that ring to be at either endpoint
of e with equal probability. In the case of Cayley graphs where the rates depend only on the
generators, we observe that it suffices to use only one Poisson process per generator rather
than one per edge; we then use a subscript corresponding to the generator.

Although our goal is Theorem 1.1, we begin for concreteness and clarity with a specific
example, the 3-regular tree.

EXAMPLE 2.7. Consider the 3-regular tree as the Cayley graph of the group 〈a, b, c |
a2, b2, c2〉, so that each edge is associated to one of the three generators, a, b, or c. Choose
rates ra , rb, and rc for each generator, and use those as the rates for each corresponding edge.

It is well known that the random walk of Example 2.7 is transient if and only if all three
rates are positive.

Before we can discuss the dependence of the escape speed on the rates ra , rb, and rc, we
need some preliminary results.

PROPOSITION 2.8. Consider Example 2.7. If w and w′ are two adjacent vertices with w

closer to the initial position than w′, then, for all t > 0, we have P[Zt = w] > P[Zt = w′].

PROOF. Without loss of generality, assume that the edge between w and w′ is labelled
by the generator a, so that w′ = wa.

We prove our result by giving a probability-preserving injection from paths (of the random
walk up to time t) resulting in w′ to paths resulting in w. For any path that ends at w′, let T

be the first time ≤ t at which the path is at w and Ra rings. Modify the path by changing the
outcome of the coin flip attached to this ring of Ra , and proceed with the rest of the path by
multiplying by a, b, or c when appropriate, not changing any of the other rings of the Poisson
processes or the coin flips. This has the effect of applying the reflection Lwaw−1 to each state
after time T , so paths that ended at w′ now end at w.

Indeed, this map is a probability-preserving bijection from paths that ever cross the edge
from w to w′ and end at w′ to paths that end at w and are at w at some ring of Ra . Crucially,
it is impossible to get to w′ without crossing the edge (w,w′), and hence without being at w

when Ra rings. However, there is a positive probability that the walk ends at w without ever
being at w when Ra rings, giving our strict inequality. �

Proposition 2.8 actually has a much shorter proof: Let τ := inf{t > 0;Zt = w}, and let
pt (x, y) denote the transition probabilities of Zt . Then

P
[

Zt = w′] = E
[

P
[

Zt = w′ ∣

∣ τ
]]

= E
[

pt−τ

(

w,w′); τ < t
]

< E
[

pt−τ (w,w); τ < t
]

= P[Zt = w]
(compare (3.1)). The reason we did not give this proof is that Proposition 2.8 may be general-
ized to the Cayley graph of any Coxeter system but not with this short proof. This generaliza-
tion is a continuous-time version of Theorem 1 of [34], and the proof is essentially the same.
If M is a wall, let us call a time t an M-refresh time for our random walk if Zt ∈ M and the
refresh clock Ra rings at time t , where a is the generator such that (Zt ,Zta) ∈ M . The main
difference between the case of trees and the general case of Coxeter systems is that in the
tree, every path that reaches w′ must cross the edge between w and w′. In a general Coxeter
system, this is no longer the case, so instead we need to consider the steps at which the walk
might move from a state closer to w to one closer to w′, in other words, the M-refresh times
for the wall determined by (w,w′).
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THEOREM 2.9. Let (W,S) be a Coxeter system. To each of the generators s ∈ S, attach

a Poisson clock of rate rs . Consider a random walk starting at the identity that moves from a

current location w to ws when the s-clock rings. If w and w′ are two adjacent vertices with

|w| < |w′|, then, for all t > 0, we have P[Zt = w] > P[Zt = w′].

PROOF. Let w′ = wa. We follow the proof of Proposition 2.8 in this more general setting.
Fix t > 0. We construct a probability-preserving injection from paths of the random walk

resulting in w′ to paths resulting in w. Let M be the wall determined by (w,w′) and LM be
the reflection in M . Let T be the first M-refresh time.

For a path ending at w′ at time t , we have T < t . Modify such a path by changing the
outcome of the coin flip attached to the refresh ring at time T , and proceed with the rest of
the path by leaving the remaining sequence of refresh rings and coin flips unchanged. This
has the effect of applying the reflection LM to each state after time T , so paths that ended at
w′ now end at w.

This map is a probability-preserving bijection from the set of paths that end at w′ at time t

to the set of paths that end at w at time t and that have T < t . There is a positive probability
that the walk ends at w without taking such a path, giving our strict inequality. �

REMARK 2.10. Let (ui) be any sequence of times and (ai) be any sequence of genera-
tors. Note that Theorem 2.9 remains true if the random walk is conditioned to have Rai

ring
at time ui for each i. The same holds if, in addition, we condition that Rs has no other rings
for certain generators s up to time t . (Critically, Rai

is the refresh clock of Definition 2.6, not
the clock that always multiplies by the generator ai .)

The proof is unchanged, because the constructed injection preserves the times at which
each Rs rings.

We can express our argument in another way. The location Zt is a function of the times and
generators of the refresh rings that occur before time t and the results of the corresponding
coin flips. Let a coin flip 0 represent “stay” and 1 represent “move.” For s ∈ S, let ξ(s,0)

be the identity element and ξ(s,1) := s. Given sequences s = (s1, . . . , sn) ∈ Sn and b =
(b1, . . . , bn) ∈ {0,1}n, let

ξ(s,b) := ξ(s1, b1)ξ(s2, b2) · · · ξ(sn, bn) ∈ W.

Thus, if s gives the sequence of generators whose refresh rings occur before time t and b is the
corresponding sequence of coin flips, we have Zt = ξ(s,b). For any sequence (a1, . . . , an)

and 0 ≤ k ≤ n, write (a1, . . . , an)k for the initial segment (a1, . . . , ak). Our argument shows
the following, which also easily implies Theorem 2.9.

THEOREM 2.11. Let (W,S) be a Coxeter system. Let s = (s1, . . . , sn) be a finite se-

quence from S. Let C = (C1, . . . ,Cn) be independent, uniform {0,1}-valued random vari-

ables. If w and w′ are two adjacent vertices with |w| < |w′|, then P[ξ(s,C) = w] ≥
P[ξ(s,C) = w′].

PROOF. Let M be the wall determined by (w,w′) and LM be the reflection in M . Given
b = (b1, . . . , bn), define b′ := (b1, . . . , bj ,1−bj+1, bj+2, . . . , bn) if there is some k < n such
that ξ(sk,bk) ∈ M and j is the smallest such index, while b′ := b if there is no such k. Note
that (b′)′ = b. Thus, b 
→ b′ is a permutation of {0,1}n with the property that ξ(s,b′) =
LMξ(s,b) iff b′ 	= b. In particular, ξ(s,C) = w′ implies ξ(s,C′) = w. Since C′ has the same
distribution as C, the inequality follows. �

We will now construct a Cayley graph where the conclusion of Theorem 2.9 fails.
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EXAMPLE 2.12. Consider the cyclic group Z/8Z, with generators ±1, ±2, and ±3. Let
the rates be chosen so that r1 = r3 are small and r2 = 1. At time 2, there is a reasonable
chance that the 2-clock has rung exactly twice and the −2-clock has not rung, and the ±1-
clocks and ±3-clocks are unlikely to have yet rung. Then the walker, started at 0, is more
likely to be at 4 than at 3, even though 4 is distance 2 from 0, 3 is distance 1, and there is an
edge between 3 and 4. Thus, Proposition 2.8 is not true in this setting.

The issue here is that while the vertices 3 and 4 are connected by an edge, and 4 is farther
from 0 than 3 is, we have made this edge less likely than others, and there are paths from 0 to
4 that do not need such an unlikely edge. In the Coxeter-system setting, this cannot happen
according to Theorem 2.9.

We may also modify this example so that the expected distance is not monotone in time; a
discrete-time example of this phenomenon is due to Oded Schramm [25], Exercise 13.16(b).

