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Abstract. Shalom and Tao showed that a polynomial upper bound on the size of a sin-
gle, large enough ball in a Cayley graph implies that the underlying group has a nilpotent
subgroup with index and degree of polynomial growth both bounded effectively. The third
and fourth authors proved the optimal bound on the degree of polynomial growth of this
subgroup, at the expense of making some other parts of the result ineffective. In the present
paper, we prove the optimal bound on the degree of polynomial growth without making
any losses elsewhere. As a consequence, we show that there exist explicit positive num-
bers g4 such that, in any group with growth at least a polynomial of degree d, the growth
is at least £4n“. We indicate some applications in probability; in particular, we show that
the gap at 1 for the critical probability for Bernoulli site percolation on a Cayley graph, re-
cently proven to exist by Panagiotis and Severo, is at least exp{— exp{17 exp{100 - 8190} }},

1 Introduction

We investigate the growth of finitely generated groups. Given a group G that
is generated by a finite subset X, we let 5,(G) = s,(G, X) be the number of
elements of G that can be expressed as a product of at most n elements from
X U X~ If, for some 1, we have s,(G) < 2n, then G is finite. Indeed, if G is
infinite, then for all n = 1, there exists an element s of length 2n, which we may
write as s = uv, where u and v each have length n. Then u # v™~!, so that

sn(G) —s,—1(G) =2 and s,(G) =2n+ 1.

This inequality is best possible, as both Z and (Z/27) x (7 /27) (with their stan-
dard generators) have s,(G) = 2n + 1 for all n.

Wilkie and van den Dries [37] showed that if G is infinite and the inequal-
ity s,(G) < (n 4+ 1)(n + 2)/2 holds for some n, then G is virtually cyclic and
(hence) has linear growth. In fact, they showed that if s,(G) — s,—1(G) < n for
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some 7 > 1, then G has a cyclic subgroup of index at most (s, (G) — s,—1(G))*/2.
Imrich and Seifter [15] improved the bound on the index to s,(G) — s,—1(G),
which is sharp.

Results of this type are known for higher rates of growth. If there exist numbers
C and d such that s,(G) < C n? for all n, then G is said to be of polynomial
growth. In that case, the growth degree deg(G) of G is the infimum of the num-

bers d for which another number C can be found such that the inequality above is

satisfied. This degree is independent of the generator system X and can be charac-
terised equivalently by deg(G) := lim sup M .If G does not have polynom1al
growth, then, given any numbers C and d, the 1nequa11ty sp(G) > Cn? holds for
infinitely many 7. In other words, the upper limit above is infinite.

If G is nilpotent of class cl(G) = ¢ with lower central series

G =71(G) > y2(G) > -+ > ye(G) > ye+1(G) = {1},

then, as Bass [1] and Guivarc’h [12] showed, the growth degree can be expressed
as r:=Y i_,ir(i), where r(i) is the torsion-free rank of y;(G)/yi+1(G), i.e.,
the number of infinite factors in the decomposition of this quotient as a direct
sum of cyclic groups. The Hirsch length h(G) of G is defined to be Y i_; r(i);
obviously, #(G) < r < h(G) - c. A virtually nilpotent group has the same growth
degree as its nilpotent, finite-index subgroups. The above formula shows that the
degree is an integer. Given a group G with a finite-index, nilpotent subgroup, H,
we define the Hirsch length h(G) of G to be h(H).

A celebrated theorem of Gromov [11] established a conjecture of Milnor that
a finitely generated group G has polynomial growth (if and) only if G is virtually
nilpotent. Building on work of Kleiner [16], Shalom and Tao [26] subsequently
gave a finitary version of this statement, showing that a polynomial upper bound on
the size of just a single ball (of large enough radius) implies that a group is virtually
nilpotent. Their result gives effective bounds on both the index and the degree of
polynomial growth of the nilpotent subgroup, and on how large the radius needs
to be in order for the theorem to hold. In relatively recent work, the third and
fourth authors made the bound on the degree of polynomial growth optimal at the
expense of some effectiveness elsewhere. The main aim of the present work is to
obtain the optimal bound on the degree of polynomial growth without sacrificing
effectiveness elsewhere. We also present some applications to probability.

Shalom and Tao’s refinement of Gromov’s theorem is the following.

Theorem 1.1 (Shalom—Tao [26, Theorem 1.8]). There exists an absolute constant
C such that if G is a group with finite generating set X, and if s,(G, X) < n4
for some d =1 and some integer n = exp(exp(Cd©)), then G has a nilpotent
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subgroup of index Oy 4(1) and Hirsch length and class at most C 4 \whence
deg(G) < C?4.

Here and elsewhere, we adopt the notational convention that if X is a real quan-
tity and z1, ..., zx are parameters, then Oz, , .. ;. (X) denotes a quantity that is at
most a constant multiple of X, with the constant depending only on the parameters
ZlyeeeysZke

Theorem 1.1 says that a polynomial upper bound on the size of a single, large
enough ball is enough to imply that a group is virtually nilpotent, and to give some
quantitative control over the complexity of the virtual nilpotency. A bound on C
can be computed explicitly from the proof; the authors assert that one such bound
should be 100. The bound O, 4(1) on the index could in principle be made effec-
tive, but the authors instead use an ineffective compactness argument, saying that
the corresponding effective argument would be “substantially longer” and result
in a bound of Ackermann type in d.

Remark. In his original paper, Gromov applied a compactness argument together
with his own theorem to obtain a similar conclusion to Theorem 1.1 [11, § 8]. This
yields ineffective bounds and requires the stronger hypothesis that |s, (G)| < n¢
forsomed = land alln = 2,...,nq, for some ng = no(d).

Given the polynomial of degree d appearing in the hypothesis of Theorem 1.1,
it is natural to wonder whether deg(G) should also be at most d. This amounts to
asking whether a group can grow like a polynomial of degree d at small scales and
then accelerate to grow like a polynomial of higher degree at large scales. It turns
out that if one considers instead a “relative” condition of the form

152(G)| < Cn?s1(G)],

then this can indeed occur (see [30, Example 1.11] for details). However, the third
and fourth authors showed that this does not occur in the context of Theorem 1.1 by
proving the following result, which verified a conjecture of Benjamini. We write N
for the set of strictly positive integers.

