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1. Introduction

Spectral embedding is a popular tool in modern data clustering, as summarized in
von Luxburg [22]. Also, spectral embedding was exploited to study graphs. In particular,
Lyons and Oveis Gharan [13] introduced spectral embedding as a new tool in analyzing
reversible Markov chains (random walks on graphs). For instance, [13, Theorem 4.9] gave
a sharp bound on return probabilities of lazy random walk. Here, the lazy random walk
on a graph G stays put at a vertex with probability 1/2 and moves to a random uniform
neighbor otherwise.

Theorem 1.1 (/13], Theorem 4.9). Let G be a regular, simple, connected graph with n
vertices. For each verter x of G and t > 0,

where p}(x,x) is the probability of returning to x at step t for the lazy random walk on
G starting from x. O

Now, a question arises naturally: if simple random walk, instead of lazy random walk,
is considered, do we still have good bounds on return probabilities? Here, the simple
random walk on a graph moves to a random neighbor uniformly.

To get some feeling, we recall the method used in the proof of the above bound in
[13]. Given a graph G, let P be the transition matrix of the simple random walk on G;
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then P’ = # is the transition matrix of the lazy random walk on GG. We know that
P and P’ are symmetric operators on the space of functions on V(G) square summable
with respect to the degree sequence of G, so their spectra are both real. Denoting the
spectra of P and P’ as o(P) and o(P’) respectively, we know that o(P’) is closely
related to o(P): A € o(P) if and only if 252 € o(P'). Since o(P) is contained in the
interval [—1,1], o(P’) is contained in [0, 1]. Also, it is well known that the non-trivial
(different from 1) spectrum of P’ “governs” the “convergence rate” of lazy random walk:
for instance, if the gap between the largest non-trivial eigenvalue of P’ and 1 is large,
then intuitively, the convergence will be faster. Thus, by the relation of o(P) and o(P’),
we only need to consider the spectrum of P near 1. Moreover, we notice that o(P) is
closely related to the spectrum of the probabilistic Laplacian £ := I — P corresponding
to P. To prove the aforementioned bound in [13], using the spectral embedding based
on L, [13] first revealed upper bounds on the vertex spectral measure of £. It is known
that return probabilities are determined by vertex spectral measures; therefore, bounds
on return probabilities can be obtained from bounds on vertex spectral measures (see
[13, Proposition 3.5]).

When it comes to simple random walk, the situation is different. Note that simple
random walks on bipartite graphs have period two and simple random walks on non-
bipartite graphs are aperiodic. For simplicity of presentation, we discuss non-bipartite
case only in this introduction. To begin, we still have the intuition that the “convergence
rate” of simple random walk is related to the non-trivial spectrum of P: for instance,
Diaconis and Stroock [9, Proposition 3] proved that the geometric convergence rate in
total variation norm is determined by the maximum non-trivial eigenvalue in absolute
value when the random walk has finitely many states. Note that o(P) C [—1,1], but
o(P) is not necessarily non-negative. Therefore, in order to deal with “convergence” of
simple random walk, one also has to consider the negative spectrum of P. However, we
usually study the spectral gap of the probabilistic Laplacian £ = I — P, which is related
to the spectrum of P near 1 but does not provide much information about the negative
spectrum of P.

Our solution is to consider another operator: the probabilistic signless Laplacian op-
erator Q := I + P. Obviously, the spectrum of P is closely related to the spectrum of Q
by a shift of 1 unit horizontally. The spectrum of Q is therefore real and non-negative.
This brings us some convenience: we have more tools to deal with the operator Q, its as-
sociated quadratic form for a start. We will first consider the vertex spectral measure of
Q using the spectral embedding based on Q, so the negative spectrum of P is bounded.
Then we may proceed to get a bound on return probabilities of simple random walk. See
Theorem 3.5 for details.

1.1. Main results

To give an overview of our results, in this subsection, we constrain ourselves to the
case of unweighted graphs. Some notation will be needed, which will be explained in
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more detail in subsequent sections. Consider a locally finite, simple, connected graph

G = (V,E). A vertex x € V has degree d(z) in G. Write 7(z) == %, which is 0 when G

is an infinite graph. When G is finite, we denote the eigenvalues of the transition matrix
P on G as

SIS L =M AT S <Al < =0 =1
where n = |V|. When G is finite, it is well known that A}’ = —1 if and only if G is

bipartite. However, for infinite graphs, it is more appropriate to consider their vertex
spectral measures. For instance, denoting the probability of returning to z at step t as
pt(x, x) for the simple random walk on G starting at x, then we have

po(z, ) = / (1= Ntdpa(N),
0.2

where i, is the vertex spectral measure at x of £. Denote the vertex spectral measure
at ¢ of Q as ,qu. It is shown in Lemma 3.3 that when G is finite,

D ug©)=[{j; 1+ A7 <d}.

zeV

This enables us to count eigenvalues of P on the interval [—1, —1 + 4]. Therefore, we can
get lower bounds on eigenvalues of P from upper bounds of the vertex spectral measure
of Q.

We first consider non-bipartite graphs. In fact, when the graph is non-bipartite, the
simple random walk is aperiodic, so some troubles are avoided. Our result for simple
random walk on regular graphs reads as follows.

Theorem 1.2. For a regular, non-bipartite, simple, connected graph G, we have
,u%(é)gl()\/g, 062, zeV.

For each x € V, simple random walk on G satisfies

0 < pe(w, ) —m(x) < for t=0mod 2,

pe(z,2) — w(z)| < for t=1mod 2.

Sl Sl

Furthermore, when G is finite, for 1 <k <n, A\l > -1+ %.

The above result is sharp by Example 3.7. Theorem 1.2 is interesting since the degree
and size of the regular graph G are not involved. In Theorem 1.2, the first assertion about
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bounding vertex spectral measure follows from Theorem 3.1 in the subsequent text; the
second assertion about return probability bound follows from Theorem 3.5; and the last
assertion is treated in Corollary 3.4.

It would be helpful to briefly describe the mechanism of getting return probability
bounds in this paper, in which Lemmas 2.6 and 2.7 play essential roles. In fact, Lem-
mas 2.6 and 2.7 reveal how the asymptotics of large-time return probabilities corresponds
to the asymptotics of the spectral measures of £ and Q near 0. For instance, when proving
Theorem 3.5, we first obtain a bound on vertex spectral measures of @ in Theorem 3.1,
which in fact characterizes the spectrum of P around —1; The first assertion of [13, The-
orem 4.9], as a counterpart of Theorem 3.1, characterizes the spectrum of P around 1;
based on Theorem 3.1 and the first assertion of [13, Theorem 4.9], Lemmas 2.6 and 2.7
will conveniently produce a bound on return probabilities. Here, Lemmas 2.6 and 2.7
show how return probabilities of simple random walk are determined by the spectrum of
P around 1 and —1. In fact, Lemma 2.7 is an extension of [13, Lemma 3.5]: intuitively,
[13, Lemma 3.5] reveals how return probabilities of lazy random walk are determined by
the spectrum of P around 1.

The following proposition is for graphs satisfying volume growth conditions.

Proposition 1.3. Let G be a non-bipartite, infinite, simple, connected graph. Suppose that
for some vertex x of G, there are constants ¢ > 0 and D > 1 such that

Y dy) = c(r+1)P

y; dist(z,y)<r
for all v > 0, where dist is the distance on graph. Then for all § € (0,2),

d(x)(;D/(D+1)’
d(z)oP/(P+1)

() < C
p(8) < C
where

(D +1)?

C= o1/(D+1) D2D/(D+1)*

Hence for allt > 1, simple random walk satisfies

2C" w(x)t~P/(P+1) for t=0mod 2,
Clw(z)t—P/ P+ for t=1mod 2,

pe(x, x)
pe(x, x)

<
<

where

o D+1 ( D )

/(D) p(O-1)/(D+D) \D + 1
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Proposition 1.3 follows from Corollary 4.3 directly.
Using the spectral embedding based on Q, we also bound the vertex spectral measure
of Q in another way and get bounds on the uniform mixing time.

