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1. Introduction

Spectral embedding is a popular tool in modern data clustering, as summarized in 

von Luxburg [22]. Also, spectral embedding was exploited to study graphs. In particular, 

Lyons and Oveis Gharan [13] introduced spectral embedding as a new tool in analyzing 

reversible Markov chains (random walks on graphs). For instance, [13, Theorem 4.9] gave 

a sharp bound on return probabilities of lazy random walk. Here, the lazy random walk 

on a graph G stays put at a vertex with probability 1/2 and moves to a random uniform 

neighbor otherwise.

Theorem 1.1 ([13], Theorem 4.9). Let G be a regular, simple, connected graph with n

vertices. For each vertex x of G and t > 0,

0 � p′
t(x, x) − 1

n
�

13√
t
,

where p′
t(x, x) is the probability of returning to x at step t for the lazy random walk on 

G starting from x. �

Now, a question arises naturally: if simple random walk, instead of lazy random walk, 

is considered, do we still have good bounds on return probabilities? Here, the simple 

random walk on a graph moves to a random neighbor uniformly.

To get some feeling, we recall the method used in the proof of the above bound in 

[13]. Given a graph G, let P be the transition matrix of the simple random walk on G; 
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then P ′ := I+P
2 is the transition matrix of the lazy random walk on G. We know that 

P and P ′ are symmetric operators on the space of functions on V (G) square summable 

with respect to the degree sequence of G, so their spectra are both real. Denoting the 

spectra of P and P ′ as σ(P ) and σ(P ′) respectively, we know that σ(P ′) is closely 

related to σ(P ): λ ∈ σ(P ) if and only if 1+λ
2 ∈ σ(P ′). Since σ(P ) is contained in the 

interval [−1, 1], σ(P ′) is contained in [0, 1]. Also, it is well known that the non-trivial 

(different from 1) spectrum of P ′ “governs” the “convergence rate” of lazy random walk: 

for instance, if the gap between the largest non-trivial eigenvalue of P ′ and 1 is large, 

then intuitively, the convergence will be faster. Thus, by the relation of σ(P ) and σ(P ′), 

we only need to consider the spectrum of P near 1. Moreover, we notice that σ(P ) is 

closely related to the spectrum of the probabilistic Laplacian L := I − P corresponding 

to P . To prove the aforementioned bound in [13], using the spectral embedding based 

on L, [13] first revealed upper bounds on the vertex spectral measure of L. It is known 

that return probabilities are determined by vertex spectral measures; therefore, bounds 

on return probabilities can be obtained from bounds on vertex spectral measures (see 

[13, Proposition 3.5]).

When it comes to simple random walk, the situation is different. Note that simple 

random walks on bipartite graphs have period two and simple random walks on non-

bipartite graphs are aperiodic. For simplicity of presentation, we discuss non-bipartite 

case only in this introduction. To begin, we still have the intuition that the “convergence 

rate” of simple random walk is related to the non-trivial spectrum of P : for instance, 

Diaconis and Stroock [9, Proposition 3] proved that the geometric convergence rate in 

total variation norm is determined by the maximum non-trivial eigenvalue in absolute 

value when the random walk has finitely many states. Note that σ(P ) ⊆ [−1, 1], but 

σ(P ) is not necessarily non-negative. Therefore, in order to deal with “convergence” of 

simple random walk, one also has to consider the negative spectrum of P . However, we 

usually study the spectral gap of the probabilistic Laplacian L = I − P , which is related 

to the spectrum of P near 1 but does not provide much information about the negative

spectrum of P .

Our solution is to consider another operator: the probabilistic signless Laplacian op-

erator Q := I + P . Obviously, the spectrum of P is closely related to the spectrum of Q
by a shift of 1 unit horizontally. The spectrum of Q is therefore real and non-negative. 

This brings us some convenience: we have more tools to deal with the operator Q, its as-

sociated quadratic form for a start. We will first consider the vertex spectral measure of 

Q using the spectral embedding based on Q, so the negative spectrum of P is bounded. 

Then we may proceed to get a bound on return probabilities of simple random walk. See 

Theorem 3.5 for details.

1.1. Main results

To give an overview of our results, in this subsection, we constrain ourselves to the 

case of unweighted graphs. Some notation will be needed, which will be explained in 
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more detail in subsequent sections. Consider a locally finite, simple, connected graph 

G = (V, E). A vertex x ∈ V has degree d(x) in G. Write π(x) := d(x)
2|E| , which is 0 when G

is an infinite graph. When G is finite, we denote the eigenvalues of the transition matrix 

P on G as

−1 � λP
min = λP

1 � λP
2 � λP

3 � · · · � λP
n−1 < λP

n = λP
max = 1,

where n = |V |. When G is finite, it is well known that λP
1 = −1 if and only if G is 

bipartite. However, for infinite graphs, it is more appropriate to consider their vertex 

spectral measures. For instance, denoting the probability of returning to x at step t as 

pt(x, x) for the simple random walk on G starting at x, then we have

pt(x, x) =

∫

[0,2]

(1 − λ)tdμx(λ),

where μx is the vertex spectral measure at x of L. Denote the vertex spectral measure 

at x of Q as μQ
x . It is shown in Lemma 3.3 that when G is finite,

∑

x∈V

μQ
x (δ) =

∣∣{j ; 1 + λP
j � δ}

∣∣.

This enables us to count eigenvalues of P on the interval [−1, −1 + δ]. Therefore, we can 

get lower bounds on eigenvalues of P from upper bounds of the vertex spectral measure 

of Q.

We first consider non-bipartite graphs. In fact, when the graph is non-bipartite, the 

simple random walk is aperiodic, so some troubles are avoided. Our result for simple 

random walk on regular graphs reads as follows.

Theorem 1.2. For a regular, non-bipartite, simple, connected graph G, we have

μQ
x (δ) � 10

√
δ, 0 � δ � 2, x ∈ V.

For each x ∈ V , simple random walk on G satisfies

0 � pt(x, x) − π(x) �
18√

t
for t ≡ 0 mod 2,

∣∣pt(x, x) − π(x)
∣∣ � 9√

t
for t ≡ 1 mod 2.

Furthermore, when G is finite, for 1 � k � n, λP
k � −1 + k2

100n2 .

The above result is sharp by Example 3.7. Theorem 1.2 is interesting since the degree 

and size of the regular graph G are not involved. In Theorem 1.2, the first assertion about 
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bounding vertex spectral measure follows from Theorem 3.1 in the subsequent text; the 

second assertion about return probability bound follows from Theorem 3.5; and the last 

assertion is treated in Corollary 3.4.

It would be helpful to briefly describe the mechanism of getting return probability 

bounds in this paper, in which Lemmas 2.6 and 2.7 play essential roles. In fact, Lem-

mas 2.6 and 2.7 reveal how the asymptotics of large-time return probabilities corresponds 

to the asymptotics of the spectral measures of L and Q near 0. For instance, when proving 

Theorem 3.5, we first obtain a bound on vertex spectral measures of Q in Theorem 3.1, 

which in fact characterizes the spectrum of P around −1; The first assertion of [13, The-

orem 4.9], as a counterpart of Theorem 3.1, characterizes the spectrum of P around 1; 

based on Theorem 3.1 and the first assertion of [13, Theorem 4.9], Lemmas 2.6 and 2.7

will conveniently produce a bound on return probabilities. Here, Lemmas 2.6 and 2.7

show how return probabilities of simple random walk are determined by the spectrum of 

P around 1 and −1. In fact, Lemma 2.7 is an extension of [13, Lemma 3.5]: intuitively, 

[13, Lemma 3.5] reveals how return probabilities of lazy random walk are determined by 

the spectrum of P around 1.

The following proposition is for graphs satisfying volume growth conditions.

Proposition 1.3. Let G be a non-bipartite, infinite, simple, connected graph. Suppose that 

for some vertex x of G, there are constants c > 0 and D � 1 such that

∑

y ; dist(x,y)�r

d(y) � c(r + 1)D

for all r � 0, where dist is the distance on graph. Then for all δ ∈ (0, 2),

μ∗
x(δ) � Cd(x)δD/(D+1),

μQ
x (δ) � Cd(x)δD/(D+1),

where

C :=
(D + 1)2

c1/(D+1)D2D/(D+1)
.

Hence for all t � 1, simple random walk satisfies

pt(x, x) � 2C ′w(x)t−D/(D+1) for t ≡ 0 mod 2,

pt(x, x) � C ′w(x)t−D/(D+1) for t ≡ 1 mod 2,

where

C ′ :=
D + 1

c1/(D+1)D(D−1)/(D+1)
Γ
( D

D + 1

)
.
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Proposition 1.3 follows from Corollary 4.3 directly.

Using the spectral embedding based on Q, we also bound the vertex spectral measure 

of Q in another way and get bounds on the uniform mixing time.

Proposition 1.4. For any non-bipartite, finite, simple, connected graph G, we have

μQ
x (δ) �

d(x)δ

K (G)
, δ ∈ [0, 2), x ∈ V,

where K (G) is defined as

min

{∑
(v,u)∈E |f(v) + f(u)|2

maxy∈V |f(y)|2
; min

y∈V
f(y) < 0 < max

y∈V
f(y)

}

and satisfies K (G) � 1
diam(G)+1 . Consequently, for 1 � k � n,

λP
k � −1 +

kK (G)∑
x∈V d(x)

� −1 +
k(

diam(G) + 1
)∑

x∈V d(x)
.

Furthermore, τ∞(1/4) � 8n3. If G is also regular, then we have τ∞(1/4) � 24n2.

Proposition 1.4 follows from Lemmas 5.2 and 5.3, and Corollaries 5.4 and 5.6.

Note that for a finite, simple, connected graph G, [13, Proposition 4.2] implies

λP
n−k � 1 − k

Rdiam(G)
∑

x∈V d(x)
, 0 � k � n − 1,

where Rdiam(G) is the resistance diameter of G. This bound combined with the lower 

bound on eigenvalues of P in Proposition 1.4 improves [10], which asserted that each 

eigenvalue λ of P that is neither 1 nor −1 satisfies

|λ| � 1 − 1(
diam(G) + 1

)
ndmax

,

where dmax is the maximum degree of G.

The bound τ∞(1/4) = O(n2) in Proposition 1.4 is sharp by the example of cycles: 

there is a constant c > 0 such that for all odd number n, simple random walk on an 

n-cycle satisfies τ∞(1/4) � cn2 (see [20, Example 3.11]). See Section 5 for more details.

As a special class of regular graphs, vertex-transitive graphs are of interest, since they 

are intuitively “homogeneous” and especially well studied.

Theorem 1.5. Let G be a non-bipartite, simple, connected, vertex-transitive graph with 

degree d < ∞. For each x ∈ V , c ∈ (0, 1), and δ ∈ (0, 2], we have
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μQ
x (δ) �

1

c2N#
(√

1−c√
dδ

) ,

where N#(r) denotes the number of vertices in a ball of radius r. In addition, if G is 

finite,

λQ
min �

2

d

(
sin

π

4
(
diam(G) + 1

)
)2

.

Theorem 1.5 follows from Theorems 6.2 and 6.4 directly. As usual, a bound on return 

probabilities of simple random walk follows immediately from a bound on vertex spectral 

measures. See Corollary 6.3 as an example.

Apart from vertex spectral measure at one single vertex, we may consider average 

spectral measure for finite graphs. Given a finite graph G, the average spectral measure 

of Q is defined as μQ :=
∑

x∈V μQ
x /n.

Theorem 1.6. For any non-bipartite, finite, simple, connected graph G and δ ∈ (0, 2), we 

have

μQ(δ) < (4000δ)1/3.

Consequently, λP
k � −1 + k3

4000n3 for 1 � k � n. Furthermore,

0 �

∑
x∈V pt(x, x) − 1

n
�

30

t1/3
for t ≡ 0 mod 2,

∣∣∑
x∈V pt(x, x) − 1

∣∣
n

�
15

t1/3
for t ≡ 1 mod 2.

Theorem 1.6 is treated in Section 7; see Theorems 7.1, 7.5 and 7.6, and Corollary 7.2

for more details.

Non-bipartite graphs are considered in previous paragraphs. But the bipartite case 

is a bit different, because simple random walk on a bipartite graph has period two. 

Fortunately, by Mohar and Woess [17, Theorem 4.8], the vertex spectral measures of L
and Q coincide. Therefore, only the estimates for the vertex spectral measure of L from 

[13] will be enough for us to get bounds on return probabilities of simple random walk. 

For example, we have the following result for bipartite graphs.

Theorem 1.7. Consider simple random walk on a regular, bipartite, simple, connected 

graph G. Then for each x ∈ V ,

0 � pt(x, x) − 2π(x) �
18√

t
for t ≡ 0 mod 2.

This result is later proved as Theorem 8.1 in Section 8.
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Our method works as well for analyzing the spectrum of the adjacency matrix A of a 

finite graph G. Suppose the eigenvalues of A are

−dmax � λA
min = λA

1 � λA
2 � λA

3 � · · · � λA
n−1 < λA

n = λA
max � dmax,

where dmax is the maximum degree of G.

Proposition 1.8. Let G be a non-bipartite, finite, simple, connected graph. For 1 � k � n,

dmax + λA
k �

kK (G)

n
�

k(
diam(G) + 1

)
n

.

Proposition 1.8 follows from Corollary 9.7 directly. Proposition 1.8 improves [1, The-

orem 1.1], which obtained that dmax + λA
1 �

1
(diam(G)+1)n . To get Proposition 1.8, in 

Section 9, we first consider the spectral embedding based on the combinatorial signless 

Laplacian Θ := D+A, where D is the diagonal degree matrix of G. Then Proposition 1.8

follows from the bound below on the vertex spectral measure of Θ.

Proposition 1.9. Let G be a non-bipartite, finite, simple, connected graph. Then for each 

δ ∈ [0, λΘ
max) and x ∈ V , we have

μΘ
x (δ) �

δ

K (G)
�

(
diam(G) + 1

)
δ.

This proposition follows from Proposition 9.4 directly. Suppose the eigenvalues of Θ

are

0 � λΘ
min = λΘ

1 � λΘ
2 � λΘ

3 � · · · � λΘ
n−1 < λΘ

n .

The above proposition has the following corollary.

Corollary 1.10. Let G be a non-bipartite, finite, simple, connected graph. For 1 � k � n, 

we have

λΘ
k �

kK (G)

n
�

k(
diam(G) + 1

)
n

.

Corollary 1.10 is proved as Corollary 9.6 in Section 9. In fact, it is known that a graph 

is bipartite if and only if λΘ
min = 0; for a non-bipartite graph G, Desai and Rao [8] showed 

that λΘ
min measures non-bipartiteness of G.

1.2. Related works

In the field of spectral graph theory, the combinatorial signless Laplacian has already 

drawn wide attention: Cvetković and Simić [3,4,5] are surveys on the study of the com-

binatorial signless Laplacian. In fact, Alon and Sudakov [1, Theorem 1.1] also used the 
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combinatorial signless Laplacian implicitly by considering its associated quadratic form. 

We use the method of spectral embedding, so not only the minimum eigenvalue but all 

eigenvalues of the graph adjacency matrices are bounded from below in Proposition 1.8.

One highlight of this article is the introduction of the probabilistic signless Laplacian 

Q, enabling us to deal with the negative spectrum of the transition matrix P on a 

graph with the tool of spectral embedding, and therefore deal with return probabilities. 

Indeed, the quadratic form associated to Q was used in Desai and Rao [7], Diaconis and 

Stroock [9] to give lower bounds on the minimum eigenvalue of P . Signless Laplacian 

operator is also related to dual Cheeger inequalities; see Trevisan [21], Liu [12] for more 

details. We consider the operator Q explicitly and exploit the spectral embedding based 

on it. Therefore, the entire spectrum of P is treated, rather than only the minimum 

eigenvalue. For instance, Landau and Odlyzko [10] is improved as we discussed after 

Proposition 1.4.