Theorem 1.2 ([31, Theorem 1.11]). For every d € N, there exists ¢4 > 0 such
that if G is a group with finite generating set X and if s, (G, X) < sdnd for some
n € N, then s;m(G, X) < 0g((m/n)4~Ls,(G, X)) for every integerm = n.

Theorem 1.2 relies on Breuillard, Green, and Tao’s structure theorem for ap-
proximate groups [4], and as such does not give an effective computation of ¢.
The bound Oy ((m/n)? 's,(G, X)) is also ineffective in the original reference
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for Theorem 1.2, but in forthcoming work, the third and fourth authors will give
an improved proof of Theorem 1.2 that results in an effective bound.

As an immediate consequence of Theorems 1.1 and 1.2, we obtain the optimal
bound on deg(G) in the Shalom-Tao theorem, as follows.

Corollary 1.3. For every d € N, there exists ¢4 > 0 such that if G is a group
with finite generating set X and if s,(G, X) < egn® for some n € N, then G has
a nilpotent subgroup of index Oy 4(1), and deg(G) < d — 1.

Note that, although the hypothesis s, (G, X) < ednd in this result might at first
glance appear rather stronger than the hypothesis s, (G, X) < n? of Theorem 1.1,
provided n > 1/¢441, the latter bound implies the former with d + 1 in place
of d.

It appears to be beyond the reach of current methods to give an explicit value
of ¢4 in Theorem 1.2. Nonetheless, in the present work, we obtain Corollary 1.3
directly and elementarily from Theorem 1.1, bypassing the Breuillard—Green—Tao
theorem completely and making &4 effective in Corollary 1.3 without any losses
elsewhere. This leads in turn to effective constants &4 in the following trivial con-
sequence of Corollary 1.3.

Corollary 1.4. Let d € N, and suppose that G is a group satisfying deg(G) = d
and X is a finite generating set for G. Then s,(G, X) = 8dnd for every n € N,
where 4 > 0 is the constant given by Corollary 1.3.

This has particular relevance to the study of probability on groups, where lower
bounds on growth have numerous applications.

Main new results

Our first main result deals with groups of growth exactly d, and for that reason, it
does not rely on the Shalom—Tao theorem.

Theorem 1.5. Let d € N, and suppose G is a virtually nilpotent group with poly-
nomial growth of degree d. Let X be a finite generating set for G. Then

n? n4

=
24d+2) g (h(G))d ~ 24d+2) g(d)d

sn(G, X) =

foreveryn € N, where g(k) is the maximum order of a finite subgroup of GLy (Z).

An upper bound for g(k) was given already by Minkowski [21] in 1887. One
such bound is
g(k) < (2k)! (1.1)
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(see [22, equation (16) on p. 175]). See also [10] and the remarks about g(k) on
[20, pp. 88-89].

Combining Theorem 1.1 with Theorem 1.5, we deduce an effective version of
Corollary 1.3, as follows.

Theorem 1.6. We may take

1 1
- 7 1.2
eq m1n{23c4dg(cd)czd exp(d exp(CdC))} (1.2)

in Corollary 1.3 and hence also in Corollary 1.4. Moreover, this yields the same
bound on the index of the nilpotent subgroup as Theorem 1.1.

The second term in the expression of ¢4 is directly related to the lower bound
on n in the Shalom—-Tao theorem. We observe that the second term is asymptoti-
cally smaller than the first one (after taking logs of the reciprocals twice, the first
one becomes =~ d, while the second one becomes ~ d©).

Remark 1.7. Define mingr(d) := inf{s, (G, X)n~?}, where the infimum is taken
over all n € N and all virtually nilpotent groups G with polynomial growth of
degree d and generating sets X. Obviously, mingr(1) = 2. We do not know the
values of mingr(d) for other d. Theorem 1.5 gives a lower bound on mingr(d).
For an upper bound, note that, when 74 is generated by d elements, we have
mingr(d) < limp o0 $n(Z%)/n? = 2% /d!: up to terms of order n¢~', s,(G) is
the volume of a hyperoctahedron, which, in turn, is 24 times the volume of its
intersection with the nonnegative orthant. We can do better, however: for d > 2
consider the affine Coxeter group By, which has growth degree d and so-called
exponents 1,3,...,2d — 1; see [3, Appendix Al]. By a formula of Bott (see [3,
Theorem 7.1.10] or [27, Theorem 3.8]), we have for the Coxeter generators,

2k

- 1—2z2
no_
ZS"(Bd)Z - Z)d+1 l_[ | — 72k—1

n=0

for |z| < 1. By [24, Proposition 51] and [28, Lemma 3.2], we have for every group
G of polynomial growth degree d that

1
. —d __ . _ n\d+1 n
nll)n;osn(G)n = ?%1}(1 z) néosn(G)z ,
whence
2d)"

~ 1
mingr(d) < nlgr;osn(Bd)n = _d!—(Zd O
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Note, in particular, that (2d)!'/(2d — 1)!! ~ ~/7d as d — oo. In fact, there are
a few other Coxeter groups that give still better bounds:

mingr(2) < lim s,(G2)n™2 = (12/5)/2!,
n—oo

mingr(6) < lim s,(E¢)n~® = (324/77)/6!,
n—>oo

mingr(7) < lim s,(E7)n~" = (9216/2431)/7!,
n—>oo

mingr(8) < lim sn(Eg)n™8 = (99532800/30808063)/8!;
n o0
again, see [3, Appendix A1] for the definitions and exponents of these groups.

Remark. The situation for groups of exponential growth is known to be quite dif-
ferent from the situation for groups of polynomial growth described by Corol-
lary 1.4. On the one hand, some classes of groups are known to have uniformly
exponential growth over all generating sets, in the sense that there is a constant
¢ > 1 depending only on the group such that the ball of radius n with respect to an
arbitrary generating set has at least ¢ elements; indeed, the same ¢ > 1 sometimes
exists even for an entire class of groups. On the other hand, it is known that there
are groups of exponential growth whose rate of growth on the exponential scale is
arbitrarily small for certain sets of generators. See, e.g., [5] for results and history
of exponential growth. There is much less knowledge for groups of intermediate
growth: it is not even known whether there are such groups whose balls of radius n
have asymptotically fewer than eV elements.