Proposition 1.4. For any non-bipartite, finite, simple, connected graph G, we have

d(x)é
H(G)’

p(8) < §€0,2),z€V,

where J (G) is defined as

2
min{ Z(v,u)EE‘f(v) + f(u)]  min f(y) < 0 < maxf(y)}
yev

2
maxyev|f(y)| vev

and satisfies  (G) > Consequently, for 1 <k < n,

1
diam(G)+1 "

RHG) k

Sovd@ ” T @em(@) 1) Yy d@)

A= -1+

Furthermore, Too(1/4) < 8n®. If G is also regular, then we have To,(1/4) < 24n?.

Proposition 1.4 follows from Lemmas 5.2 and 5.3, and Corollaries 5.4 and 5.6.
Note that for a finite, simple, connected graph G, [13, Proposition 4.2] implies

k

Moo <1— ;
k Rdiam(G) Z;pev d(CC)

0<k<n—1,

where Rgiam (G) is the resistance diameter of G. This bound combined with the lower
bound on eigenvalues of P in Proposition 1.4 improves [10], which asserted that each
eigenvalue \ of P that is neither 1 nor —1 satisfies

1
(diam(G) + 1) Ndmax

Al <1-

where d,.x is the maximum degree of G.

The bound 7 (1/4) = O(n?) in Proposition 1.4 is sharp by the example of cycles:
there is a constant ¢ > 0 such that for all odd number n, simple random walk on an
n-cycle satisfies 7o, (1/4) = en? (see [20, Example 3.11]). See Section 5 for more details.

As a special class of regular graphs, vertex-transitive graphs are of interest, since they
are intuitively “homogeneous” and especially well studied.

Theorem 1.5. Let G be a non-bipartite, simple, connected, vertex-transitive graph with
degree d < oo. For each z € V, c € (0,1), and 6 € (0,2], we have
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1

2 vi=e)’
CN#(\/%)

1g (8) <

where N#(r) denotes the number of vertices in a ball of radius r. In addition, if G is
finite,

2 s 2
Q = .
Amin 2 p (sm —4(diam(G) n 1)) .

Theorem 1.5 follows from Theorems 6.2 and 6.4 directly. As usual, a bound on return
probabilities of simple random walk follows immediately from a bound on vertex spectral
measures. See Corollary 6.3 as an example.

Apart from vertex spectral measure at one single vertex, we may consider average

spectral measure for finite graphs. Given a finite graph G, the average spectral measure
of Q is defined as u® =3, .\, u2/n.

Theorem 1.6. For any non-bipartite, finite, simple, connected graph G and ¢ € (0,2), we
have

p2(8) < (40008)1/3.
Consequently, /\kP > -1+ % for 1 < k < n. Furthermore,

Og Zzeth .1‘,37)—1 gﬂ
n $1/3

) —1] 1
|ervpt x, ) | < 15 for t=1mod 2.
n t1/3

for t=0mod 2,

Theorem 1.6 is treated in Section 7; see Theorems 7.1, 7.5 and 7.6, and Corollary 7.2
for more details.

Non-bipartite graphs are considered in previous paragraphs. But the bipartite case
is a bit different, because simple random walk on a bipartite graph has period two.
Fortunately, by Mohar and Woess [17, Theorem 4.8], the vertex spectral measures of £
and Q coincide. Therefore, only the estimates for the vertex spectral measure of £ from
[13] will be enough for us to get bounds on return probabilities of simple random walk.
For example, we have the following result for bipartite graphs.

Theorem 1.7. Consider simple random walk on a regular, bipartite, simple, connected
graph G. Then for each x € V,

18
0 < pe(z,x) — 2m(x) < — for t=0mod 2.

Vit

This result is later proved as Theorem 8.1 in Section 8.
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Our method works as well for analyzing the spectrum of the adjacency matrix A of a
finite graph G. Suppose the eigenvalues of A are

oy S AL =AM KM KM << <M =0 < dias

max
where d,. is the maximum degree of G.

Proposition 1.8. Let G be a non-bipartite, finite, simple, connected graph. For 1 <k < n,

kA (G) - k
- (diam(G) + 1)n’

dmax + )\1164 =

Proposition 1.8 follows from Corollary 9.7 directly. Proposition 1.8 improves [1, The-
orem 1.1], which obtained that dpyax + A > m
Section 9, we first consider the spectral embedding based on the combinatorial signless

. To get Proposition 1.8, in

Laplacian © := D+ A, where D is the diagonal degree matrix of G. Then Proposition 1.8
follows from the bound below on the vertex spectral measure of ©.

Proposition 1.9. Let G be a non-bipartite, finite, simple, connected graph. Then for each
§€[0,02,.) and v € V, we have

max

o

1 (8) < G < (diam(G) + 1)4.

This proposition follows from Proposition 9.4 directly. Suppose the eigenvalues of ©
are

0< A9, =22 <A <AD < <9 | <8

min
The above proposition has the following corollary.

Corollary 1.10. Let G be a non-bipartite, finite, simple, connected graph. For 1 < k < n,
we have

ko (G) < k
n 7 (diam(G) +1)n’

A9 >

Corollary 1.10 is proved as Corollary 9.6 in Section 9. In fact, it is known that a graph
is bipartite if and only if A9, = 0; for a non-bipartite graph G, Desai and Rao [8] showed
that A9, measures non-bipartiteness of G.

1.2. Related works

In the field of spectral graph theory, the combinatorial signless Laplacian has already
drawn wide attention: Cvetkovi¢ and Simié [3,4,5] are surveys on the study of the com-
binatorial signless Laplacian. In fact, Alon and Sudakov [1, Theorem 1.1] also used the
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combinatorial signless Laplacian implicitly by considering its associated quadratic form.
We use the method of spectral embedding, so not only the minimum eigenvalue but all
eigenvalues of the graph adjacency matrices are bounded from below in Proposition 1.8.

One highlight of this article is the introduction of the probabilistic signless Laplacian
Q, enabling us to deal with the negative spectrum of the transition matrix P on a
graph with the tool of spectral embedding, and therefore deal with return probabilities.
Indeed, the quadratic form associated to @ was used in Desai and Rao [7], Diaconis and
Stroock [9] to give lower bounds on the minimum eigenvalue of P. Signless Laplacian
operator is also related to dual Cheeger inequalities; see Trevisan [21], Liu [12] for more
details. We consider the operator Q explicitly and exploit the spectral embedding based
on it. Therefore, the entire spectrum of P is treated, rather than only the minimum
eigenvalue. For instance, Landau and Odlyzko [10] is improved as we discussed after
Proposition 1.4.

In the literature, there are many fewer results on the negative spectrum of P than
on the positive spectrum of P. Recall that in the study of the positive spectrum of P,
the probabilistic Laplacian operator £ was usually used; in particular, the spectral gap
of L equals the gap between the largest nontrivial spectrum of P and 1. However, when
one wants to study the negative spectrum of P, for instance by considering the signless
probabilistic Laplacian operator Q, it is harder: since we don’t have many tools. For
example, tools from electrical network theory are pretty useful in the study of £, but
they are not readily available to deal with Q. We have to make a “detour” and adapt
the existing tools.

1.3. Structure of this article

We review notation for graphs and introduce spectral embedding based on the signless
Laplacian in Sections 2.1 and 2.2. Some preliminaries are included in Section 2.3. Return
probabilities of simple random walk on regular graphs are considered in Section 3. Re-
turn probability bounds based on volume growth conditions are discussed in Section 4.
The case of transitive graphs is treated in Section 6. We also consider average return
probabilities for finite graphs in Section 7. In Section 5, we bound the uniform mixing
time. Bipartite graphs are discussed in Section 8. The tool of spectral embedding is ex-
ploited to study eigenvalues of graph adjacency matrices in Section 9. The appendices
contain some calculations and auxiliary results.

2. Notation and spectral embedding
2.1. Graph notation, random walk, and Laplacian operators

Let G = (V(G), E(G)) be a finite or infinite, undirected, simple, connected, weighted
graph. For an edge of G, say e = (z,y) € E(G), let w(e) = w(x,y) > 0 be its weight. We



10 Z.-F. Wei / Journal of Functional Analysis 284 (2023) 109799

say G is unweighted if w(e) = 1 for each edge e € F(G). We assume G has weighted adja-
cency matrix A(G), (unweighted) diameter diam(G), and (weighted) resistance diameter
Rdiam (G). Also, minimum, maximum, and average degrees in G are denoted by dpin (G),
dimax(G), and dayg(G), respectively. When G is finite, we denote |V (G)| = n(G). If G is
understood, reference to G may be omitted.