EXAMPLE 2.13. Adjust Example 2.12 so that the group is Z/2nZ, with n at least 5. Take
as generators ±2 and every odd number, with ±2 having high rates and the odd numbers
having low rates.

After a time chosen so that the ±2-clocks have rung many times and the odd generator-
clocks are unlikely to have rung, the walker is close to uniformly distributed on the even
numbers with expected distance from 0 close to 2 − 4

n
. After much more time, the walker

will be close to uniformly distributed on all 2n states with expected distance close to 3
2 − 2

n
.

Thus, the expected distance is not monotone.

This allows us to produce an example where the escape speed is not monotone in the rates.

EXAMPLE 2.14. Take the free product of Example 2.13 with Z/2Z, using the same
generators as in that example, and one new generator a for the new factor of Z/2Z. Then the
escape speed is not monotone in the rates r2 = r−2 and ro associated, respectively, to ±2 and
the odd generators of the Z/2nZ factor.

PROOF. Take the rate ra to be 1, r2 to be very large, ro to be 0, and n to be large. Then
the walker moves through copies of Example 2.13 at rate 1, backtracking only with rate
proportional to 1

n
, and the average distance between entry and exit points in each copy of

Z/2nZ is 2 − 4
n

− or2(1). Therefore, the escape speed is 3 − O( 1
n
) − or2(1).

Now, increase the rate ro to be as large as r2. The average distance between entry and exit
points of each copy of Z/2nZ is now only 3

2 − 2
n

− or2(1), so the escape speed has decreased

to 5
2 − O( 1

n
) − or2(1). �

REMARK 2.15. This example can be modified so that the escape speed is not monotone,
either increasing or decreasing, in each rate separately, even for a rate on an involution.

The result of Example 2.14 should not necessarily be surprising; the graph distance is cal-
culated using all edges, regardless of associated rates, so we shouldn’t expect this necessarily
to be a terribly meaningful quantity when it is affected by edges of very low rates. The fol-
lowing results start with trees, where this cannot occur, and we then show that Cayley graphs
of Coxeter systems are symmetric enough that our results still apply. (While Examples 2.13
and 2.14 could equally well be implemented in Coxeter groups, replacing finite cyclic groups
and Z with finite and infinite dihedral groups, the generators required would not be the Cox-
eter generators. Our results for Coxeter groups require that the generating set is composed of
the Coxeter generators.)

We now return to Example 2.7.
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PROPOSITION 2.16. Let t1 be an arbitrary time, and let s ∈ S be one of the generators.
Consider the following two random processes:

1. Run an instance Z1 of the random walk of Example 2.7.
2. Run a separate instance Z2 of the random walk of Example 2.7 until time t1, then trigger

Rs at the (deterministic) time t1, and then continue to run the random walk.

These two processes may be coupled so that at all times t > t1, either they are in the same

state or the second walker is farther from the origin than the first is.

PROOF. Given Z1, we will construct Z2 via a special coupling to Z1. Let A := {w; |w| <
|ws|}. Define γ to be the random vertex such that Z1

t1
∈ {γ, γ s} with γ ∈ A. Couple Z1 and

Z2 up to time t1 to be independent conditional that Z2
t1

∈ {γ, γ s}, which is possible because

Z1 and Z2 have the same law up to time t1. For all w ∈ A, Proposition 2.8 gives us that

(2.1) P
[

Z1
t1

= γ | γ = w
]

=
P[Z1

t1
= w]

P[Z1
t1

= w] + P[Z1
t1

= ws]
>

1

2
.

We need Z2
t+1

to be uniformly distributed in {γ, γ s} independently of (Z2
t )0≤t≤t1 conditional

on γ . We may ensure this by letting Z2
t+1

equal γ s whenever Z1
t1

= γ s, and sometimes even

when Z1
t1

= γ ; this is possible in light of (2.1) and maintains the required independence by

the first step in our construction of Z2. We have now achieved that |Z1
t1
| ≤ |Z2

t+1
|.

In case |Z1
t1
| = |Z2

t+1
| (which has probability 2 P[Z1

t1
= γ s]), we couple the two processes

so that they stay together at all times after t1. Otherwise, we couple them after time t1 so that
the second is the first reflected by Lγ sγ −1 (which is true at time t+1 ), until and unless they
would move across the edge between γ and γ s, in which case we couple the Rs -coin flips so
that the walks agree from then on.

For any time t > t1, this results in either (1) the two processes being at the same vertex at
time t or (2) the first being at a vertex v that is closer to γ than to γ s and the second being at
Lγ sγ −1(v). In this case v is closer to the initial state than Lγ sγ −1(v) is by Lemma 2.1. �

REMARK 2.17. As with Remark 2.10, let (ui) be any sequence of times in [0,∞) \ {t1}
and (ai) be any sequence of generators. Proposition 2.16 remains true if the processes Z1 and
Z2 are each conditioned to have Rai

ring at time ui for each i. The same holds if, in addition,
we condition that Rs has no other rings up to any given time t2 for the process Z1.

The proof is unchanged, except for applying Remark 2.10 when we invoke Proposition 2.8.

COROLLARY 2.18. The escape speed in Example 2.7 is nondecreasing in the rates ra ,
rb, and rc.

PROOF. By symmetry it suffices to show that the escape speed is nondecreasing in ra . It
suffices for this to show that E[|Zt |] is nondecreasing in ra for every time t . But increasing
the rate ra just results in extra instances of Ra , so this is a consequence of Proposition 2.16
as follows.

Let (Xt ) be our random walk and (Yt ) be the random walk where the rate ra has been
increased. We may couple X and Y so that they have the same Ra , Rb, and Rc rings at the
same times, except that Y has some random number Nt of additional rings of Ra up to time
t . For each i between 0 and Nt , let Xi be the random walk which agrees with X, except that
it has the first i of these additional rings of Ra , so that X0 = X and XN = Y .
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For each i we may use Proposition 2.16 to couple Xi and Xi+1 so that at time t the walk
Xi+1 is at least as far from the origin as Xi is. Because Xi+1 has Ra-rings at the times that
Xi does, this application of Proposition 2.16 requires the observation of Remark 2.17; we
are also conditioning on the time of the extra Ra-ring. Combining these couplings gives a
coupling between X = X0 and XN = Y where at time t the walk Y is at least as far from the
origin as X is. �

As with Proposition 2.8, these results also apply to walks on the Cayley graphs of Coxeter
systems.

COROLLARY 2.19. The result of Proposition 2.16 is true for the Cayley graph of a Cox-

eter system, as is Corollary 2.18.

PROOF. This result follows from Theorem 2.9 in the same way as Proposition 2.16 and
Corollary 2.18 follow from Proposition 2.8, with a single change: in the proof of Proposi-
tion 2.16, the phrase

“until and unless they would move across the edge between γ and γ s, in which case we couple the
Rs -coin flips . . . ”

should be replaced by

“until and unless they would move across an edge (x, xb) in the wall determined by (γ, γ s), in
which case we couple the Rb-coin flips . . . ”. �

REMARK 2.20. A superficially more general result is that Corollary 2.19 holds for Cay-
ley graphs of presentations

� :=
〈

S1, S2 | ∀s1 ∈ S1 ∀s ∈ S1 ∪ S2 (s1s)
n(s1,s),∀s2 ∈ S2 s

2n(s2)
2

〉

,

where each n(s1, s) and n(s2) is either a positive integer or ∞, each n(s1, s1) is equal to 1, and
n(s1, s) ≥ 2 for s1 	= s. To see why Corollary 2.19 holds for such �, let S̄2 be a copy of S2, and
write s2 
→ s̄2 for a bijection from S2 → S̄2. Consider the Coxeter system W := 〈S1, S2, S̄2 |
∀s, s′ ∈ S1 ∪ S2 ∪ S̄2 (ss′)m(s,s′)〉 with m(s1, s2) := n(s1, s2) =: m(s1, s̄2) when s1 ∈ S1 and
s2 ∈ S2, m(s1, s

′
1) := n(s1, s

′
1) when s1, s

′
1 ∈ S1, and, finally, m(s2, s2) = m(s̄2, s̄2) = 1 and

m(s2, s̄2) := n(s2) when s2 ∈ S2. The Cayley graphs of � and W are the same, but to get the
unoriented Cayley diagram of � from that of W , replace each label s̄2 with the label s2. As
long as the generator rates for a random walk on W have the property that the rate for s̄2 is
the same as the rate for s2, then the random walks on the two diagrams have the same law.
The simplest case is when S1 = ∅ and n ≡ ∞ on S2, in which case � is a free group with
free generators.