In the literature, there are many fewer results on the negative spectrum of P than 

on the positive spectrum of P . Recall that in the study of the positive spectrum of P , 

the probabilistic Laplacian operator L was usually used; in particular, the spectral gap 

of L equals the gap between the largest nontrivial spectrum of P and 1. However, when 

one wants to study the negative spectrum of P , for instance by considering the signless 

probabilistic Laplacian operator Q, it is harder: since we don’t have many tools. For 

example, tools from electrical network theory are pretty useful in the study of L, but 

they are not readily available to deal with Q. We have to make a “detour” and adapt 

the existing tools.

1.3. Structure of this article

We review notation for graphs and introduce spectral embedding based on the signless 

Laplacian in Sections 2.1 and 2.2. Some preliminaries are included in Section 2.3. Return 

probabilities of simple random walk on regular graphs are considered in Section 3. Re-

turn probability bounds based on volume growth conditions are discussed in Section 4. 

The case of transitive graphs is treated in Section 6. We also consider average return 

probabilities for finite graphs in Section 7. In Section 5, we bound the uniform mixing 

time. Bipartite graphs are discussed in Section 8. The tool of spectral embedding is ex-

ploited to study eigenvalues of graph adjacency matrices in Section 9. The appendices 

contain some calculations and auxiliary results.

2. Notation and spectral embedding

2.1. Graph notation, random walk, and Laplacian operators

Let G =
(
V (G), E(G)

)
be a finite or infinite, undirected, simple, connected, weighted 

graph. For an edge of G, say e = (x, y) ∈ E(G), let w(e) = w(x, y) > 0 be its weight. We 
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say G is unweighted if w(e) = 1 for each edge e ∈ E(G). We assume G has weighted adja-

cency matrix A(G), (unweighted) diameter diam(G), and (weighted) resistance diameter 

Rdiam(G). Also, minimum, maximum, and average degrees in G are denoted by dmin(G), 

dmax(G), and davg(G), respectively. When G is finite, we denote 
∣∣V (G)

∣∣ = n(G). If G is 

understood, reference to G may be omitted.

For x ∈ V (G), we use standard graph notation N(x) :=
{

y ∈ V (G) ; (x, y) ∈ E(G)
}

to denote the collection of all neighbors of x. Throughout this article, we require 

that G is locally finite, i.e., 
∑

y∈N(x) w(x, y) < ∞ for each x ∈ V (G). We say that 

w(x) :=
∑

y∈N(x) w(x, y) is the weight of x ∈ V (G) in G, and the weight of a vertex 

subset S ⊆ V (G) in G is wt(S; G) :=
∑

x∈S w(x). If G is unweighted, w(x) equals the 

degree d(x) of x. Again, when G is understood, the reference to G may be omitted. In 

particular, when G is vertex-transitive, all vertices have the same weight, denoted by w. 

Write π(x) = w(x)
wt(V (G)) . For a vertex x ∈ V (G) and r � 0, let

B(x, r; G) =
{

y ∈ V (G) ; dist(x, y) � r},

where dist is the distance on G. Set

wt(x, r; G) := wt
(
B(x, r; G); G

)
.

For the simple random walk on G, the transition probability from x ∈ V (G) to 

y ∈ V (G) is w(x,y)
w(x) . We use pt(x, y) to denote the probability that the simple random 

walk started at x ∈ V (G) arrives at y ∈ V (G) at step t.

Recall that we write �2(V (G), w) for the (real or complex) Hilbert space of functions 

f : V (G) → R or C with inner product

〈f, g〉w :=
∑

x∈V (G)

w(x)f(x)g(x)

and squared norm ‖f‖2
w := 〈f, f〉w. We reserve 〈·, ·〉 and ‖ · ‖ for the standard inner 

product and norm on Rk (k ∈ N) and �2
(
V (G)

)
. For a vertex x ∈ V (G), we use 1x to 

denote the indicator vector of x:

1x(y) :=

{
1 if y = x,

0 otherwise.

We also write ex := 1x√
w(x)

. Note that ex ∈ �2(V (G), w) is of unit norm: ‖ex‖w = 1.

We have a series of useful operators on �2(V (G), w). The probability transition oper-

ator P : �2(V (G), w) → �2(V (G), w) is defined as

(Pf)(x) :=
∑

y∈V (G)

w(x, y)

w(x)
f(y).
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We define the probabilistic Laplacian L = I − P and the probabilistic signless Laplacian 

Q = I + P , where I is the identity operator on �2(V (G), w). We know that P , L, and Q
are bounded self-adjoint operators on Hilbert space �2(V (G), w). The spectrum of P is 

contained in the interval [−1, 1]. Obviously, whether G is finite or infinite, the spectrum 

of P and Q are related by a shift of 1 unit horizontally.

Denote the resolution of identity for L as IL. As in [13], the vertex spectral measure 

of L at x ∈ V (G) is defined by

μx(δ) :=
〈
IL

(
[0, δ]

)
ex, ex

〉
w

=
〈
IL

(
[0, δ]

)
1x, 1x

〉
, 0 � δ � 2.

For convenience, we will also use

μ∗
x(δ) :=

〈
IL

(
(0, δ]

)
ex, ex

〉
w

=
〈
IL

(
(0, δ]

)
1x, 1x

〉
, 0 � δ � 2, x ∈ V (G).

It is easy to see that μx(δ) = μ∗
x(δ) + π(x) for 0 � δ � 2 (see [13, Section 3.1]).

When G is finite, the spectra of P and Q consist of eigenvalues (point spectrum) only:

• Denote the eigenvalues of the transition matrix P on G as

−1 � λP
min = λP

1 � λP
2 � λP

3 � · · · � λP
n−1 < λP

n = λP
max = 1.

• Denote the eigenvalues of the probabilistic signless Laplacian Q as

0 � λQ
min = λQ

1 � λQ
2 � λQ

3 � · · · � λQ
n−1 < λQ

n = λQ
max = 2.

2.2. Spectral embedding based on the signless Laplacian

The spectral embedding based on L is introduced in [13, Section 3.4] as a powerful tool 

in analyzing random walk on graphs. In this subsection, we will introduce the spectral 

embedding based on Q in parallel. Denote the resolution of identity for Q as IQ, with 

vertex spectral measure at x

μQ
x (δ) :=

〈
IQ(δ)ex, ex

〉
w

, 0 � δ � 2, x ∈ V (G),

where IQ(δ) := IQ
(
[0, δ]

)
.

Lemma 2.1. Let f ∈ �2(V (G), w). We have

〈Qf, f〉w =
∑

(v,u)∈E(G)

w(v, u)
∣∣f(v) + f(u)

∣∣2.

For δ ∈ [0, 2] and f ∈ img
(
IQ(δ)

)
,

〈Qf, f〉w � δ‖f‖2
w = δ

∑

v∈V

w(v)
∣∣f(v)

∣∣2. �
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See the appendix for a proof.

Corollary 2.2. If G is connected and non-bipartite, then img
(
IQ({0})

)
contains only the 

zero function. Therefore in this case, IQ(δ) = IQ
(
[0, δ]

)
= IQ

(
(0, δ]

)
. It also follows that 

0 is not an eigenvalue of Q if G is non-bipartite.

Proof. Assume f ∈ img
(
IQ({0})

)
. We see that

∑

(v,u)∈E(G)

w(v, u)
∣∣f(v) + f(u)

∣∣2 = 〈Qf, f〉w � 0‖f‖2
w = 0.

Therefore, for (v, u) ∈ E(G), we have f(v) = −f(u). Since G is non-bipartite, there is 

an odd cycle C = v1v2 · · · vsv1, where s ≡ 1 mod 2. Thus, f(v1) = −f(v1), implying that 

f(v1) = 0. By connectedness, f(v) = 0 for all v ∈ V (G). This corollary is proved. �

For a fixed δ ∈ [0, 2], we define spectral embedding F Q based on Q as

F Q : V (G) → �2(V (G), w)

x �→ F Q
x :=

IQ(δ)ex√
w(x)

=
IQ(δ)1x

w(x)
.

It is clear that for each x ∈ V (G), F Q
x ∈ �2(V (G), w) is a real-valued function on V (G).

Lemma 2.3. For each finite or infinite graph G and x ∈ V (G),

∥∥F Q
x

∥∥2

w
= F Q

x (x) =
μQ

x (δ)

w(x)
. �

Lemma 2.4. If μQ
x (δ) > 0, define f : V (G) → C as f :=

F Q
x

‖F Q
x ‖w

. Then

(1) ‖f‖w = 1;

(2) f(x) =
√

μQ
x (δ)/w(x);

(3) f ∈ img
(
IQ(δ)

)
. �

We need only mimic the proofs of [13, Lemmas 3.11 and 3.12] to prove Lemmas 2.3

and 2.4.

2.3. Some preliminaries

We will use Lemma 2.5, a standard path fact, which was proved in Levin and Peres [11, 

Proposition 10.16(b)] and [13, Lemma 4.5]. Bounds on the diameter of regular graphs go 

back to Moon [18], but a different approach was used there.
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Lemma 2.5. Let G be a finite, simple, connected graph. We have diam(G) � 3n
dmin

−1. �

The following two results will be useful when we are dealing with return probabilities 

in subsequent sections.

Lemma 2.6. Let t be a positive integer and η be an increasing and right-continuous func-

tion on [0, 2] with η(0) = 0. Then we have

t

2∫

0

η(λ)(1 − λ)t−1 dλ = (−1)t+1η(2) +

∫

(0,2]

(1 − λ)t dη(λ).

Proof. Using integration by parts, we have

t

2∫

0

η(λ)(1 − λ)t−1 dλ = −
2∫

0

η(λ) d(1 − λ)t

= − η(λ)(1 − λ)t
∣∣2
0

+

∫

(0,2]

(1 − λ)t dη(λ)

= (−1)t+1η(2) +

∫

(0,2]

(1 − λ)t dη(λ). �

Lemma 2.7. Consider simple random walk on a non-bipartite, simple, connected, weighted 

graph G.

(1) Let ϕ be an increasing and right-continuous function on [0, 2]. Assume further that 

ϕ satisfies the following conditions:

ϕ(0) = 0 = μ∗
x(0), ϕ(2) = 1 − π(x) = μ∗

x(2),

μ∗
x(λ) � ϕ(λ) for λ ∈ [0, 1),

μ∗
x(λ) � ϕ(λ) for λ ∈ [1, 2].

Then for t ≡ 0 mod 2,

π(x) � pt(x, x) � π(x) +

∫

(0,2]

(1 − λ)t dϕ(λ).

(2) Let ψ1 and ψ2 be increasing and right-continuous functions on [0, 2]. Assume further 

that ψ1 and ψ2 satisfy the following conditions:
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ψ1(0) = ψ2(0) = 0 = μ∗
x(0),

ψ1(2) = ψ2(2) = 1 − π(x) = μ∗
x(2),

μ∗
x(λ) � ψ2(λ) for λ ∈ [0, 2],

μ∗
x(λ) � ψ1(λ) for λ ∈ [0, 2].

Then for t ≡ 1 mod 2, we have

π(x) +

∫

(0,2]

(1 − λ)t dψ1(λ) � pt(x, x) � π(x) +

∫

(0,2]

(1 − λ)t dψ2(λ).

Proof. a) This part is essentially a mimic of the proof of [13, Lemma 3.5]. We consider 

a non-negative integer t in this part. Since P = I − L, we have

pt(x, x) =
〈
(I − L)t

1x, 1x

〉
.

Symbolic calculus gives

(I − L)t =

∫

[0,2]

(1 − λ)t IL(dλ).

Therefore, by the definition of the vertex spectral measure of L, we have

pt(x, x) =

∫

[0,2]

(1 − λ)t d
〈
IL(λ)1x, 1x

〉
=

∫

[0,2]

(1 − λ)t dμx(λ).

It follows that

pt(x, x) = π(x) +

∫

[0,2]

(1 − λ)t dμ∗
x(λ). (1)

Furthermore, using integration by parts, we have

pt(x, x) = π(x) +

∫

[0,2]

(1 − λ)t dμ∗
x(λ)

= π(x) + (1 − λ)tμ∗
x(λ)

∣∣2
0

−
2∫

0

μ∗
x(λ) d(1 − λ)t

= π(x) + (−1)tμ∗
x(2) + t

2∫

0

μ∗
x(λ)(1 − λ)t−1 dλ.
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b) When t ≡ 0 mod 2, because (1 − λ)t is always non-negative, by Eq. (1), pt(x, x) �

π(x). On the other hand, by the result in part a),

pt(x, x) = π(x) +
(
1 − π(x)

)
+ t

2∫

0

μ∗
x(λ)(1 − λ)t−1 dλ

� 1 + t

2∫

0

ϕ(λ)(1 − λ)t−1 dλ

= 1 −
(
1 − π(x)

)
+

∫

(0,2]

(1 − λ)t dϕ(λ)

= π(x) +

∫

(0,2]

(1 − λ)t dϕ(λ),

where the second equality follows from Lemma 2.6. The first assertion is proved.

c) When t ≡ 1 mod 2, by the result in part a), we have

pt(x, x) = 2π(x) − 1 + t

2∫

0

μ∗
x(λ)(1 − λ)t−1 dλ.

Therefore, by Lemma 2.6,

pt(x, x) � 2π(x) − 1 +
(
1 − π(x)

)
+ t

2∫

0

ψ1(λ)(1 − λ)t−1 dλ

= π(x) +

∫

(0,2]

(1 − λ)t dψ1(λ).

Similarly,

pt(x, x) � π(x) +

∫

(0,2]

(1 − λ)t dψ2(λ). �

3. Return probability on regular graphs

In this section, we are mainly interested in regular graphs.

3.1. Estimate of spectral measure and convergence rate

Theorem 3.1. Let G be a non-bipartite, connected, regular, unweighted, simple graph. For 

each x ∈ V (G), we have
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μQ
x (δ) � 10

√
δ, 0 � δ � 2.

Theorem 3.1 is parallel to the first assertion of [13, Theorem 4.9]. Rather than prove 

Theorem 3.1 directly, we will show the following more general result. Note that when G

is regular, d(x)
dmin

= 1 for each x ∈ V (G).

Proposition 3.2. Let G be a non-bipartite, connected, unweighted, simple graph. For each 

x ∈ V (G), we have

μQ
x (δ) �

10d(x)
√

δ

dmin
, 0 � δ � 2.

Proof. Fixing a vertex x ∈ V (G), we define f as in Lemma 2.4. Recall that we denote 

dmin = min
{

d(v) ; v ∈ V (G)
}

.

a) If f(y) � 0 for all y ∈ V (G), then

10d(x)
√

δ

dmin
� δ � 〈Qf, f〉w =

∑

(v,u)∈E(G)

w(v, u)
∣∣f(v) + f(u)

∣∣2

�
∑

y∈N(x)

w(x, y)
∣∣f(x) + f(y)

∣∣2 � w(x)
∣∣f(x)

∣∣2

= μQ
x (δ).

b) We may now assume without loss of generality that 
{

v ∈ V (G) ; f(v) < 0
}

is 

non-empty. Let S :=
{

s ∈ V (G) ; f(s) > 0
}

and T :=
{

t ∈ V (G) ; f(t) < 0
}

. By 

our assumptions, both S and T are non-empty. Recall that for each edge e ∈ E(G), we 

have w(e) = 1 because G is assumed to be unweighted. However, we do the following 

construction of an auxiliary graph G′ for general weighted graphs because this will also 

be useful subsequently in the proof of Proposition 4.1:

(1) The vertex set V ′ of G′ includes V (G). Also, if (u, v) = e ∈ E(G) and u, v ∈ S, 

we introduce two vertices u(e) and v(e) in V ′. Similarly, if (u, v) = e ∈ E(G) and 

u, v ∈ T , we introduce two vertices u(e) and v(e) in V ′.

(2) Construct the edge set E′ of G′ and their weights: If e = (u, v) ∈ E(G) with 

u and v both in S, we introduce three edges (u, u(e)), (u(e), v(e)), and (v(e), v)

in E′; if e = (u, v) ∈ E(G) with u and v both in T , we introduce three edges 

(u, u(e)), (u(e), v(e)), and (v(e), v) in E′. Suppose e = (u, v) has weight w(u, v) in 

G. For edges introduced above, we assign w(u, v) as their weights w′ in G′, i.e.,

w′(u, u(e)) = w′(u(e), v(e)) = w′(v(e), v) = w(u, v).