For z € V(G), we use standard graph notation N(z) = {y € V(G); (z,y) € E(G)}
to denote the collection of all neighbors of x. Throughout this article, we require
that G is locally finite, ie., 3 () w(z,y) < oo for each z € V(G). We say that
w(x) =3, e N w(@,y) is the weight of 2 € V(G) in G, and the weight of a vertex
subset S C V(G) in G is wt(S;G) = cgw(x). If G is unweighted, w(x) equals the
degree d(z) of x. Again, when G is understood, the reference to G may be omitted. In
particular, when G is vertex-transitive, all vertices have the same weight, denoted by w.

Write 7(z) = wtzl{/(?g?))' For a vertex € V(G) and r > 0, let

B(z,r;G) = {y € V(G); dist(z,y) <1},
where dist is the distance on G. Set
wt(z,7; G) = wt(B(z,m;G); G).

For the simple random walk on G, the transition probability from z € V(G) to
y € V(G) is % We use p¢(z,y) to denote the probability that the simple random
walk started at z € V(G) arrives at y € V(G) at step t.

Recall that we write ¢2(V(G), w) for the (real or complex) Hilbert space of functions

f:V(G) = R or C with inner product

(f,gw =Y w@)f(x)g)

zeV(G)

and squared norm ||f|\fu = (f, f)w. We reserve (-,-) and || - || for the standard inner
product and norm on R* (k € N) and ¢2(V(G)). For a vertex z € V(G), we use 1, to
denote the indicator vector of x:

1 if y=ux,
1.(y) = {

0 otherwise.

We also write e, = \/% Note that e, € £>(V(G),w) is of unit norm: |e,l, = 1.

We have a series of useful operators on £2(V(G),w). The probability transition oper-
ator P: (2(V(G),w) — 2(V(G),w) is defined as

(PR = Y W)

yeV(G)



Z.-F. Wei / Journal of Functional Analysis 284 (2023) 109799 11

We define the probabilistic Laplacian £ = I — P and the probabilistic signless Laplacian
Q = I + P, where I is the identity operator on £2(V(G),w). We know that P, £, and Q
are bounded self-adjoint operators on Hilbert space £2(V (G),w). The spectrum of P is
contained in the interval [—1, 1]. Obviously, whether G is finite or infinite, the spectrum
of P and Q are related by a shift of 1 unit horizontally.

Denote the resolution of identity for £ as I-. As in [13], the vertex spectral measure
of £ at x € V(G) is defined by

pia(6) = (I ([0,0])ex, €2),, = (I ([0,0])12,1,),  0<O<2
For convenience, we will also use
we(0) = <IL((O,5])eI,em>w = <IL((O,6])1I, 1m>, 0<d<2,zeV(G).

It is easy to see that u,(0) = u(0) + w(x) for 0 < § < 2 (see [13, Section 3.1]).
When G is finite, the spectra of P and Q consist of eigenvalues (point spectrum) only:

e Denote the eigenvalues of the transition matrix P on G as

1A = AT AT M <Al <Al = Al =

max

¢ Denote the eigenvalues of the probabilistic signless Laplacian Q as

I
>
(e}
N
>
e}
N

<AL < <AL, < A2 =08 =2

max

2.2. Spectral embedding based on the signless Laplacian

The spectral embedding based on £ is introduced in [13, Section 3.4] as a powerful tool
in analyzing random walk on graphs. In this subsection, we will introduce the spectral
embedding based on Q in parallel. Denote the resolution of identity for Q as Ig, with
vertex spectral measure at x

p(6) = (Io(d)eq, €, 0<6<2,2eV(G),
where Io(8) == Io([0,4]).
Lemma 2.1. Let f € (?(V(G),w). We have

(Qf flu= > wv,w)|f@)+ fw)]"

(v,u)EE(G)

For § €[0,2] and f € img(Ig(9)),

(QF. fyw <3IflI5 =8 w)|f)]*. o

veV
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See the appendix for a proof.

Corollary 2.2. If G is connected and non-bipartite, then img(Ig({0})) contains only the
zero function. Therefore in this case, Io(8) = Ig([0,6]) = Io((0,4]). It also follows that
0 is not an eigenvalue of Q if G is non-bipartite.

Proof. Assume f € img(Ig({0})). We see that

> wu)|f)+ fw)]* = (Qf, flu <OIfIE = 0.

(v,u)EE(G)

Therefore, for (v,u) € E(G), we have f(v) = —f(u). Since G is non-bipartite, there is
an odd cycle C' = vyvg - - - w501, where s = 1 mod 2. Thus, f(v1) = —f(v1), implying that
f(v1) = 0. By connectedness, f(v) =0 for all v € V(G). This corollary is proved. O

For a fixed § € [0,2], we define spectral embedding F<€ based on Q as

F2:V(G) = P(V(G),w)

T = FQ — IQ((S)GZ _ IQ(d)lz

It is clear that for each z € V(G), F2 € £?(V(G),w) is a real-valued function on V(G).

Lemma 2.3. For each finite or infinite graph G and x € V(G),

Q
|P2) = P2 = 2D o

Lemma 2.4. If u£(6) > 0, define f: V(G) = C as f = HFFSQ . Then

x “w

@) [flly =15
(2) f(2) = /p2(6)/w(z);
(3) f € 1mg(IQ(§)) O

We need only mimic the proofs of [13, Lemmas 3.11 and 3.12] to prove Lemmas 2.3
and 2.4.

2.8. Some preliminaries
We will use Lemma 2.5, a standard path fact, which was proved in Levin and Peres [11,

Proposition 10.16(b)] and [13, Lemma 4.5]. Bounds on the diameter of regular graphs go
back to Moon [18], but a different approach was used there.
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Lemma 2.5. Let G be a finite, simple, connected graph. We have diam(G) < 2% —1. 0O

dmin

The following two results will be useful when we are dealing with return probabilities
in subsequent sections.

Lemma 2.6. Let t be a positive integer and n be an increasing and right-continuous func-
tion on [0,2] with n(0) = 0. Then we have

' / (1 = N dA = (—1)*1y(2) + / (1— N dn(\).

(0,2]
Proof. Using integration by parts, we have
2 2
[ a2t == [ada -y
0 0
— a2+ [ =2
(0,2]

— )+ [ @ ). o

(0,2]

Lemma 2.7. Consider simple random walk on a non-bipartite, simple, connected, weighted
graph G.

et ¢ be an increasing and right-continuous function on [0,2]. Assume further tha
1) Let o b ; ; d right ti ti 0,2]. A ther that
@ satisfies the following conditions:

(2) Let 1 and 9 be increasing and right-continuous functions on [0,2]. Assume further
that 11 and v satisfy the following conditions:
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P1(0) = ¢2(0) = 0 = pz(0),

P1(2) = ¥2(2) =1 = 7(2) = pz(2),
pa(A) <th2(X)  for A €0,2],
(X)) = P1(A) for X e€|0,2].

Then for t =1 mod 2, we have
() + /(1 ~ A (M) < pe(e, @) < 7(@) + /(1 ~ ) dn(N).
(0,2] (0,2]

Proof. a) This part is essentially a mimic of the proof of [13, Lemma 3.5]. We consider
a non-negative integer t in this part. Since P = I — L, we have

pi(x,x) = <(I— £)'1,, 1z>.
Symbolic calculus gives
(- L) = / (1= M) Ie(dN).
[0,2]
Therefore, by the definition of the vertex spectral measure of £, we have
pi(a,a) = / (1= N AT (N1, 1,) = / (1 N ().
[0,2] [0,2]

It follows that

m@aﬂzw@»+/kl—n%mym. (1)

[0,2]

Furthermore, using integration by parts, we have

ZM%MZW@%%/U—AYMHM

[0,2]

2
:ﬂ@lemeﬂMﬁf/uHMdﬂfMt
0

=wu»w—nmxm+t/uamu—xﬁ*dx
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b) When ¢ = 0 mod 2, because (1 — \)? is always non-negative, by Eq. (1), p;(z,x) >
m(x). On the other hand, by the result in part a),

i) = (o) + (L= m(@) + ¢ [ 01 -2 dx

2
<1 —|—t/<p()\)(l —A)hda
0

m(z) + / (1- A dg(\),

(0,2]

where the second equality follows from Lemma 2.6. The first assertion is proved.
¢) When ¢t = 1 mod 2, by the result in part a), we have

2
pe(e, ) = 2m(z) — 1 +t/u§2(k)(1 - At
0

Therefore, by Lemma 2.6,

2

pi(a,a) > 2m(e) — 1+ (1 7(2)) +t/¢1(A)(1 ~A)ldA

=7(x) + / (1 — N depr ().

