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Abstract. Shalom and Tao showed that a polynomial upper bound on the size of a sin-

gle, large enough ball in a Cayley graph implies that the underlying group has a nilpotent

subgroup with index and degree of polynomial growth both bounded effectively. The third

and fourth authors proved the optimal bound on the degree of polynomial growth of this

subgroup, at the expense of making some other parts of the result ineffective. In the present

paper, we prove the optimal bound on the degree of polynomial growth without making

any losses elsewhere. As a consequence, we show that there exist explicit positive num-

bers "d such that, in any group with growth at least a polynomial of degree d , the growth

is at least "d nd . We indicate some applications in probability; in particular, we show that

the gap at 1 for the critical probability for Bernoulli site percolation on a Cayley graph, re-

cently proven to exist by Panagiotis and Severo, is at least exp¹� exp¹17 exp¹100 � 8100ººº.

1 Introduction

We investigate the growth of finitely generated groups. Given a group G that

is generated by a finite subset X , we let sn.G/ D sn.G; X/ be the number of

elements of G that can be expressed as a product of at most n elements from

X [X�1. If, for some n, we have sn.G/ 6 2n, then G is finite. Indeed, if G is

infinite, then for all n > 1, there exists an element s of length 2n, which we may

write as s D uv, where u and v each have length n. Then u ¤ v�1, so that

sn.G/ � sn�1.G/ > 2 and sn.G/ > 2nC 1:

This inequality is best possible, as both Z and .Z=2Z/ � .Z=2Z/ (with their stan-

dard generators) have sn.G/ D 2nC 1 for all n.

Wilkie and van den Dries [37] showed that if G is infinite and the inequal-

ity sn.G/ < .nC 1/.nC 2/=2 holds for some n, then G is virtually cyclic and

(hence) has linear growth. In fact, they showed that if sn.G/ � sn�1.G/ 6 n for

R. Lyons partially supported by NSF grant DMS-1954086 and the Simons Foundation.



30 R. Lyons et al.

some n > 1, then G has a cyclic subgroup of index at most .sn.G/� sn�1.G//4=2.

Imrich and Seifter [15] improved the bound on the index to sn.G/ � sn�1.G/,

which is sharp.

Results of this type are known for higher rates of growth. If there exist numbers

C and d such that sn.G/ 6 C nd for all n, then G is said to be of polynomial
growth. In that case, the growth degree deg.G/ of G is the infimum of the num-

bers d for which another number C can be found such that the inequality above is

satisfied. This degree is independent of the generator system X and can be charac-

terised equivalently by deg.G/ WD lim sup
log sn.G/

log n
. If G does not have polynomial

growth, then, given any numbers C and d , the inequality sn.G/ > C nd holds for

infinitely many n. In other words, the upper limit above is infinite.

If G is nilpotent of class cl.G/ D c with lower central series

G D 
1.G/ B 
2.G/ B � � � B 
c.G/ B 
cC1.G/ D ¹1º;

then, as Bass [1] and Guivarc’h [12] showed, the growth degree can be expressed

as r WD
Pc

iD1 ir.i/, where r.i/ is the torsion-free rank of 
i .G/=
iC1.G/, i.e.,

the number of infinite factors in the decomposition of this quotient as a direct

sum of cyclic groups. The Hirsch length h.G/ of G is defined to be
Pc

iD1 r.i/;

obviously, h.G/ 6 r 6 h.G/ � c. A virtually nilpotent group has the same growth

degree as its nilpotent, finite-index subgroups. The above formula shows that the

degree is an integer. Given a group G with a finite-index, nilpotent subgroup, H ,

we define the Hirsch length h.G/ of G to be h.H/.

A celebrated theorem of Gromov [11] established a conjecture of Milnor that

a finitely generated group G has polynomial growth (if and) only if G is virtually

nilpotent. Building on work of Kleiner [16], Shalom and Tao [26] subsequently

gave a finitary version of this statement, showing that a polynomial upper bound on

the size of just a single ball (of large enough radius) implies that a group is virtually

nilpotent. Their result gives effective bounds on both the index and the degree of

polynomial growth of the nilpotent subgroup, and on how large the radius needs

to be in order for the theorem to hold. In relatively recent work, the third and

fourth authors made the bound on the degree of polynomial growth optimal at the

expense of some effectiveness elsewhere. The main aim of the present work is to

obtain the optimal bound on the degree of polynomial growth without sacrificing

effectiveness elsewhere. We also present some applications to probability.

Shalom and Tao’s refinement of Gromov’s theorem is the following.

Theorem 1.1 (Shalom±Tao [26, Theorem 1.8]). There exists an absolute constant
C such that if G is a group with finite generating set X , and if sn.G; X/ 6 nd

for some d > 1 and some integer n > exp.exp.CdC //, then G has a nilpotent



Explicit universal minimal constants for polynomial growth of groups 31

subgroup of index On;d .1/ and Hirsch length and class at most C d , whence
deg.G/ 6 C 2d .

Here and elsewhere, we adopt the notational convention that if X is a real quan-

tity and z1; : : : ; zk are parameters, then Oz1;:::;zk
.X/ denotes a quantity that is at

most a constant multiple of X , with the constant depending only on the parameters

z1; : : : ; zk .

Theorem 1.1 says that a polynomial upper bound on the size of a single, large

enough ball is enough to imply that a group is virtually nilpotent, and to give some

quantitative control over the complexity of the virtual nilpotency. A bound on C

can be computed explicitly from the proof; the authors assert that one such bound

should be 100. The bound On;d .1/ on the index could in principle be made effec-

tive, but the authors instead use an ineffective compactness argument, saying that

the corresponding effective argument would be ªsubstantially longerº and result

in a bound of Ackermann type in d .

Remark. In his original paper, Gromov applied a compactness argument together

with his own theorem to obtain a similar conclusion to Theorem 1.1 [11, § 8]. This

yields ineffective bounds and requires the stronger hypothesis that jsn.G/j 6 nd

for some d > 1 and all n D 2; : : : ; n0, for some n0 D n0.d/.

Given the polynomial of degree d appearing in the hypothesis of Theorem 1.1,

it is natural to wonder whether deg.G/ should also be at most d . This amounts to

asking whether a group can grow like a polynomial of degree d at small scales and

then accelerate to grow like a polynomial of higher degree at large scales. It turns

out that if one considers instead a ªrelativeº condition of the form

jsn.G/j 6 C nd js1.G/j;

then this can indeed occur (see [30, Example 1.11] for details). However, the third

and fourth authors showed that this does not occur in the context of Theorem 1.1 by

proving the following result, which verified a conjecture of Benjamini. We write N

for the set of strictly positive integers.