Vertex-transitive graphs

Trofimov [35, Theorem 2] famously extended Gromov’s theorem to vertex-tran-
sitive graphs of polynomial growth, showing that any such graph has a quotient
that looks roughly like a virtually nilpotent Cayley graph in a certain precise
sense. Woess [38, Theorem 1] subsequently gave a simple proof of this result
using the theory of topological groups. Inspired by Woess’s proof, and applying
a version of the Breuillard—-Green—Tao theorem for locally compact groups due
to Carolino [6], the third and fourth authors of the present work gave a finitary
version of Trofimov’s theorem that allowed them to extend Theorem 1.2 to vertex-
transitive graphs [33, Corollary 1.5].

Unfortunately, we are not aware of an effective result for locally compact groups
that could be used to bypass Carolino’s result in the same way that we use Shalom
and Tao’s result to bypass the Breuillard—Green—Tao theorem in our proof of
Corollary 1.3. Nonetheless, using Trofimov’s result, we can at least obtain the
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following generalisation of Theorem 1.5, in which we write s, (I") for the number
of vertices inside a ball of radius 7 in a vertex-transitive graph I'.

Corollary 1.8. Let d € N, and suppose I is a vertex-transitive graph with poly-
nomial growth of degree exactly d. Then

nd

2d(d+2)g(d)d+1

sp(') =

for everyn € N.

See also Corollary 6.2 for a partially effective version of Corollary 1.8 valid in
a vertex-transitive graph of growth degree at least d.

Minimal polynomial-growth constants and probability

Results such as Corollary 1.4 can be used to give universal bounds on various
quantities in probability. For example, given a vertex-transitive graph I" with vertex
set V, edge set E, and valency A, define lazy simple random walk on T" to be the
Markov chain whose transition probabilities from y € V toz € V are

1/(24) if{y,z} € E,
p(y,z) =41/2 ify =z,
0 otherwise.

Write ps(y, z) for the ¢-step transition probabilities. A special case of [17, Corol-
lary 6.6] states that if ¢,d > 0 are such that s, (") > cn? for all n € N, then for
all y,z € Vandt € N, we have

84@d+9/2pd/2
pe(3.2) < p(y,y) € ————— 172,
ced/z

Combining this with our results yields several corollaries, such as the following.

Corollary 1.9. Let d € N, and suppose that I is a Cayley graph of a group having
growth degree at least d or is a vertex-transitive graph with polynomial growth of
degree exactly d. Then, for every y,z € G andt = 1, we have

Sd(d+5)/2Ad/2 3
P(y.2) S pi(y.y) S —— 51 a2,
£4€

where A is the valency and €5 > 0 is the constant given by (1.2) in the case of
a Cayley graph and is 1/(24@+2) g(d)4+1Y) otherwise.
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Corollary 1.9 in turn leads to bounds on various other quantities. For example,
Panagiotis and Severo [23] recently showed that there exists a gap at 1 for the
critical probability p. for Bernoulli site (and hence bond [18, Proposition 7.10])
percolation on a Cayley graph, in the sense that there exists ¢ > 0 such that either
pe < 1 —¢or p. =1 for every Cayley graph. Using Corollary 1.9 in their argu-
ment instead of their bound [23, (3.4)] on p;(x, y) allows one to give an explicit
value for &, as follows.

Corollary 1.10. Let I' be a Cayley graph. Then the critical probability p.(T") for
Bernoulli site percolation on T satisfies either

pe(T) < 1 —exp{—exp{17exp{100-8'%°}}} =: pg

or pc(I') = 1. Furthermore, the probability that the identity element belongs to an
infinite cluster at value py satisfies

Ppolo <> 00] > exp{—9exp{100-8'°%}}.

The same inequalities hold for Bernoulli bond percolation.

See Appendix A for more details. The Cayley graph with the largest value
known of p, less than 1 is apparently that of the presentation {(a, b | a3, b2, (ab)®),
which is the 3-12 lattice; there, we have p. = /1 — 2sin(7/18) = 0.80797 for
site percolation ([29, p.278] gives a simple reduction to site percolation on the
Kagomé lattice, which is the line graph of the hexagonal lattice, whence site per-
colation on the former is equivalent to bond percolation on the latter, whose critical
probability was rigorously determined by [36]).

The third and fourth authors [32] have shown that there is a gap at O for es-
cape probabilities of random walks on vertex-transitive graphs, in the sense that
there exists an absolute constant ¢ > 0 such that simple random walk on an arbi-
trary vertex-transitive graph is either recurrent or has escape probability at least c.
This constant ¢ is independent of the valency but is not explicit. The results of
the present paper allow us, in the special case of Cayley graphs, to replace this
non-explicit constant ¢ with an explicit function of the valency A. The most im-
mediate such bound follows from noting that the escape probability is equal to
1/3 ;>0 P:(x,x) and that a transient Cayley graph has growth degree at least 3;
Corollary 1.9 then immediately yields a lower bound on the escape probability of
the form KA~3/2 for a transient Cayley graph, where K is an explicitly com-
putable absolute constant. We can do even better, however, if we pass via an
isoperimetric inequality. By an isoperimetric inequality in a group G with finite
generating set X, we mean a lower bound on the size of the vertex boundary 0A
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of a finite set A C G, defined as 94 = A(X U X~ 1)\ A. It follows from a well-
known result of Coulhon and Saloff-Coste [7], with bounds as given by [18, The-
orem 6.29], that for each positive integer d, we have

4]
[0A| = ST Al /o N1/dT
2[(2|Al/ea) 4]
for an arbitrary, non-empty, finite subset A of a group G satisfying deg(G) = d,
where g4 is the quantity appearing in Corollaries 1.3 and 1.4. In particular, this
implies the explicit d -dimensional isoperimetric inequality
& L/d d—1
4] = 4 1A4]"T (1.3)

for any such A and G. Inserting (1.3) into the argument of [32], one can improve
the lower bound KA~3/2 on the escape probability described above to J AT2/3,
where J is an explicitly computable absolute constant. Indeed, this leads to a lower
bound on the escape probability of the form J; A~2/d for any group G satisfying
deg(G) = d, where J; is an explicit function of d.