(0,2]

Similarly,

3. Return probability on regular graphs
In this section, we are mainly interested in regular graphs.
3.1. Estimate of spectral measure and convergence rate

Theorem 3.1. Let G be a non-bipartite, connected, reqular, unweighted, stimple graph. For
each x € V(Q), we have
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p2(8) <10V6,  0<d<2

Theorem 3.1 is parallel to the first assertion of [13, Theorem 4.9]. Rather than prove
Theorem 3.1 directly, we will show the following more general result. Note that when G
is regular, g(?) =1 for each z € V(G).

nir

Proposition 3.2. Let G be a non-bipartite, connected, unweighted, simple graph. For each
z € V(Q), we have

_ 10d(x)V/6

p(8) < ,  0<d<2

dmin
Proof. Fixing a vertex x € V(G), we define f as in Lemma 2.4. Recall that we denote
dwmin = min{d(v); v € V(G)}.

a) If f(y) > 0 for all y € V(G), then

WIS S 52108 = Y o)+ S

dmin (U,u)EE(G)
> N w@y)|f@) + )] = w@)| f@)]
yEN ()
= n(6).

b) We may now assume without loss of generality that {v € V(G); f(v) < 0} is
non-empty. Let S = {s € V(G); f(s) > 0} and T = {t € V(G); f(t) < 0}. By
our assumptions, both S and T are non-empty. Recall that for each edge e € E(G), we
have w(e) = 1 because G is assumed to be unweighted. However, we do the following
construction of an auxiliary graph G’ for general weighted graphs because this will also
be useful subsequently in the proof of Proposition 4.1:

(1) The vertex set V' of G’ includes V(G). Also, if (u,v) = e € E(G) and u,v € S,
we introduce two vertices u(®) and v(¢) in V’. Similarly, if (u,v) = e € E(G) and
u,v € T, we introduce two vertices u(®) and v(®) in V".

(2) Construct the edge set E’ of G’ and their weights: If e = (u,v) € FE(G) with
u and v both in S, we introduce three edges (u,u(®), (u(®),v(®)), and (v(*), v)
in E'; if e = (u,v) € E(G) with u and v both in T, we introduce three edges
(u,u(®), (ul®,v(®), and (v®),v) in E’. Suppose e = (u,v) has weight w(u,v) in
G. For edges introduced above, we assign w(u, v) as their weights w’ in G/, i.e.,

w' (u, u®) = w' (u®,0©) = w' (0 v) = wlu,v).

If e = (u,v) € E(G) is not of the aforementioned forms, introduce one edge
(u,v) in E’ and set its weight w’(u, w) in G’ as w(u,v).
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It is obvious that G’ is connected. By the above construction, for v € V(G) C V', v has
the same weight in G and in G’'. For v € V', denote its weight in G’ as w’(v). Since G is
unweighted in the current setup, G’ is also unweighted. So for a vertex v’ of G/, w'(v')
equals the degree of v’ in G'.

¢) Define a function g: V' — R:

, veSUT,

0, otherwise.
It follows that
9(x) = f(z) = \/n§(0)/w(z),
S lsw)w' @) = Y [F) we) =1,

veV’ veV(G)
2
S W w)|g) —gw)P < Y] wlvr,v)| f(or) + fwa)].
(v1,v2)EE’ (v1,v2)€EE(G)

We claim that g(v') = 0 for some v" € V'. Otherwise, if V/'\ (SUT) = &, all edges in G
would be between S and T, contradicting the assumption that G is non-bipartite.

Set B:={yeV’'; |g(y) — g(z)| < %} It follows that B C SUT C V’. Since G’ is
connected, there exists a shortest path P in G’ from x to V' \ B.

d) If |P| = 1 and at least half of the neighbors of = are outside of B, then we have

62(Qf Nw= Y. |fw)+ )

(v1,v2)EE(G)

> Y |g(w) — g(we)?

(v1,v2)EE’
2 4 2 dw(z)
piz (6)
8
Therefore, when § < 1, p2(5) < 85 < 8V < %ﬁl‘ﬁ; when § > 1, u2(0) <1 <6 <
10d(2) V3 . The result holds in this case.

dmin
e) If |P| = 1 and at least half of the neighbors of x are inside of B, then the neighbors

of z inside of B are in SUT and are therefore of degree at least dp,;, in G'. Thus,

d(x) d2

Wt(B, G/) > T . dmin —min |P|

If |P| > 2, we claim that wt(B; G') > ?3“‘ |P| still holds. To justify this claim, we assume
that P = uouy - - - uptpy1, where r = |P| — 1. Consider
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—{yEV dist(z,y;G") <r} CBC SUT.
Since P is a shortest path, ug, w1, ..., ur_o2, and u,_1 are all in S U T, and are
therefore of the same degree in both G and G’, which is at least dy,. Setting K :=
{u07 Ugy ..., U3|(r-1)/3] }a we have
|K| = [r/3].
Counting the number of vertices in E, we get

1Bl > (r + 1) + | K|(diin — 2),

where r + 1 counts the vertices {ug, uy, ..., u,}, and |K|(dmin — 2) counts the neighbors
of K that are in B but not on P. Hence, we get that

Wt(B, G/) 2 Wt(é, G/) 2 dmin‘§|
> diin - ((r + 1) + |K|(dmin — 2))
>d

min ((T + 1) ( min 2))

d?ninr dr2nm
> S = SRR (1P| - 1)
dﬁnn
——[Pl.

So our claim holds. ,
Therefore, we may assume that wt(B; G’) > d’g‘“

f) Note that D, .y

P|.
g(v)|2w'(v) = 1. It is easy to get

1 dw(z)  4d(x)
wt(B; G’ < = =
B ST OF ~ #20) ~ 120)
Therefore,
4d(l‘) / dIQnin
> > — .
ng(a) /Wt(BaG) = 6 |P|
Thus,
24d(zx)
< = oa
PIS B2 )

Hence,
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52 QN flw= S |fo)+ fw)f

(v1,v2)€E(G)
|Pl-1

= Z ‘g(vl) - 9(1}2)}2 P Z |g(ul) - g(ui+1)|2

(vi,v2)€EE’

|Pl-1

1 2 1 )
2 ﬂ( ; |g(ui) —Q(Uz’+1)}) 2 W’g(uo) — glupp))|

_ 1 @ pf)
“Pld T APl()
_ 120

4d(x)|P|’

Proceeding further, we have

55 20 o p2() >(dminu§(5))2

= = 24d(x)
Therefore,
u$(6)<m‘§ﬂ, 0<s<2 O

19

The upper bound in Theorem 3.1 could be easily used to get lower bounds on the

eigenvalues of P. To this end, we need Lemma 3.3:

Lemma 3.3. Let G be a finite, connected, weighted graph. We have

> uS) = {i; A2 <}

zeV

Proof. Recall that the eigenvalues of Q are

0S AT = A KA AP < AR <A =20, =2
Let hi, ha, ..., hy, be an orthonormal basis of £2(V,w) such that

Qh; = APh;, 1<j<n.
It follows that

Z|<hj’ew>w|2 = Hh’]||12u =1

zeV

Therefore,
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ZM%( = Z Io(s ewaea: Z”IQ ew”

zeV zeV zeV
=Y et =X S Jenn
zeV j;)\jggg z€V g, )\]Q<5
2 2
> D llewhiul = 3o il = >0 1
i AP<oTEV 33 AP<S ARV
= |{j; AP <8},

Corollary 3.4. Let G be a regular, non-bipartite, finite, simple, connected, unweighted
graph. For 1 < k < n, we have )\Q > 1002712 Therefore, )\P -1+ %.
Corollary 3.4 is similar to the second assertion of [13, Theorem 4.9].