Theorem 1.2 ([31, Theorem 1.11]). For every d 2 N, there exists "d > 0 such
that if G is a group with finite generating set X and if sn.G; X/ < "d nd for some
n 2 N, then sm.G; X/ 6 Od ..m=n/d�1sn.G; X// for every integer m > n.

Theorem 1.2 relies on Breuillard, Green, and Tao’s structure theorem for ap-

proximate groups [4], and as such does not give an effective computation of "d .

The bound Od ..m=n/d�1sn.G; X// is also ineffective in the original reference
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for Theorem 1.2, but in forthcoming work, the third and fourth authors will give

an improved proof of Theorem 1.2 that results in an effective bound.

As an immediate consequence of Theorems 1.1 and 1.2, we obtain the optimal

bound on deg.G/ in the Shalom±Tao theorem, as follows.

Corollary 1.3. For every d 2 N, there exists "d > 0 such that if G is a group
with finite generating set X and if sn.G; X/ < "d nd for some n 2 N, then G has
a nilpotent subgroup of index On;d .1/, and deg.G/ 6 d � 1.

Note that, although the hypothesis sn.G; X/ < "d nd in this result might at first

glance appear rather stronger than the hypothesis sn.G; X/ 6 nd of Theorem 1.1,

provided n > 1="dC1, the latter bound implies the former with d C 1 in place

of d .

It appears to be beyond the reach of current methods to give an explicit value

of "d in Theorem 1.2. Nonetheless, in the present work, we obtain Corollary 1.3

directly and elementarily from Theorem 1.1, bypassing the Breuillard±Green±Tao

theorem completely and making "d effective in Corollary 1.3 without any losses

elsewhere. This leads in turn to effective constants "d in the following trivial con-

sequence of Corollary 1.3.

Corollary 1.4. Let d 2 N, and suppose that G is a group satisfying deg.G/ > d

and X is a finite generating set for G. Then sn.G; X/ > "d nd for every n 2 N,
where "d > 0 is the constant given by Corollary 1.3.

This has particular relevance to the study of probability on groups, where lower

bounds on growth have numerous applications.

Main new results

Our first main result deals with groups of growth exactly d , and for that reason, it

does not rely on the Shalom±Tao theorem.

Theorem 1.5. Let d 2 N, and suppose G is a virtually nilpotent group with poly-
nomial growth of degree d . Let X be a finite generating set for G. Then

sn.G; X/ >
nd

2d.dC2/g.h.G//d
>

nd

2d.dC2/g.d/d

for every n 2 N, where g.k/ is the maximum order of a finite subgroup of GLk.Z/.

An upper bound for g.k/ was given already by Minkowski [21] in 1887. One

such bound is

g.k/ 6 .2k/Š (1.1)
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(see [22, equation (16) on p. 175]). See also [10] and the remarks about g.k/ on

[20, pp. 88±89].

Combining Theorem 1.1 with Theorem 1.5, we deduce an effective version of

Corollary 1.3, as follows.

Theorem 1.6. We may take

"d D min

²

1

23C 4d
g.C d /C 2d

;
1

exp.d exp.CdC //

³

(1.2)

in Corollary 1.3 and hence also in Corollary 1.4. Moreover, this yields the same
bound on the index of the nilpotent subgroup as Theorem 1.1.

The second term in the expression of "d is directly related to the lower bound

on n in the Shalom±Tao theorem. We observe that the second term is asymptoti-

cally smaller than the first one (after taking logs of the reciprocals twice, the first

one becomes' d , while the second one becomes' dC ).

Remark 1.7. Define mingr.d/ WD inf¹sn.G; X/n�d º, where the infimum is taken

over all n 2 N and all virtually nilpotent groups G with polynomial growth of

degree d and generating sets X . Obviously, mingr.1/ D 2. We do not know the

values of mingr.d/ for other d . Theorem 1.5 gives a lower bound on mingr.d/.

For an upper bound, note that, when Z
d is generated by d elements, we have

mingr.d/ 6 limn!1 sn.Zd /=nd D 2d =dŠ: up to terms of order nd�1, sn.G/ is

the volume of a hyperoctahedron, which, in turn, is 2d times the volume of its

intersection with the nonnegative orthant. We can do better, however: for d > 2,

consider the affine Coxeter group QBd , which has growth degree d and so-called

exponents 1; 3; : : : ; 2d � 1; see [3, Appendix A1]. By a formula of Bott (see [3,

Theorem 7.1.10] or [27, Theorem 3.8]), we have for the Coxeter generators,

X

n>0

sn. QBd /zn D 1

.1 � z/dC1

d
Y

kD1

1 � z2k

1 � z2k�1

for jzj < 1. By [24, Proposition 51] and [28, Lemma 3.2], we have for every group

G of polynomial growth degree d that

lim
n!1

sn.G/n�d D 1

dŠ
lim
z"1

.1 � z/dC1
X

n>0

sn.G/zn;

whence

mingr.d/ 6 lim
n!1

sn. QBd /n�d D 1

dŠ

.2d/ŠŠ

.2d � 1/ŠŠ
:
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Note, in particular, that .2d/ŠŠ=.2d � 1/ŠŠ �
p

�d as d !1. In fact, there are

a few other Coxeter groups that give still better bounds:

mingr.2/ 6 lim
n!1

sn. QG2/n�2 D .12=5/=2Š;

mingr.6/ 6 lim
n!1

sn. QE6/n�6 D .324=77/=6Š;

mingr.7/ 6 lim
n!1

sn. QE7/n�7 D .9216=2431/=7Š;

mingr.8/ 6 lim
n!1

sn. QE8/n�8 D .99532800=30808063/=8ŠI

again, see [3, Appendix A1] for the definitions and exponents of these groups.

Remark. The situation for groups of exponential growth is known to be quite dif-

ferent from the situation for groups of polynomial growth described by Corol-

lary 1.4. On the one hand, some classes of groups are known to have uniformly

exponential growth over all generating sets, in the sense that there is a constant

c > 1 depending only on the group such that the ball of radius n with respect to an

arbitrary generating set has at least cn elements; indeed, the same c > 1 sometimes

exists even for an entire class of groups. On the other hand, it is known that there

are groups of exponential growth whose rate of growth on the exponential scale is

arbitrarily small for certain sets of generators. See, e.g., [5] for results and history

of exponential growth. There is much less knowledge for groups of intermediate

growth: it is not even known whether there are such groups whose balls of radius n

have asymptotically fewer than ec
p

n elements.