If e = (u, v) ∈ E(G) is not of the aforementioned forms, introduce one edge 

(u, v) in E′ and set its weight w′(u, w) in G′ as w(u, v).
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It is obvious that G′ is connected. By the above construction, for v ∈ V (G) ⊆ V ′, v has 

the same weight in G and in G′. For v ∈ V ′, denote its weight in G′ as w′(v). Since G is 

unweighted in the current setup, G′ is also unweighted. So for a vertex v′ of G′, w′(v′)

equals the degree of v′ in G′.

c) Define a function g : V ′ → R:

g(v) :=

{∣∣f(v)
∣∣, v ∈ S ∪ T,

0, otherwise.

It follows that

g(x) = f(x) =
√

μQ
x (δ)/w(x),

∑

v∈V ′

∣∣g(v)
∣∣2w′(v) =

∑

v∈V (G)

∣∣f(v)
∣∣2w(v) = 1,

∑

(v1,v2)∈E′

w′(v1, v2)
∣∣g(v1) − g(v2)

∣∣2 �
∑

(v1,v2)∈E(G)

w(v1, v2)
∣∣f(v1) + f(v2)

∣∣2.

We claim that g(v′) = 0 for some v′ ∈ V ′. Otherwise, if V ′ \ (S ∪ T ) = ∅, all edges in G

would be between S and T , contradicting the assumption that G is non-bipartite.

Set B :=
{

y ∈ V ′ ; 
∣∣g(y) − g(x)

∣∣ � g(x)
2

}
. It follows that B ⊆ S ∪ T � V ′. Since G′ is 

connected, there exists a shortest path P in G′ from x to V ′ \ B.

d) If |P| = 1 and at least half of the neighbors of x are outside of B, then we have

δ � 〈Qf, f〉w =
∑

(v1,v2)∈E(G)

∣∣f(v1) + f(v2)
∣∣2

�
∑

(v1,v2)∈E′

∣∣g(v1) − g(v2)
∣∣2

�
d(x)

2
· 1

4

∣∣g(x)
∣∣2 =

d(x)

2
· μQ

x (δ)

4w(x)

=
μQ

x (δ)

8
.

Therefore, when δ � 1, μQ
x (δ) � 8δ � 8

√
δ �

10d(x)
√

δ
dmin

; when δ > 1, μQ
x (δ) � 1 < δ <

10d(x)
√

δ
dmin

. The result holds in this case.

e) If |P| = 1 and at least half of the neighbors of x are inside of B, then the neighbors 

of x inside of B are in S ∪ T and are therefore of degree at least dmin in G′. Thus,

wt(B; G′) �
d(x)

2
· dmin �

d2
min

6
|P|.

If |P| � 2, we claim that wt(B; G′) � d2
min

6 |P| still holds. To justify this claim, we assume 

that P = u0u1 · · · urur+1, where r = |P | − 1. Consider



18 Z.-F. Wei / Journal of Functional Analysis 284 (2023) 109799

B̃ :=
{

y ∈ V ′ ; dist(x, y; G′) � r
}

⊆ B ⊆ S ∪ T.

Since P is a shortest path, u0, u1, . . ., ur−2, and ur−1 are all in S ∪ T , and are 

therefore of the same degree in both G and G′, which is at least dmin. Setting K :=

{u0, u3, . . . , u3�(r−1)/3	}, we have

|K| = 
r/3�.

Counting the number of vertices in B̃, we get

|B̃| � (r + 1) + |K|(dmin − 2),

where r + 1 counts the vertices {u0, u1, . . . , ur}, and |K|(dmin − 2) counts the neighbors 

of K that are in B̃ but not on P. Hence, we get that

wt(B; G′) � wt(B̃; G′) � dmin|B̃|

� dmin ·
(
(r + 1) + |K|(dmin − 2)

)

� dmin ·
(
(r + 1) +

r

3
(dmin − 2)

)

�
d2

minr

3
=

d2
min

3

(
|P| − 1

)

�
d2

min

6
|P|.

So our claim holds.

Therefore, we may assume that wt(B; G′) � d2
min

6 |P|.
f) Note that 

∑
v∈V ′

∣∣g(v)
∣∣2w′(v) = 1. It is easy to get

wt(B; G′) �
1

∣∣ 1
2g(x)

∣∣2 =
4w(x)

μQ
x (δ)

=
4d(x)

μQ
x (δ)

.

Therefore,

4d(x)

μQ
x (δ)

� wt(B, G′) �
d2

min

6
|P|.

Thus,

|P| � 24d(x)

d2
minμQ

x (δ)
.

Hence,
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δ � 〈Qf, f〉w =
∑

(v1,v2)∈E(G)

∣∣f(v1) + f(v2)
∣∣2

�
∑

(v1,v2)∈E′

∣∣g(v1) − g(v2)
∣∣2 �

|P|−1∑

i=0

∣∣g(ui) − g(ui+1)
∣∣2

�
1

|P|

(|P|−1∑

i=0

∣∣g(ui) − g(ui+1)
∣∣
)2

�
1

|P|
∣∣g(u0) − g(u|P|)

∣∣2

�
1

|P|

∣∣g(x)
∣∣2

4
=

μQ
x (δ)

4|P|w(x)

=
μQ

x (δ)

4d(x)|P| .

Proceeding further, we have

δ �
μQ

x (δ)

4d(x)|P| �
μQ

x (δ)

4d(x) 24d(x)
d2

minμQ
x (δ)

�

(dminμQ
x (δ)

10d(x)

)2

.

Therefore,

μQ
x (δ) �

10d(x)
√

δ

dmin
, 0 � δ � 2. �

The upper bound in Theorem 3.1 could be easily used to get lower bounds on the 

eigenvalues of P . To this end, we need Lemma 3.3:

Lemma 3.3. Let G be a finite, connected, weighted graph. We have

∑

x∈V

μQ
x (δ) =

∣∣{j ; λQ
j � δ}

∣∣.

Proof. Recall that the eigenvalues of Q are

0 � λQ
min = λQ

1 � λQ
2 � λQ

3 � · · · � λQ
n−1 < λQ

n = λQ
max = 2.

Let h1, h2, . . ., hn be an orthonormal basis of �2(V, w) such that

Qhj = λQ
j hj , 1 � j � n.

It follows that

∑

x∈V

|〈hj , ex〉w|2 = ‖hj‖2
w = 1.

Therefore,
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∑

x∈V

μQ
x (δ) =

∑

x∈V

〈
IQ(δ)ex, ex

〉
w

=
∑

x∈V

‖IQ(δ)ex‖2
w

=
∑

x∈V

∥∥∥
∑

j ; λQ
j �δ

〈ex, hj〉whj

∥∥∥
2

=
∑

x∈V

∑

j ; λQ
j �δ

∣∣〈ex, hj〉w

∣∣2

=
∑

j ; λQ
j �δ

∑

x∈V

∣∣〈ex, hj〉w

∣∣2 =
∑

j ; λQ
j �δ

‖hj‖2
w =

∑

j ; λQ
j �δ

1

=
∣∣{j ; λQ

j � δ}
∣∣. �

Corollary 3.4. Let G be a regular, non-bipartite, finite, simple, connected, unweighted 

graph. For 1 � k � n, we have λQ
k �

k2

100n2 . Therefore, λP
k � −1 + k2

100n2 .

Corollary 3.4 is similar to the second assertion of [13, Theorem 4.9].

Proof. By Lemma 3.3 and Theorem 3.1,

∣∣{j ; λQ
j � δ}

∣∣ =
∑

x∈V

μQ
x (δ) = 10n

√
δ.

Therefore, if 10n
√

δ < k, 
∣∣{j ; λQ

j � δ}
∣∣ < k. In other words, λQ

k �
k2

100n2 . �

Our main interest is to get bounds on return probabilities of simple random walk on 

regular graphs.

Theorem 3.5. Let G be a regular, non-bipartite, simple, connected, unweighted graph. For 

each x ∈ V , simple random walk on G satisfies

0 � pt(x, x) − π(x) �
18√

t
for t ≡ 0 mod 2,

∣∣pt(x, x) − π(x)
∣∣ � 9√

t
for t ≡ 1 mod 2.

Proof. Theorem 3.5 is parallel to the last assertion of [13, Theorem 4.9].

a) Set

ϕ(λ) :=

⎧
⎪⎪⎨
⎪⎪⎩

10
√

λ if λ � 0 and 10
√

λ � μ∗
x(1),

μ∗
x(1) for intermediate values of λ,

μ∗
x(2) − 10

√
2 − λ if λ � 2 and μ∗

x(2) − 10
√

2 − λ � μ∗
x(1).

We claim that the function ϕ defined above satisfies the conditions in Lemma 2.7(1). 

In fact, it is known that μ∗
x(λ) < 10

√
λ from [13, Theorem 4.9]. On the other hand, by 

Theorem 3.1,
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μ∗
x(λ) =

〈
IL

(
(0, λ]

)
ex, ex

〉
w

=
〈
IL

(
(0, 2]

)
ex, ex

〉
w

−
〈
IL

(
(λ, 2]

)
ex, ex

〉
w

= 1 −
〈
IL(0)ex, ex

〉
w

−
〈
IL

(
(λ, 2]

)
ex, ex

〉
w

� 1 −
〈
IL(0)ex, ex

〉
w

−
〈
IL

(
[λ, 2]

)
ex, ex

〉
w

= 1 − π(x) −
〈
IQ(2 − λ)ex, ex

〉
w

� 1 − π(x) − 10
√

2 − λ

= μ∗
x(2) − 10

√
2 − λ.

The claim is proved.

Therefore, for t ≡ 0 mod 2, by Lemma 2.7,

π(x) � pt(x, x) � π(x) +

2∫

0

(1 − λ)tϕ′(λ) dλ

� π(x) + 2

1∫

0

(1 − λ)t 5√
λ

dλ

= π(x) + 10

1∫

0

(1 − λ)t 1√
λ

dλ

� π(x) +
18√

t
,

where the last inequality follows from Lemma A.1. The first assertion is proved.

b) Set

ψ1(λ) :=
(
μ∗

x(2) − 10
√

2 − λ
)

∨ 0, λ ∈ [0, 2],

and

ψ2(λ) := (10
√

λ ) ∧ μ∗
x(2), λ ∈ [0, 2].

Then they satisfy the conditions of Lemma 2.7(2). Consequently, we have

π(x) +

2∫

0

(1 − λ)tψ′
1(λ) dλ � pt(x, x) � π(x) +

2∫

0

(1 − λ)tψ′
2(λ) dλ.

By some elementary calculation, we get that

π(x) −
1∫

0

(1 − λ)t 5√
λ

dλ � pt(x, x) � π(x) +

1∫

0

(1 − λ)t 5√
λ

dλ.
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The second assertion follows immediately from Lemma A.1. �

For a graph that is not necessarily regular, we have the following result:

Proposition 3.6. Let G be a non-bipartite, simple, connected, unweighted graph. For each 

x ∈ V , simple random walk on G satisfies

0 � pt(x, x) − π(x) �
18d(x)

dmin

√
t

for t ≡ 0 mod 2,

∣∣pt(x, x) − π(x)
∣∣ � 9d(x)

dmin

√
t

for t ≡ 1 mod 2.

Proof. To prove this proposition, we may use an argument similar to the one in the proof 

of Theorem 3.5: instead of using Theorem 3.1, we will employ Proposition 3.2. When G

is not necessarily regular, checking the proof of [13, Theorem 4.9] carefully, we find

μ∗
x(δ) �

10d(x)
√

δ

dmin
, 0 � δ � 2.

Therefore, we set

ϕ(λ) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

10d(x)
√

λ
dmin

if λ � 0 and 10d(x)
√

λ
dmin

� μ∗
x(1),

μ∗
x(1) for intermediate values of λ,

μ∗
x(2) − 10d(x)

√
2−λ

dmin
if λ � 2 and μ∗

x(2) − 10d(x)
√

2−λ
dmin

� μ∗
x(1),

ψ1(λ) :=
(
μ∗

x(2) − 10d(x)
√

2−λ
dmin

)
∨ 0, λ ∈ [0, 2],

and

ψ2(λ) :=
( 10d(x)

√
λ

dmin

)
∧ μ∗

x(2), λ ∈ [0, 2].

The argument in the proof of Theorem 3.5 will proceed with suitable modification; and 

the conclusion of Proposition 3.6 follows easily. Details are omitted. �

3.2. Sharpness, spectral radius, and non-diagonal convergence

The order of 1√
t

in Theorem 3.5 is sharp. We show this by the following Example 3.7.

Example 3.7. Consider an unweighted graph G with V (G) = Z: (i, j) ∈ E(G) if and only 

if 0 < |i − j| � 2. Obviously, G is non-bipartite, connected, and 4-regular. For the simple 

random walk on G, Davis and McDonald [6, Theorem 1.1] implies

lim
t→∞

√
5tpt(0, 0) =

1√
π

.
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Therefore,

pt(0, 0) ∼ 1√
5πt

as t → ∞.

Hence, the sharpness is demonstrated. �

In Section 3.1, we focused on the negative spectrum of P by considering Q = I + P . 

As a comparison, in [13, Theorem 4.9], L = I − P is exploited and so essentially the 

positive spectrum of P is focused on. Recalling that the spectrum σ(P ) of P is contained 

in [−1, 1], we set

γ− := 1 + inf σ(P ),

γ+ := 1 − sup
(
σ(P ) \ {1}

)
.

It is obvious that γ− and γ+ are both non-negative. But which is larger between γ− and 

γ+? When G is finite, it depends; but when G is infinite, we have the following simple 

fact:

Proposition 3.8. Let G = (V, E) be a connected, weighted, infinite, locally finite graph, 

with wt(V ) = ∞. Then we have γ+ � γ−. In other words, the spectral radius of P is 

achieved by the positive spectrum.

Proof. To begin, since wt(V ) = ∞, we see that the constant function is not in �2(V, w)

and 1 is not an eigenvalue of P .

For any fixed small number ε > 0, there exists a real function f ∈ �2(V, w), with 

‖f‖w = 1, satisfying

−1 + γ− + ε � 〈Pf, f〉w =
∑

x∈V

w(x)(Pf)(x)f(x) =
∑

x∈V

w(x)
( ∑

y∈N(x)

p(x, y)f(y)
)

f(x).

Hence, we have

1 − γ− − ε � |〈Pf, f〉w| =

∣∣∣∣
∑

x∈V

w(x)
( ∑

y∈N(x)

p(x, y)f(y)
)

f(x)

∣∣∣∣

�
∑

x∈V

w(x)
( ∑

y∈N(x)

p(x, y)|f(y)|
)

|f(x)|

= 〈P |f |, |f |〉w.

Since 1 is not an eigenvalue of P , we further have

〈P |f |, |f |〉w � 1 − γ+.
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Hence, 1 − (γ− + ε) � 1 − γ+. It follows that

γ+ � γ− + ε.

Because ε > 0 is arbitrary, we conclude γ+ � γ−. �

Remark. A proof of Proposition 3.8 could also be found in Mao and Song [16], but our 

proof is much shorter. Proposition 3.8 is stated in the language of graphs; yet it also 

applies to irreducible, non-ergodic, symmetrizable Markov chains with invariant measure, 

ν. Note that the condition of “non-ergodic” means the total mass of ν is infinity.

Using Theorem 3.5, we can also get the following result on non-diagonal convergence.

Theorem 3.9. Let G be a regular, non-bipartite, simple, connected, unweighted graph. For 

x, y ∈ V and t � 2, simple random walk on G satisfies

∣∣pt(x, y) − π(y)
∣∣ � 18√

t
for t ≡ 0 mod 2,

∣∣pt(x, y) − π(y)
∣∣ � 18

4
√

t2 − 1
for t ≡ 1 mod 2.

Proof. Because G is regular, for s � 1, we have

∣∣ps(x, y) − π(y)
∣∣ =

∣∣〈ex, P s
ey

〉
w

− π(y)
∣∣ =

∣∣∣
∫

(0,2]

(1 − λ)s d
〈
ex, IL(λ)ey

〉
w

∣∣∣

=
∣∣∣
∫

(0,2]

(1 − λ)s d
〈
L(λ)ex, IL(λ)ey

〉
w

∣∣∣

�

∫

(0,2]

|1 − λ|s d
∣∣〈IL(λ)ex, IL(λ)ey

〉
w

∣∣.