Proof. By Lemma 3.3 and Theorem 3.1,

{55 A2 <} =D u(6) = 10nVo.

zeV

5 < (5}’ < k. In other words, /\kQ > %. O

Our main interest is to get bounds on return probabilities of simple random walk on
regular graphs.

Theorem 3.5. Let G be a regular, non-bipartite, simple, connected, unweighted graph. For
each x € V, simple random walk on G satisfies

0 < pr(z,x) —7m(z) < for t=0mod 2,

|pe(@,2) — 7(2)| < for t=1mod 2.

Sle Sle

Proof. Theorem 3.5 is parallel to the last assertion of [13, Theorem 4.9].
a) Set

10vV/A if A >0 and 10V < pi(1),
©(A) = px(1) for intermediate values of ),

pE(2) —10v2 =X if A< 2and pi(2) — 10v/2 — X > k(D).

We claim that the function ¢ defined above satisfies the conditions in Lemma 2.7(1).
In fact, it is known that p*(\) < 10v/A from [13, Theorem 4.9]. On the other hand, by
Theorem 3.1,
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1) = (Ie (0, N)ear ),
= <I£((0,2])em,ez>w — <I[;(()\,2])em,ez>w
=1- <I£ O)em,e1>w - <Il;(()\,2])ez,e$>w
>1- (I, O)e£,ex>w — <I£([)\,2])ex,ex>w

The claim is proved.
Therefore, for ¢t = 0 mod 2, by Lemma 2.7,

n(z) < prle,7) < () + / (1 - X)'/(A) dA
0
1
<@+ [1-a

+2/ 755d)\
/ A

1
1
=n(x +10/ 1—A\)f——=dA
@+ [(1-3'
0
18
\/'E7
where the last inequality follows from Lemma A.1. The first assertion is proved.
b) Set

<(z) +

P1(N) = (pi(2) — 10vV2 = X) V0, A€ 0,2],
and
Pa(N) = (10VA) A p3(2), A€ 0,2).

Then they satisfy the conditions of Lemma 2.7(2). Consequently, we have

2 2
m(x) + /(1 — N (A) AN < py(, 7)) < () + /(1 — N 5 (N) dA.
0 0
By some elementary calculation, we get that

dA.

S

1 t5 1 t
w(x)—o/(l—)\) \/—Xd)\épt(x,:c)gﬂ(m)—i—o/(l—)\)
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The second assertion follows immediately from Lemma A.1. 0O
For a graph that is not necessarily regular, we have the following result:

Proposition 3.6. Let G be a non-bipartite, simple, connected, unweighted graph. For each
x €V, simple random walk on G satisfies

0 < pr(az) — m(x) < 242)

h dmin\/l_f
9d(x)
dmim\/E
Proof. To prove this proposition, we may use an argument similar to the one in the proof

of Theorem 3.5: instead of using Theorem 3.1, we will employ Proposition 3.2. When G
is not necessarily regular, checking the proof of [13, Theorem 4.9] carefully, we find

for t=0mod 2,

|pt(m,x) - w(x)| < for t=1mod 2.

10d(z)V/8

() < p , 0<d<2.
Therefore, we set
IOZE?“\/X if A >0 and —mflﬁi)nﬁ < pk(1),
e(A) = < pi(1) for intermediate values of A,
pp(2) = PN <2 and g (2) - I > (1),
U1 = (1(2) - 2 ) Vo, Aefo.2)

and

Yo (N) = (LAY A9y, A e [0,2).

dmin

The argument in the proof of Theorem 3.5 will proceed with suitable modification; and
the conclusion of Proposition 3.6 follows easily. Details are omitted. O

3.2. Sharpness, spectral radius, and non-diagonal convergence

The order of % in Theorem 3.5 is sharp. We show this by the following Example 3.7.

Example 3.7. Consider an unweighted graph G with V(G) = Z: (i, j) € E(G) if and only
if 0 < |i —j] < 2. Obviously, G is non-bipartite, connected, and 4-regular. For the simple
random walk on G, Davis and McDonald [6, Theorem 1.1] implies

1
lim v5¢p.(0,0) = —.
t—o0

N
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Therefore,

p(0,0) ~ as t — oo.

1
Vot
Hence, the sharpness is demonstrated. O

In Section 3.1, we focused on the negative spectrum of P by considering Q = I + P.
As a comparison, in [13, Theorem 4.9], £ = I — P is exploited and so essentially the
positive spectrum of P is focused on. Recalling that the spectrum o (P) of P is contained
in [—1,1], we set

v— =1+ info(P),
vy = 1= sup(a(P)\ {1}).

It is obvious that y_ and ~4 are both non-negative. But which is larger between v_ and
74?7 When G is finite, it depends; but when G is infinite, we have the following simple
fact:

Proposition 3.8. Let G = (V, E) be a connected, weighted, infinite, locally finite graph,
with wt(V) = oo. Then we have vy < v—. In other words, the spectral radius of P is
achieved by the positive spectrum.

Proof. To begin, since wt(V) = oo, we see that the constant function is not in 2(V, w)
and 1 is not an eigenvalue of P.

For any fixed small number € > 0, there exists a real function f € ¢*(V,w), with
| fll,, = 1, satisfying

A4y te2 (Pf o= w@)(PH)fa) =Y w(m)( > p(wvy)f(y))f(w)-

zeV zeV yEN(z)

Hence, we have

L=y e <UPL Pl = | w@) (X pley)fw)f@)

zeV yEN(z)
<Y w@( Y paylfe)l)lf@)
zeV yEN(z)

= (PIf1;1f)w-

Since 1 is not an eigenvalue of P, we further have

(P Dw < T =74
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Hence, 1 — (y- +¢) < 1 — ;. It follows that

Y+ S7- teE
Because € > 0 is arbitrary, we conclude vy <~v_. O
Remark. A proof of Proposition 3.8 could also be found in Mao and Song [16], but our
proof is much shorter. Proposition 3.8 is stated in the language of graphs; yet it also
applies to irreducible, non-ergodic, symmetrizable Markov chains with invariant measure,
v. Note that the condition of “non-ergodic” means the total mass of v is infinity.

Using Theorem 3.5, we can also get the following result on non-diagonal convergence.

Theorem 3.9. Let G be a reqular, non-bipartite, simple, connected, unweighted graph. For
z,y €V andt > 2, simple random walk on G satisfies

18
T,Yy)—m < — or t=0mod 2,
|pi(z,y) — 7 (y)| i f
18
Ipe(z,y) — 7(y)| < o for t=1mod 2.

Proof. Because G is regular, for s > 1, we have

‘p3(377y) - W(y)‘ = ’<ezvpsey>w - ﬂ-(y” = ‘ / (1 - )‘)G d<ex>lﬁ()‘)ey>w)

— ’ / (1—N)* d(E(A)ex,IL()\)ey>w‘
(

0,2]

< / 1= A d{Te(Neq, Te(Ney), |-
(0.2]

Therefore, for ¢ = 0 mod 2,

o) — ()| < / 1= A d)(Te(Ves. Ie (Vey )|
(0,2]

< ([ a-natementeen,) ([ 0-2diz0e, Ie0e,), )

(0,2] (0,2]

_ (/(1_A)tdgﬁ(x)ex,egw)”z(/(1—A)td<IL(A)ey,ey>w)1/2
©0.2)

(0,2]

1/2
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= (/(1—>\)th;()\)>1/2(/(1_>\)th;(/\))1/2

(0,2] (0,2]
1/2 1/2 18
= (pe(z,2) = (@) "~ (pely,9) — 7)) "7 < =,
Vit
where we are using Eq. (1) to get the last equality and Theorem 3.5 to get the last
inequality. Hence, for ,y € V and ¢ = 0 mod 2, we have |p;(z,y) — 7(y)| < %.