Vertex-transitive graphs

Trofimov [35, Theorem 2] famously extended Gromov’s theorem to vertex-tran-

sitive graphs of polynomial growth, showing that any such graph has a quotient

that looks roughly like a virtually nilpotent Cayley graph in a certain precise

sense. Woess [38, Theorem 1] subsequently gave a simple proof of this result

using the theory of topological groups. Inspired by Woess’s proof, and applying

a version of the Breuillard±Green±Tao theorem for locally compact groups due

to Carolino [6], the third and fourth authors of the present work gave a finitary

version of Trofimov’s theorem that allowed them to extend Theorem 1.2 to vertex-

transitive graphs [33, Corollary 1.5].

Unfortunately, we are not aware of an effective result for locally compact groups

that could be used to bypass Carolino’s result in the same way that we use Shalom

and Tao’s result to bypass the Breuillard±Green±Tao theorem in our proof of

Corollary 1.3. Nonetheless, using Trofimov’s result, we can at least obtain the
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following generalisation of Theorem 1.5, in which we write sn.�/ for the number

of vertices inside a ball of radius n in a vertex-transitive graph � .

Corollary 1.8. Let d 2 N, and suppose � is a vertex-transitive graph with poly-
nomial growth of degree exactly d . Then

sn.�/ >
nd

2d.dC2/g.d/dC1

for every n 2 N.

See also Corollary 6.2 for a partially effective version of Corollary 1.8 valid in

a vertex-transitive graph of growth degree at least d .

Minimal polynomial-growth constants and probability

Results such as Corollary 1.4 can be used to give universal bounds on various

quantities in probability. For example, given a vertex-transitive graph � with vertex

set V , edge set E, and valency �, define lazy simple random walk on � to be the

Markov chain whose transition probabilities from y 2 V to z 2 V are

p.y; z/ D

8

ˆ

<

ˆ

:

1=.2�/ if ¹y; zº 2 E;

1=2 if y D z;

0 otherwise:

Write pt .y; z/ for the t -step transition probabilities. A special case of [17, Corol-

lary 6.6] states that if c; d > 0 are such that sn.�/ > cnd for all n 2 N, then for

all y; z 2 V and t 2 N, we have

pt .y; z/ 6 pt .y; y/ 6
8d .dC5/=2�d=2

ced=2
t�d=2:

Combining this with our results yields several corollaries, such as the following.

Corollary 1.9. Let d 2 N, and suppose that � is a Cayley graph of a group having
growth degree at least d or is a vertex-transitive graph with polynomial growth of
degree exactly d . Then, for every y; z 2 G and t > 1, we have

pt .y; z/ 6 pt .y; y/ 6
8d .dC5/=2�d=2

"d ed=2
t�d=2;

where � is the valency and "d > 0 is the constant given by (1.2) in the case of
a Cayley graph and is 1=.2d.dC2/g.d/dC1/ otherwise.
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Corollary 1.9 in turn leads to bounds on various other quantities. For example,

Panagiotis and Severo [23] recently showed that there exists a gap at 1 for the

critical probability pc for Bernoulli site (and hence bond [18, Proposition 7.10])

percolation on a Cayley graph, in the sense that there exists " > 0 such that either

pc 6 1 � " or pc D 1 for every Cayley graph. Using Corollary 1.9 in their argu-

ment instead of their bound [23, (3.4)] on pt .x; y/ allows one to give an explicit

value for ", as follows.

Corollary 1.10. Let � be a Cayley graph. Then the critical probability pc.�/ for
Bernoulli site percolation on � satisfies either

pc.�/ < 1 � exp
®

� exp
®

17 exp¹100 � 8100º
¯¯

DW p0

or pc.�/ D 1. Furthermore, the probability that the identity element belongs to an
infinite cluster at value p0 satisfies

Pp0
Œo$1� > exp

®

�9 exp¹100 � 8100º
¯

:

The same inequalities hold for Bernoulli bond percolation.

See Appendix A for more details. The Cayley graph with the largest value

known of pc less than 1 is apparently that of the presentation ha; b j a3; b2; .ab/6i,
which is the 3-12 lattice; there, we have pc D

p

1 � 2 sin.�=18/ D 0:8079C for

site percolation ([29, p. 278] gives a simple reduction to site percolation on the

Kagomé lattice, which is the line graph of the hexagonal lattice, whence site per-

colation on the former is equivalent to bond percolation on the latter, whose critical

probability was rigorously determined by [36]).

The third and fourth authors [32] have shown that there is a gap at 0 for es-

cape probabilities of random walks on vertex-transitive graphs, in the sense that

there exists an absolute constant c > 0 such that simple random walk on an arbi-

trary vertex-transitive graph is either recurrent or has escape probability at least c.

This constant c is independent of the valency but is not explicit. The results of

the present paper allow us, in the special case of Cayley graphs, to replace this

non-explicit constant c with an explicit function of the valency �. The most im-

mediate such bound follows from noting that the escape probability is equal to

1=
P

t>0 pt .x; x/ and that a transient Cayley graph has growth degree at least 3;

Corollary 1.9 then immediately yields a lower bound on the escape probability of

the form K��3=2 for a transient Cayley graph, where K is an explicitly com-

putable absolute constant. We can do even better, however, if we pass via an

isoperimetric inequality. By an isoperimetric inequality in a group G with finite

generating set X , we mean a lower bound on the size of the vertex boundary @A
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of a finite set A � G, defined as @A D A.X [X�1/ n A. It follows from a well-

known result of Coulhon and Saloff-Coste [7], with bounds as given by [18, The-

orem 6.29], that for each positive integer d , we have

j@Aj > jAj
2d.2jAj="d /1=d e

for an arbitrary, non-empty, finite subset A of a group G satisfying deg.G/ > d ,

where "d is the quantity appearing in Corollaries 1.3 and 1.4. In particular, this

implies the explicit d -dimensional isoperimetric inequality

j@Aj >
"

1=d

d

8
jAjd�1

d (1.3)

for any such A and G. Inserting (1.3) into the argument of [32], one can improve

the lower bound K��3=2 on the escape probability described above to J��2=3,

where J is an explicitly computable absolute constant. Indeed, this leads to a lower

bound on the escape probability of the form Jd ��2=d for any group G satisfying

deg.G/ > d , where Jd is an explicit function of d .