For one final example of an application of our results, [19, Proposition 2.8]
shows that, for every transitive graph, E[K;] < Y 7o, + 1) p:(x,x)/2, where
i = 0 and K; is the number of times ¢ such that the loop-erasure of the (nonlazy)
simple random walk path up to time ¢ has exactly i edges (although p;(x, x) still
refers here to the lazy simple random walk). In the case of a Cayley graph of
growth degree at least 5, it follows from Corollary 1.9 that E[K;] < 5131A%/2/¢s.
An interesting question is whether the dependence on the valency is necessary for
bounding E[K;].

2 Background on nilpotent groups

In this section, we present some standard definitions and results from the theory
of nilpotent groups. Recall that the set of elements of finite order in a nilpotent
group G is a subgroup T, called the torsion subgroup. If G is generated by a fi-
nite set X, then 7 is finite, and the quotient G/ T is torsion-free [25, 5.2.7] with
sn(G,X) = 5,(G/T, XT). In this case, the growth of G is trivially of the same
degree as the growth of G/ T, meaning that, in many of our arguments, we may
assume without loss of generality that any nilpotent groups are torsion-free.

Given elements g and & of a group G, we denote by [g, h] the commutator
g 'h~'gh of g and h. More generally, given elements x1, ..., xz of a group G,
we define the simple commutator [x1,. .., xy] of weight k recursively by [x1] = x;
and [x1,...,xg] = [[X1,...,Xk—1], Xk]- By definition, y;(G) is the subgroup of
G generated by the simple commutators of weight k in elements of G.



38 R. Lyons et al.

Write A (k) for the length of the simple commutator of weight k as an unreduced
word in the elements xl.il; thus, for example, 1(3) = 10 because

1

—1.-1 —1.-1._—1
[X1.X2,X3] = X5 "X] X2X1X3 X] X5 X[X2X3.

It is clear that A(k 4+ 1) = 2A(k) + 2, whence A(k) = 3-2K—1 — 2. We will use
only the following consequence:

(k) < 28 k. 2.1

Lemma 2.1 ([13, Theorem 10.2.3] or [34, Proposition 5.2.6]). Let G be a group
with generating set X, and let k € N. Then yx(G)/yr+1(G) is generated by the
image in G/yg41(G) of the set {[x1, ..., Xg] : X1,...,xx € X}.

Lemma 2.2 ([34, Lemma 5.5.3 & Proposition 5.2.7]). Let G be a group, let g € G,
and let k € N. Then the map

Yk(G) = Vi+1(G)/ vk +2(G),
x =[x, glvk+2(G)

is a homomorphism, the kernel of which contains Vi +1(G).

Lemma 2.3. Let ¢ € N, and let G be a torsion-free nilpotent group of class c. For
each i = 1,...,c, write r(i) for the torsion-free rank of yi(G)/yi+1(G). Then
r(i) = 1for1 <i <c, andif G is not cyclic, then r(1) = 2.

Proof. Suppose that r (k) = 0 for some k € {1,...,c}, and let k be the maximum
such. If k = ¢, then y.(G) is finite, hence trivial, contrary to the definition of c.
If k < c, then all simple commutators of weight k have finite order modulo y 1.
Lemma 2.2 therefore implies that all simple commutators of weight kK + 1 have
finite order modulo yg,. This implies that 7 (k 4+ 1) = 0, contradicting the max-
imality of k. This establishes our claim that (i) = 1 for 1 <i <c.

Now suppose that (1) = 1. Then we can choose a generating set X for G such
that only one of the x; has infinite order modulo y»(G) (indeed, X generates G
if and only if the image of X in G/y,(G) generates G/y>(G); see [13, Corol-
lary 10.3.3]). Lemma 2.2 therefore implies that every commutator [x, y] with
X,y € G has finite order in y»(G)/y3(G), so that r(2) = 0. By the first part of
the lemma, this implies that ¢ = 1, so that G is free abelian of rank 1, i.e., infinite
cyclic. o

Corollary 2.4. Let d = 2 be an integer, and suppose G is a torsion-free nilpotent
group with growth degree d. Then ¢ = cl(G) satisfies c(c + 1) < 2d — 2.

Proof. Lemma 2.3 implies thatd = 1+ Y 7_;i =1+ c¢(c +1)/2. o



Explicit universal minimal constants for polynomial growth of groups 39

Lemma 2.5 ([34, Lemma 5.5.2]). Let G be a group and let k € N. Then the map
G* = % (G),
(X1 ev oy Xg) > [X1, e, Xk

is a homomorphism in each variable modulo yg 4+1(G).

3 Minimal polynomial-growth constants for virtually
nilpotent groups

We start by considering the special case of a group that is actually nilpotent, rather
than merely virtually nilpotent.

Proposition 3.1. Ler d € N, and suppose G is a nilpotent group with polynomial
growth of degree d. Let X be a finite generating set for G. Then

nd

sn(G,X) = 2

foreveryn € N.

The proof of Proposition 3.1 is by induction on d, and we carry out the induction
step by examining a certain quotient of G with lower growth degree. We will use
the following technical lemma that allows us to compare the growth of G to the
growth of this quotient. Recall that B, (G, X) denotes the ball of radius n with
respect to X centred at the identity element in G.

Lemma 3.2. Let G be a group with finite generating set X, and suppose H < G
is a normal subgroup. Then, for every m,n = 0, we have

Sman(G.X) = sm(G/H,XH/H) - |Bn(G, X) N H|.

Proof. The ball of radius m in G contains a set A of cardinality s,,(G/H, XH/H)
with each element belonging to a distinct coset of H. The products ax witha € A
and x € B, (G, X) N H are then distinct elements of the ball of radius m +n. o

In the expression 7/2¢c? below and others like this, we write x/yz to mean

x/(y2).