Therefore, for t ≡ 0 mod 2,

∣∣pt(x, y) − π(y)
∣∣ �

∫

(0,2]

|1 − λ|t d
∣∣〈IL(λ)ex, IL(λ)ey

〉
w

∣∣

�

( ∫

(0,2]

(1 − λ)t d
〈
IL(λ)ex, IL(λ)ex

〉
w

)1/2( ∫

(0,2]

(1 − λ)t d
〈
IL(λ)ey, IL(λ)ey

〉
w

)1/2

=
( ∫

(0,2]

(1 − λ)t d
〈
IL(λ)ex, ex

〉
w

)1/2( ∫

(0,2]

(1 − λ)t d
〈
IL(λ)ey, ey

〉
w

)1/2
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=
( ∫

(0,2]

(1 − λ)t dμ∗
x(λ)

)1/2( ∫

(0,2]

(1 − λ)t dμ∗
y(λ)

)1/2

=
(
pt(x, x) − π(x)

)1/2(
pt(y, y) − π(y)

)1/2
�

18√
t
,

where we are using Eq. (1) to get the last equality and Theorem 3.5 to get the last 

inequality. Hence, for x, y ∈ V and t ≡ 0 mod 2, we have 
∣∣pt(x, y) − π(y)

∣∣ � 18√
t
.

Similarly, for t ≡ 1 mod 2 and t � 3,

∣∣pt(x, y) − π(y)
∣∣ �

∫

(0,2]

|1 − λ|(t−1)/2|1 − λ|(t+1)/2
d
∣∣〈IL(λ)ex, IL(λ)ey

〉
w

∣∣

�

( ∫

(0,2]

(1 − λ)t−1 d
〈
IL(λ)ex, IL(λ)ex

〉
w

)1/2( ∫

(0,2]

(1 − λ)t+1 d
〈
IL(λ)ey, IL(λ)ey

〉
w

)1/2

=
(
pt−1(x, x) − π(x)

)1/2(
pt+1(y, y) − π(y)

)1/2
�

18
4
√

t2 − 1
.

The proof is complete. �

Remark. We will give several results on return probability bound throughout this article. 

Theorem 3.9 is a sample of deducing non-diagonal convergence from return probability 

bounds.

4. Volume growth conditions

For lazy random walk, [13, Corollaries 4.10 and 4.11] presented return probability 

bounds depending on volume growth conditions. We have parallel results for simple 

random walk. Let us begin with the following proposition, which is comparable to the 

first assertion of [13, Proposition 4.7].

Proposition 4.1. Let G be a non-bipartite, finite or infinite, simple, connected, weighted 

graph with weight at least 1 for each edge. For each vertex x ∈ V (G), δ ∈ (0, 2), α ∈ (0, 1), 

and r � 0, wt(x, r) > w(x)
(1−α)2μQ

x (δ)
implies μQ

x (δ) � δw(x)
α2 r.

Proof. We may assume μQ
x (δ) > 0. Fixing a vertex x ∈ V (G), we define f as in 

Lemma 2.4.

a) If f(y) � 0 for all y ∈ V (G), then

δ � 〈Qf, f〉w =
∑

(v,u)∈E(G)

w(v, u)
∣∣f(v) + f(u)

∣∣2 �
∣∣f(x)

∣∣2 =
μQ

x (δ)

w(x)
.

Note that wt(x, r) > w(x)
(1−α)2μQ

x (δ)
implies r � 1. Therefore,
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μQ
x (δ) � δw(x) �

δw(x)

α2
r.

b) From now on, we may assume that T :=
{

t ∈ V (G) ; f(t) < 0
}

is non-empty. We 

construct G′ and g as in the proof of Proposition 3.2 and use notations there. Set

B(α) :=
{

y ∈ V ′ ; |g(y) − g(x)| � αg(x)
}

.

It follows that B(α) ⊆ S ∪ T � V ′. Since G′ is connected, there exists a shortest path 

P = u0u1 · · · u|P| in G′ from x to V ′ \ B(α) with u0 = x. Hence,

δ � 〈Qf, f〉w =
∑

(v1,v2)∈E(G)

w(v1, v2)
∣∣f(v1) + f(v2)

∣∣2

�
∑

(v1,v2)∈E′

w′(v1, v2)
∣∣g(v1) − g(v2)

∣∣2 �

|P|−1∑

i=0

∣∣g(ui) − g(ui+1)
∣∣2

�
1

|P|

(|P|−1∑

i=0

∣∣g(ui) − g(ui+1)
∣∣
)2

�
1

|P|
∣∣g(u0) − g(u|P|)

∣∣2

>
α2

∣∣g(x)
∣∣2

|P| =
α2μQ

x (δ)

w(x)|P| .

c) We claim that

{
y ∈ V ′ ; dist(y, x; G′) � |P| − 1

}
=

{
y ∈ V (G) ; dist(y, x; G) � |P| − 1

}
. (2)

In fact,

{
y ∈ V ′ ; dist(y, x; G′) � |P| − 1

}
⊆ B(α) ⊆ S ∪ T ⊆ V (G).

By the construction of G′, dist(y1, y2; G′) � dist(y1, y2; G) for y1, y2 ∈ V . Therefore,

{
y ∈ V ′ ; dist(y, x; G′) � |P| − 1

}
⊆

{
y ∈ V (G) ; dist(y, x; G) � |P| − 1

}
.

Suppose the above inclusion is strict. Then there will be a vertex ṽ ∈ V (G) that is not 

in the left-hand side of Eq. (2), and a path P̃ = ũ0ũ1 · · · ũ|P̃| in G with |P̃| � |P| − 1, 

ũ0 = x, and ũ|P̃| = ṽ. Set

L :=
{

0 � i � |P̃| − 1 ; {ũi, ũi+1} ⊆ S or {ũi, ũi+1} ⊆ T
}

.

Then L must be non-empty, otherwise ṽ ∈ V (G) would be in the left-hand side of Eq. (2). 

Pick the smallest number i∗ in L and write e = (ũi∗ , ̃ui∗+1). By the construction of G′

and g, we have g(ũ
(e)
i∗ ) = 0. Thus, ũ0ũ1 · · · ũi∗ ũ

(e)
i∗ is a path in G′ linking x and V ′ \B(α), 

whose length is i∗ + 1 � |P̃| < |P|. This is a contradiction. Therefore, Eq. (2) holds.
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d) If wt(x, r; G) > w(x)
(1−α)2μQ

x (δ)
, we must have r � |P|. In fact, we notice that

wt(B(α); G′)(1 − α)2g2(x) �
∑

y∈B(α)

∣∣g(y)
∣∣2w′(y) �

∑

y∈V ′

∣∣g(y)
∣∣2w′(y) = 1.

Therefore,

wt(x, |P| − 1; G′) � wt(B(α); G′) �
1

(1 − α)2g2(x)
=

w(x)

(1 − α)2μQ
x (δ)

.

Hence, Eq. (2) gives

wt(x, |P| − 1; G) = wt(x, |P| − 1; G′) �
w(x)

(1 − α)2μQ
x (δ)

.

Consequently, wt(x, r) > w(x)
(1−α)2μQ

x (δ)
implies r � |P|.

e) By the results in b) and d), we have

δ �
α2μQ

x (δ)

w(x)|P| �
α2μQ

x (δ)

w(x)r
.

Hence, we arrive at the conclusion that μQ
x (δ) � δw(x)

α2 r. �

Corollary 4.2. Let G be a non-bipartite, finite or infinite, simple, connected, weighted 

graph with weight at least 1 for each edge. For each vertex x ∈ V and δ < 1
r wt(x,r) , we 

have μQ
x (δ) � 4w(x)

wt(x,r) . �

Corollary 4.2 is comparable to the second assertion of [13, Proposition 4.7]. To get a 

proof, one need only exploit Proposition 4.1 and mimic the proof for the second assertion 

of [13, Proposition 4.7].

Now we present return probability bounds based on volume growth conditions.

Corollary 4.3. Let G be a non-bipartite, infinite, simple, connected, weighted graph with 

weight at least 1 for each edge. Suppose that c > 0 and D � 1 are constants such that 

wt(x, r) � c(r + 1)D for all r � 0. Then for all δ ∈ (0, 2),

μ∗
x(δ) � Cw(x)δD/(D+1),

μQ
x (δ) � Cw(x)δD/(D+1),

where

C :=
(D + 1)2

c1/(D+1)D2D/(D+1)
.

For t � 1, simple random walk satisfies
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pt(x, x) � 2C ′w(x)t−D/(D+1) for t ≡ 0 mod 2,

pt(x, x) � C ′w(x)t−D/(D+1) for t ≡ 1 mod 2,

where

C ′ :=
D + 1

c1/(D+1)D(D−1)/(D+1)
Γ
( D

D + 1

)
.

Proof. The bound on μ∗
x is proved in [13, Corollary 4.10]. A similar argument can be 

used to prove the bound on μQ
x : in lieu of [13, Eq. (4.4)], we use Corollary 4.2. To prove 

the bound on return probabilities, we set

ϕ(λ) :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cw(x)λD/(D+1) if λ ∈ [0, 1) and Cw(x)λD/(D+1) � μ∗
x(1),

μ∗
x(1) for intermediate values of λ,

μ∗
x(2) − Cw(x)(2 − λ)D/(D+1)

if λ ∈ [1, 2) and

μ∗
x(2) − Cw(x)(2 − λ)D/(D+1) � μ∗

x(1),

and

ψ2(λ) :=

⎧
⎨
⎩

Cw(x)λD/(D+1) ∧ μ∗
x(2) if λ ∈ [0, 1),

μ∗
x(2) if λ ∈ [1, 2].

It is easy to see that ϕ and ψ2 satisfy the conditions in Lemma 2.7. Therefore, we have

pt(x, x) �
2Cw(x)D

D + 1

1∫

0

λ−1/(D+1)(1 − λ)t dλ for t ≡ 0 mod 2,

pt(x, x) �
Cw(x)D

D + 1

1∫

0

λ−1/(D+1)(1 − λ)t dλ for t ≡ 1 mod 2.

But we have

1∫

0

λ−1/(D+1)(1 − λ)t dλ �

1∫

0

λ−1/(D+1)e−λt dλ �

∞∫

0

λ−1/(D+1)e−λt dλ

=

∞∫

0

(s/t)−1/(D+1)e−s d(s/t) = t−D/(D+1)

∞∫

0

s−1/(D+1)e−s ds

= t−D/(D+1)Γ
( D

D + 1

)
,

where we introduce a change of variable λt = s to get the first equality. Hence, the bound 

on return probabilities is proved. �
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Corollary 4.3 is comparable to [13, Corollary 4.10]. Using a similar method, one may 

get an analogue of [13, Corollary 4.11]. Details are omitted.

5. Mixing time bound

We are concerned in this section with mixing time bounds, which are based on the 

bounds on vertex spectral measures in Lemma 5.3. As a preparation, we introduce the 

following graph parameter.

Definition 5.1. Let G be a finite and weighted graph. We define

K (G) := min

{∑
(v,u)∈E w(v, u)|f(v) + f(u)|2

maxy∈V |f(y)|2
; min

y∈V
f(y) < 0 < max

y∈V
f(y)

}
.

For a bipartite graph G, it is easy to see that K (G) = 0. For non-bipartite graphs, 

we have the following lemma.

Lemma 5.2. Let G be a connected and weighted graph, with weight at least 1 for each 

edge.

(1) Assume that f is a function on V and P = z0z1 · · · z|P| is an edge-simple path. Then

∑

(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2 �
1

|P|
(
f(z0) − (−1)|P|f(z|P|)

)2
.

(2) If G is also non-bipartite, finite, and simple, then K (G) � 1
diam(G)+1 .

Proof. a) Note that

∑

(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2 �

|P|−1∑

i=0

∣∣f(zi) + f(zi+1)
∣∣2

By the Cauchy–Schwarz inequality, we have

|P|−1∑

i=0

∣∣f(zi) + f(zi+1)
∣∣2 =

|P|−1∑

i=0

∣∣(−1)if(zi) − (−1)i+1f(zi+1)
∣∣2

�
1

|P|

(|P|−1∑

i=0

(
(−1)if(zi) − (−1)i+1f(zi+1)

))2

=
1

|P|
(
f(z0) − (−1)|P|f(z|P|)

)2
.
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The first assertion is proved.

b) Now we deal with the second assertion. Take f satisfying the constraints in Defi-

nition 5.1 such that

K (G) =

∑
(v,u)∈E w(v, u)|f(v) + f(u)|2

maxy∈V |f(y)|2
.

Assume that |f | attains its maximum at x, then

K (G) =

∑
(v,u)∈E w(v, u)|f(v) + f(u)|2

|f(x)|2
.

We may assume f(x) > 0 without loss of generality. Set

S :=
{

s ∈ V ; f(s) � 0
}

, T :=
{

t ∈ V ; f(t) < 0
}

.

By the assumptions, S and T are both non-empty. Because G is non-bipartite, there 

exists an edge (s1, s2) ∈ E with s1, s2 ∈ S, or an edge (t1, t2) ∈ E with t1, t2 ∈ T .

c) If there is an edge (s1, s2) ∈ E with s1, s2 ∈ S, let P̂0 be a shortest path from x

to {s1, s2}. Without loss of generality, we may assume P̂0 is from x to s1. If |P̂0| is odd, 

we set P̂ := P̂0; if |P̂0| is even, we set P̂ := P̂0.(s1, s2), the concatenation of P̂0 and the 

edge (s1, s2). Hence, P̂ is a path of odd length in any case. Assume

P̂ = u0u1 · · · uk,

with u0 = x. Then k is odd and k � diam(G) + 1. Hence, by the first assertion,

∑

(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2 �
1

k

(
f(u0) + f(uk)

)2
�

1

k

∣∣f(x)
∣∣2 �

∣∣f(x)
∣∣2

diam(G) + 1
.

Therefore, in this case,

K (G) �
1

diam(G) + 1
.

d) If there is an edge (t1, t2) ∈ E with t1, t2 ∈ T , let P0 be a shortest path from x to 

{t1, t2}. Without loss of generality, we may assume P0 is from x to t1. If |P0| is even, 

we set P := P0; if |P0| is odd, we set P := P0.(t1, t2). Hence, P is a path of even length 

in any case. Assume

P = v0v1 · · · v�,

with v0 = x. Then � is even and � � diam(G) + 1. Hence, by the first assertion,
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∑

(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2 �
1

�

(
f(v0) − f(v�)

)2
>

1

�

∣∣f(x)
∣∣2 �

∣∣f(x)
∣∣2

diam(G) + 1
.

Therefore, in this case,

K (G) �
1

diam(G) + 1
. �

Now, we present our bounds on vertex spectral measures.

Lemma 5.3. Let G be a finite, simple, connected, weighted graph, with weight at least 1

for each edge.

(1) For δ ∈ [0, 2) and x ∈ V , μ∗
x(δ) + π(x) � Rdiam(G)w(x)δ.

(2) If G is also non-bipartite, for δ ∈ [0, 2) and x ∈ V , μQ
x (δ) � w(x)δ

K (G) . Moreover, by 

Lemma 5.2, we have μQ
x (δ) �

(
diam(G) + 1

)
w(x)δ for δ ∈ [0, 2).

Proof. The first assertion follows immediately from [13, Proposition 4.2]. We now deal 

with the second assertion. Fix a vertex x ∈ V and define f as in Lemma 2.4.

When δ ∈ [0, λQ
min), μQ

x (δ) = 0 by definition. So the inequality holds automatically.

When λQ
min � δ < λQ

max = 2, we know that f is orthogonal to the eigenspace of 

Q corresponding to λQ
max = 2, which is spanned by (1, 1, . . . , 1), the constant vector. 

Therefore, by Definition 5.1, we have

δ � 〈f, Qf〉w =
∑

(v,u)∈E

w(v, u)|f(v) + f(u)|2 � f(x)2
K (G) =

μQ
x (δ)K (G)

w(x)
. �

By Lemma 5.2(2), Lemma 5.3(2), and Lemma 3.3, we have the following corollary.