For one final example of an application of our results, [19, Proposition 2.8]

shows that, for every transitive graph, EŒKi � 6
P1

tD0.t C 1/pt .x; x/=2, where

i > 0 and Ki is the number of times t such that the loop-erasure of the (nonlazy)

simple random walk path up to time t has exactly i edges (although pt .x; x/ still

refers here to the lazy simple random walk). In the case of a Cayley graph of

growth degree at least 5, it follows from Corollary 1.9 that EŒKi � 6 5131�5=2="5.

An interesting question is whether the dependence on the valency is necessary for

bounding EŒKi �.

2 Background on nilpotent groups

In this section, we present some standard definitions and results from the theory

of nilpotent groups. Recall that the set of elements of finite order in a nilpotent

group G is a subgroup T , called the torsion subgroup. If G is generated by a fi-

nite set X , then T is finite, and the quotient G=T is torsion-free [25, 5.2.7] with

sn.G; X/ > sn.G=T; XT /. In this case, the growth of G is trivially of the same

degree as the growth of G=T , meaning that, in many of our arguments, we may

assume without loss of generality that any nilpotent groups are torsion-free.

Given elements g and h of a group G, we denote by Œg; h� the commutator
g�1h�1gh of g and h. More generally, given elements x1; : : : ; xk of a group G,

we define the simple commutator Œx1; : : : ; xk� of weight k recursively by Œx1�D x1

and Œx1; : : : ; xk� D ŒŒx1; : : : ; xk�1�; xk�. By definition, 
k.G/ is the subgroup of

G generated by the simple commutators of weight k in elements of G.
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Write �.k/ for the length of the simple commutator of weight k as an unreduced

word in the elements x˙1
i ; thus, for example, �.3/ D 10 because

Œx1; x2; x3� D x�1
2 x�1

1 x2x1x�1
3 x�1

1 x�1
2 x1x2x3:

It is clear that �.k C 1/ D 2�.k/C 2, whence �.k/ D 3 � 2k�1 � 2. We will use

only the following consequence:

�.k/ 6 2k�1k: (2.1)

Lemma 2.1 ([13, Theorem 10.2.3] or [34, Proposition 5.2.6]). Let G be a group
with generating set X , and let k 2 N. Then 
k.G/=
kC1.G/ is generated by the
image in G=
kC1.G/ of the set ¹Œx1; : : : ; xk� W x1; : : : ; xk 2 Xº.

Lemma 2.2 ([34, Lemma 5.5.3 & Proposition 5.2.7]). Let G be a group, let g 2 G,
and let k 2 N. Then the map


k.G/! 
kC1.G/=
kC2.G/;

x 7! Œx; g�
kC2.G/

is a homomorphism, the kernel of which contains 
kC1.G/.

Lemma 2.3. Let c 2 N, and let G be a torsion-free nilpotent group of class c. For
each i D 1; : : : ; c, write r.i/ for the torsion-free rank of 
i .G/=
iC1.G/. Then
r.i/ > 1 for 1 6 i 6 c, and if G is not cyclic, then r.1/ > 2.

Proof. Suppose that r.k/ D 0 for some k 2 ¹1; : : : ; cº, and let k be the maximum

such. If k D c, then 
c.G/ is finite, hence trivial, contrary to the definition of c.

If k < c, then all simple commutators of weight k have finite order modulo 
kC1.

Lemma 2.2 therefore implies that all simple commutators of weight k C 1 have

finite order modulo 
kC2. This implies that r.k C 1/ D 0, contradicting the max-

imality of k. This establishes our claim that r.i/ > 1 for 1 6 i 6 c.

Now suppose that r.1/ D 1. Then we can choose a generating set X for G such

that only one of the xi has infinite order modulo 
2.G/ (indeed, X generates G

if and only if the image of X in G=
2.G/ generates G=
2.G/; see [13, Corol-

lary 10.3.3]). Lemma 2.2 therefore implies that every commutator Œx; y� with

x; y 2 G has finite order in 
2.G/=
3.G/, so that r.2/ D 0. By the first part of

the lemma, this implies that c D 1, so that G is free abelian of rank 1, i.e., infinite

cyclic.

Corollary 2.4. Let d > 2 be an integer, and suppose G is a torsion-free nilpotent
group with growth degree d . Then c D cl.G/ satisfies c.c C 1/ 6 2d � 2.

Proof. Lemma 2.3 implies that d > 1C
Pc

iD1 i D 1C c.c C 1/=2.
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Lemma 2.5 ([34, Lemma 5.5.2]). Let G be a group and let k 2 N. Then the map

Gk ! 
k.G/;

.x1; : : : ; xk/ 7! Œx1; : : : ; xk�

is a homomorphism in each variable modulo 
kC1.G/.

3 Minimal polynomial-growth constants for virtually

nilpotent groups

We start by considering the special case of a group that is actually nilpotent, rather

than merely virtually nilpotent.

Proposition 3.1. Let d 2 N, and suppose G is a nilpotent group with polynomial
growth of degree d . Let X be a finite generating set for G. Then

sn.G; X/ >
nd

2d2

for every n 2 N.

The proof of Proposition 3.1 is by induction on d , and we carry out the induction

step by examining a certain quotient of G with lower growth degree. We will use

the following technical lemma that allows us to compare the growth of G to the

growth of this quotient. Recall that Bn.G; X/ denotes the ball of radius n with

respect to X centred at the identity element in G.

Lemma 3.2. Let G be a group with finite generating set X , and suppose H E G

is a normal subgroup. Then, for every m; n > 0, we have

smCn.G; X/ > sm.G=H; XH=H/ � jBn.G; X/ \H j:

Proof. The ball of radius m in G contains a set A of cardinality sm.G=H; XH=H/

with each element belonging to a distinct coset of H . The products ax with a 2 A

and x 2 Bn.G; X/ \H are then distinct elements of the ball of radius mC n.

In the expression n=2cc2 below and others like this, we write x=yz to mean

x=.yz/.

Proof of Proposition 3.1. On passing to the quotient of G by its torsion subgroup,

we may assume that G is torsion-free. If n < 2d , then we have nd < 2d2

, whence

sn.G; X/ > 1 > nd =2d2

, and the proposition is satisfied. We may therefore as-

sume that n > 2d .
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If G is abelian, then every generating set contains d independent elements that

generate a free abelian subgroup H of rank d , hence sn.G/ > sn.H/ > nd =dŠ.