Similarly to Theorem 2.11, we may deduce from our arguments the following, which also
easily implies Corollary 2.19.

THEOREM 2.21. Let (W,S) be a Coxeter system. Let s and s′ be finite sequences from S

of lengths n and n′, respectively, with s a proper subsequence of s′. Let C be a Bernoulli(1/2)

process. Then E[|ξ(s′,Cn′)|] ≥ E[|ξ(s,Cn)|].

2.3. Strict monotonicity of speed. Corollaries 2.18 and 2.19 show that the escape speed
is an increasing function of the rates rs , for each generator s. We now consider the question
of whether this function is strictly increasing. First, we give an example where this is not the
case.
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EXAMPLE 2.22. Consider the Coxeter system
〈

a, b, c | a2, b2, c2〉

×
〈

d | d2〉

.

This group is the direct product of a free Coxeter group, whose Cayley graph is the 3-regular
tree, and the two-element group. Increasing the rate rd does not change the escape speed of
the random walk. As long as the three rates ra , rb, and rc are all positive, increasing any of
them does increase the escape speed, but the escape speed is zero if one of those three rates
is zero.

More generally, we have the following behaviour in product groups.

PROPOSITION 2.23. Suppose that �i is generated by Si and has identity element oi for

i = 1,2, and let ri : Si → [0,∞). Then for � := �1 × �2 generated by (S1 × {o2}) ∪ ({o1} ×
S2) with rates r1 ∪ r2, the escape speed in � is the sum of the escape speeds in �i .

PROOF. We have |(v1, v2)| = |v1| + |v2| for vi ∈ �i . In addition, if we write the random
walk as Zt = (Z

(1)
t ,Z

(2)
t ), then Z

(i)
t are independent random walks in �i with rates ri . �

The Coxeter diagram of a Coxeter system (W,S) is the unoriented graph with vertices S,
edges (s, s′) for m(s, s ′) ≥ 3, and edge labels m(s, s ′) when m(s, s′) ≥ 4. A Coxeter system is
called irreducible if its Coxeter diagram is connected. Every Coxeter system can be expressed
as a direct product of irreducible Coxeter systems, namely, the subgroups generated by the
vertices in the connected components of its Coxeter diagram. An infinite, irreducible Coxeter
group is either affine, being a finite extension of an abelian group, or nonelementary hyper-

bolic, being nonelementary word hyperbolic; see [9], Chapter 12, especially Section 12.6,
and [19], Sections 6.8 and 6.9, for more detailed information on hyperbolic Coxeter groups.

We quickly review the basic definitions for hyperbolic metric spaces. A metric space X in
which every pair of points can be joined by a geodesic path is called δ-hyperbolic if, for each
geodesic triangle in X, each side lies within the closed δ-neighbourhood of the union of the
other two sides. If X is δ-hyperbolic for some δ ≥ 0, then X is called hyperbolic. A group is
word hyperbolic if some (hence every) Cayley graph is hyperbolic in the shortest-path metric.
A word hyperbolic group is called elementary if it is finite or virtually cyclic.

REMARK 2.24. In a finite or affine Coxeter group, the escape speed is zero regardless of
the rates of each generator, so increasing the rate of a generator does not increase the escape
speed. Indeed, the speed is zero of every nearest-neighbor, reversible, discrete-time random
walk on a graph of subexponential volume growth and bounded edge weights, a consequence
of the Varopoulos–Carne inequality [25], Theorem 13.4.

Thus, the same behaviour as in Example 2.22 appears for any direct product of a nonele-
mentary hyperbolic Coxeter group with a finite or affine Coxeter group.

We will now prove that in an irreducible, nonelementary hyperbolic Coxeter system, in-
creasing the rate of any generator strictly increases the escape speed. With the preceding re-
mark, this will characterise those generators where increasing the rate must strictly increase
the escape speed.

THEOREM 2.25. Let W be a Coxeter system. Write W as a direct product of irreducible

Coxeter systems. If the rate corresponding to each generator is positive, then increasing a rate

strictly increases the escape speed if and only if that generator belongs to a nonelementary

hyperbolic irreducible factor, rather than a finite or affine factor.



1124 R. LYONS AND G. WHITE

To prove this, it suffices to examine random walks on irreducible, nonelementary hyper-
bolic Coxeter systems because of Proposition 2.23 and Remark 2.24.

We will need the following facts about the boundary of a Coxeter group. We begin by
reviewing the definition of Gromov boundary and some of its basic properties. Recall that
a graph is equipped with its shortest-path metric, dist. A geodesic ray in a graph G is a
semiinfinite path all of whose finite subpaths are geodesic. Two geodesic rays (xn)n and (yn)n
are asymptotic if supn dist(xn, yn) < ∞. This is an equivalence relation, whose equivalence
classes form the boundary ∂G of G. If ξ ∈ ∂G and x ∈ V (G), a geodesic ray starting from
x that belongs to ξ will also be referred to as a geodesic from x to ξ . We define a topology
on V (G) ∪ ∂G as follows. Fix a vertex o of G. Given xk, y ∈ V (G) ∪ ∂G for k ∈ N, we say
that limk→∞ xk = y if for some n∞, nk ∈ N ∪ {∞} (k ∈ N), there are geodesics (xk,n)n<nk

from o to xk and a geodesic (yn)n<n∞ from o to y such that, for every n < n∞, xk,n = yn

for all sufficiently large k. The closed sets are then those that are closed under sequential
convergence. In case G is hyperbolic, ∂G is usually referred to as its Gromov boundary.

Consider now a Cayley graph with associated continuous-time Markov chain (Zt )t . The
embedded discrete-time random walk records only the changes made by (Zt )t . This random
walk has transition probability from w to ws equal to rs/

∑

a∈S ra , where S is the generating
set. We can recover the law of (Zt )t from its embedded discrete-time random walk by jump-
ing at the times of a Poisson process of rate

∑

a∈S ra . Many results for (Zt )t follow from their
corresponding results for the embedded random walk, such as this next one.

LEMMA 2.26 (Theorem 7.4 of [20]). Random walk on a nonelementary word-hyperbolic

group converges a.s. to a boundary point, provided all rates are positive.

The law on ∂G of limt→∞ Zt is called harmonic measure, which depends on the starting
point, Z0.

The following result is due to Gromov [16].

LEMMA 2.27 (Lemma 2.4.4 of [6]). The action of a nonelementary word-hyperbolic

group on its Gromov boundary is minimal, that is, every orbit is dense.

LEMMA 2.28. The harmonic measure of random walk on a nonelementary word-

hyperbolic group has full support in its Gromov boundary.

PROOF. Suppose that ξ is a point of the support when the walk starts at o. Then γ ξ is
a point of the support when the walk starts at γ . Since the random walk starting at o has
positive chance to reach γ , it follows that γ ξ is also in the support when the random walk
starts at o. Thus, the result follows from Lemmas 2.26 and 2.27. �

We will use the following result of [32].

LEMMA 2.29. The conjugacy class of a reflection in an infinite, irreducible Coxeter

system (W,S) is always infinite.