Proof of Proposition 3.1. On passing to the quotient of G by its torsion subgroup,
we ma i ion- d d az

y assume that G 125 torsion-free. If n < 2%, then we have n¢ < 2%, whence
5n(G,X) =1>n%/24" and the proposition is satisfied. We may therefore as-
sume that n = 29,
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If G is abelian, then every generating set contains d independent elements that
generate a free abelian subgroup H of rank d, hence 5,(G) = s,(H) > n?/d!.
To see this lower bound, consider only the part of the ball with all coordinates
strictly positive. For integers x; > 0 with Zl_l x; < n, let Cx be the unit cube

]_[ldzl (x; — 1, x;], where x = (x1,...,Xx4). These cubes are disjoint. Suppose that
z =(z1,...,zq) is a real point in the pyramid where z; > 0 holds for all i and
Zfi_l zi < n —d. Then z lies in the cube Cy,, where w := ([z1],...,[zq]).

Clearly, Zl_l [z;] < n. Therefore, the number of such x is at least the volume

of this pyramid, which is (n — d)? /d! = (n/2)? /d!. Considering all elements of

the ball of radius n with no coordinates equal to 0 gives the claimed lower bound,
n?/d\. Since d! < 2d? , the proposition holds when G is abelian.

We now prove the proposition by induction on d. The base case, d = 1, fol-
lows because the only torsion-free such group is the infinite cyclic group, which is
abelian.

We now assume that G is nonabelian.

Write ¢ = ¢l(G). Because G is nonabelian, ¢ = 2, so that

c+2logye <l +c(c+1)/2<d

in light of Corollary 2.4, whence 24 > 2¢c2

By Lemma 2.1, there exist elements x1, ..., x. € X suchthat [xq1,...,x.] # 1.
Set H := {[x1,...,x¢]). Given n € N, we claim first that
nC’
|B|_n/2J(G,X)ﬂH| = W 3.1
Given L € N, for every integer k = 1,..., L, there exist m < ¢ and integers

s lics o Amis .o Ame € [1, L] suchthatk = Y /2, ]_[JC‘=1 {;j, as we can
see by writing k in base L. Lemma 2.5 therefore implies that, for every such k, we
have

[en el = b xbe) e b xbe) € BeyeyL (G, X) N H,

so that
[Beay(G.X)NH| = L¢

Setting L := |n/2¢c?] and noting that cA(c)L < n/2 by (2.1), we deduce that
|Bnj2)(G, X) N H| = |n/2°c* .

Since n =29 = 2°¢2, we have |n/2°¢2| = n/2¢T1¢2, so this proves (3.1) as
claimed.
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The degree of polynomial growth of G/H is d — ¢ < d, so by induction, we
may assume that

(n/z)d—c nd—c

S|'n/2'|(G/H, XH/H) = Y@= = Sd—cPtd—c’

Combining this with (3.1) and Lemma 3.2, we deduce that

nd

2(d—c)2+d—c+c(c+1) 2¢

nd

- 2(d—c)?>+d+c2+2clogy ¢
It remains to show that (d — ¢)? + d + ¢? + 2clog, ¢ < d?, in other words, that

sn(G,X) =

2¢(c +log, ¢) < (2¢ — 1)d.
Now !
14+ —— <21
+ o1 08, C

because ¢ > 2. Multiply both sides by ¢ — 1, add 2c log, ¢ — ¢ + 2¢? to both
sides, factor the right-hand side, and use the inequality ¢ + 2log, ¢ < d estab-
lished above to get the desired result. o

We now move on to the proof of the more general Theorem 1.5, writing g (k)
from now on for the maximum order of a finite subgroup of GLg(Z), as in that
theorem. It is not too difficult to deduce from Proposition 3.1 a version of Theo-
rem 1.5 in which the lower bound on s, (G, X)) has some dependence on the index
of a nilpotent subgroup. The key to removing this dependence is the following
result, which is essentially [20, Theorem 9.8].

Proposition 3.3. Suppose that G is a finitely generated virtually nilpotent group.
Then there exist normal subgroups

H,N <G with H<N finite and [G : N] < g(h(G))
such that N/ H is torsion-free nilpotent.

Proof. This is almost given by [20, Theorem 9.8], which says that there exist nor-
mal subgroups Ho, N < G with Hy < N finite and [G : N] < g(deg(G)) such
that N/Hy is nilpotent. The stronger bound [G : N] < g(h(G)) claimed here can
be read directly out of the proof of [20, Theorem 9.8], but N/Hy may still not nec-
essarily be torsion-free. Nonetheless, being of finite index in G, the subgroup N is
also finitely generated [25, 1.6.11], so the torsion subgroup of N/Hyj is finite. This
subgroup is characteristic in N/H¢ and hence normal in G/Hy, so its pullback H
to N is finite and normal in G and satisfies the proposition. o
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Proof of Theorem 1.5. Write j := g(h(G)). Since s,(G, X) = 1, the theorem is
trivial for n < 2j, so we may assume from now on that n = 2j. Let H and N
be the normal subgroups given by Proposition 3.3. It suffices to prove the result
for G/H, so we may assume that H = {1} and hence that N is a normal nilpo-
tent subgroup of index at most j in G. The ball of radius j — 1 in G contains
a complete set A of coset representatives for N (see [34, Lemma 11.2.1]). The
setY :={axb~':a,be A, x € XUX!, axb™! € N}is then a generating set
for N (see the proof of [25, 1.6.11] or of [13, Lemma 7.2.2]) and is contained in
the ball of radius 2j — 1 in G. We therefore have

ln/2j 14

SI’L(G7X)ZSLI’L/Z/J(I\CXI)Z 2d2

by Proposition 3.1. The fact thatn = 2 implies in particular that [n/2j | = n/4j,
giving the desired bound. m|

4 Detailed statement and proof of the main theorem

Our main result is as follows.
Theorem 4.1. Let C be the constant appearing in Theorem 1.1, and let d € N.
Suppose G is a group with finite generating set X and that

d

23C4dg(cd)c2d

sn(G, X) <

for some positive integer n = exp(exp(Cd CY). Then G has a nilpotent subgroup
of index Oy 4(1), and deg(G) < d — 1, where the bound on the index is the same
as the bound on the index given by Theorem 1.1.