Corollary 5.4. For any non-bipartite, finite, simple, connected, weighted graph G with 

weight at least 1 for each edge, we have

λQ
k �

kK (G)

wt(V )
�

k(
diam(G) + 1

)
wt(V )

for 1 � k � n. Therefore,

λP
k � −1 +

kK (G)

wt(V )
� −1 +

k(
diam(G) + 1

)
wt(V )

. �

As mentioned in Section 1.1, Corollary 5.4, combined with [13, Proposition 4.2], im-

proves the result in Landau and Odlyzko [10].

To get a mixing time bound, we first give a bound on return probabilities using 

Lemma 5.3.
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Corollary 5.5. Let G be a non-bipartite, finite, simple, connected, unweighted graph, and 

t ≡ 0 mod 2. Then we have

0 �
pt(x, x) − π(x)

π(x)
�

2
(
diam(G) + 1

)
wt(V )

t
.

Proof. Set

ϕ̃(λ) :=
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rdiam(G)w(x)λ if λ ∈ [0, 1) and Rdiam(G)w(x)λ � μ∗
x(1),

μ∗
x(1) for intermediate values of λ,

μ∗
x(2) −

(
diam(G) + 1

)
w(x)(2 − λ)

if λ ∈ [1, 2] and

μ∗
x(2) −

(
diam(G) + 1

)
w(x)(2 − λ) � μ∗

x(1).

By Lemma 5.3, using a similar argument as in part a) of the proof of Theorem 3.5, 

the function ϕ̃ defined above satisfies the conditions in Lemma 2.7(1). Therefore, for 

t ≡ 0 mod 2,

0 � pt(x, x) − π(x) �

2∫

0

(1 − λ)tϕ̃′(λ) dλ

� Rdiam(G)w(x)

1∫

0

(1 − λ)t dλ +
(
diam(G) + 1

)
w(x)

1∫

0

(1 − λ)t dλ

� 2
(
diam(G) + 1

)
w(x)

1∫

0

(1 − λ)t dλ.

Hence,

pt(x, x) − π(x)

π(x)
� 2

(
diam(G) + 1

)w(x)

π(x)

1∫

0

(1 − λ)t dλ.

But we know w(x)
π(x) = wt(V ) and

1∫

0

(1 − λ)t dλ �

1∫

0

exp{−λt} dλ �

∞∫

0

exp{−λt} dλ =
1

t
.

Therefore,

pt(x, x) − π(x)

π(x)
�

2
(
diam(G) + 1

)
wt(V )

t
. �
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We are now almost in position to give the following mixing time bound.

Corollary 5.6. For a non-bipartite, finite, simple, connected, unweighted graph G, the 

uniform mixing time of the simple random walk on G satisfies

τ∞(1/4) � 8n3.

If we further assume that G is regular, then τ∞(1/4) � 24n2.

Corollary 5.6 is parallel to [13, Corollaries 4.3 and 4.6]. In the proof of Corollary 5.6, 

the following lemma will be useful.

Lemma 5.7. For a reversible Markov chain with stationary distribution π and t ≡ 0 mod

2, we have

∣∣∣∣
pt(x, y) − π(y)

π(y)

∣∣∣∣ �
√

pt(x, x) − π(x)

π(x)

√
pt(y, y) − π(y)

π(y)
.

In addition, maxx,y

∣∣pt(x,y)−π(y)
π(y)

∣∣ is decreasing in t.

Proof. One may refer to the proof of [13, Proposition A.1]. The monotonicity is men-

tioned in Lyons and Oveis Gharan [14]. �

Proof of Corollary 5.6. a) Combining Lemma 5.7 and Corollary 5.5, for t ≡ 0 mod 2, we 

have

max
x,y

∣∣∣pt(x, y) − π(y)

π(y)

∣∣∣ � max
x

pt(x, x) − π(x)

π(x)
�

2
(
diam(G) + 1

)
wt(V )

t
.

In addition, we notice that wt(V ) � n(n − 1). Because

2
(
diam(G) + 1

)
wt(V )

8n3
�

2n · n(n − 1)

8n3
�

1

4
,

the second assertion of Lemma 5.7 ensures

τ∞(1/4) � 8n3.

b) To prove the second assertion, we assume G is d-regular. By Lemma 2.5, we have

diam(G) + 1 �
3n

d
.

In addition, wt(V ) = nd. Therefore, we have
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2
(
diam(G) + 1

)
wt(V )

24n2
�

1

4
.

Consequently, the second assertion of Lemma 5.7 gives

τ∞(1/4) � 24n2. �

6. Transitive case

We consider vertex-transitive graphs in this section. Recall that a graph G is vertex-

transitive if for every two vertices x and y of G, there is an automorphism ϕ : G → G

such that ϕ(x) = y. When a graph G is vertex-transitive, all vertices of G have the same 

weight, denoted by w.

6.1. Estimate of spectral measure

Given a vertex-transitive graph G, set

N#(r) :=
∣∣{v ∈ V ; dist(v, x) � r}

∣∣.

This value does not depend on the choice of x because G is vertex-transitive. Further-

more, as in [13, Lemma 6.4], for every two vertices x, y ∈ V , it is easy to see that 

‖F Q
x ‖w = ‖F Q

y ‖w.

Lemma 6.1. When G is vertex-transitive, for each x ∈ V ,

QF Q
x =

∑

v∈N(x)

w(x, v)

w
(F Q

x + F Q
v ).

Proof. By the definition of F Q
x ,

QF Q
x =

QIQ(δ)1x

w
=

IQ(δ)Q1x

w
.

However, by direct calculation,

Q1x =
∑

v∈N(x)

w(x, v)

w
(1x + 1v).

Thus, we have

QF Q
x =

1

w
IQ(δ)

∑

v∈N(x)

w(x, v)

w
(1x + 1v)
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=
∑

v∈N(x)

w(x, v)

w

(IQ(δ)1x

w
+

IQ(δ)1v

w

)

=
∑

v∈N(x)

w(x, v)

w
(F Q

x + F Q
v ). �

The following Theorem 6.2 is similar to the first assertion of [13, Theorem 6.1].

Theorem 6.2. Let G be a vertex-transitive, non-bipartite, simple, connected, weighted 

graph with weight at least 1 for each edge. For each x ∈ V , c ∈ (0, 1), and δ ∈
(
0, 2

w

]
, we 

have

μQ
x (δ) �

1

c2N#
(

arcsin
√

(1−c)/2

arcsin
√

wδ/2

) .

Furthermore, for δ ∈ (0, 2],

μQ
x (δ) �

1

c2N#
(√

1−c√
wδ

) .

Proof. Fix a vertex x ∈ V .

a) Consider the spectral embedding {F Q
v ; v ∈ V } based on Q. Let

ρ := ‖F Q
x ‖w, β0 := max

v∈N(x)
‖F Q

x + F Q
v ‖w.

We have

δ �
1

‖F Q
x ‖2

w

〈
QF Q

x , F Q
x

〉
w

=
1

‖F Q
x ‖2

w

〈 ∑

v∈N(x)

w(x, v)

w
(F Q

x + F Q
v ), F Q

x

〉

w

=
1

‖F Q
x ‖2

w

∑

v∈N(x)

w(x, v)

w

(
‖F Q

x ‖2
w +

〈
F Q

v , F Q
x

〉
w

)

=
1

‖F Q
x ‖2

w

∑

v∈N(x)

w(x, v)

w

‖F Q
x + F Q

v ‖2
w

2

�
1

2wρ2
max

v∈N(x)
‖F Q

x + F Q
v ‖2

w =
1

2wρ2
β2

0 .

In other words, β0

2ρ �
√

wδ/2. Since we assumed that δ ∈ (0, 2
w ], by the monotonicity of 

arcsin function on the interval [0, 1], we have

2 arcsin
β0

2ρ
� 2 arcsin

√
wδ/2.
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b) Set B0 := B
(

x, 
arcsin

√
(1−c)/2

arcsin
√

(wδ)/2

)
. For v ∈ B0, let P = u0u1 · · · ur−1ur be a shortest 

path joining x and v, with u0 = x and ur = v. Define

F̃i := (−1)iF Q
ui

, i = 0, 1, 2, . . . , r.

Then r �
arcsin

√
(1−c)/2

arcsin
√

(wδ)/2
, and

∥∥F̃i − F̃i+1

∥∥
w

=
∥∥F Q

ui
+ F Q

ui+1

∥∥
w

, i = 0, 1, 2, . . . , r − 1.

Write θ(h1, h2) for the angle between h1, h2 ∈ �2(V, w). Then using the sphere metric, 

we get

θ
(
F̃0, F̃r

)
�

r−1∑

i=0

θ
(
F̃i, F̃i+1

)

=

r−1∑

i=0

2 arcsin

∥∥F̃i − F̃i+1

∥∥
w

2ρ
=

r−1∑

i=0

2 arcsin

∥∥F Q
ui

+ F Q
ui+1

∥∥
w

2ρ

�

r−1∑

i=0

2 arcsin
β0

2ρ
� 2r arcsin

√
wδ/2

� 2
arcsin

√
(1 − c)/2

arcsin
√

wδ/2
arcsin

√
wδ/2 = 2 arcsin

√
(1 − c)/2

= arccos c.

(3)

Thus,

∣∣cos θ
(
F Q

x , F Q
v

)∣∣ = cos θ
(
F̃0, F̃r

)
� c.

In summary, if v ∈ B0 = B
(

x, 
arcsin

√
(1−c)/2

arcsin
√

(wδ)/2

)
,

∣∣cos θ
(
F Q

x , F Q
v

)∣∣ � c.

c) By the above discussion,

ρ2 = ‖F Q
x ‖2

w =
∑

v∈V

w
∣∣F Q

x (v)
∣∣2

=
∑

v∈V

w
∣∣〈F Q

x , F Q
v

〉
w

∣∣2 � w
∑

v∈B0

∣∣〈F Q
x , F Q

v

〉
w

∣∣2

= w
∑

v∈B0

∣∣cos θ
(
F Q

x , F Q
v

)∣∣2‖F Q
x ‖2

w‖F Q
v ‖2

w

� wρ4c2N#
(arcsin

√
(1 − c)/2

arcsin
√

wδ/2

)
.
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Thus, we have

wρ2
�

1

c2N#
(

arcsin
√

(1−c)/2

arcsin
√

wδ/2

) .

Now, by Lemma 2.3,

μQ
x (δ) = w‖F Q

x ‖2
w = wρ2

�
1

c2N#
(

arcsin
√

(1−c)/2

arcsin
√

wδ/2

) .

The first assertion is proved.

d) Now we turn to the second assertion.

If (1 − c) < wδ, then

N#
(√

1 − c√
wδ

)
= 1.

Therefore,

1

c2N#
(√

1−c√
wδ

) > 1.

But μQ
x (δ) � 1. So the second assertion holds in this case.

If (1 − c) � wδ, then 
√

wδ/2 < 1. Thus, arcsin
√

wδ/2 is defined. Note that x
arcsin x is 

decreasing for x ∈ (0, 1). Therefore,

√
(1 − c)/2

arcsin
√

(1 − c)/2
�

√
wδ/2

arcsin
√

wδ/2
.

Consequently,

√
1 − c√
wδ

�
arcsin

√
(1 − c)/2

arcsin
√

wδ/2
.

Hence, the second assertion follows from the first one immediately. �

By the bounds on vertex spectral measures in Theorem 6.2 and [13, Theorem 6.1], 

using the method as in Theorem 3.5, we may get a similar result as [13, Corollary 6.6].

Corollary 6.3. Let G be a finite or infinite, vertex-transitive, d-regular, non-bipartite, 

simple, connected, unweighted graph with at least polynomial growth rate N#(r) � CrD, 

where C > 0 and D � 1 are constants and 0 � r � diam(G). Then for each x ∈ V and 

t > 0,
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0 � pt(x, x) − π(x) � 2C̃t−D/2 for t ≡ 0 mod 2,
∣∣pt(x, x) − π(x)

∣∣ � C̃t−D/2 for t ≡ 1 mod 2,

where C̃ = (D+4)D/2+2dD/2

32CDD/2−1 Γ
(

D
2

)
. �

The proof of this corollary is omitted. An analogue of [13, Corollary 6.7] could also 

be written down easily.

6.2. Minimum eigenvalue

For a connected, finite graph G and its signless probabilistic Laplacian Q = I + P , 

we know that 0 is an eigenvalue of Q if and only if G is bipartite from Corollary 2.2.

Theorem 6.4. Let G be a vertex-transitive, non-bipartite, finite, simple, connected, 

weighted graph with weight at least 1 for each edge. Then

λQ
min �

2

w

(
sin

π

4
(
diam(G) + 1

)
)2

.

Theorem 6.4 is a partial analogue of the second assertion of [13, Theorem 6.1].

Proof. We may assume 
λQ

min

2 < 1: otherwise, the inequality is trivial. Consider the spec-

tral embedding based on Q with δ = λQ
min. Fix x ∈ V and let

S :=
{

s ∈ V ; f(s) � 0
}

, T :=
{

t ∈ V ; f(t) < 0
}

.

It is easy to see that both S and T are non-empty. Because G is assumed to be non-

bipartite, there exists an edge (s1, s2) ∈ E with s1, s2 ∈ S, or an edge (t1, t2) ∈ E with 

t1, t2 ∈ T .

a) If there is an edge (s1, s2) ∈ E with s1, s2 ∈ S, let P̂0 be a shortest path from x

to {s1, s2}. Without loss of generality, we may assume P̂0 is from x to s1. If |P̂0| is odd, 

we set P̂ := P̂0; if |P̂0| is even, we set P̂ := P̂0.(s1, s2), the concatenation of P̂0 and the 

edge (s1, s2). Hence, P̂ is a path of odd length in any case. Assume

P̂ = u0u1 · · · uk,

with u0 = x. We define

F̂i := (−1)iF Q
ui

, i = 0, 1, 2, . . . , k.

Then F̂0 = F Q
x and
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〈
F̂0, F̂k

〉
w

= (−1)k
〈
F Q

x , F Q
uk

〉
w

= −
〈
F Q

x , F Q
uk

〉
w

= −〈IQ(δ)1x/w, IQ(δ)1uk
/w

〉
w

= −〈IQ(δ)1x/w, 1uk
/w

〉
w

= −〈IQ(δ)1x/w, 1uk

〉
= −〈F Q

x , 1uk

〉

= −F Q
x (uk) � 0.

Hence,

π

2
� θ

(
F̂0, F̂k

)
. (4)

In addition, using the sphere metric as in Eq. (3), we have

θ
(
F̂0, F̂k

)
� 2k arcsin

√
wλQ

min/2 � 2
(
diam(G) + 1

)
arcsin

√
wλQ

min/2. (5)

Combining Eqs. (4) and (5),

π

2
� 2

(
diam(G) + 1

)
arcsin

√
wλQ

min/2.

So in this case,

λQ
min �

2

w

(
sin

π

4
(
diam(G) + 1

)
)2

.

b) If there is an edge (t1, t2) ∈ E with t1, t2 ∈ T , let P0 be a shortest path from x to 

{t1, t2}. Without loss of generality, we may assume P0 is from x to t1. If |P0| is even, 

we set P := P0; if |P0| is odd, we set P := P0.(t1, t2). Thus, P is a path of even length 

in any case. Assume

P = v0v1 · · · v�,

with v0 = x, and define

F i := (−1)iF Q
vi

, i = 0, 1, 2, . . . , �.

Then F 0 = F Q
x and

〈
F 0, F �

〉
w

= (−1)�
〈
F Q

x , F Q
v�

〉
w

= F Q
x (v�) < 0.

Hence, we have

π

2
< θ

(
F 0, F �

)
. (6)

In addition, using the sphere metric as in Eq. (3) again, we have
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θ
(
F 0, F r

)
� 2� arcsin

√
wλQ

min/2 � 2
(
diam(G) + 1

)
arcsin

√
wλQ

min/2. (7)

Combining Eqs. (6) and (7), we get

π

2
< 2

(
diam(G) + 1

)
arcsin

√
wλQ

min/2.