Similarly, for ¢t =1 mod 2 and ¢ > 3

pe(a,y) — (y)| < / 11— A2 - N2 (T Ve, I (Vey), |

(0,2]
< (/(1 =N (I (Ve Ie(Nes),, ) (/ - A d<1’£()\)ey,[£(>\)ey>w)l/2
(©.2] (©.2]
1/2 1/2 18
= (pe-1(z,2) = 7(@) " (pesa(y,y) —7(y) "~ < R

The proof is complete. O

Remark. We will give several results on return probability bound throughout this article.
Theorem 3.9 is a sample of deducing non-diagonal convergence from return probability
bounds.

4. Volume growth conditions

For lazy random walk, [13, Corollaries 4.10 and 4.11] presented return probability
bounds depending on volume growth conditions. We have parallel results for simple
random walk. Let us begin with the following proposition, which is comparable to the
first assertion of [13, Proposition 4.7].

Proposition 4.1. Let G be a non-bipartite, finite or infinite, simple, connected, weighted
graph with weight at least 1 for each edge. For each vertexx € V(G), § € (0,2), a € (0,1),
and r = 0, wt(z,r) > % implies u2(9) < &Z#r.
Proof. We may assume p2(§) > 0. Fixing a vertex z € V(G), we define f as in
Lemma 2.4.

a) If f(y) > 0 for all y € V(G), then

6 2(Qf, flw= Z w(v,u)|f(v)+f(u)|2>|f(x)‘2:ﬂx

(v,u)EE(G)

Note that wt(z,r) > % implies 7 > 1. Therefore,
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ow(x)
a2

2 (6) < Sulr) < 0.

b) From now on, we may assume that 7' := {¢t € V(G); f(t) < 0} is non-empty. We
construct G’ and g as in the proof of Proposition 3.2 and use notations there. Set

B = {yeV'; |g(y) — g(z)| < ag(z)}.

It follows that B(®) C SUT C V'. Since G’ is connected, there exists a shortest path
P =uouy - - - upp| in G’ from z to V' B(@) with uy = z. Hence,

§2(Qf. flu= > wlonv)|f(v1) + flvz)

(v1,v2)EE(G)

[Pl-1

> 3w (v w)|gn) —gw) =Y o) — gluig))|
=0

(v1,v2)EE’

2

IPl-1

1 2 1
= W( ; lg(us) — Q(U¢+1)|> =2 W|g(u0) — glup))|

| 2

2

o2[g(@)* _ a2u2(6)
Pl w@)Pl

¢) We claim that
{ye V' dist(y,z;G') < |P| -1} = {y € V(G); dist(y,z;G) < |P| - 1}.  (2)
In fact,
{y e V'; dist(y,2;G") < |P| -1} C B C SUT CV(G).
By the construction of G, dist(y1, y2; G') = dist(y1,y2; G) for y1,y2 € V. Therefore,
{ye V' dist(y,z;G") <|P| -1} C {y € V(G); dist(y,;G) < |P| —1}.
Suppose the above inclusion is strict. Then there will be a vertex v € V(G) that is not

in the left-hand side of Eq. (2), and a path P = gy - “Up in G with IP| < |P| -1,
up = x, and ﬁlﬁl = 0. Set

L= {O § ) < ‘ﬁ‘ — 1, {ﬂi,ﬂﬂ_l} g S or {’lji,ﬂﬂ_l} Q T}

Then L must be non-empty, otherwise v € V(G) would be in the left-hand side of Eq. (2).
Pick the smallest number ¢* in L and write e = (;», @;=+1). By the construction of G’
and g, we have g(ﬂl(-f)) = 0. Thus, ugu; - - ﬁi*ﬂgf) is a path in G’ linking  and V' \ B(®),

whose length is i* + 1 < |P| < |P|. This is a contradiction. Therefore, Eq. (2) holds.
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d) If wt(z,r; G) > %, we must have r > |P|. In fact, we notice that

wt(B@; @) (1 - a)?(z) < D low)[w' () < Y o) *w'(y) = 1.
yeB(@) yeV’

Therefore,

wt(z ~1:G") < wt(B@W. ¢ ! = wir)
ta [Pl = L&) < wB™5G) S T 377) ~ A= a)2ul(0);

Hence, Eq. (2) gives

!
10 — -1,G) < ——2 .
Wi, 1P = 15G) = wt(, IPI = 1,6') < (737 a5

Consequently, wt(z, r) > % implies r > |P)].

-«

e) By the results in b) and d), we have

a?p(0) _ o?ug(9)

0> > .
w(@)|P| — w(x)r
Hence, we arrive at the conclusion that u2(8) < 6“;(236)% 0

Corollary 4.2. Let G be a non-bipartite, finite or infinite, simple, connected, weighted
graph with weight at least 1 for each edge. For each vertexr x € V and § < 1

rwt(z,r)’
have p2(8) < 2wl o

wt(z,r)

we

Corollary 4.2 is comparable to the second assertion of [13, Proposition 4.7]. To get a
proof, one need only exploit Proposition 4.1 and mimic the proof for the second assertion
of [13, Proposition 4.7].

Now we present return probability bounds based on volume growth conditions.

Corollary 4.3. Let G be a non-bipartite, infinite, simple, connected, weighted graph with
weight at least 1 for each edge. Suppose that ¢ > 0 and D > 1 are constants such that
wt(z,7) = c(r +1)P for all v > 0. Then for all § € (0,2),
Cr,w(x)é'D/(D-i-l)7
C’w(ar)(SD/(DH),

112(9)

<
ng(8) <

where

(D +1)?

C= o1/(D+1) D2D/(D+1)

Fort > 1, simple random walk satisfies
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pi(x, ) < 2C"w(x)t~P/(P+D) for t=0mod 2,
pe(z, ) < Clw(x)t=P/(P+D for t=1mod 2,

where

C =

D+1 D
cl/(D+1) D(D-1)/(D+1) (D + 1)
Proof. The bound on p} is proved in [13, Corollary 4.10]. A similar argument can be

used to prove the bound on p2: in lieu of [13, Eq. (4.4)], we use Corollary 4.2. To prove
the bound on return probabilities, we set

Cw(z) AP/ (P+1) if X € [0,1) and Cw(z)A\P/(P+) < px (1),
o(N) = 1y (1) for intermediate values of A,
12(2) — Cu()(2 — nyp/oen  TA € [L,2) and
115 (2) — Cw(z)(2 — \)P/ P+ > (1),
and

D/(D+1) r % :
ba(\) = Cw(x)A A i (2) Tf A€ 0,1),
i (2) if A e [1,2].

It is easy to see that ¢ and 1, satisfy the conditions in Lemma 2.7. Therefore, we have

2 )D
pe(z,2) < %UT/A V)1 —\tdx  for ¢=0mod 2,
D 1
pe(z, ) < e /)\ VIDFD(1 — N dXA for t=1mod?2.
0

But we have

1 1 o]
/A—l/(D-‘rl)(l _ )\)t d < /)\—1/(D4-1)e—)\t d < /)\—1/(D4-1)e—)\t dx

/ s/t) ~1/(D+1) s d(s/t) = +~D/(D+1) /8_1/(D+1)e—s ds
0 0

R

D+1)’

where we introduce a change of variable A\t = s to get the first equality. Hence, the bound
on return probabilities is proved. O



Z.-F. Wei / Journal of Functional Analysis 284 (2023) 109799 29

Corollary 4.3 is comparable to [13, Corollary 4.10]. Using a similar method, one may
get an analogue of [13, Corollary 4.11]. Details are omitted.

5. Mixing time bound

We are concerned in this section with mixing time bounds, which are based on the
bounds on vertex spectral measures in Lemma 5.3. As a preparation, we introduce the
following graph parameter.

Definition 5.1. Let G be a finite and weighted graph. We define

Z(v,u)eE U}(U, u)|f(U) + f(u)|2

maxyev |f ()]’

H(G) = min{ ; Zrél‘l/l fly) <0< max f(y)}

For a bipartite graph G, it is easy to see that J#(G) = 0. For non-bipartite graphs,
we have the following lemma.

Lemma 5.2. Let G be a connected and weighted graph, with weight at least 1 for each
edge.