Proof. Theorem 1.1 implies that G has a nilpotent subgroup of index O, 4(1),
Hirsch length at most C 4 and growth degree g < C 2d Theorem 1.5 then implies
that

(G.X) "

N X)) =

m 23C4dg(cd)(j2d

for every m € N. Applying this with m = n shows that ¢ < d. o

Proof of Theorem 1.6. The hypothesis of Corollary 1.3 is not satisfied for any
n < exp(exp(Cd©)) if g4 is as stated, so Theorem 4.1 applies in every non-
vacuous instance of the hypothesis. |
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5 Stronger bounds for nilpotent groups

If G is assumed a priori to be nilpotent, then we can improve the bounds of Corol-
lary 1.4 quite substantially. Given d € N, write

1
)=
(the constant appearing in Proposition 3.1).

Proposition 5.1. Let d € N, and suppose that G is a finitely generated nilpotent
group of growth degree at least d and X is a finite generating set for G. Then
sn(G,X) = f(|7d/4])n? foralln € N.

Proof. We prove the proposition by induction on deg(G). We may assume as usual
that G is torsion-free. We write ¢ for the class of G. For the induction step, we as-
sume that deg(G) = d + ¢ and that the proposition has been proven for all groups
of growth degree smaller than deg(G). In that case, let x € y.(G) be a non-identity
element, so that N = (x) is a central subgroup and deg(G/N) = deg(G) — c. The
induction hypothesis then implies s, (G, X) = 5,(G/N, XN) = f(|7d/4])n?, as
claimed.

It remains to prove the base cases of the induction, where d < deg(G) < d + c.
These are easy to treat on a case-by-case basis. If d = 1, then G is infinite, so
sn(G, X) = n and the proposition holds. We may therefore assume that d = 2, so
that 7 (1) = 2 by Lemma 2.3 and the class ¢ of G satisfies

¢ < /2deg(G)—2 5.1

by Corollary 2.4. If d = 2, then G possesses a free abelian quotient of rank 2
because (1) = 2, so the proposition holds by Proposition 3.1. The proposition
holds similarly if d =3 and r(1) =3. If d =3 and r(1) = 2, then ¢ = 2, so
that 7(2) = 1 by Lemma 2.3. This implies that deg(G/y3(G)) = 4 and hence that
sn(G, X) = 5,(G/y3(G), Xy3(G)) = f(4)n* by Proposition 3.1, and the propo-
sition holds.

We may therefore assume that d > 4. We claim in this case that deg(G) < 7d /4,
which by Proposition 3.1 is sufficient to prove the proposition. If deg(G) < 7, then
this claim is immediate. If deg(G) = 8 or 9, then (5.1) shows that ¢ < 3 and hence
that deg(G) < 7d /4, as claimed. Finally, if deg(G) = 10, then (5.1) implies that
¢ < 3deg(G)/7, again giving deg(G) < 7d /4. o

A similar proof establishes the following version of the above result.
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Proposition 5.2. Given a number a > 1, there exists an (explicitly computable)
number K = K(a) such that if G is a finitely generated nilpotent group of growth
degree at least d = K and X is a finite generating set for G, then it holds that
sn(G) = f(lad )n? foralln = 1.

Proof. Choose K = K(a) > 1 such thatif r > K, then r — ~/2r —2 = r/a. Let
G be a finitely generated nilpotent group of class ¢ € N and growth degree at
least d = K, and let X be a finite generating set for G. We may assume as usual
that G is torsion-free. By the inductive argument of Proposition 5.1, we need only
consider the base cases in which deg(G) < d + ¢. Since d > 1, (5.1) gives

d > deg(G) — /2deg(G) — 2 = deg(G)/«,

and the claim holds by Proposition 3.1. o

6 Vertex-transitive graphs

In this section, we prove Corollary 1.8. We first provide some brief background on
vertex-transitive graphs. For convenience, we provide references to the third and
fourth authors’ paper [33], although most of what we describe is classical. See [33]
for more detailed background, including further references.

LetI' = (V, E) be a vertex-transitive graph. Given a subgroup G < Aut(I") and
avertex x € V, we write G(x) for the orbit of x under G, and G for the stabiliser
of x in G. Note that if G acts transitively on V/, then its vertex stabilisers are all
conjugate to one another; in particular, they all have the same cardinality.

Given a subgroup H < Aut(I"), we define the quotient graph I'/H to have ver-
tex set { H(x) : x € V}, with H(x) and H(y) connected by an edge if and only if
there exist xo € H(x) and yo € H(y) that are connected by an edge in I'. Note in
this case that s, (I'/H) < s, () foralln € N.If G is another subgroup of Aut(I"),
we say that the quotient graph I/ H is invariant under the action of G on T if, for
every g € G and x € V, there exists y € V suchthat gH (x) = H(y).If H is nor-
malised by G, then I'/H is invariant under the action of G, and the action of G on
I' descends to an action of G on the vertex-transitive graph I'/H (see [33, Lem-
mas 3.1 & 3.2]). When I'/H is invariant under G, we write G, g for the image
of G in Aut(I'/H) induced by this action; thus Gr,g is the quotient of G by the
normal subgroup {g € G : gH(x) = H(x) forevery x € I'}.

The automorphism group Aut(I') of the vertex-transitive graph I' is a topo-
logical group with the topology of pointwise convergence, which is metrisable
[33, §4]. A subset U € Aut(I") is relatively compact if and only if has a finite
orbit, if and only if all its orbits are finite [33, Lemma 4.7].
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The following result allows us to study the growth of a vertex-transitive graph
in terms of the growth of a closed transitive group of automorphisms.

Lemma 6.1 ([33, Lemma 4.8]). Let k € N. Suppose T is a connected, locally finite
vertex-transitive graph and G < Aut(I") is a closed transitive subgroup acting

with vertex stabilisers of order k. Then there exists a finite generating set X for G
such that sy, (G, X) = k - s, (") for alln € N.