So in this case,

λQ
min >

2

w

(
sin

π

4
(
diam(G) + 1

)
)2

. �

7. Average return probability

In this section, we deal with the average spectral measure of Q and average return 

probabilities for simple random walk on generic non-bipartite, simple, finite, connected 

graphs. Our method is inspired by [13, Section 5].

7.1. Estimate of average spectral measure

Define average spectral measure of Q as

μQ(δ) :=
1

n

∑

x∈V

μQ
x (δ).

We also write μQ
S (δ) :=

∑
x∈S μQ

x (δ) for S ⊆ V .

Theorem 7.1. For any non-bipartite, finite, simple, connected, unweighted graph G and 

δ ∈ (0, 2), we have

μQ(δ) < (4000δ)1/3.

Theorem 7.1 is comparable to [13, Theorem 5.1].

Corollary 7.2. For any non-bipartite, finite, simple, connected, unweighted graph G, we 

have λQ
k �

k3

4000n3 for 1 � k � n. Therefore, λP
k � −1 + k3

4000n3 .

Proof. By the same argument as in the proof of Corollary 3.4, this corollary follows 

easily from Lemma 3.3 and Theorem 7.1. �

To prove Theorem 7.1, we need some preparation.

Let m :=
⌊

n
2 μQ(δ)

⌋
+ 1. For each x ∈ V , set

R(x) :=
{

y ∈ V ; ‖F Q
x − F Q

y ‖w �
‖F Q

x ‖w

4
or ‖F Q

x + F Q
y ‖w �

‖F Q
x ‖w

4

}
.
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We will use Algorithm 1 to get some useful sets.

Algorithm 1 Set-Selection.
Let S0 ← V .
for i = 1 → m do

Choose a vertex xi in Si−1 that maximizes μQ
xi

(δ).
Let Si ← Si−1 \ R(xi).

end for

return R(x1), R(x2), . . . , R(xm).

For each x ∈ V , set

Ñ(x) :=
{

y ∈ N(x) ; ‖F Q
y + F Q

x ‖w �
‖F Q

x ‖w

9

}
.

Let T̃ (x) be the star formed by x and Ñ(x). We pick T (x) as a maximal (with respect 

to inclusion) connected bipartite graph including T̃ (x) such that

∀y ∈ V
(
T (x)

) ∥∥F Q
x − (−1)dist(x,y;T (x))F Q

y

∥∥
w
�

‖F Q
x ‖w

9
.

Lemma 7.3. Let G be a non-bipartite, finite, simple, connected, unweighted graph and 

δ � λQ
min.

(0) For i = 1, 2, . . . , m, we have μQ
R(xi)(δ) � 4

3 .

(1) For i = 1, 2, . . . , m, we have μQ
xi

(δ) � μQ(δ)
3 . In addition, Algorithm 1 is well de-

signed: each Si−1 is non-empty and xi could be chosen for i = 1, 2, . . . , m. Therefore, 

Algorithm 1 is not stopping before i = m.

(2) For 1 � i < j � m, V (T (xi)) ∩ V (T (xj)) = ∅.

Lemma 7.3 plays a similar role to that of Lemma 5.2 in [13].

Proof. (0) Since δ � λQ
min, we must have ‖F Q

xi
‖w > 0. By the proof of [13, Lemma 3.13], 

for any two non-zero vectors in a Hilbert space H,

�
〈 f

‖f‖H
,

g

‖g‖H

〉
H

� 1 − 2‖f − g‖2
H

‖f‖2
H

, (8)

where �z is the real part of a complex number z. Also, for y ∈ R(xi), by the construction 

of R(xi), we have an integer σi(y) such that

∥∥F Q
xi

− (−1)σi(y)F Q
y

∥∥
w
�

‖F Q
xi

‖w

4
.

This implies ‖F Q
y ‖w > 0 for y ∈ R(xi).
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Therefore,

1 =
∑

y∈R(xi)

w(y)‖F Q
y ‖2

w

∣∣∣
〈 F Q

y

‖F Q
y ‖w

,
F Q

xi

‖F Q
xi

‖w

〉
w

∣∣∣
2

=
∑

y∈R(xi)

μQ
y (δ)

∣∣∣
〈 (−1)σi(y)F Q

y

‖(−1)σi(y)F Q
y ‖w

,
F Q

xi

‖F Q
xi

‖w

〉
w

∣∣∣
2

�
∑

y∈R(xi)

μQ
y (δ)

(
1 −

2‖F Q
xi

− (−1)σi(y)F Q
y ‖2

w

‖F Q
xi

‖2
w

)2

� μQ
R(xi)(δ)

(
1 − 2

16

)2

=
49

64
μQ

R(xi)(δ),

where we use Eq. (8) to get the first inequality.

It follows that

μQ
R(xi)(δ) �

64

49
<

4

3
.

(1) We know μQ
S0

(δ) = μQ
V (δ) = nμQ(δ). In addition, by assertion (0), the total 

spectral measure of removed vertices in each iteration of the for loop in Algorithm 1 is 

at most 4
3 . We have, for each i � m,

μQ
Si−1

(δ) � nμQ(δ) − 4

3
(m − 1) �

nμQ(δ)

3
,

where the last inequality holds by the definition of m. This implies Si−1 �= ∅ and xi

could be chosen in Algorithm 1 for i = 1, 2, . . . , m. In other words, the algorithm is well 

designed and is not stopping before i = m.

Furthermore, since xi has the largest vertex spectral measure in Si−1 for i =

1, 2, . . . , m, we have

μQ
xi

(δ) �
μQ

Si−1
(δ)

n
�

μQ
Sm−1

(δ)

n
�

μQ(δ)

3
.

(2) Suppose that some vertex y lies in V
(
T (xi)

)
∩ V

(
T (xj)

)
. We deal with assertion 

(2) in the following two cases. For ease of notation, we write τk := dist(xk, y; T (xk)) for 

k = i, j. By the construction of T (xi) and T (xj),

∥∥F Q
xk

− (−1)τk F Q
y

∥∥
w
�

‖F Q
xk

‖w

9
, k = i, j.

Case (a): ‖F Q
xj

‖w > 5
4‖F Q

xi
‖w. In this case, we have

∥∥F Q
y

∥∥
w

=
∥∥(−1)τj F Q

y

∥∥
w
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�
8

9

∥∥F Q
xj

∥∥
w

>
8

9
· 5

4

∥∥F Q
xi

∥∥
w

=
10

9

∥∥F Q
xi

∥∥
w

.

Thus, we have

∥∥(−1)τiF Q
y

∥∥
w

=
∥∥F Q

y

∥∥
w

>
10

9

∥∥F Q
xi

∥∥
w

.

This contradicts our assumption that y ∈ V
(
T (xi)

)
.

Case (b): ‖F Q
xj

‖w �
5
4‖F Q

xi
‖w. In this case, we have

∥∥F Q
xi

− (−1)τi+τj F Q
xj

∥∥
w

=
∥∥F Q

xi
− (−1)τiF Q

y + (−1)τiF Q
y − (−1)τi+τj F Q

xj

∥∥
w

�
∥∥F Q

xi
− (−1)τiF Q

y

∥∥
w

+
∥∥(−1)τiF Q

y − (−1)τi+τj F Q
xj

∥∥
w

=
∥∥F Q

xi
− (−1)τiF Q

y

∥∥
w

+
∥∥F Q

xi
− (−1)τj F Q

y

∥∥
w

�
‖F Q

xi
‖w

9
+

‖F Q
xj

‖w

9
�

(1

9
+

1

9
· 5

4

)
‖F Q

xi
‖w

=
‖F Q

xi
‖w

4
.

Thus, xj ∈ R(xi). But this is impossible.

Therefore, we may conclude that V (T (xi)) ∩ V (T (xj)) = ∅. �

For a subset E′ ⊆ E(G) and a mapping F : V → H to a Hilbert space H, we define 

energy

Ẽ(E′) :=
∑

(x,y)∈E′

‖Fx + Fy‖2
H.

For S ⊆ V , let E(S) be the collection of edges that are incident with the vertices in S. 

We define the energy of S as Ẽ(S) := Ẽ
(
E(S)

)
.

Lemma 7.4. Assume that the graph G is a non-bipartite, finite, simple, connected, un-

weighted graph. When δ � λQ
min, for 1 � i � m,

Ẽ
(
V (T (xi))

)
>

μQ(δ)

250
∣∣V (T (xi))

∣∣2 .

Lemma 7.4 plays a similar role to that of Lemma 5.3 in [13].

Proof. a) We first consider the case w(xi) >
∣∣V (T (xi))

∣∣. Recall that w(xi) equals the 

degree of xi, since we are considering unweighted graphs. In this case,
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Ẽ
(
V (T (xi))

)
�

∑

y∈N(xi)\V (T (xi))

‖F Q
xi

+ F Q
y ‖2

w

>
∣∣N(xi) \ V (T (xi))

∣∣ · ‖F Q
xi

‖2
w

81

=
∣∣N(xi) \ V (T (xi))

∣∣ · μQ
xi

(δ)

81w(xi)

>
(
w(xi) −

∣∣V (T (xi))
∣∣ + 1

) μQ(δ)

250w(xi)

�
μQ(δ)

250
∣∣V (T (xi))

∣∣2 ,

where the second inequality holds because V (T (xi)) ⊇ Ñ(xi), and the third inequality 

holds thanks to Lemma 7.3(1).

b) We now turn to the case w(xi) �
∣∣V (T (xi))

∣∣. In this case, we claim that there 

must be a path z0z1 · · · z�, such that � �
∣∣V (T (xi))

∣∣, z0 = xi, and

∥∥F Q
xi

− (−1)�F Q
z�

∥∥
w

>
‖F Q

xi
‖w

9
.

In fact, if V
(
T (xi)

)
is a proper subset of V , there is a vertex y ∈ V \ V (T (xi)) with 

dist
(
y, T (xi); G

)
= 1. Let z0z1 · · · z� be a path joining z0 := xi and z� := y, with 

z0z1 · · · z�−1 being a path in T (xi). Because T (xi) is assumed maximal and y /∈ V
(
T (xi)

)
, 

we must have

∥∥F Q
xi

− (−1)�F Q
z�

∥∥
w

>
‖F Q

xi
‖w

9
.

If V
(
T (xi)

)
= V , since T (xi) is assumed to be a maximal connected bipartite graph and 

G is a connected non-bipartite graph, there must be an edge e = (u, v), whose addition 

to T (xi) results in an odd cycle. To be specific, we have

dist
(
xi, u; T (xi)

)
≡ dist

(
xi, v; T (xi)

)
mod 2.

Write τ := dist
(
xi, u; T (xi)

)
. Then

∥∥F Q
xi

− (−1)τ F Q
u

∥∥
w
�

‖F Q
xi

‖w

9
.

This implies

∥∥F Q
xi

− (−1)τ+1F Q
u

∥∥
w

>
‖F Q

xi
‖w

9
. (9)
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In fact, if otherwise 
∥∥F Q

xi
− (−1)τ+1F Q

u

∥∥
w
�

‖F Q
xi

‖w

9 , then

∥∥2F Q
xi

∥∥
w

=
∥∥F Q

xi
− (−1)τ F Q

u + F Q
xi

− (−1)τ+1F Q
u

∥∥
w

<
(1

9
+

1

9

)∥∥F Q
xi

∥∥
w

.

Therefore, 
∥∥F Q

xi

∥∥
w

= 0. But 
∥∥F Q

xi

∥∥
w

�= 0 for δ � λQ
min.

Now pick a shortest path z0z1 · · · z�−1 joining xi and v in T (xi), where z0 = xi and 

z�−1 = v. Let z� = u. Then z0z1 · · · z�−1z� is a path joining xi and u. Hence, by our 

assumption,

� − 1 ≡ τ mod 2.

Therefore, Eq. (9) can be written as

∥∥F Q
xi

− (−1)�F Q
z�

∥∥
w

>
‖F Q

xi
‖w

9
.

Our claim is proved. By the claim, we have

Ẽ
(
V (T (xi))

)
�

�−1∑

k=0

‖F Q
zk

+ F Q
zk+1

‖2
w =

�−1∑

k=0

‖(−1)kF Q
zk

− (−1)k+1F Q
zk+1

‖2
w

�
1

�

(�−1∑

k=0

‖(−1)kF Q
zk

− (−1)k+1F Q
zk+1

‖w

)2

�
1

�
‖F Q

z0
− (−1)�F Q

z�
‖2

w

>
1

�
· 1

81
‖F Q

xi
‖2

w �
1∣∣V (T (xi))

∣∣ · ‖F Q
xi

‖2
w

81

=
1∣∣V (T (xi))

∣∣ · μQ
xi

(δ)

81w(xi)
>

1∣∣V (T (xi))
∣∣ · μQ(δ)

250w(xi)

�
μQ(δ)

250
∣∣V (T (xi))

∣∣2 ,

where the sixth inequality follows from Lemma 7.3(1), and the last inequality holds 

thanks to our assumption that w(xi) �
∣∣V (T (xi))

∣∣. The proof is complete. �

Proof of Theorem 7.1. To begin, we claim that

δ �

∑
(y,z)∈E(G)‖F Q

y + F Q
z ‖2

w∑
x∈V ‖F Q

x ‖2
ww(x)

.

This can be proved exactly in the same way as [13, Lemma 3.14]. In fact, for all x, y ∈ V ,

F Q
x (y) =

〈
IQ(δ)1x/w(x), 1y

〉
=

〈
IQ(δ)1x/w(x), 1y/w(y)

〉
w

= F Q
y (x).



46 Z.-F. Wei / Journal of Functional Analysis 284 (2023) 109799

Therefore, using Lemma 2.1, we have

∑

(y,z)∈E(G)

w(y, z)‖F Q
y + F Q

z ‖2
w =

∑

(y,z)∈E(G)

w(y, z)
∑

x∈V

w(x)
∣∣(F Q

y + F Q
z

)
(x)

∣∣2

=
∑

(y,z)∈E(G)

w(y, z)
∑

x∈V

w(x)
∣∣F Q

x (y) + F Q
x (z)

∣∣2.

Proceeding further, we get that

∑

(y,z)∈E(G)

w(y, z)‖F Q
y + F Q

z ‖2
w =

∑

x∈V

w(x)
∑

(y,z)∈E(G)

w(y, z)
∣∣F Q

x (y) + F Q
x (z)

∣∣2

=
∑

x∈V

w(x)〈F Q
x , QF Q

x 〉w

�
∑

x∈V

δ w(x)‖F Q
x ‖2

w.

The claim is thus proved.

Now we assume δ � λQ
min without loss of generality. Since for different i and j,

V (T (xi)) ∩ V (T (xj)) = ∅,

we have 
∑m

i=1

∣∣V (T (xi))
∣∣ � n. Therefore,

δ �

∑
(x,y)∈E(G)‖F Q

x + F Q
y ‖2

w∑
y∈V ‖F Q

y ‖2
ww(y)

�
1

nμQ(δ)
· 1

2

m∑

i=1

Ẽ
(
V
(
T (xi)

))

>
1

2nμQ(δ)

m∑

i=1

μQ(δ)

250
∣∣V (T (xi))

∣∣2 �
m3

500n3
�

μQ(δ)3

4000
,

where the second inequality follows by Lemma 2.3 and the fact that each edge is counted 

in at most two sets T (xi) for energy, the fourth inequality follows by convexity of the 

function s �→ 1/s2, and the last inequality holds because m � nμQ(δ)/2. The proof of 

Theorem 7.1 is complete. �

7.2. Average return probability

Using Theorem 7.1, we can bound average return probabilities. Theorems 7.5 and 7.6

together are comparable to [13, Corollary 5.4].

Theorem 7.5. Let G be a non-bipartite, finite, simple, connected, unweighted graph. Then 

for t ≡ 0 mod 2, we have

0 �

∑
x∈V pt(x, x) − 1

n
�

30

t1/3
.
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Proof. Set

Φ(λ) :=

⎧
⎪⎪⎨
⎪⎪⎩

n 3
√

4000λ if λ � 0 and n 3
√

4000λ � nμ∗(1),

nμ∗(1) for intermediate values of λ,

n − 1 − n 3
√

4000(2 − λ) if λ � 2 and n − 1 − n 3
√

4000(2 − λ) � nμ∗(1).