To see this lower bound, consider only the part of the ball with all coordinates

strictly positive. For integers xi > 0 with
Pd

iD1 xi 6 n, let Cx be the unit cube
Qd

iD1.xi � 1; xi �, where x D .x1; : : : ; xd /. These cubes are disjoint. Suppose that

z D .z1; : : : ; zd / is a real point in the pyramid where zi > 0 holds for all i and
Pd

iD1 zi 6 n � d . Then z lies in the cube Cw , where w WD .dz1e; : : : ; dzd e/.
Clearly,

Pd
iD1dzie 6 n. Therefore, the number of such x is at least the volume

of this pyramid, which is .n � d/d =dŠ > .n=2/d =dŠ. Considering all elements of

the ball of radius n with no coordinates equal to 0 gives the claimed lower bound,

nd =dŠ. Since dŠ < 2d2

, the proposition holds when G is abelian.

We now prove the proposition by induction on d . The base case, d D 1, fol-

lows because the only torsion-free such group is the infinite cyclic group, which is

abelian.

We now assume that G is nonabelian.

Write c D cl.G/. Because G is nonabelian, c > 2, so that

c C 2 log2 c 6 1C c.c C 1/=2 6 d

in light of Corollary 2.4, whence 2d > 2cc2.

By Lemma 2.1, there exist elements x1; : : : ; xc 2 X such that Œx1; : : : ; xc� ¤ 1.

Set H WD hŒx1; : : : ; xc�i. Given n 2 N, we claim first that

jBbn=2c.G; X/ \H j > nc

2c.cC1/c2c
: (3.1)

Given L 2 N, for every integer k D 1; : : : ; Lc , there exist m 6 c and integers

`11; : : : ; `1c ; : : : ; `m1; : : : ; `mc 2 Œ1; L� such that k D
Pm

iD1

Qc
j D1 `ij , as we can

see by writing k in base L. Lemma 2.5 therefore implies that, for every such k, we

have

Œx1; : : : ; xc�k D Œx
`11

1 ; : : : ; x`1c
c � � � � Œx`m1

1 ; : : : ; x`mc
c � 2 Bc�.c/L.G; X/ \H;

so that

jBc�.c/L.G; X/ \H j > Lc :

Setting L WD bn=2cc2c and noting that c�.c/L 6 n=2 by (2.1), we deduce that

jBbn=2c.G; X/ \H j > bn=2cc2cc :

Since n > 2d > 2cc2, we have bn=2cc2c > n=2cC1c2, so this proves (3.1) as

claimed.
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The degree of polynomial growth of G=H is d � c < d , so by induction, we

may assume that

sdn=2e.G=H; XH=H/ >
.n=2/d�c

2.d�c/2
D nd�c

2.d�c/2Cd�c
:

Combining this with (3.1) and Lemma 3.2, we deduce that

sn.G; X/ >
nd

2.d�c/2Cd�cCc.cC1/c2c

D nd

2.d�c/2CdCc2C2c log2 c
:

It remains to show that .d � c/2 C d C c2 C 2c log2 c 6 d2, in other words, that

2c.c C log2 c/ 6 .2c � 1/d:

Now

1C 1

c � 1
6 2 log2 c

because c > 2. Multiply both sides by c � 1, add 2c log2 c � c C 2c2 to both

sides, factor the right-hand side, and use the inequality c C 2 log2 c 6 d estab-

lished above to get the desired result.

We now move on to the proof of the more general Theorem 1.5, writing g.k/

from now on for the maximum order of a finite subgroup of GLk.Z/, as in that

theorem. It is not too difficult to deduce from Proposition 3.1 a version of Theo-

rem 1.5 in which the lower bound on sn.G; X/ has some dependence on the index

of a nilpotent subgroup. The key to removing this dependence is the following

result, which is essentially [20, Theorem 9.8].

Proposition 3.3. Suppose that G is a finitely generated virtually nilpotent group.
Then there exist normal subgroups

H; N E G with H 6 N finite and ŒG W N � 6 g.h.G//

such that N=H is torsion-free nilpotent.

Proof. This is almost given by [20, Theorem 9.8], which says that there exist nor-

mal subgroups H0; N E G with H0 6 N finite and ŒG W N � 6 g.deg.G// such

that N=H0 is nilpotent. The stronger bound ŒG W N � 6 g.h.G// claimed here can

be read directly out of the proof of [20, Theorem 9.8], but N=H0 may still not nec-

essarily be torsion-free. Nonetheless, being of finite index in G, the subgroup N is

also finitely generated [25, 1.6.11], so the torsion subgroup of N=H0 is finite. This

subgroup is characteristic in N=H0 and hence normal in G=H0, so its pullback H

to N is finite and normal in G and satisfies the proposition.
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Proof of Theorem 1.5. Write j WD g.h.G//. Since sn.G; X/ > 1, the theorem is

trivial for n 6 2j , so we may assume from now on that n > 2j . Let H and N

be the normal subgroups given by Proposition 3.3. It suffices to prove the result

for G=H , so we may assume that H D ¹1º and hence that N is a normal nilpo-

tent subgroup of index at most j in G. The ball of radius j � 1 in G contains

a complete set A of coset representatives for N (see [34, Lemma 11.2.1]). The

set Y WD ¹axb�1 W a; b 2 A; x 2 X [X�1; axb�1 2 N º is then a generating set

for N (see the proof of [25, 1.6.11] or of [13, Lemma 7.2.2]) and is contained in

the ball of radius 2j � 1 in G. We therefore have

sn.G; X/ > sbn=2j c.N; Y / >
bn=2j cd

2d2

by Proposition 3.1. The fact that n > 2j implies in particular that bn=2j c > n=4j ,

giving the desired bound.

4 Detailed statement and proof of the main theorem

Our main result is as follows.

Theorem 4.1. Let C be the constant appearing in Theorem 1.1, and let d 2 N.
Suppose G is a group with finite generating set X and that

sn.G; X/ <
nd

23C 4d
g.C d /C 2d

for some positive integer n > exp.exp.CdC //. Then G has a nilpotent subgroup
of index On;d .1/, and deg.G/ 6 d � 1, where the bound on the index is the same
as the bound on the index given by Theorem 1.1.

Proof. Theorem 1.1 implies that G has a nilpotent subgroup of index On;d .1/,

Hirsch length at most C d , and growth degree q 6 C 2d . Theorem 1.5 then implies

that

sm.G; X/ >
mq

23C 4d
g.C d /C 2d

for every m 2 N. Applying this with m D n shows that q < d .