Proof of Corollary 1.8. Let G be a closed transitive subgroup of Aut(I") (for ex-
ample Aut(I") itself). Since I' has polynomial growth, Trofimov’s theorem as
presented in [33, Theorem 2.1] shows that there is a compact normal subgroup
Hy <1 G such that Gr, g, is virtually nilpotent and acts on I'/ Ho with finite ver-
tex stabilisers. Since orbits under Hy are finite, '/ Ho has the same growth degree
as I, so it suffices to prove the corollary for I'/ Hy. We may therefore assume that
Hy is trivial, and hence that G itself is virtually nilpotent of growth degree d and
acts on I" with finite vertex stabilisers.

Proposition 3.3 implies that there exist normal subgroups H, N <1 G, where
H < N is finite and [G : N] < g(d), such that N/H is torsion-free nilpotent
of growth degree d. Write 7: G — Gr,g for the quotient homomorphism. It is
shown in [33, Lemma 3.5] that if x is a vertex of I', then the stabiliser (Gr;m ) H(x)
is precisely 7 (Gy). In particular, we have that (G, g ) g (x) is @ homomorphic im-
age of G /(G N H), so that

(Gr/H)HX)| < [Gx : Gx N H].

Since N/H is torsion-free and Gy is finite, it must be the case that Gy "N C H,
and hence in particular that Gy N N € Gx N H. This shows that G, /(Gx N H)
is isomorphic to a quotient of Gx/(Gx N N), which is itself isomorphic to a sub-
group of G/ N, and so we may conclude that

[Gx :GxNH]<[G:N]<gd).

It therefore follows from Theorem 1.5 and Lemma 6.1 that

n4 n¢

sp(T) = s, (I'/H) = . = .
" ! [(Gr/m)H| 24@FDg(d)d ~ 24+ g(d)d+1

as required. o

By combining the third and fourth authors’ result [33, Corollary 1.5] and Corol-
lary 1.8, one can obtain the following partially effective statement.
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Corollary 6.2. Let d € N, and suppose T is a vertex-transitive graph with degree
of growth at least d. Then there exists ng = ng(d) € N such that

nd

sn(l) = 2d(@+2) g (g)d+1

for every integer n = ny.

Proof. By [33, Corollary 1.5], there exists ng = no(d) such that if s,(I") < n¢
for some n = ng, then deg(I") < d. If no such n exists, then there is nothing to
prove. Otherwise, we can apply Corollary 1.8. |

The value of ng = no(d) € N provided by the proof remains ineffective.

A Universal gap in percolation

Here we sketch the details of how to explicitly bound the quantities in the proofs
of Panagiotis and Severo [23] to derive Corollary 1.10. We will not optimise our
calculations; rather, we will aim for conciseness in the final result. It suffices to
prove the inequalities for site percolation [18, Proposition 7.10].

Before we consider the arguments of Panagiotis and Severo, we first consider
a result that they quote from elsewhere, namely, [14, Theorem 3.20]. The next
few paragraphs are intended to be read in conjunction with [14]; all notation and
terminology is as in that paper, and theorem references are also to that paper.

The proof of Theorem 3.20 shows that if T" is a Cayley graph of a group that
is not virtually cyclic but contains a nilpotent subgroup of index at most n € N,
then there is a Cayley graph Gy := (V1, E1) := Cay(Ho, H N S2"~!) of valency
at most (8n — 4)?"~ 1, as well as a Cayley graph G, := (V5, E») := Cay(I'g, Sp)
of valency at most 8n — 4 that is a subgraph of I, such that

P G>,bond

1—(1—p1/C)C[O < 00| = ]P’I,Gl’bond[o < 00| = IP’I,Zz’bO“d[o < 00|

for all p € [0, 1]. Here, C is the constant given by applying Lemma 2.10 with
¢ equal to the (2n — 1, 1)-rough embedding G; — G, induced by the inclusion
map Ho — Ty appearing in the proof of Theorem 3.20, and Z?2 has its usual
Cayley graph. We will show in the next paragraph that we may take C equal to
U := 2(8n — 3)3"~2 in this case, so that

G»,bond )
Pl_z(l(inpl/u)y [0 <> o0] = ]ppZ bond[o - o0
for all p € [0, 1]. It follows from [18, Proposition 7.11] that

Gasi - G2.bond
Plf(ilfpl/U)(Sﬂ_‘“U [0 <> 00] = (1—(1—p!/U)Bn 4)U)P1_2(1(f]p1/z])u [0 < ).
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Since G, is a subgraph of I, we may combine the previous two displays to con-
clude that
T,si _ 2
Pl—s(ltle—pl/u)(sn—nu[o < o] = (1 - (1= pl/U)(sn 4)U)PIJZ *Mo < o]
for all p € [0, 1], and hence

i 1
T, -
]Pl_s(ltle_pl/U)(Snfét)U[O « o0] = (1 (1= Pl/U)(Sn 4)U)<2 - ;) (A.1)

forall p € [%, 1] by [9, Theorem 1.1].

To see that we may indeed take C = U, and hence verify (A.1), we need to
bound two quantities by U. First, given an edge e; € E;, we need to show that
|®(e1)| < U in the notation of the proof of Lemma 2.10. To see this, note that if
x and y are the endpoints of e, then a shortest path connecting ¢(x) and ¢(y)
has length at most 2n, so every edge in such a path has at least one endpoint at
distance at most #n — 1 from either ¢ (x) or ¢(y). There are at most 2(8n — 3)*~!
vertices at distance at most n — 1 from either ¢(x) or ¢(y), so there are at most
2(8n — 3)" such edges, and so |®(eq)| < 2(8n — 3)" < U as required. Second,
given an edge e, € E;, we need to show that |[{e] € E; : ez € P(eg)}| < U. To
see this, note that if e, € ®(ey) for some e; € Ep, and if u and v are the endpoints
of e5 and x and y are the endpoints of ey, then at least one of ¢(x) and ¢ (y) must
be within distance n — 1 of either u or v. There are at most 2(8n — 3)"~! vertices
at distance at most n — 1 from either u or v, so since ¢ is injective, there are at
most 2(8n — 3)*~1(8n — 4)?"~! < U possibilities for ey, as required.

The remainder of this appendix is intended to be read in conjunction with [23],
and we adopt the notation of that paper except in two explicitly noted cases in the
next sentence.