PROOF. Let S be ordered as (s1, s2, . . . , sr), where r := |S|. Speyer [33] showed that
s1s2 · · · srs1s2 · · · sr · · · s1s2 · · · sr is a reduced word for any number of repetitions of s1s2 · · · sr .
Write w := s1s2 · · · sr ∈ W . Combining Speyer’s result with Lemma 2.3, we deduce that the
walls corresponding to the edges (wk,wks1) are all distinct, whence the elements wks1w

−k

are all distinct. Since the ordering of S was arbitrary, every generator has infinitely many
conjugates. Therefore, so does every conjugate of a generator, that is, every reflection. �
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LEMMA 2.30. Let M be a wall in an irreducible Coxeter system with Cayley graph G.
Then the closure M does not include all of ∂G.

PROOF. Let (v, vs) ∈ M . By Lemma 2.29 there exist wk ∈ W such that |w−1
k vsv−1wk| →

∞ as k → ∞. By Lemma 2.1, for every w ∈ W ,
∣

∣w−1vsv−1w
∣

∣ = dist(w,Lvsv−1w) = 1 + 2 dist
(

w,V (M)
)

.

Therefore, dist(wk,V (M)) → ∞ as k → ∞. Let vk ∈ V (M) satisfy dist(wk, vk) =
dist(wk,V (M)). By taking a subsequence if necessary, we may assume that there is some
fixed a ∈ S such that (vk, vka) ∈ E(M) for all k. If we translate the geodesic that goes from
vk to wk so that it starts at v1, then as k → ∞, it has a limit geodesic ray (yn)n, up to taking
another subsequence if necessary. By Lemma 2.5 M is fixed under this translation, so (yn)n
is a geodesic ray from v1 with dist(yn,V (M)) = dist(yn, v1) = n. By Lemma 2.4 it follows
that the equivalence class of (yn)n does not belong to M , as desired. �

LEMMA 2.31. Let M be a wall in an irreducible, nonelementary hyperbolic Coxeter

system with Cayley graph G. Provided that all rates are positive, there is some v ∈ V (M)

such that the probability that random walk started at v never returns to M is positive.

PROOF. If not, then by Lemma 2.5 and the strong Markov property, the number of visits
to M would be infinite a.s., given that it starts on M . In other words, if the random walk starts
on M , then it has a limit in M ∩ ∂G a.s. by Lemma 2.26. But this contradicts Lemmas 2.28
and 2.30. �

Given a Coxeter system (W,S) and rates r, let η(W,S; r) be the minimum over all walls
M of the probability that there is no positive M-refresh time for the random walk with rates r.

LEMMA 2.32. Let (W,S) be an irreducible, nonelementary hyperbolic Coxeter system

and r have all positive rates. Then η(W,S; r) > 0.

PROOF. Given any wall, M , there is an automorphism of the Cayley diagram that takes
M to a wall containing o. By Lemmas 2.31 and 2.5, it follows that there are some d < ∞ and
c > 0 such that, for all walls M and all vertices w ∈ M , there is a path of length at most d

from w to some v /∈ M from which the probability that the random walk with rates r never
visits M is at least c.

Given any wall, M , let w be the first vertex in M , if any, visited by our random walk.
Consider a fixed path (w = x0, x1, . . . , x� = v) of length � ≤ d from w to some v /∈ M from
which the probability that the random walk with rates r never visits M is at least c. By
reflecting v in M if needed, we may assume that w and v are on the same side of M and
hence that our fixed path does not cross M . The chance that the next � steps of our random
walk are exactly along this path and that there is no M-refresh time before visiting v is at
least the chance that R

x−1
i−1xi

(1 ≤ i ≤ �) are the next � refresh rings and that the first � coin

flips all tell the random walk to move, which equals

2−�
�

∏

i=1

r
x−1
i−1xi

∑

s∈S rs
.

It follows that

η(W,S; r) ≥
(

mins∈S rs

2
∑

s∈S rs

)d

c > 0.
�

Gouëzel [15] showed that r 
→ σ(r) is analytic for arbitrary generators of nonelementary
word-hyperbolic groups, provided all rates in r are strictly positive.
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THEOREM 2.33. If (W,S) is an irreducible, nonelementary hyperbolic Coxeter system,
then increasing the rate rs of any generator s strictly increases the escape speed, provided

all rates are positive. Moreover, ∂σ(r)/∂rs ≥ 2η(W,S; r)2.

PROOF. In order to understand the consequences of increasing the rate of any gen-
erator, consider the construction in the proof of Corollary 2.19, taken from the proof of
Corollary 2.18. In that construction we produce a sequence Xi of random walk paths, each
successive path having one additional ring of the refresh clock, Rs . The key property of
that construction is that, for each i, the paths Xi and Xi+1 either eventually agree or have
|Xi+1| > |Xi | for all large times. To show that increasing a rate strictly increases the escape
speed, it suffices to show that, asymptotically, a positive fraction of i fall into the latter case.
In our proof of this, we will be very careful to avoid dealing with dependencies among these
events for different i as well as with the dependencies on the number of such additional rings
up to time t .

To be more precise, consider two sets of positive rates, r and r′, where r′ agrees with r,
except that r ′

s = rs + ε where ε > 0. Let (Nt )t be a Poisson process of rate 2ε, which we use
for the extra rings of Rs . The random walk corresponding to r is X = X0, and the random
walk corresponding to r plus i additional rings of Rs is Xi . We couple all Xi , as in the proof
of Corollary 2.18. We have

σ
(

r′) − σ(r) = lim
t→∞

1

t

Nt−1
∑

i=0

(∣

∣Xi+1
t

∣

∣ −
∣

∣Xi
t

∣

∣

)

a.s.

Let Ai be the event that |Xi+1| > |Xi | for all large times. If i < Nt , then we have |Xi+1
t | ≥

|Xi
t |, with equality only if Ai does not occur. Thus, |Xi+1

t | − |Xi
t | ≥ 1Ai

, whence

σ
(

r′) − σ(r) ≥ lim sup
t→∞

1

t

Nt−1
∑

i=0

1Ai

= lim
t→∞

Nt

t
· lim sup

t→∞

1

Nt

Nt−1
∑

i=0

1Ai

= 2ε lim sup
n→∞

1

n

n−1
∑

i=0

1Ai
a.s.

Taking expectation and using Fatou’s lemma yields

σ
(

r′) − σ(r) ≥ 2ε lim sup
n→∞

1

n

n−1
∑

i=0

P(Ai).

Let Ti be the time of the ith ring of (Nt )t , and let Mi be the wall containing the edge
(Xi

Ti
,Xi

Ti
s). Recall that a time t is an Mi -refresh time for Xi if Xi

t ∈ Mi and the refresh

clock Ra rings at time t , where a is the generator such that (Xi
t ,X

i
ta) ∈ Mi . The event Ai

occurs if (but not only if): (1) there is no Mi-refresh time t < Ti for Xi , and (2) there is no
Mi-refresh time t > Ti for Xi . Here (1) guarantees that (3) Xi

T +
i

	= Xi+1
T +

i

, while (2) guarantees

that if (3) holds, then Xi
t 	= Xi+1

t for all t > Ti . Note that the law of (Xi
t )0≤t≤Ti

is the same
as the law of ((Xi

Ti
)−1Xi

Ti−t )0≤t≤Ti
by reversibility. In addition, the reflection in Mi maps

a path on one side of the wall to a path on the other side, preserving the times on the wall.
Therefore, the probability of (1) is at least the probability of (2). The events (1) and (2) are
also independent. Hence, P(Ai) ≥ η(W,S; r)2, which yields the desired inequality σ(r′) −
σ(r) ≥ 2εη(W,S; r)2 > 0 in light of Lemma 2.32. �
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Combining Proposition 2.23 with Remark 2.24 and Theorem 2.33 gives Theorem 2.25.