Then as in the proof of Theorem 3.5, by Theorem 7.1 and [13, Theorem 5.1],

Φ(0) = 0, Φ(2) = n − 1,

nμ∗(λ) � Φ(λ) for λ ∈ [0, 1],

nμ∗(λ) � Φ(λ) for λ ∈ [1, 2].

Therefore, by our calculation in part a) of the proof of Lemma 2.7, for t ≡ 0 mod 2,

∑

x∈V

pt(x, x) =
∑

x∈V

(
π(x) +

(
1 − π(x)

))
+ t

2∫

0

(∑

x∈V

μ∗
x(λ)

)
(1 − λ)t−1 dλ

= n + t

2∫

0

nμ∗(λ)(1 − λ)t−1 dλ � n + t

2∫

0

Φ(λ)(1 − λ)t−1 dλ

= n − (n − 1) +

2∫

0

(1 − λ)tΦ′(λ) dλ = 1 +

2∫

0

(1 − λ)tΦ′(λ) dλ

� 1 + 2

1∫

0

(1 − λ)t n 3
√

4000

3
λ−2/3 dλ

� 1 +
30n

t1/3
,

where we are using Lemma 2.6 to get the third equality, and the last inequality holds by 

Lemma A.2 in the appendix. Therefore,

∑
x∈V pt(x, x) − 1

n
�

30

t1/3
.

On the other hand, for all x ∈ V and even t, pt(x, x) � π(x). Hence, we have

∑
x∈V pt(x, x) − 1

n
� 0. �

Theorem 7.6. Let G be a non-bipartite, finite, simple, connected, unweighted graph. Then 

for t ≡ 1 mod 2,
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∣∣∑
x∈V pt(x, x) − 1

∣∣
n

�
15

t1/3
.

Proof. a) Let t ≡ 1 mod 2. By our calculation in part a) of the proof of Lemma 2.7,

∑

x∈V

pt(x, x) =
∑

x∈V

(
π(x) −

(
1 − π(x)

))
+ t

2∫

0

(∑

x∈V

μ∗
x(λ)

)
(1 − λ)t−1 dλ

= 2 − n + t

2∫

0

nμ∗(λ)(1 − λ)t−1 dλ.

b) Set

Ψ1(λ) :=
(
n − 1 − n 3

√
4000(2 − λ)

)
∨ 0.

Then by Theorem 7.1,

Ψ1(0) = 0, Ψ1(2) = n − 1,
∑

x∈V

μ∗
x(λ) � Ψ1(λ) for λ ∈ [0, 2].

By our calculation in part a),

∑

x∈V

pt(x, x) � 2 − n + t

2∫

0

Ψ1(λ)(1 − λ)t−1 dλ

= 2 − n + (n − 1) +

2∫

0

(1 − λ)tΨ′
1(λ) dλ = 1 +

2∫

0

(1 − λ)tΨ′
1(λ) dλ

� 1 −
1∫

0

(1 − λ)t n 3
√

4000

3
λ−2/3 dλ � 1 − 15n

t1/3
,

where the first equality holds thanks to Lemma 2.6, and the last inequality follows from 

Lemma A.2 in the appendix.

c) Set

Ψ2(λ) :=
(
n

3
√

4000λ
)

∧ (n − 1).

Then by [13, Theorem 5.1],

Ψ2(0) = 0, Ψ2(2) = n − 1,
∑

x∈V

μ∗
x(λ) � Ψ2(λ) for λ ∈ [0, 2].
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Using a similar argument as in b), we get

∑

x∈V

pt(x, x) � 1 +
15n

t1/3
. �

7.3. Sum of eigenvalue powers in absolute value

Since similar matrices have the same trace, we have

∑
x∈V pt(x, x) − 1

n
=

∑n
i=1(λP

i )t − 1

n
=

1

n

n−1∑

i=1

(λP
i )t.

Therefore, when t � 2 is even, Theorem 7.5 gives

1

n

n−1∑

i=1

|λP
i |t =

∑
x∈V pt(x, x) − 1

n
�

30

t1/3
. (10)

For odd t, we have

∣∣∣
∑

x∈V

pt(x, x) − 1
∣∣∣ =

∣∣∣
n−1∑

i=1

(λP
i )t

∣∣∣ �
n−1∑

i=1

|λP
i |t.

Theorem 7.6 will not give a bound on 
∑n−1

i=1 |λP
i |t directly for odd t. But we can still 

make a detour and bound 
∑n−1

i=1 |λP
i |t by Theorem 7.5 as follows.

Proposition 7.7. Let G be a non-bipartite, finite, simple, connected, unweighted graph. 

We have

1

n

n−1∑

i=1

|λP
i |t � 30

t1/3
for t ≡ 0 mod 2 and t � 2,

1

n

n−1∑

i=1

|λP
i |t � 30

6
√

t2 − 1
for t ≡ 1 mod 2 and t � 3.

The bound in Theorem 7.6 is 15
t1/3 ; we get the bound 30

(t2−1)1/6 for odd t in Proposi-

tion 7.7. These two bounds are not far apart: they are of the same order in t.

Proof of Proposition 7.7. The assertion for even t is nothing but Eq. (10). We now con-

sider odd t. When t � 3 is odd, by Eq. (10),
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n−1∑

i=1

|λP
i |t =

n−1∑

i=1

(
|λP

i |
t−1

2 |λP
i |

t+1
2
)1/2

�

(n−1∑

i=1

|λP
i |t−1

)1/2(n−1∑

i=1

|λP
i |t+1

)1/2

�

( 30n
3
√

t − 1

)1/2( 30n
3
√

t + 1

)1/2

=
30n

6
√

t2 − 1
,

where the first inequality holds thanks to the Cauchy–Schwarz inequality. �

8. Bipartite case

Now we deal with bipartite graphs. On bipartite graphs, simple random walk has 

period two. We have the following result on return probabilities, whose proof uses only 

the bound on the vertex spectral measure of L from [13, Theorem 4.9].

Theorem 8.1. Consider a regular, bipartite, simple, connected, unweighted graph G. For 

each x ∈ V , simple random walk on G satisfies

0 � pt(x, x) − 2π(x) �
18√

t
for t ≡ 0 mod 2.

To prove Theorem 8.1, we don’t need to get a bound on the vertex spectral measure 

of Q as we did in Section 3, because the following lemma gives us a relation between the 

vertex spectral measures of L and Q.

Lemma 8.2 ([17], Theorem 4.8). If G is bipartite, the spectrum of P is symmetric with 

respect to zero. For each x ∈ V , the vertex spectral measure of P , 
〈
IP (dδ)ex, ex

〉
w

, is 

symmetric with respect to 0. As a consequence, if G is bipartite, for each x ∈ V and 

δ ∈ [0, 2], μx(δ) = μQ
x (δ). �

Proof of Theorem 8.1. a) Set

μ#
x (λ) :=

{
μ∗

x(λ) if 0 � λ < 2,

1 − 2π(x) if λ = 2,

and

ϕ#(λ) :=

⎧
⎪⎪⎨
⎪⎪⎩

10
√

λ if λ � 0 and 10
√

λ � μ#
x (1),

μ#
x (1) for intermediate values of λ,

μ#
x (2) − 10

√
2 − λ if λ � 2 and μ#

x (2) − 10
√

2 − λ � μ#
x (1).

Then ϕ#(0) = μ#
x (0) = 0, ϕ#(2) = μ#

x (2) = 1 − 2π(x). In addition, by Lemma 8.2 and 

[13, Theorem 4.9], we have
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μ#
x (λ) � ϕ#(λ) for λ ∈ [0, 1],

μ#
x (λ) � ϕ#(λ) for λ ∈ [1, 2].

b) Now let t be a positive even number. We have

pt(x, x) =

∫

[0,2]

(1 − λ)t μx(dλ)

= 2π(x) +

∫

[0,2]

(1 − λ)t μ#
x (dλ).

(11)

Hence, we see that

pt(x, x) − 2π(x) =

∫

[0,2]

(1 − λ)t μ#
x (dλ) � 0.

c) On the other hand,

pt(x, x) = 2π(x) +

∫

[0,2]

(1 − λ)t μ#
x (dλ)

= 2π(x) + (1 − λ)tμ#
x (λ)

∣∣2
0

−
2∫

0

μ#
x (λ) d(1 − λ)t

= 2π(x) +
(
1 − 2π(x)

)
+ t

2∫

0

μ#
x (λ)(1 − λ)t−1 dλ

� 1 + t

2∫

0

ϕ#(λ)(1 − λ)t−1 dλ = 1 − ϕ#(2) +

2∫

0

(1 − λ)t(ϕ#)′(λ) dλ

= 2π(x) +

2∫

0

(1 − λ)t(ϕ#)′(λ) dλ = 2π(x) + 2

1∫

0

(1 − λ)t(ϕ#)′(λ) dλ

� 2π(x) + 2

1∫

0

5(1 − λ)t

√
λ

dλ = 2π(x) + 10

1∫

0

(1 − λ)t

√
λ

dλ

� 2π(x) +
18√

t
,

where the fourth equality follows from Lemma 2.6, and we use Lemma A.1 to get the 

last inequality.
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d) Summing up the above discussion, we get, for x ∈ V and t ≡ 0 mod 2,

0 � pt(x, x) − 2π(x) �
18√

t
. �

Theorem 8.1 is an example of treating simple random walk on bipartite graphs. Using 

the same method, one may get parallel results to what we had in previous sections. For 

instance, the following Corollary 8.3 is parallel to Corollary 6.3.

Corollary 8.3. Let G be a finite or infinite, vertex-transitive, d-regular, bipartite, simple, 

connected, unweighted graph with at least polynomial growth rate N#(r) � CrD, where 

C > 0 and D � 1 are constants and 0 � r � diam(G). Then for each x ∈ V and 

t ≡ 0 mod 2,

0 � pt(x, x) − 2π(x) � 2C̃t−D/2,

where C̃ = (D+4)D/2+2dD/2

32CDD/2−1 Γ
(

D
2

)
. �

Note that the rate t−D/2 here is the correct decay rate for the simple random walk 

on ZD, D ∈ N. To prove Corollary 8.3, one need only follow our argument in the proof 

of Theorem 8.1 and use the bound on the vertex spectral measure of L obtained in [13, 

Theorem 6.1]. Details are omitted.

9. Combinatorial signless Laplacian

We used spectral embedding to deal with random walk on graphs in previous sections. 

In fact, this tool is also powerful in analyzing the spectrum of graph adjacency matrices.

Assume that G is a weighted finite graph. Let �2(V ) be the Hilbert space of functions 

f : V → R or C with inner product

〈f, g〉 :=
∑

x∈V

f(x)g(x)

and squared norm ‖f‖2 := 〈f, f〉. Let W be the diagonal weight matrix of the graph G: 

W := diag(w(x) ; x ∈ V ). Then it is easy to see that the combinatorial signless Laplacian 

Θ := W + A is a bounded self-adjoint operator on �2(V ). We denote the resolution of 

identity for Θ as IΘ and define the vertex spectral measure of Θ at x ∈ V as

μΘ
x (δ) := 〈IΘ

(
[0, δ]

)
1x, 1x〉, δ � 0.

For ease of notation, we also write IΘ(δ) := IΘ

(
[0, δ]

)
for δ � 0.
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Lemma 9.1. For f ∈ �2(V ), we have

〈Θf, f〉 =
∑

(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2.

Therefore, the spectrum of Θ is non-negative. Moreover, if f ∈ img
(
IΘ(δ)

)
for some 

δ � 0, then 〈Θf, f〉 � δ‖f‖2
. �

See the appendix for a proof.

For δ � 0, we define the spectral embedding based on Θ as

F Θ : V → �2(V )

x �→ F Θ
x := IΘ(δ)1x.

It is clear that F Θ
x is a real-valued function on V for each x ∈ V .

Lemma 9.2. For each finite graph G and x ∈ V ,

∥∥F Θ
x

∥∥2
= F Θ

x (x) = μΘ
x (δ).

Proof. Since IΘ(δ) is a self-adjoint projection operator on �2(V ), we see that

∥∥F Θ
x

∥∥2
= 〈F Θ

x , F Θ
x 〉 = 〈IΘ(δ)1x, IΘ(δ)1x〉 = 〈IΘ(δ)1x, 1x〉.

By the definition of the vertex spectral measure of Θ, we see that 〈IΘ(δ)1x, 1x〉 = μΘ
x (δ). 

Moreover, since IΘ(δ)1x = F Θ
x , we have 〈IΘ(δ)1x, 1x〉 = F Θ

x (x). �

Lemma 9.3. If μΘ
x (δ) > 0, define f : V → C as f :=

F Θ
x

‖F Θ
x ‖ . We have

(1) ‖f‖ = 1;

(2) f(x) =
√

μΘ
x (δ);

(3) f ∈ img
(
IΘ(δ)

)
.

Proof. The first and third assertions are obvious. As for the second assertion, by 

Lemma 9.2,

f(x) =
F Θ

x (x)

‖F Θ
x ‖ =

μΘ
x (δ)√
μΘ

x (δ)
=

√
μΘ

x (δ). �

We are now in position to present bounds on vertex spectral measures. Denote the 

eigenvalues of the combinatorial signless Laplacian Θ on G as

0 � λΘ
min = λΘ

1 � λΘ
2 � λΘ

3 � · · · � λΘ
n−1 < λΘ

n = λΘ
max.
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Recall that K (G) is defined in Definition 5.1; Lemma 5.2 shows that K (G) � 1
diam(G)+1

when G is non-bipartite.

Proposition 9.4. Let G be a non-bipartite, finite, simple, connected, weighted graph with 

weight at least 1 for each edge. Then for each δ ∈ [0, λΘ
max) and x ∈ V , we have

μΘ
x (δ) �

δ

K (G)
�

(
diam(G) + 1

)
δ.

Proof. This proof is a mimic of the proof of Lemma 5.3. Fixing a vertex x ∈ V , we define 

f as in Lemma 9.3.

When 0 � δ < λΘ
min, μΘ

x (δ) = 0 by definition. So the inequality holds automatically.

When λΘ
min � δ < λΘ

max, we know that f is orthogonal to the eigenspace of Θ

corresponding to λΘ
max, which is spanned by a positive vector according to the Perron–

Frobenius theorem. By Definition 5.1, we have

δ � 〈f, Θf〉 =
∑

(v,u)∈E

w(v, u)|f(v) + f(u)|2 � f(x)2
K (G) = μΘ

x (δ)K (G). �

In order to get a lower bound on eigenvalues of Θ from Proposition 9.4, we need the 

following Lemma 9.5.

Lemma 9.5. Let G be a finite, connected, weighted graph. We have

∑

x∈V

μΘ
x (δ) =

∣∣{j ; λΘ
j � δ}

∣∣.

Proof. Note that

∑

x∈V

μΘ
x (δ) =

∑

x∈V

〈
IΘ(δ)1x, 1x

〉
.

This is the trace of IΘ(δ), which equals the dimension of its image. Therefore, we have

∑

x∈V

μΘ
x (δ) =

∣∣{j ; λΘ
j � δ}

∣∣. �

Corollary 9.6. Let G be a non-bipartite, finite, simple, connected, weighted graph with 

weight at least 1 for each edge. For 1 � k � n, we have

λΘ
k �

kK (G)

n
�

k(
diam(G) + 1

)
n

.

Proof. By Proposition 9.4,

∑

x∈V

μΘ
x (δ) �

∑

x∈V

δ

K (G)
=

nδ

K (G)
.
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Hence, Lemma 9.5 gives

∣∣{j ; λΘ
j � δ}

∣∣ � nδ

K (G)
.

Therefore, we must have λΘ
k �

kK (G)
n . �

For the adjacency matrix A of G, we denote its eigenvalues as

−wmax � λA
min = λA

1 � λA
2 � λA

3 � · · · � λA
n−1 < λA

n = λA
max � wmax,

where wmax := maxx∈V w(x). The following Corollary 9.7 improves [1, Theorem 1.1], 

which obtained that dmax + λA
1 �

1
(diam(G)+1)n for unweighted graphs.