Replace their (3.4) by our Corollary 1.9, which we will write as

pn(x,y) < )/k(D/n)k/2 with yi 1= 8k(k+5)/261:16_k/2;

here only we use our notation &g, in which we will use (our) C = 100. Although
[23] uses a nonlazy simple random walk, they apply such a bound only to bound
the Green function, and adding laziness simply multiplies the Green function by 2,
which means that we will end up with slightly larger bounds than necessary. This
gives their (3.5) with C” = yy if we choose k = 2r + 2.

In their Lemma 3.5, we have ¢, = (4n)~" because t, = 1/(4"n!) > (4n)™"
forn = 2.

The proof of Theorem 3.3 is broken into several cases. For the first case, we
choose the same Do = 27°+5 /c,245 as they do and get that, for D < Dy and
dimension at least 2r, the inequality

pn(x,y) <C/Dn" (A2)
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holds for alln» = 1 when C = y2rD’ 1 In the remaining cases, D = Dy and the
dimension is at least 2r + 2. For the second case, we have (A.2) for alln = D7
and C = y; 4. For the third case, they note that p,(x,y) < 1/D" +1 for

2
4protl 16 du

=1 _
R A
so we may set ¢ := 163(r% 4 2)3 to get (A.2) with C = 1 whentlogD <n < D".

For the fourth case, we have (A.2) with C = 3" when 1 < n < 3. For the fifth
(last) case, we have (A.2) when 4 < n < tlog D and

=1+ 162 +2)% log(4D"" 1),

C = 6(tlog D) /D.
spx, 6(tlog DY/

Now use

max ue */7 = r/e (A.3)

u>0
to see that we may take C = 6(¢r/e)”. Comparing all these cases shows that, in
their Theorem 3.3, we may take Cy(r) = y2,42 and d(r) = 2r 4 2.
We next turn to the proof of their Theorem 3.1. We have just seen that

do = d(3) = 8.

They take ¢ := e M where M is the bound in their (3.6) of the sum

© [}
=log2 + Co Z s, withs, := (16D)En~1 / Pt (A)dA.
n=1 An
We may take any Co > 16/a with a := P[pl < 11] > 1/250, whence we may
take Co = 4000. For n = 1, we have s, < 1 because g;(x,x) =1and L; = 1.
Now let n = 2. With C; = C;(3) = yg, we have

Ly Ly
Cq 1 Cq
X,X) = X, X) < — — <
k=L,+1 k=L,+

Thus,

[ =PI = ha Ve
A < /C1/4Dw - (n—1)?/Ly -exp{—DL2?/C1(n — 1)*}
(this uses the tail bound P[N = «] < («/Ea)_le_“ /2). Use (A.3) to get

Dexp{—DL,/Ci(n —1)*} < (n—1)*C; /eL,,
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and thus s, < v, /C1/1087 ("Z’:)Z, where

by (16(u — 1)4cl)Lu

and L, :=2%T1-3
el

for real v = 1. Calculus shows that log v, < L,,,, where us maximises v, over
all u = 1. Indeed, the critical point u 4 occurs where

16(u — DH*C 4 2ut1[pg2
(u—1) 1+Lu( og)

0=2%t10g2-1 _
0g 0og L, u—1 Ju+l _ 3

whence

16(us — 1)*Cy

lo
£ eLy,

= (1-3/2%th(1/Q =3/2"F) —4/(us — 1)) < L.

Furthermore, we find that usx < 2log, C;. Indeed, letting i := 2log, C1, we have
Ly = 2C12 — 3, and hence

16(i — 1)*C1_ 16Q2log, C1 — 1)*C,

= <1;
eL; e(2C12 —3)

looking again at the derivative of log v,,, we conclude that u — log v, is decreas-
ing at u, whence Uy < u. It follows that L,, < 2C2 -3< 2C12, which yields
vy < e2c Because Y no ,(n — 1)2/\/10871L < 1, we find that we may take
any M = log2+ Co(1 + /C1e2C7). This gives that M := exp{17exp{10- 81001}
works.

Finally, in the proof of their Theorem 1.1, we see that, for dimensions at least
do =d(3) =8, we can use g9 = & = e=M | while for smaller dimensions, we
can use g9 = €(g(8)), where e(n) is the quantity coming from Theorem 2.3 and
we used [2, Theorem 1] and our Proposition 3.3. Our bound (1.1) implies that
£(g(8)) = e(16!), while our (A.1) implies that () can be taken to be

(1 _ (l/z)l/U)(Sn—4)U’

where we recall that U = 2(8n — 4)>"~2. The inequality e* > 1 + u, valid for
all real u, implies in particular that 1 —e™ = u/(1 + u) for all u > —1; apply-
ing this, we then see that £(n) = (2U) ™ log2)®"=U Therefore, £(16!) > ¢,
whence g9 = ¢ can be used for all groups.

Now we turn to the second assertion of Corollary 1.10. The proof of [23, Theo-
rem 1.1] shows that

-1
Pi_¢gylo <> o0] = Plo & o]
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when the dimension is at least dgy. By [8, Proposition 2.1], we have that

Plo & ool =1 —exp{D/g(o,0)};

that reference is in terms of a particular bond percolation, but it is easy to see that
it also bounds the probability for site percolation for the superlevel set of ¢. Now
g(0,0) = > 721 gn(0,0). Our explicit bounds above show therefore that

=,
g(0’0)<1+ﬁnz_:2L" < C1/25D.

Using the value above for C; implies that
Ppolo <> o0] > 1 — exp{—D2 exp{—9eXp{100 . 8100}}}
> exp{—9exp{1oo . 8100}}

for dimension at least dy. For dimension less than dy, we may again apply our
(A.1) with n = 16!; taking p = 2/3, for example, yields

P T,site

1—(1—(2/3) 1/ U)Bn—4HU (1 —(1- (2/3)1/[])(8”_4)(]) >

[0 <> o0] =

N —
W | —

Since

3\ 8n—4)U
) > ¢

(1= @/3)V)E I = (U) " log 5
by essentially the same computation as in the previous paragraph, this completes
the proof.
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