REMARK 2.34. The assumption in Theorem 2.25 that each rate is positive is necessary;
if enough of the rates are zero, then the escape speed may be zero, even when one of the rates
is increased. In a scenario where some of the rates are zero, one should just remove those
generators and apply Theorem 2.25 to the resulting smaller Coxeter system. Of course, if a
rate is zero, increasing that rate will strictly increase the speed if the same holds when that
rate is positive.

REMARK 2.35. The first part of Theorem 2.33 can be proved in the case of trees by using
an implicit formula for the speed: Namely, [31] gives a formula for the speed of the embedded
discrete-time random walk. Multiplying that speed by the sum of the rates gives the follow-
ing formula for the continuous-time speed. For a free product of p ≥ 3 copies of Z/2Z and
corresponding rates r1, . . . , rp > 0, write ζ for the unique positive solution to the equation
∑p

i=1(
√

ζ 2 + r2
i −ri) = (p−2)ζ . (Existence and uniqueness follow from the fact that the left-

hand side is a convex function of ζ that passes through (0,0) with derivative 0 and is asymp-

totic to pζ as ζ → ∞.) The continuous-time speed σ(r) is then ζ−1 ∑p
i=1 ri(

√

ζ 2 + r2
i − ri),

which can also be written as
∑p

i=1
riζ

√

ζ 2+r2
i +ri

. Because rj 
→
√

x2 + r2
j − rj is strictly de-

creasing for fixed x > 0, it follows that ∂ζ/∂rj > 0. Now,

∂σ(r)

∂rj
= ∂ζ

∂rj

1

ζ

(

−σ(r) +
p

∑

i=1

riζ
√

ζ 2 + r2
i

)

+ rj

ζ

(

√

(ζ/rj )2 + 1 − 2 + 1
√

(ζ/rj )2 + 1

)

.

From the second formula for σ(r), it is clear that the first term in parentheses is strictly
positive; it is elementary that the second term in parentheses is also strictly positive. Thus,
σ(r) is indeed strictly increasing in each rate.

2.4. Further questions. The proof of Proposition 2.16 gives rise to the following ques-
tion.

QUESTION 2.36. Given two random walks, with one having higher rates than the other,
is it possible to couple them so that the more active walk is always at least as far from the
initial position as the other?

It might be plausible that a slightly cleverer construction in the proof of Proposition 2.16
could produce such a coupling. Surprisingly, this is not possible in even the simplest of cases.

PROPOSITION 2.37. Question 2.36 is impossible in the setting of Example 2.7, even in

cases where rb = rc = 0. In such cases the walker is moving back and forth between just two

states, at the rate ra . Similarly, it is not always possible for ra, rb, rc > 0.

PROOF. Consider two such walks, one with ra = 1 and the other with ra = 100, and the
behaviour of these over the first unit of time. The first process has a significant chance of, for
instance, staying at the initial vertex until a time between 0.4 and 0.6, moving to the other
vertex, and staying there until time 1. The more active process is very unlikely to take a path
that remains farther from the starting vertex than such a path, because that would require
staying at the other vertex between times 0.6 and 1, which is unlikely for such an active
process.

If rb, rc > 0, then one can choose a sufficiently small t and make two choices of ra , the
smaller one being equal to 1/t , so that a similar analysis holds. �
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PROPOSITION 2.38. The coupling of Question 2.36 is not possible for two walks on a

recurrent graph, one of which has edges all with rate ρ1 and the other all with rate ρ2 >

ρ1 > 0.

PROOF. Let both random walks start at o. If such a coupling were possible, then we could
similarly couple random walks with rates (cρ1, cρ2) for any c > 0. In particular, we could
couple with rates (ρ1(ρ2/ρ1)

n, ρ2(ρ2/ρ1)
n) for every nonnegative integer n. Combining such

couplings, we could couple with rates (ρ1, cρ2) for arbitrarily large c. By recurrence the
times between visits of the random walk with rate ρ2 to the vertex o have a distribution that
is dominated by a geometric sum of exponential random variables with rate ρ2, that is, by
an exponential random variable, which means that given ε > 0, for all sufficiently large c the
probability is at least 1−ε that o is visited in every interval of length ε in [0,1] by the random
walk with rate cρ2. By the coupling the same is true for the random walk with rate ρ1, which
forces that random walk to be at o a.s. during the entire interval [0,1], a contradiction. �

Question 2.36 appears to be difficult to decide even in other simple settings.

QUESTION 2.39. On which transient Cayley graphs is the coupling of Question 2.36
possible for two walks, one of which has edges all with rate ρ1 and the other all with rate
ρ2 > ρ1 > 0?

It is even possible to ask a version of this question for a chain with only three states.

QUESTION 2.40. Is the coupling of Question 2.36 possible for two walks on the set
{0,1,2} that both start at 0, where walk i moves from 0 to 1, 1 to 0, and 1 to 2 with rate ρi?
Note that once the walker reaches the state 2, it stays there.

Neither Question 2.39 nor 2.40 can be answered by a Markovian coupling, because it
would be possible for both walks to be at a neighbor of the starting vertex and then the more
active walk has a greater chance to move back to the starting vertex than the less active walk
does.

Finally, here are two more questions whose answers are unknown to us.

QUESTION 2.41. Is the escape speed concave in the rates for Coxeter systems?

QUESTION 2.42. Suppose that we have two random fields of rates on a Coxeter system
with the first being at most the second a.s. Suppose that the law of each field is invariant under
left group multiplication. Is the expected speed of the first at most that of the second?

3. Approach to stationarity. We will now consider random walks on finite groups and
how the distance of the law of Zt to the stationary distribution changes when the random
walk rates are increased.

QUESTION 3.1. Given a continuous-time random walk (Zt )t on a finite group with pos-
itive rates on the generators and a time t , consider the distance between the distribution of Zt

and the stationary distribution. Does the distance necessarily decrease when a random walk
rate is increased?

It seems natural to think that the distance would decrease, as increasing a rate might be
thought of as injecting additional randomness into the walk. In this section we will show
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that the answer is “yes” in several families of nice examples and then give several examples
where the answer is “no” in general, including some demonstrating rather unusual behaviour.
Furthermore, there appear to be interesting patterns in the sorts of examples that we are able
to produce.

There are several different measures of the distance from stationarity. Of course, the sta-
tionary distribution is uniform.

DEFINITION 3.2. For p ∈ [1,∞), the �p-distance between distributions f and g is

�p(f, g) :=
(

∑

v

∣

∣f (v) − g(v)
∣

∣

p
)

1
p

,

where the sum is taken over the states v of the chain. The �∞-distance between distributions
f and g is �∞(f, g) := maxv |f (v) − g(v)|. The Hellinger distance between distributions f

and g is
(

1

2

∑

v

∣

∣

√

f (v) −
√

g(v)
∣

∣

2
)

1
2
.

DEFINITION 3.3. The entropy of a distribution f is the sum over states v of −f (v) ×
logf (v).

Observe that because the function x logx is convex on (0,1), the distribution of maximum
entropy is the uniform distribution. Thus in this context, Question 3.1 asks whether increasing
one of the rates causes the entropy of Zt to increase.

One particularly strong way in which Question 3.1 may be answered in the affirmative
would be if increasing one of the rates results in decreasing the vector of transition probabil-
ities in the majorization order.

DEFINITION 3.4. Let f and g be vectors of length n. Denote by f[1] ≥ f[2] ≥ · · · ≥ f[n]
the decreasing rearrangement of f , and similarly for g[i]. We say that f majorizes g if, for
each i,

f[1] + · · · + f[i] ≥ g[1] + · · · + g[i]

with equality when i = n (which is automatic if f and g are probability vectors). Majorization
defines a partial order on probability vectors, with the largest elements being the extreme
points such as (1,0,0, . . . ,0) and the smallest element being ( 1

n
, 1

n
, . . . , 1

n
).