(1) Assume that f is a function on'V and P = zpz1 - - - 2|p| is an edge-simple path. Then
2 1 2

Z w(v7u)|f(v) + f(u)| = W(f(zo) — (—1)‘P‘f(2’|73|)) .

(v,u)eEE

(2) If G is also non-bipartite, finite, and simple, then J# (G) > m,

Proof. a) Note that

[P|-1
S wow)f) + f@ = Y [ f) + )]
(vyu)eE i=0
By the Cauchy—Schwarz inequality, we have
IP|-1 ) = _ _ )
STNFGE) + Fzig)] = D (1) f(z) — (—1)F f(zi41)]
i=0 i=0
1 |P|-1 _ _ 2
> i 2 (7 - (0
i=0
1

= i1 (F0) = (0P o)
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The first assertion is proved.
b) Now we deal with the second assertion. Take f satisfying the constraints in Defi-
nition 5.1 such that

S oyen w0, )] F(0) + ()]

maXer|f(y)|2

H(G) =

Assume that |f| attains its maximum at z, then

Z(v,u)eEw(’U?u)‘f(v) + f(u)|2
|f (@) .

We may assume f(x) > 0 without loss of generality. Set

H(G) =

S={seV; f(s)=0}, T:={teV; f(t)<0}.

By the assumptions, S and T are both non-empty. Because G is non-bipartite, there
exists an edge (s1, s2) € F with s1,s5 € S, or an edge (tl,tQ) € Ewith t1,t, € T.

c) If there is an edge (s1,$2) € E with s1,s82 € S, let Py be a shortest path from x
to {s1, 52} Without loss of generality, we may assume ’PO is from z to sq. If |770| is odd,
we set P = 730, if |’P0| is even, we set P = 730 (s1,82), the concatenation of Po and the
edge (s1, $2). Hence, Pis a path of odd length in any case. Assume

P = uouy - - - ug,

with ug = . Then k is odd and k < diam(G) + 1. Hence, by the first assertion,

(Fluo) + F)” = 1| F@)[ =

| =

S ww,w)|f(0) + fw)] =

(v,u)EE

Therefore, in this case,

1
> .
#(G) > diam(G) + 1

d) If there is an edge (t1,t2) € E with t1,to € T, let Py be a shortest path from x to
{t1,t2}. Without loss of generality, we may assume Py is from z to ¢;. If [Pg| is even,
we set P = Po; if |Po| is odd, we set P := Py.(t1,t2). Hence, P is a path of even length
in any case. Assume

P = vovy - - - vy,

with vg = z. Then £ is even and ¢ < diam(G) + 1. Hence, by the first assertion,
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> wlw )| f) + F@)f > 7 (Fwo) — f@) > glf@)[ =

(v,u)€EE
Therefore, in this case,

1
>
H(G) = diam(G) + 1 H

Now, we present our bounds on vertex spectral measures.

Lemma 5.3. Let G be a finite, simple, connected, weighted graph, with weight at least 1
for each edge.

(1) For6 €00,2) and z € V, px(8) + 7(x) < Rajam(G)w(z)d.

(2) If G is also non-bipartite, for 6 € [0,2) and v € V, u2(8) < w(fc);;, Moreover, by

Lemma 5.2, we have p2(8) < (diam(G) + 1)w(z)§ for § € [0,2).

Proof. The first assertion follows immediately from [13, Proposition 4.2]. We now deal
with the second assertion. Fix a vertex « € V' and define f as in Lemma 2.4.
When 6 € [0, )\r%m) p2(8) = 0 by definition. So the inequality holds automatically.
When \2

<6 < A&, = 2, we know that f is orthogonal to the eigenspace of
Q Correspondlng to A2

min max
= 2, which is spanned by (1,1,...,1), the constant vector.

Therefore, by Definition 5.1, we have

max

> (£, Qb Z wlo ) + F)f > fapar(e) = EOXE) g

By Lemma 5.2(2), Lemma 5.3(2), and Lemma 3.3, we have the following corollary.

Corollary 5.4. For any non-bipartite, finite, simple, connected, weighted graph G with
weight at least 1 for each edge, we have

o kH(G) k
FTowt(V) T (diam(G) + 1) wi(V)

for 1 < k < n. Therefore,

REG) k

M= -1+ wt(V) = (diam(G) + 1) wt(V)’

As mentioned in Section 1.1, Corollary 5.4, combined with [13, Proposition 4.2], im-
proves the result in Landau and Odlyzko [10].

To get a mixing time bound, we first give a bound on return probabilities using
Lemma 5.3.
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Corollary 5.5. Let G be a non-bipartite, finite, simple, connected, unweighted graph, and
t =0 mod 2. Then we have

pi(x,x) — 7(x) < 2(diam(G) + 1) Wt(V).

<
0< 7(x) h t
Proof. Set
p(A) =
Raiam (G)w(x)A if A €[0,1) and Ryjam(G)w(x)A < pi(1),
wh(1) for intermediate values of A,

if A e[1,2] and

*(2) — (diam(G) 4+ 1)w(x)(2 — A
15(2) — (diam(G) + 1) w(z)( ) 15(2) — (diam(G) + 1)w(z)(2 — A) > px(1).

By Lemma 5.3, using a similar argument as in part a) of the proof of Theorem 3.5,
the function ¢ defined above satisfies the conditions in Lemma 2.7(1). Therefore, for
t = 0 mod 2,

2
0 < pile2) — () < / (1— NP (A)dA
0

1 1
< Raiam (G / ) dX + (diam(G x) /(1 —
0 0
1
(diam w(x)/(l —
0
Hence,
1
p—t(x’ z) —m(@) < Q(diam —x) /
7(x) 7(x)
0
But we know :‘T)((f)) = wt(V) and
1 1 o) 1
/(1 —A)fdA < /exp{—)\t} dA < /exp{—/\t} dx = T
0 0 0

Therefore,
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We are now almost in position to give the following mixing time bound.

Corollary 5.6. For a non-bipartite, finite, simple, connected, unweighted graph G, the
uniform mizing time of the simple random walk on G satisfies

Too(1/4) < 80°.
If we further assume that G is regular, then To(1/4) < 24n>.

Corollary 5.6 is parallel to [13, Corollaries 4.3 and 4.6]. In the proof of Corollary 5.6,
the following lemma will be useful.

Lemma 5.7. For a reversible Markov chain with stationary distribution m and t = 0 mod
2, we have

In addition, max, , |%‘ is decreasing in t.

Proof. One may refer to the proof of [13, Proposition A.1]. The monotonicity is men-
tioned in Lyons and Oveis Gharan [14]. O

Proof of Corollary 5.6. a) Combining Lemma 5.7 and Corollary 5.5, for t = 0 mod 2, we
have

pi(x, ) — w(x) 2(diam(G) + 1) wt(V)
~ t .

polz,y) —mly)
m(y) ‘< z

max
T,y

m(x)
In addition, we notice that wt(V) < n(n — 1). Because

2(diam(G) + 1) wt(V) o 2n-n(n —1)
8n3 = 8n3

)

| =

<
the second assertion of Lemma 5.7 ensures
Too(1/4) < 803,
b) To prove the second assertion, we assume G is d-regular. By Lemma 2.5, we have

diam(G) +1 < 37”

In addition, wt(V') = nd. Therefore, we have
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2(diam(G) + 1) wt(V) -
24n? =

|

Consequently, the second assertion of Lemma 5.7 gives
Too(1/4) < 24n%. O
6. Transitive case

We consider vertex-transitive graphs in this section. Recall that a graph G is vertex-
transitive if for every two vertices z and y of G, there is an automorphism ¢: G — G
such that ¢(x) = y. When a graph G is vertex-transitive, all vertices of G have the same
weight, denoted by w.

6.1. Estimate of spectral measure
Given a vertex-transitive graph G, set
N#(r) = ’{v €V dist(v,z) < r}l.
This value does not depend on the choice of x because G is vertex-transitive. Further-
more, as in [13, Lemma 6.4], for every two vertices x,y € V, it is easy to see that

120, = I1E21,-

Lemma 6.1. When G is vertez-transitive, for each x € V,

or2 = Y YY) po po)
vEN (x) w

Proof. By the definition of F/2,

ope _ Qo)L _ Io()QL,

However, by direct calculation,

Thus, we have
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> W(x,v)(fg(6)11+fg(5)1v)

w w
vEN (x)
-y o). o
vEN (x) w

The following Theorem 6.2 is similar to the first assertion of [13, Theorem 6.1].