Corollary 9.7. Let G be a non-bipartite, finite, simple, connected, weighted graph with 

weight at least 1 for each edge. For 1 � k � n, we have

wmax + λA
k �

kK (G)

n
�

k(
diam(G) + 1

)
n

.

Proof. Let X1 be the linear subspace of �2(V ) spanned by the eigenvectors of A corre-

sponding to λA
1 , λA

2 , . . ., λA
k , and X2 be the linear subspace of �2(V ) spanned by the 

eigenvectors of Θ corresponding to λΘ
k , λΘ

k+1, . . ., λΘ
n . Then

dim X1 � k, dim X2 � n − k + 1.

It follows that

dim X1 + dim X2 > n = dim �2(V ).

Therefore, the intersection of X1 and X2 contains a non-zero vector h of unit norm. 

Hence,

kK (G)

n
� λΘ

k � (Θh, h) = (Wh, h) + (Ah, h) � wmax + λA
k . �

Remark. The combinatorial signless Laplacian is also related to line graphs. Let ρ1 �

ρ2 � · · · � ρr be the positive combinatorial signless Laplacian eigenvalues of G. Then by 

Brouwer and Haemers [2, Proposition 1.4.1], the eigenvalues of the line graph of G are

θi = ρi − 2, i = 1, 2, . . . , r,

θi = −2, i = r + 1, r + 2, . . . , |E(G)|.

Using this relation and Corollary 9.6, one may do some quick analysis on the spectrum 

of the line graph of G.
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Appendix A

A.1. Miscellaneous lemmas and proofs

In the proof of Theorem 3.5, the following elementary calculation is needed.

Lemma A.1. For t > 0, we have

1∫

0

(1 − λ)t 1√
λ

dλ �
9

5
√

t
.

Proof. We have

1∫

0

(1 − λ)t 1√
λ

dλ �

1∫

0

exp{−λt}λ−1/2 dλ �

∞∫

0

exp{−λt}λ−1/2 dλ.

Taking a change of variable λt = s, we get that

∞∫

0

e−s(s/t)−1/2 d(s/t) �
1√
t

∞∫

0

e−ss−1/2 ds

=
Γ(1/2)√

t
�

9

5
√

t
.

Hence, the inequality follows immediately. �

Lemma A.2 is useful in the proofs of Theorems 7.5 and 7.6.
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Lemma A.2. For t > 0, we have

3
√

4000

3

1∫

0

(1 − λ)tλ−2/3 dλ �
15

t1/3
.

Proof. We have

1∫

0

(1 − λ)tλ−2/3 dλ �

∞∫

0

exp{−λt}λ−2/3 dλ.

Taking λt = s, we get

∞∫

0

exp{−λt}λ−2/3 dλ =

∞∫

0

e−s(s/t)−2/3 d(s/t)

=
1

t1/3

∞∫

0

e−ss−2/3 ds =
Γ(1/3)

t1/3
.

Therefore,

3
√

4000

3

1∫

0

(1 − λ)tλ−2/3 dλ �

3
√

4000 Γ(1/3)

3t1/3
�

15

t1/3
. �

Proof of Lemma 2.1. We need prove the first assertion only. First, we claim that

∑

v,u∈V

w(v, u)|f(v)||f(v) + f(u)| < ∞.

In fact, we have

∑

v,u∈V

w(v, u)|f(v)||f(v) + f(u)| �
∑

v,u∈V

w(v, u)
(
|f(v)|2 + |f(v)||f(u)|

)

=
∑

v,u∈V

w(v, u)|f(v)|2 +
∑

v,u∈V

w(v, u)|f(v)||f(u)|.

By the Cauchy–Schwarz inequality, we may proceed and get

∑

v,u∈V

w(v, u)|f(v)||f(v) + f(u)| �
∑

v,u∈V

w(v, u)|f(v)|2

+
( ∑

v,u∈V

w(v, u)|f(v)|2
)1/2( ∑

v,u∈V

w(v, u)|f(u)|2
)1/2
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=
∑

v,u∈V

w(v, u)|f(v)|2 +
∑

v,u∈V

w(v, u)|f(v)|2

= 2
∑

v,u∈V

w(v, u)|f(v)|2 = 2
∑

v∈V

|f(v)|2
∑

u∈V

w(v, u)

= 2
∑

v∈V

|f(v)|2w(v) = 2‖f‖w < ∞.

The claim is proved. By this claim, using Fubini’s theorem, we have

∑

v,u∈V

w(v, u)f(v)
(
f(v) + f(u)

)
=

∑

v∈V

f(v)
∑

u∈V

w(v, u)
(
f(v) + f(u)

)

=
∑

v∈V

w(v)f(v)
(
f(v) +

∑

u∈V

p(v, u)f(u)
)

=
∑

v∈V

w(v)f(v)
(
(I + P )f

)
(v) = 〈f, (I + P )f〉w

= 〈f, Qf〉w.

By interchanging u and v, we have

∑

v,u∈V

w(v, u)f(u)
(
f(v) + f(u)

)
= 〈f, Qf〉w.

Therefore,

∑

(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2 =
1

2

∑

v,u∈V

w(v, u)
∣∣f(v) + f(u)

∣∣2

=
1

2

( ∑

v,u∈V

w(v, u)f(v)
(
f(v) + f(u)

)
+

∑

v,u∈V

w(v, u)f(u)
(
f(v) + f(u)

))

= 1
2

(
〈f, Qf〉w + 〈f, Qf〉w

)

= 〈f, Qf〉w. �

Proof of Lemma 9.1. We need to prove the first assertion only. Notice that

∑

v,u∈V

w(v, u)f(v)
(
f(v) + f(u)

)
=

∑

v∈V

f(v)
∑

u∈V

w(v, u)f(v) +
∑

v∈V

f(v)
∑

u∈V

w(v, u)f(u)

=
∑

v∈V

f(v)w(v)f(v) +
∑

v∈V

f(v)(Af)(v)

= 〈f, Wf〉 + 〈f, Af〉
= 〈f, Θf〉.

By interchanging u and v, we have
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∑

v,u∈V

w(v, u)f(u)
(
f(v) + f(u)

)
= 〈f, Θf〉.

Therefore,

∑

(v,u)∈E

w(v, u)
∣∣f(v) + f(u)

∣∣2

=
1

2

( ∑

v,u∈V

w(v, u)f(v)
(
f(v) + f(u)

)
+

∑

v,u∈V

w(v, u)f(u)
(
f(v) + f(u)

))

= 1
2

(
〈f, Θf〉 + 〈f, Θf〉

)

= 〈f, Θf〉. �

A.2. Return probability bound involving relaxation time

In this part, we consider finite graphs only. We use essentially a similar method to 

Oliveira and Peres [19]; yet the negative spectrum of P is also considered. Let G be a 

non-bipartite, finite, simple, connected, unweighted graph. Then λP
min = λP

1 > −1. Set 

Λ := |λP
1 | ∨ |λP

n−1|, trel := (1 − Λ)−1, t′ := 2
trel/2� − 2.

Theorem A.3. Let G be a non-bipartite, finite, simple, connected, unweighted graph. For 

t � 0, simple random walk on G satisfies

∣∣pt(x, x) − π(x)
∣∣ <

20d(x)
√

trel + 1

(t + 1)dmin
.

Theorem A.3 is analogous to Oliveira and Peres [19, Theorem 1.2]. To prove The-

orem A.3, we need some preparation. Recall that the hitting time of A ⊆ V is 

τA := inf{t � 0 ; Xt ∈ A} and Green’s function is

gt(x, y) :=
t∑

s=0

pt(x, y), t � 0, x, y ∈ V.

Lemma A.4. For t ≡ 0 mod 2 and x ∈ V , we have

0 � pt(x, x) − π(x) �
1

1 − e−1
· gt′(x, x)

t
2 + 1

.

Proof. By Eq. (1), for t ≡ 0 mod 2, pt(x, x) − π(x) is nonnegative and decreasing in t. 

Therefore, we have

0 � pt(x, x) − π(x) �
1

t
2 + 1

( t/2∑

s=0

p2s(x, x) − ( t
2 + 1)π(x)

)
. (A.1)
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In addition,

t/2∑

s=0

p2s(x, x) − ( t
2 + 1)π(x) =

t/2∑

s=0

∫

(−1,1)

λ2s ‖IP (dλ)ex‖2
w =

∫

(−1,1)

( t/2∑

s=0

λ2s
)

‖IP (dλ)ex‖2
w

=

∫

(−1,1)

1 − λt+2

1 − λ2
‖IP (dλ)ex‖2

w

�

∫

(−1,1)

1

1 − λ2
‖IP (dλ)ex‖2

w,

(A.2)

where IP is the resolution of identity for P .

On the other hand, since for 1 � i � n,

(λP
i )t′+2

� Λt′+2
� Λ1/(1−Λ)

� e−1,

we have

∫

(−1,1)

1 − e−1

1 − λ2
‖IP (dλ)ex‖2

w �

∫

(−1,1)

1 − λt′+2

1 − λ2
‖IP (dλ)ex‖2

w

=

t′/2∑

s=0

p2s(x, x) − ( t′

2 + 1)π(x) �

t′/2∑

s=0

p2s(x, x)

� gt′(x, x).

(A.3)

By Eqs. (A.1) to (A.3),

0 � pt(x, x) − π(x) �
1

t
2 + 1

( t/2∑

s=0

p2s(x, x) − ( t
2 + 1)π(x)

)

�
1

t
2 + 1

∫

(−1,1)

1

1 − λ2
‖IP (dλ)ex‖2

w

=
1

( t
2 + 1)(1 − e−1)

∫

(−1,1)

1 − e−1

1 − λ2
‖IP (dλ)ex‖2

w

�
1

( t
2 + 1)(1 − e−1)

gt′(x, x).

Lemma A.4 is proved. �
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Proposition A.5. We have

trel <
24n2davg

dmin
.

Proof. a) Suppose G = (V, E). We construct an auxiliary graph G̃ = (Ṽ , Ẽ) as follows:

(1) Let V ′ = {x′ ; x ∈ V } be a copy of V . The vertex set of G̃ is Ṽ := V ∪ V ′;

(2) If (x, y) ∈ E, we introduce two edges (x, y′) and (x′, y) in Ẽ.

Obviously, G̃ is a bipartite graph. So the spectrum of the transition matrix P̃ on G̃ is 

symmetric about 0. Denote the eigenvalues of P̃ as

−1 = λ̃1 < λ̃2 � λ̃3 � · · · � λ̃2n−1 < λ̃2n = 1.

Set t̃rel := 1

1−λ̃2n−1
. Because the eigenvalues of P are also eigenvalues of P̃ , we have

trel � t̃rel.

b) It is easy to show that diam(G̃) � 4 diam(G) + 1. Using a similar argument as in 

Oliveira and Peres [19, Proposition 3.1], one may get that

t̃rel � diam(G̃) wt(Ṽ ) � 2
(
4 diam(G) + 1

)
wt(V )

� 2

(
4
( 3n

dmin
− 1

)
+ 1

)
wt(V ) <

24n

dmin
wt(V ) =

24n2davg

dmin
. �

For non-empty A � V and x ∈ V \ A, define G(x, x; A) := Ex

[∑τA−1
s=0 1{Xs /∈A}

]
.

Proposition A.6. We have

G(x, x; A)

π(x)
�

9

2

(davgn

dmin

)2(
1 − π(A)

)
.

Proof. By Lyons and Peres [15, Eq. (2.5)] and network reduction, we have

G(x, x; A)

π(x)
� wt(V )Reff(x ↔ A) = davgnReff(x ↔ A),

where Reff(x ↔ A) is the effective resistance between x and A. Then we need only follow 

the proof of Oliveira and Peres [19, Proposition 3.2] to get

Reff(x ↔ A) �
9davgn

2d2
min

(
1 − π(A)

)
. �
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Now fix x ∈ V . For α > 1, let

Aα :=
{

y ∈ V ; gt′(y, x) � απ(x)(t′ + 1)
}

.

We claim that Aα �= ∅ for α > 1. In fact,

1 − π(Aα) =
∑

y /∈Aα

π(y) <
∑

y /∈Aα

π(y)
gt′(y, x)

απ(x)(t′ + 1)

=
∑

y /∈Aα

π(x)gt′(x, y)

απ(x)(t′ + 1)
�

1

α

∑

y∈V

gt′(x, y)

t′ + 1

=
1

α
< 1.

(A.4)

So for α > 1, Aα is non-empty.

Lemma A.7. For x ∈ V ,

gt′(x, x)

π(x)
�

6davgn

dmin

√
t′ + 1.

Proof. a) Set α0 :=
5davgn

dmin
· 1√

t′+1
. We claim α0 > 1. In fact, we have

α0 =
5davgn

dmin
· 1√

t′ + 1
=

5davgn

dmin
· 1√

2
trel/2� − 1

�
5davgn

dmin
· 1√

trel + 2 − 1
>

5davgn

dmin
· 1√

24davgn2

dmin
+ 2 − 1

�
5davgn

dmin
· 1√

25davgn2

dmin

=

√
davg

dmin
� 1.

Therefore, α0 > 1. As a consequence, Aα0
is non-empty.

b) If x ∈ Aα0
, by the definition of Aα0

,

gt′(x, x)

π(x)
� α0(t′ + 1) =

5davgn

dmin

√
t′ + 1.

c) If x /∈ Aα0
, by the strong Markov property, Proposition A.6, and the definition of 

Aα0
,

gt′(x, x)

π(x)
�

G(x, x; Aα0
)

π(x)
+ Ex

[
gt′(XτAα0

, x)

π(x)

]

�
9

2
·
(davgn

dmin

)2(
1 − π(Aα0

)
)

+ α0(t′ + 1)
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�
9

2
·
(davgn

dmin

)2 1

α0
+ α0(t′ + 1)

= ( 9
10 + 5)

√
t′ + 1

davgn

dmin

<
6davgn

dmin

√
t′ + 1,

where the third inequality is by Eq. (A.4). �

We are now in position to prove Theorem A.3.

Proof of Theorem A.3. a) Recalling that t′ = 2
trel/2� − 2, we have t′ � trel. By Lem-

mas A.4 and A.7, for t ≡ 0 mod 2 and x ∈ V ,

0 � pt(x, x) − π(x) �
1

1 − e−1
· gt′(x, x)

t
2 + 1

�
6davgnπ(x)

(1 − e−1)( t
2 + 1)dmin

√
t′ + 1 =

6d(x)

(1 − e−1)( t
2 + 1)dmin

√
t′ + 1

�
6d(x)

(1 − e−1)( t
2 + 1)dmin

√
trel + 1 �

10d(x)

dmin

√
trel + 1
t
2 + 1

=
20d(x)

√
trel + 1

(t + 2)dmin
.

Therefore, for t ≡ 0 mod 2 and x ∈ V , we have

0 � pt(x, x) − π(x) �
20d(x)

√
trel + 1

(t + 1)dmin
.

b) Our calculation in part a) implies that for t ≡ 0 mod 2,

pt(x, x) − π(x) =

∫

(−1,1)

λt ‖IP (dλ)ex‖2
w �

20d(x)
√

trel + 1

(t + 2)dmin
.

Therefore, for t ≡ 1 mod 2, we have

∣∣pt(x, x) − π(x)
∣∣ =

∣∣∣
∫

(−1,1)

λt ‖IP (dλ)ex‖2
w

∣∣∣ �
∫

(−1,1)

|λ|t ‖IP (dλ)ex‖2
w

=

∫

(−1,1)

|λ|(t−1)/2|λ|(t+1)/2 ‖IP (dλ)ex‖2
w.

Hence, the Cauchy–Schwarz inequality gives
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∣∣pt(x, x) − π(x)
∣∣ �

( ∫

(−1,1)

|λ|t−1 ‖IP (dλ)ex‖2
w

)1/2( ∫

(−1,1)

|λ|t+1 ‖IP (dλ)ex‖2
w

)1/2

�
20d(x)

√
trel + 1√

(t − 1 + 2)(t + 1 + 2) dmin

<
20d(x)

√
trel + 1

(t + 1)dmin
. �
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