Recall the inequality of Hardy–Littlewood–Pólya–Karamata that if f majorizes g and φ

is convex, then
∑n

i=1 φ(fi) ≥ ∑n
i=1 φ(gi); if φ is strictly convex, then equality holds only

if f = g. For example, if f and g are probability vectors and φ(x) = |x − 1/n|p for some
p ≥ 1, then we may conclude that the �p-distance between f and the uniform distribution
is at least the �p-distance between g and the uniform distribution. By letting p → ∞, we
get the same for the �∞-distance. A similar inequality holds for Hellinger distance and, with
opposite sign, for entropy. Recall also that f majorizes g iff g is gotten by applying a doubly
stochastic matrix to f , such as by replacing (fi, fj ) by (αfi + (1 − α)fj , (1 − α)fi + αfj ),
where α ∈ [0,1]. This is equivalent to moving some part of the larger of fi and fj to the
smaller of the two. More generally, doubly stochastic matrices are convex combinations of
permutation matrices.

In particular, for continuous-time random walk on any finite graph, the distribution of
Zt decreases in the majorization partial order as t increases. In some cases increasing one
of the rates causes the distribution Zt to decrease in the majorization partial order, which
implies that the �p-distance to uniform has decreased for each p ≥ 1 and that the entropy has
increased.
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3.1. Positive examples. There are several special cases where the answer to Question 3.1
is positive.

3.1.1. Coxeter systems. Throughout this subsection we work in a Coxeter system,
(W,S). We will show that increasing the generator rates has the effect of decreasing in the
majorization order the probability distribution of Zt at any fixed time t , which, therefore, im-
plies decreasing distance to the uniform distribution in all senses mentioned. In order to prove
this, we will use the Bruhat order, the partial order ≤ on W defined by taking the transitive
and reflexive closure of the relation

{

(v,Lv);L is a reflection and |v| < |Lv|
}

.

We first extend Theorem 2.9 to the Bruhat order.

THEOREM 3.5. Let x < y in the Bruhat order and t > 0. Then pt (o, x) > pt (o, y).

PROOF. It suffices to prove this when y is a reflection L of x in a wall M . Let T be the
first M-refresh time of the random walk. For every path with Zt = y, we have T < t in light
of Lemma 2.1. If we change the coin flip at time T , then the walk will end instead at Ly = x.
This defines a probability-preserving bijection of the set of paths and coin flips (on [0, t])
from o to y to the set of paths and coin flips from o to x that have T < t . Since there is a
positive-probability set of paths from o to x during which there is no M-refresh time, we get
the desired strict inequality. �

We now look at how partial orders relate to majorization, based on [5].

DEFINITION 3.6. Let � denote a partial order on a set, A. A function f : A → R is
called decreasing if f (x) ≥ f (y) whenever x � y. A subset B ⊆ A is called decreasing if its
indicator 1B is decreasing. If f and g are two functions on A, then f �-majorizes g if f and
g are decreasing and

∑

x∈B f (x) ≥ ∑

x∈B g(x) for all decreasing sets B , with equality when
B = A.

LEMMA 3.7. Let � denote a partial order on a finite set, A. If f �-majorizes g, then f

majorizes g.

PROOF. For i < |A|, there is a decreasing set B of cardinality i on which g attains its i

largest values. The sum of the i largest values of f is at least the sum of f over B , which, by
definition, is at least the sum of g over B . �

COROLLARY 3.8. Let r and r′ be two sets of rates on S and t and t ′ be two positive

times. Let Z and Z′ be the corresponding random walks on W . Suppose there is a coupling

of Zt and Z′
t ′ such that Zt ≤ Z′

t ′ a.s. in the Bruhat order. Then the law of Zt majorizes the

law of Z′
t ′ .

PROOF. Let f be the law of Zt and g be the law of Z′
t ′ . By Theorem 3.5 both f and g

are decreasing. If B is a decreasing subset of W , then P[Zt ∈ B] ≥ P[Z′
t ′ ∈ B] because of the

coupling, whence f ≤-majorizes g. Thus, the result follows from Lemma 3.7. �

THEOREM 3.9. Let r and r′ be two sets of rates on S with rs ≤ r ′
s for all s ∈ S. Let

t > 0. Denote the corresponding transition probabilities by pt (x, y; r) and pt (x, y; r′). If W

is finite, then pt (o, ·; r) majorizes pt (o, ·; r′) with inequality if r 	= r′.
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PROOF. Suppose that r = r′, except for rs < r ′
s for one specific s. Consider how many

extra rings in [0, t) there are of Rs with the rates r′. If there is only one, then the argument
of Corollary 2.19 showed, with the same notation, that we may couple Z1

t and Z2
t so that

Z1
t ≤ Z2

t in the Bruhat order, and inequality holds with positive probability. By induction this
same conclusion extends to any finite set of additional rings of Rs . Therefore, we may couple
the two random walks so that Z1

t ≤ Z2
t conditional on the extra rings of Rs . Hence, we may

couple them so that this inequality holds without such conditioning. By Corollary 3.8 we
deduce that the distribution of Z1

t majorizes that of Z2
t . For the general case of rates, we may

change the rates one by one until r becomes r′, still yielding majorization. �

Of course, there is a superficial generalization of this result, as in Remark 2.20. With the
proper definition, this result also holds for infinite W . Similarly to Theorem 2.21, we may
deduce from our arguments the following, which also easily implies Theorem 3.9.

THEOREM 3.10. Let (W,S) be a Coxeter system. Let s and s′ be finite sequences from S

of lengths n and n′, respectively, with s a proper subsequence of s′. Let C be a Bernoulli(1/2)

process. Then the probability distribution of ξ(s,Cn) strictly majorizes that of ξ(s′,Cn′).

REMARK 3.11. There are additional consequences of the argument used in Theorem 3.5.
Suppose that M is a wall. Write M+ for the set of vertices v for which there is a path joining v

to o without using an edge of M , and write M− for the remainder. Since the Cayley graph of
(W,S) is connected, Lemmas 2.3 and 2.1 imply that the reflection LM in M interchanges M+

and M−. Let τM− := inf{t > 0;Zt ∈ M−}. A direct analogue of the reflection principle (for
one-dimensional random walks and Brownian motion) is that, for all t > 0 and all A ⊆ M+,

P[τM− < t,Zt ∈ A] = P[Zt ∈ LMA].

Therefore,

P[τM− < t] = 2 P
[

Zt ∈ M−]

.

Write τv := inf{t > 0;Zt = v}. If x < y, then τy strictly stochastically dominates τx , that
is, for all t > 0, P[τx < t] > P[τy < t]. In particular, P[τx < ∞] ≥ P[τy < ∞]. Let λv(t)

denote the Lebesgue measure of the set of times in [0, t] when the random walk is at v.
As a consequence of the strict stochastic domination inequality, we obtain that λx(t) strictly
stochastically dominates λy(t) when x < y and t > 0. We leave the arguments to the reader.

3.1.2. Abelian groups and conjugacy classes. In an abelian group, the answer to Ques-
tion 3.1 is always positive, because increasing a rate results in extra multiplications by random
group elements, and in an abelian group, we may consider these extra multiplications to take
place at the end of the random walk.

As a generalization of this observation, consider a random walk on a group G with a
generator g, every conjugate of which is also a generator. If all of the rates on this conjugacy
class are increased the same amount, then this results in multiplying by additional group
elements partway through the walk. Those extra elements are uniformly distributed in the
conjugacy class of g, independently of all other steps. This is equivalent to multiplying by
the same number of independent, uniformly chosen conjugates of g at the end. Thus, this also
moves the resulting distribution down in the majorization order.
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3.1.3. All groups with special distances. As long as we measure distance to stationarity
in special ways, increasing rates will always decrease distance on any group.

PROPOSITION 3.12. For any finite group, increasing any of the rates always decreases

the �∞-distance and the �2-distance to the uniform distribution.