Proof of Theorem 1.6. The hypothesis of Corollary 1.3 is not satisfied for any

n < exp.exp.CdC // if "d is as stated, so Theorem 4.1 applies in every non-

vacuous instance of the hypothesis.
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5 Stronger bounds for nilpotent groups

If G is assumed a priori to be nilpotent, then we can improve the bounds of Corol-

lary 1.4 quite substantially. Given d 2 N, write

f .d/ WD 1

2d2

(the constant appearing in Proposition 3.1).

Proposition 5.1. Let d 2 N, and suppose that G is a finitely generated nilpotent
group of growth degree at least d and X is a finite generating set for G. Then
sn.G; X/ > f .b7d=4c/nd for all n 2 N.

Proof. We prove the proposition by induction on deg.G/. We may assume as usual

that G is torsion-free. We write c for the class of G. For the induction step, we as-

sume that deg.G/ > d C c and that the proposition has been proven for all groups

of growth degree smaller than deg.G/. In that case, let x 2 
c.G/ be a non-identity

element, so that N D hxi is a central subgroup and deg.G=N / D deg.G/ � c. The

induction hypothesis then implies sn.G; X/ > sn.G=N; XN / > f .b7d=4c/nd , as

claimed.

It remains to prove the base cases of the induction, where d 6 deg.G/ < d C c.

These are easy to treat on a case-by-case basis. If d D 1, then G is infinite, so

sn.G; X/ > n and the proposition holds. We may therefore assume that d > 2, so

that r.1/ > 2 by Lemma 2.3 and the class c of G satisfies

c <
p

2 deg.G/ � 2 (5.1)

by Corollary 2.4. If d D 2, then G possesses a free abelian quotient of rank 2

because r.1/ > 2, so the proposition holds by Proposition 3.1. The proposition

holds similarly if d D 3 and r.1/ D 3. If d D 3 and r.1/ D 2, then c > 2, so

that r.2/ > 1 by Lemma 2.3. This implies that deg.G=
3.G// > 4 and hence that

sn.G; X/ > sn.G=
3.G/; X
3.G// > f .4/n4 by Proposition 3.1, and the propo-

sition holds.

We may therefore assume that d > 4. We claim in this case that deg.G/ 6 7d=4,

which by Proposition 3.1 is sufficient to prove the proposition. If deg.G/ 6 7, then

this claim is immediate. If deg.G/ D 8 or 9, then (5.1) shows that c 6 3 and hence

that deg.G/ < 7d=4, as claimed. Finally, if deg.G/ > 10, then (5.1) implies that

c < 3 deg.G/=7, again giving deg.G/ < 7d=4.

A similar proof establishes the following version of the above result.



44 R. Lyons et al.

Proposition 5.2. Given a number ˛ > 1, there exists an (explicitly computable)
number K D K.˛/ such that if G is a finitely generated nilpotent group of growth
degree at least d > K and X is a finite generating set for G, then it holds that
sn.G/ > f .b˛dc/nd for all n > 1.

Proof. Choose K D K.˛/ > 1 such that if r > K, then r �
p

2r � 2 > r=˛. Let

G be a finitely generated nilpotent group of class c 2 N and growth degree at

least d > K, and let X be a finite generating set for G. We may assume as usual

that G is torsion-free. By the inductive argument of Proposition 5.1, we need only

consider the base cases in which deg.G/ < d C c. Since d > 1, (5.1) gives

d > deg.G/ �
p

2 deg.G/ � 2 > deg.G/=˛;

and the claim holds by Proposition 3.1.

6 Vertex-transitive graphs

In this section, we prove Corollary 1.8. We first provide some brief background on

vertex-transitive graphs. For convenience, we provide references to the third and

fourth authors’ paper [33], although most of what we describe is classical. See [33]

for more detailed background, including further references.

Let � D .V; E/ be a vertex-transitive graph. Given a subgroup G 6 Aut.�/ and

a vertex x 2 V , we write G.x/ for the orbit of x under G, and Gx for the stabiliser

of x in G. Note that if G acts transitively on V , then its vertex stabilisers are all

conjugate to one another; in particular, they all have the same cardinality.

Given a subgroup H 6 Aut.�/, we define the quotient graph �=H to have ver-

tex set ¹H.x/ W x 2 V º, with H.x/ and H.y/ connected by an edge if and only if

there exist x0 2 H.x/ and y0 2 H.y/ that are connected by an edge in � . Note in

this case that sn.�=H/ 6 sn.�/ for all n 2 N. If G is another subgroup of Aut.�/,

we say that the quotient graph �=H is invariant under the action of G on � if, for

every g 2 G and x 2 V , there exists y 2 V such that gH.x/ D H.y/. If H is nor-

malised by G, then �=H is invariant under the action of G, and the action of G on

� descends to an action of G on the vertex-transitive graph �=H (see [33, Lem-

mas 3.1 & 3.2]). When �=H is invariant under G, we write G�=H for the image

of G in Aut.�=H/ induced by this action; thus G�=H is the quotient of G by the

normal subgroup ¹g 2 G W gH.x/ D H.x/ for every x 2 �º.
The automorphism group Aut.�/ of the vertex-transitive graph � is a topo-

logical group with the topology of pointwise convergence, which is metrisable

[33, § 4]. A subset U � Aut.�/ is relatively compact if and only if has a finite

orbit, if and only if all its orbits are finite [33, Lemma 4.7].



Explicit universal minimal constants for polynomial growth of groups 45

The following result allows us to study the growth of a vertex-transitive graph

in terms of the growth of a closed transitive group of automorphisms.

Lemma 6.1 ([33, Lemma 4.8]). Let k 2 N. Suppose � is a connected, locally finite
vertex-transitive graph and G 6 Aut.�/ is a closed transitive subgroup acting
with vertex stabilisers of order k. Then there exists a finite generating set X for G

such that sn.G; X/ D k � sn.�/ for all n 2 N.

Proof of Corollary 1.8. Let G be a closed transitive subgroup of Aut.�/ (for ex-

ample Aut.�/ itself). Since � has polynomial growth, Trofimov’s theorem as

presented in [33, Theorem 2.1] shows that there is a compact normal subgroup

H0 C G such that G�=H0
is virtually nilpotent and acts on �=H0 with finite ver-

tex stabilisers. Since orbits under H0 are finite, �=H0 has the same growth degree

as � , so it suffices to prove the corollary for �=H0. We may therefore assume that

H0 is trivial, and hence that G itself is virtually nilpotent of growth degree d and

acts on � with finite vertex stabilisers.