PROOF. This relies on some well-known calculations. We have
∣

∣pt (x, y) − 1/n
∣

∣ =
∣

∣

∣

∣

∑

z

(

pt/2(x, z) − 1/n
)(

pt/2(z, y) − 1/n
)

∣

∣

∣

∣

=
∣

∣

∣

∣

∑

z

(

pt/2(x, z) − 1/n
)(

pt/2(y, z) − 1/n
)

∣

∣

∣

∣

≤
√

∑

z

(

pt/2(x, z) − 1/n
)2 ∑

z

(

pt/2(y, z) − 1/n
)2

=
√

(

pt (x, x) − 1/n
)(

pt (y, y) − 1/n
)

= pt (o, o) − 1/n.

(3.1)

Note that pt (o, o) ≥ 1/n because the first two lines above, without absolute values, show that

(3.2) pt (o, o) − 1/n =
∑

z

(

pt/2(o, z) − 1/n
)2 ≥ 0.

In particular, (3.1) gives

max
x,y

∣

∣pt (x, y) − 1/n
∣

∣ = pt (o, o) − 1/n.

When any rate is increased, pt (o, o) decreases, as we noted in the Introduction. Thus, the
�∞-distance decreases. In light of (3.2), the �2-distance at time t equals the square root of the
�∞-distance at time 2t , whence it is also decreasing in the rates. �

3.2. Negative examples. Symmetric groups give Coxeter systems when generated by ad-
jacent transpositions. Changing generators, however, may yield entirely different behaviour.
Indeed, every finite group is a subgroup of a symmetric group. Therefore, any counterexam-
ple can be exhibited on a symmetric group by adding generators to those for the subgroup and
making their rates 0 or very close to 0. However, symmetric groups being very large means
that it can be hard to find examples by searching in symmetric groups.

In this section many of our examples were found by random numerical searching and nu-
merical calculation—choosing sets of random generators and rates and exploring the conse-
quences of increasing one of those rates. As we move through the different types of examples,
we will attempt to give some idea of how difficult it was to find them, as an indication of the
frequency of similar examples. We will usually be considering groups with up to about 120
elements and numbers of random samples in the hundreds of thousands. In cases where we
were unable to find examples, we will indicate when we spent enough effort that we were
surprised not to find them.

In most cases we used sets of four generators, with rates between about 1 and 10. Indeed,
when choosing five generators at random, the most extreme examples often either included
the identity or two copies of the same generator, suggesting that it is easier to find these
examples with four distinct generators than with five.

For many of the groups we examined, it was not difficult to find examples where increasing
a rate increased the �1-distance from stationarity. This includes the symmetric groups S4
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and S5, dihedral groups with as few as 10 elements, and dicyclic groups with as few as 20
elements. We did not find these examples for split metacyclic groups. We will restrict our
discussion now to dihedral and symmetric groups, as two quite different families of groups.

For the dihedral group D11 with three involutions as generators, we found an example
where the entropy was not monotone in the rates. Note that dihedral groups are Coxeter
groups, with Coxeter generators being two involutions.

As we increase p from 1 toward 2, it becomes more difficult to find examples where the
�p-distance increases, which is consistent with Proposition 3.12. For instance, in the dihedral
group D5 we can find examples for values of p between 1 and 1.4, and in the group D7, for
values of p between 1 and 1.8. It also seems easier to find these kinds of examples in dihedral
groups Dn when n is prime, compared to a composite number of similar size, such as D31 or
D41 compared to D30 or D40.

While Proposition 3.12 says that there are no examples of this kind for p = 2, it is possible
to get very close to this value. For instance, it was not uncommon for us to find examples
exhibiting this behaviour for p up to 1.99 or from 2.01, and individually optimised examples
worked for p as large as 1.9999.

The next natural question is what happens for values of p larger than two. In the case
of dihedral groups, we found examples of sets of generators and rates that increase the �p-
distance from uniform for a range of values of p between 2 + ε and 4 − ε, for ε as small
as 0.001, but we were unable to find any examples where the �p-distance increases for p =
4, searching in dihedral groups as large as D131. This seems rather surprising. A generic
example of this sort has the �p-distance increasing for p in some interval contained in (2,4).
When the rates are adjusted so that the right endpoint of this interval moves closer to p = 4,
the left endpoint seems to move closer to p = 2 and vice versa.

Likewise, we found an example in the dihedral group D41 for which the �p-distance in-
creases for values of p between 4.001 and 5.995. Interestingly, this example also increases
the �p-distance for p up to 1.997.

We were unable to find dihedral examples either at p = 6 or for larger values of p. Proposi-
tion 3.12 explains why distance cannot increase for p = 2, but we have no similar explanation
for p = 4 or p = 6. While the �p-distance may increase for ranges of p less than 2 or be-
tween 2 and 4, we were unable to find any dihedral examples exhibiting this behaviour in
both ranges simultaneously.

The proof of Proposition 3.12 relates the behaviour of the �2-distance at time t to the �∞-
distance at time 2t . One might then hope that if there are examples where the �p-distance
increases for p near 2, then there should be similar examples where the �p-distance increases
for p near ∞, that is, for p very large, at twice the time. Yet we were unable to find such
dihedral examples.

We looked for similar examples to these in the symmetric group S5. As with the dihedral
groups, we found examples where the �p-distance increased for all p up to a value quite
close to 2 and examples where it increased for most p between 2 and 4, but also new types of
behaviour, including one where the �p-distance increased for p between 2.004 and 4.02 and
several where it increased for p from about 3 up to as large as 300.

We did not find examples where the distance increased at p = 4 in dicyclic groups.

4. A ray. We now turn our attention from Cayley graphs to an infinite one-ended path
and allow arbitrary rates on the edges. We label vertices by the nonnegative integers, and each
pair of consecutive numbers is connected by an edge. For each positive integer i, let ri be the
(nonnegative) rate of the Poisson clock on the edge between i − 1 and i. Let i0 := inf{j ; rj =
0} ∈ [1,∞]. For simplicity, we assume that the rates are such that explosions do not occur.
We will see several interesting phenomena in this case. The random walk will begin from 0.
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PROPOSITION 4.1. For each time t > 0, the probability pt (0, i) that the walker is at

location i is a strictly decreasing function of i for those i < i0.

PROOF. We first prove that pt (0, i) is weakly decreasing in i.
Let ft (i, j) be the probability that a random walk starting from i visits j at some time

before t . Because there are no explosions, limN→∞ ft (0,N) = 0. Consider the sequence of
chains whose rates are ri for i ≤ N and 0 for i > N ; write pN

t (i, j) for their transition prob-
abilities. Since |pt (0, i) − pN

t (0, i)| ≤ ft (0,N), it follows that limN→∞ pN
t (0, i) = pt (0, i)

for all i. Therefore, it suffices to prove the claim for a chain where only finitely many rates
are nonzero. We now assume that condition.

Consider the refresh times Ri of Definition 2.6. There are only finitely many such times
before t a.s. If we condition on the sequence of all refresh rings that occur between time 0
and time t , ordered by time, then the probability distribution function of the walker’s location
at time t is a nonincreasing function of i. This is because the coin flip, or randomization,
at each time of Ri acts on the walker’s distribution function at that time by averaging the
probabilities at i − 1 and i, and this operation preserves monotonicity. The walker is initially
at position 0 with probability 1, and this initial distribution function is monotone.

Integrating these conditional distribution functions with respect to the distribution of all
refresh rings before time t completes the proof of the claim.

Next, we show that the transition probabilities are strictly decreasing. We no longer as-
sume that only finitely many rates are nonzero. Let p̃t (0, ·) denote the probability distribution
conditional on the set of refresh rings before time t . There is a collection of positive prob-
ability of sets of refresh rings for each of which p̃t (0, i − 1) > p̃t (0, i) for i < i0. Because
p̃t (0, i − 1) ≥ p̃t (0, i) for each possible set of refresh rings and pt (0, i) is the expectation of
p̃t (0, i), it follows that pt (0, i) is strictly decreasing for 0 ≤ i < i0. �

This analysis also lets us discuss the speed at which the walker moves away from 0.

LEMMA 4.2. In the language of the proof of Proposition 4.1, consider the following two

distribution functions on Z
+. The function f1 is defined by starting with a unit mass at 0 and

applying any fixed finite sequence of refresh rings. The function f2 is defined similarly, using

the same sequence of refresh rings, except with one additional refresh ring Rj occurring

partway through the sequence. Then f2 dominates f1, that is,
∑k

i=0 f1(i) ≥ ∑k
i=0 f2(i) for

every k ∈ Z
+.

PROOF. Consider the evolution of the difference f2 − f1. This is zero until the extra Rj

is applied to f2. At this point, f2 − f1 is zero at all points, except j − 1 and j . At j − 1 it is
negative (or zero), at j it is positive (or zero), and these two differences have the same size
(but opposite sign).

At this point the difference f2 −f1 has the property that when summed over the states 0 to
any k, it is nonpositive. This property is preserved by the application of any of the Ri , which
completes the proof. �

This implies that the location of the random walk at each time is stochastically strictly
increasing in each of the rates rj .

COROLLARY 4.3. At every time t and nonnegative integer i < i0, the probability that the

walker is at a position between 0 and i is a strictly decreasing function of each rj for j < i0.
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PROOF. As in the proof of Proposition 4.1, we first prove the statement without the strict-
ness under the assumption that i0 < ∞. When some Rj rings one additional time, then the
result follows from Lemma 4.2. Applying this fact repeatedly gives the result. It then follows
even if i0 = ∞, but without the strictness part.

To show strictness, it again suffices, for each i, to exhibit a collection of positive probability
of sequences of refresh rings with a marked additional ring of Rj that each give a strict
inequality. Indeed, such a collection is formed by the sequences that when restricted to the
refresh rings for edges k ≤ i ∨ j are sequences of the form (R1,R2, . . . ,Ri∧j , . . . ,Ri∨j ),
where (one of) the Rj is marked additional. �

COROLLARY 4.4. At every time t , the expected distance of the walker from 0 is a strictly

increasing function of each rj for j < i0.

PROOF. The expected distance from 0 is the sum over all i of the probabilities that the
walker is farther away than i. Hence, the result follows from Corollary 4.3. �

We are also interested in how much time the walker spends at each vertex.

PROPOSITION 4.5. For our random walk on the infinite one-ended path, let t be an

arbitrary time. Then the time spent at 0 between time 0 and time t stochastically dominates

the time spent at 1.

PROOF. As in previous proofs, we may assume that i0 < ∞. Without loss of generality,
rescale time so that the rate r1 is equal to 1. Fix t > 0. We define recursively the following
sequences of times. Let A1 := 0. Then let Bk be the infimum of the times in [0, t] after time
Ak at which the walker is at the vertex 1 if there is such a time and Bk := t if not, and Ak+1

be the infimum of the times in [0, t] after Bk at which the walker is at 0 if there is such a time
and t if not, for each k. For each k, let Xk be the amount of time the walker spends at vertex
0 between time Ak and Ak+1, and Yk be the amount of time spent at 1 between Bk and Bk+1.

If we didn’t stop counting at time t , then both Xk and Yk would be distributed as expo-
nential random variables with rate 1, because they count the time spent at vertex 0 or 1,
respectively, until the Poisson clock corresponding to the edge (0,1) rings while the walk is
at one of its endpoints, and this clock has rate 1. Taking this into account, we see that the
conditional distribution of Xk , given Ak and (Xi, Yi) for all i < k, is the same as the distri-
bution of min(Exp(1), t − Ak). We can’t give such a concrete expression for the conditional
distribution of Yk , because the walker may move to 2 and beyond before moving back to 1
and then to 0. We can say, though, that Yk given Ak , Xk , and (Xi, Yi) for all i < k is stochas-
tically dominated by min(Exp(1), t − Ak − Xk). In particular, this means that Xk dominates
Yk , given (Xi, Yi) for all i < k. It follows that the sum of the Xk stochastically dominates the
sum of the Yk . Since the total time spent at 0 between 0 and t is the sum of the Xk and the
time spent at 1 is the sum of the Yk , we obtain the desired result. �

In the preceding proof, note that we gave an explicit expression for Xk and an upper bound
for Yk . If the walker was allowed to move away from the vertex 0 without moving to 1, then
we would only have obtained an upper bound for Xk , which would not allow us to compare
Xk and Yk . Example 4.6 illustrates what may go wrong in such a scenario.

Surprisingly, even the simplest generalizations of Proposition 4.5 are not true. The follow-
ing example shows that in the same setting, the walker need not spend more time at vertex 1
than at 2.
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EXAMPLE 4.6. Fix t > 0. Set the rate r1 to be extremely large, so that the total time
spent at vertex 0 or 1 before time t is very likely to be almost the same. Take r2 to be 1
and r3 to be zero (thus, the walker will never reach any state beyond 2, and the other rates
are irrelevant). Then at time t , the probability that the walker has spent more than time 2t

3 at
vertex 1 is almost zero, because it spends almost equal amounts of time at 0 and 1. However,
there is probability bounded away from 0 that the walker spends more time than 2t

3 at state
2; for instance, it could move to state 2 by time t

4 , and then the edge between states 1 and 2
might not ring again before time t .

Therefore, the time spent at 1 does not stochastically dominate the time spent at 2.

The next example illustrates how Corollary 4.4 may fail in cases that are only slightly more
complicated. The state space will still be a path, but the walker will not start at an end.

EXAMPLE 4.7. Expand the setting so that there is a vertex for each integer i, with ri
still the rate for moving between i − 1 and i. The walker still begins at 0, but there are now
possible states on either side of 0.

If ri = 0 for i 	= 0,1 and r1 = 1, then one can check by explicit calculation that pt (0,0)

is larger when r0 = 3 than it is when r0 = 2, whence the expected distance from 0, being
1 − pt (0,0), is smaller when r0 = 3 than it is when r0 = 2.

For a more extreme example, choose arbitrary positive integers k and n, and set the rates
on edges between −k and 0 to each be 1 and rates on edges between 0 and n − 1 to be very
large and the same. Rates outside these ranges are zero. At times that are much less than 1
but large compared to the reciprocal of the large rate, the walker is approximately equally
likely to be at any state between 0 and n − 1, for an expected distance of n−1

2 . At large times
the walker is approximately equally likely to be at any of the k + n states, for an expected
distance of n(n−1)+k(k+1)

2(n+k)
. For some values of k and n, the expected distance from the starting

state has decreased between these two regimes.
If we take k = αn and consider the limit as k and n increase, the most extreme ratio

occurs when α =
√

2−1, which gives a ratio between the small-time and large-time expected

distances of 1+
√

2
2 .

One permissible generalization of Proposition 4.5 is to settings where the excursions from
the two vertices in question have the same distribution. This includes the setting of Cayley
graphs with rates depending only on the generators.

PROPOSITION 4.8. Consider random walk on a graph whose edge rates are preserved

by some group of graph automorphisms that acts transitively on the vertices. Then the time

spent between 0 and t at the initial vertex u stochastically dominates the time spent at each

other vertex v.

PROOF. Let λ(x, t) be the amount of time between 0 and t spent at the vertex x by a
random walk started at x at time 0. Because the graph is vertex-transitive, the law of this
quantity does not depend on x. The duration λ(x, t) is also increasing in t . Let τ be a random
variable independent of the random walk and whose distribution is the same as that of the
hitting time of the vertex v when the random walk is started from u. Then we are comparing
λ(u, t) with λ(v, (t − τ)+), whose law is the same as that of λ(u, (t − τ)+). The random
variable τ is positive, which completes the proof. �
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