Proposition 3.3 implies that there exist normal subgroups H; N C G, where

H 6 N is finite and ŒG W N � 6 g.d/, such that N=H is torsion-free nilpotent

of growth degree d . Write � WG ! G�=H for the quotient homomorphism. It is

shown in [33, Lemma 3.5] that if x is a vertex of � , then the stabiliser .G�=H /H.x/

is precisely �.Gx/. In particular, we have that .G�=H /H.x/ is a homomorphic im-

age of Gx=.Gx \H/, so that

j.G�=H /H.x/j 6 ŒGx W Gx \H�:

Since N=H is torsion-free and Gx is finite, it must be the case that Gx \N � H ,

and hence in particular that Gx \N � Gx \H . This shows that Gx=.Gx \H/

is isomorphic to a quotient of Gx=.Gx \N /, which is itself isomorphic to a sub-

group of G=N , and so we may conclude that

ŒGx W Gx \H� 6 ŒG W N � 6 g.d/:

It therefore follows from Theorem 1.5 and Lemma 6.1 that

sn.�/ > sn.�=H/ >
1

j.G�=H /H.x/j
� nd

2d.dC2/g.d/d
>

nd

2d.dC2/g.d/dC1
;

as required.

By combining the third and fourth authors’ result [33, Corollary 1.5] and Corol-

lary 1.8, one can obtain the following partially effective statement.
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Corollary 6.2. Let d 2 N, and suppose � is a vertex-transitive graph with degree
of growth at least d . Then there exists n0 D n0.d/ 2 N such that

sn.�/ >
nd

2d.dC2/g.d/dC1

for every integer n > n0.

Proof. By [33, Corollary 1.5], there exists n0 D n0.d/ such that if sn.�/ 6 nd

for some n > n0, then deg.�/ 6 d . If no such n exists, then there is nothing to

prove. Otherwise, we can apply Corollary 1.8.

The value of n0 D n0.d/ 2 N provided by the proof remains ineffective.

A Universal gap in percolation

Here we sketch the details of how to explicitly bound the quantities in the proofs

of Panagiotis and Severo [23] to derive Corollary 1.10. We will not optimise our

calculations; rather, we will aim for conciseness in the final result. It suffices to

prove the inequalities for site percolation [18, Proposition 7.10].

Before we consider the arguments of Panagiotis and Severo, we first consider

a result that they quote from elsewhere, namely, [14, Theorem 3.20]. The next

few paragraphs are intended to be read in conjunction with [14]; all notation and

terminology is as in that paper, and theorem references are also to that paper.

The proof of Theorem 3.20 shows that if � is a Cayley graph of a group that

is not virtually cyclic but contains a nilpotent subgroup of index at most n 2 N,

then there is a Cayley graph G1 WD .V1; E1/ WD Cay.H0; H \ S2n�1
0 / of valency

at most .8n � 4/2n�1, as well as a Cayley graph G2 WD .V2; E2/ WD Cay.�0; S0/

of valency at most 8n � 4 that is a subgraph of � , such that

P
G2;bond

1�.1�p1=C /C Œo$1� > P
G1;bond
p Œo$1� > P

Z2;bond
p Œo$1�

for all p 2 Œ0; 1�. Here, C is the constant given by applying Lemma 2.10 with

� equal to the .2n � 1; 1/-rough embedding G1 ! G2 induced by the inclusion

map H0 ! �0 appearing in the proof of Theorem 3.20, and Z
2 has its usual

Cayley graph. We will show in the next paragraph that we may take C equal to

U WD 2.8n � 3/3n�2 in this case, so that

P
G2;bond

1�.1�p1=U /U Œo$1� > P
Z2;bond
p Œo$1�

for all p 2 Œ0; 1�. It follows from [18, Proposition 7.11] that

P
G2;site

1�.1�p1=U /.8n�4/U Œo$1� >
�

1� .1�p1=U /.8n�4/U
�

P
G2;bond

1�.1�p1=U /U Œo$1�:
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Since G2 is a subgraph of � , we may combine the previous two displays to con-

clude that

P
�;site

1�.1�p1=U /.8n�4/U Œo$1� >
�

1 � .1 � p1=U /.8n�4/U
�

P
Z2;bond
p Œo$1�

for all p 2 Œ0; 1�, and hence

P
�;site

1�.1�p1=U /.8n�4/U Œo$1� >
�

1 � .1 � p1=U /.8n�4/U
�

�

2 � 1

p

�

(A.1)

for all p 2 Œ1
2
; 1� by [9, Theorem 1.1].

To see that we may indeed take C D U , and hence verify (A.1), we need to

bound two quantities by U . First, given an edge e1 2 E1, we need to show that

jˆ.e1/j 6 U in the notation of the proof of Lemma 2.10. To see this, note that if

x and y are the endpoints of e1, then a shortest path connecting �.x/ and �.y/

has length at most 2n, so every edge in such a path has at least one endpoint at

distance at most n � 1 from either �.x/ or �.y/. There are at most 2.8n � 3/n�1

vertices at distance at most n � 1 from either �.x/ or �.y/, so there are at most

2.8n � 3/n such edges, and so jˆ.e1/j 6 2.8n � 3/n 6 U as required. Second,

given an edge e2 2 E2, we need to show that j¹e1 2 E1 W e2 2 ˆ.e1/ºj 6 U . To

see this, note that if e2 2 ˆ.e1/ for some e1 2 E1, and if u and v are the endpoints

of e2 and x and y are the endpoints of e1, then at least one of �.x/ and �.y/ must

be within distance n � 1 of either u or v. There are at most 2.8n � 3/n�1 vertices

at distance at most n � 1 from either u or v, so since � is injective, there are at

most 2.8n � 3/n�1.8n � 4/2n�1 < U possibilities for e1, as required.

The remainder of this appendix is intended to be read in conjunction with [23],

and we adopt the notation of that paper except in two explicitly noted cases in the

next sentence.

Replace their (3.4) by our Corollary 1.9, which we will write as

pn.x; y/ 6 
k.D=n/k=2 with 
k WD 8k.kC5/=2"�1
k e�k=2I

here only we use our notation "k , in which we will use (our) C D 100. Although

[23] uses a nonlazy simple random walk, they apply such a bound only to bound

the Green function, and adding laziness simply multiplies the Green function by 2,

which means that we will end up with slightly larger bounds than necessary. This

gives their (3.5) with C 00 D 
k if we choose k D 2r C 2.

In their Lemma 3.5, we have cn D .4n/�n because tn D 1=.4nnŠ/ > .4n/�n

for n > 2.

The proof of Theorem 3.3 is broken into several cases. For the first case, we

choose the same D0 D 2r2C5=cr2C2 as they do and get that, for D < D0 and

dimension at least 2r , the inequality

pn.x; y/ 6 C=Dnr (A.2)
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holds for all n > 1 when C D 
2rDrC1
0 . In the remaining cases, D > D0 and the

dimension is at least 2r C 2. For the second case, we have (A.2) for all n > Dr

and C D 
2rC2. For the third case, they note that pn.x; y/ 6 1=Dr2C1 for

n > 1C
Z 4Dr2C1

1

16 du

u=.16.r2 C 2//2
D 1C 163.r2 C 2/2 log.4Dr2C1/;

so we may set t WD 163.r2C 2/3 to get (A.2) with C D 1 when t log D 6 n < Dr .

For the fourth case, we have (A.2) with C D 3r when 1 6 n 6 3. For the fifth

(last) case, we have (A.2) when 4 6 n < t log D and

C > max
36D<D0

6.t log D/r=D:

Now use

max
u>0

ue�u=r D r=e (A.3)

to see that we may take C D 6.t r=e/r . Comparing all these cases shows that, in

their Theorem 3.3, we may take C1.r/ D 
2rC2 and d.r/ D 2r C 2.

We next turn to the proof of their Theorem 3.1. We have just seen that

d0 D d.3/ D 8:

They take " WD e�M , where M is the bound in their (3.6) of the sum

t1 WD log 2C C0

1
X

nD1

sn with sn WD .16D/Ln�1

Z 1

�n

�n.�/ d�:

We may take any C0 > 16=a with a WD P Œ�1
x 6 �1� > 1=250, whence we may

take C0 D 4000. For n D 1, we have sn < 1 because g1.x; x/ D 1 and L1 D 1.

Now let n > 2. With C1 D C1.3/ D 
8, we have

gn.x; x/ D
LnC1
X

kDLnC1

pk.x; x/ 6
C1

D

LnC1
X

kDLnC1

1

k3
<

C1

2DL2
n

:

Thus,

Z 1

�n

�n.�/ d� D P ŒN > �n=
p

gn.x; x/�

<
p

C1=4D� � .n � 1/2=Ln � exp¹�DL2
n=C1.n � 1/4º

(this uses the tail bound P ŒN > ˛� < .
p

2�˛/�1e�˛2=2). Use (A.3) to get

D exp¹�DLn=C1.n � 1/4º 6 .n � 1/4C1=eLn;
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and thus sn 6 vn

p

C1=108� .n�1/2

Ln
, where

vu WD
�16.u � 1/4C1

eLu

�Lu

and Lu WD 2uC1 � 3

for real u > 1. Calculus shows that log vn 6 Lu�
, where u� maximises vu over

all u > 1. Indeed, the critical point u� occurs where

0 D 2uC1 log 2 � log
16.u � 1/4C1

eLu
C Lu

� 4

u � 1
� 2uC1 log 2

2uC1 � 3

�

;

whence

log
16.u� � 1/4C1

eLu�

D .1 � 3=2u�C1/
�

1=.1 � 3=2u�C1/ � 4=.u� � 1/
�

< 1:

Furthermore, we find that u� < 2 log2 C1. Indeed, letting Qu WD 2 log2 C1, we have

L Qu D 2C 2
1 � 3, and hence

16. Qu � 1/4C1

eL Qu
D 16.2 log2 C1 � 1/4C1

e.2C 2
1 � 3/

< 1I

looking again at the derivative of log vu, we conclude that u 7! log vu is decreas-

ing at Qu, whence u� < Qu. It follows that Lu�
< 2C 2

1 � 3 < 2C 2
1 , which yields

vn < e2C 2
1 . Because

P1
nD2.n � 1/2=

p
108�Ln < 1, we find that we may take

any M > log 2CC0.1C
p

C1e2C 2
1 /. This gives that M WD exp¹17 exp¹10 � 8100ºº

works.

Finally, in the proof of their Theorem 1.1, we see that, for dimensions at least

d0 D d.3/ D 8, we can use "0 D " D e�M , while for smaller dimensions, we

can use "0 D ".g.8//, where ".n/ is the quantity coming from Theorem 2.3 and

we used [2, Theorem 1] and our Proposition 3.3. Our bound (1.1) implies that

".g.8// > ".16Š/, while our (A.1) implies that ".n/ can be taken to be

.1 � .1=2/1=U /.8n�4/U ;

where we recall that U D 2.8n � 4/3n�2. The inequality eu > 1C u, valid for

all real u, implies in particular that 1 � e�u > u=.1C u/ for all u > �1; apply-

ing this, we then see that ".n/ > ..2U /�1 log 2/.8n�4/U . Therefore, ".16Š/ > ",

whence "0 D " can be used for all groups.

Now we turn to the second assertion of Corollary 1.10. The proof of [23, Theo-

rem 1.1] shows that

P1�"0
Œo$1� > P Œo

'>�1
 ��!1�
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when the dimension is at least d0. By [8, Proposition 2.1], we have that

P Œo
'>�1
 ��!1� > 1 � exp¹D=g.o; o/ºI

that reference is in terms of a particular bond percolation, but it is easy to see that

it also bounds the probability for site percolation for the superlevel set of '. Now

g.o; o/ D
P1

nD1 gn.o; o/. Our explicit bounds above show therefore that

g.o; o/ < 1C C1

2D

1
X

nD2

L�2
n < C1=25D:

Using the value above for C1 implies that

Pp0
Œo$1� > 1 � exp

®

�D2 exp
®

�9 exp¹100 � 8100º
¯¯

> exp
®

�9 exp¹100 � 8100º
¯

for dimension at least d0. For dimension less than d0, we may again apply our

(A.1) with n D 16Š; taking p D 2=3, for example, yields

P
�;site

1�.1�.2=3/1=U /.8n�4/U Œo$1� >
1

2

�

1 � .1 � .2=3/1=U /.8n�4/U
�

>
1

3
:

Since

.1 � .2=3/1=U /.8n�4/U
>

�

.2U /�1 log
3

2

�.8n�4/U
> "

by essentially the same computation as in the previous paragraph, this completes

the proof.
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