Theorem 6.2. Let G be a vertex-transitive, non-bipartite, simple, connected, weighted

graph with weight at least 1 for each edge. For each x € V, c € (0,1), and § € ( , w}, we
have
1
2(§) <
Ha ( ) = CQN#<drcsm V(1—c)/2 )
arcsin \/wd /2
Furthermore, for § € (0,2],
pE0) < s
2 —C
¢ N#( Vs )
Proof. Fix a vertex x € V.
a) Consider the spectral embedding {F2; v € V} based on Q. Let
p=NERl,,  Bo= max |F2+F2,
vEN (x)
We have
1 1 w(z,v)
Q e > Q Q Q
= 2<QFI7F:IJ> < Z (Fm +F’u)7Fz>
=M v\ S, w .
1 w(z,v)
(”FQ”w + <FUQ’FIQ> )
=R %%) w v
1 3 w(z,v) |F2 + F2|5,
T IEQIP 2
w veEN ()
1
ES + F2 2.
> g e P2+ PO = 5o
In other words, % < /wd /2. Since we assumed that ¢ € (0, ], by the monotonicity of

arcsin function on the interval [0, 1], we have

2 arcsin g_o < 2aresin \/wd /2.
P
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b) Set By = B(m, arcsin y(1-¢)/2 V<176)/;) For v € By, let P = uguy - - - ur_1u, be a shortest

arcsin y/(wd)/
path joining x and v, with ug = x and u, = v. Define

F; = (-1)'F2, i=0,1,2,...,7

Uq

arcsin y/(1—c)/2
Then r < “arcsin \/(w0) /3 and

1Fs = Foa|,, = B2 + F2

Uit1 H

i=0,1,2,...,r— 1.

Write 8(hy, ho) for the angle between hi, hy € £2(V,w). Then using the sphere metric,
we get

r—1
0(Fo, F,) < 0(Fi, Fipq)
i=0
r—1 r—1 Q
= ZQarCSin —HF FH’lH ZZarcsm —H o +2Fu “H
i=0 p
r—1 ﬂ <3)
< 2 arcsin 2—2 < 2rarcsin \/wd /2

N
Il
<

/1=
aerm )/ arcsm Vwd/2 =2arcsiny/(1 —c)/2
arcsin y/wd /2

= arccosc.

Thus,
|cos H(FIQ,FUQH = Cosﬂ(ﬁo,ﬁr) > c.

. _ arcsin (lfc)/2>
In summary, if v € By B(:E7 arcsin /(@0)/3 )

‘COSQ(FIQ,FUQ)‘ >c
¢) By the above discussion,

P =122 = > w|F2(w)|*

veV
=S w|(F2,F2) [P >w Y |(F2,F2), |
veV vE DBy
=w Y |eos§(F2, F2) " IF2)2IF2|12

vEBy

arcsin y/(1 — ¢)/2 )

arcsin y/wd /2

> wp402N# (
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Thus, we have

1
2
< .
wp CQN#(arcsin \/(176)/2>
arcsin \/wd /2
Now, by Lemma 2.3,

1
n8(8) = wl F2| = wp® < R
CQN#(arcsm (1—c)/ )

arcsin \/wd /2

The first assertion is proved.
d) Now we turn to the second assertion.
If (1 —¢) < wd, then

Therefore,

— > 1.
C2N#(—M)

Vwd

But z2(5) < 1. So the second assertion holds in this case.
If (1—¢) > wd, then \/wd/2 < 1. Thus, arcsin /wd/2 is defined. Note that —%— is

arcsin x

decreasing for = € (0,1). Therefore,

V(l—¢)/2 < Vwd /2 .
arcsin/(1 —c¢)/2  arcsin/wd/2

Consequently,

\/1—c<arcsin (1-2¢)/2
Vws  arcsin Jwd/2

Hence, the second assertion follows from the first one immediately. O

By the bounds on vertex spectral measures in Theorem 6.2 and [13, Theorem 6.1],
using the method as in Theorem 3.5, we may get a similar result as [13, Corollary 6.6].

Corollary 6.3. Let G be a finite or infinite, vertex-transitive, d-reqular, non-bipartite,
simple, connected, unweighted graph with at least polynomial growth rate N#(r) > CrP,
where C > 0 and D > 1 are constants and 0 < r < diam(G). Then for each x € V and
t>0,
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20t P/? for t=0mod 2,

0<pi(z,x) - ()
| Ct=P/2 for t=1mod 2,

<
X
[pu(a,o) - nlw)| < &

>~ (D44)P/2+24D/2 D
where C = Wr(i) O

The proof of this corollary is omitted. An analogue of [13, Corollary 6.7] could also
be written down easily.

6.2. Minimum eigenvalue

For a connected, finite graph G and its signless probabilistic Laplacian Q = I + P,
we know that 0 is an eigenvalue of Q if and only if G is bipartite from Corollary 2.2.

Theorem 6.4. Let G be a vertex-transitive, non-bipartite, finite, simple, connected,
weighted graph with weight at least 1 for each edge. Then

™

2 2
Q = .
AZi, = " (sm —4(diam(G) n 1)) .

Theorem 6.4 is a partial analogue of the second assertion of [13, Theorem 6.1].

)
Proof. We may assume ’\‘3‘" < 1: otherwise, the inequality is trivial. Consider the spec-
tral embedding based on Q with § = A2, . Fix z € V and let

min*

S={seV; f(s) =0}, T:={teV; f(t)<0}.

It is easy to see that both S and T are non-empty. Because G is assumed to be non-
bipartite, there exists an edge (s1,s2) € E with s1,s2 € S, or an edge (t1,t2) € E with
t1,to € T.

a) If there is an edge (s1,s2) € E with s1,82 € S, let PO be a shortest path from x
to {s1, 32} Without loss of generality, we may assume Po is from z to sp. If |730| is odd,
we set P = 730; if |730| is even, we set P = 790 (s1, 82), the concatenation of 730 and the
edge (s1, s2). Hence, Pis a path of odd length in any case. Assume

~

P = uouy - - - ug,
with ug = x. We define

Fy=(-1'F2, i=0,1,2,... k.

Uj

Then Fy = F2 and
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(Fo, Fr), = (-D)NF2,FL), = —(F2,F2), = —(Io(0)1s/w, Ig(0) 1y, /w),,
= _<IQ(5)1w/w’ 1uk/w>w = _<IQ(5)lx/w’ 1Uk:> = _<FgcQa 1y,
Hence,

< 9(ﬁ0,ﬁk)-

ol

In addition, using the sphere metric as in Eq. (3), we have

H(ﬁo,ﬁk) < 2k arcsin y/ wAS

min

Combining Egs. (4) and (5),

< 2(diam(G) + 1) arcsin \/wAZ,, /2.

B

So in this case,

2 0 2
Q = .
Amin = " (sm —4(diam(G) " 1)) .

/2 < Q(diam(G) + 1) arcsin w)\ﬁin/Q.

39

b) If there is an edge (t1,t2) € E with t1,to € T, let Py be a shortest path from x to
{t1,t2}. Without loss of generality, we may assume Pq is from z to t;. If [Pg| is even,
we set P = Py; if | Pl is odd, we set P := Pg.(t1,t2). Thus, P is a path of even length

in any case. Assume
P = wvovy -+ - vy,
with vg = x, and define
F; = (-1)'F2, i=0,1,2,...,¢.
Then Fy = F2 and
(Fo,Fp), = (-1)(F2.F2) =F2(v) <0.
Hence, we have

5 < 9(Fo.Fy).

In addition, using the sphere metric as in Eq. (3) again, we have
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0(Fo, F,) < 2Carcsin wAS, /2 < 2(diam(G) + 1) arcsin wAS, /2. (7)

min

Combining Eqgs. (6) and (7), we get

g < 2(diam(G) + 1) arcsin \/ wAZ,, /2.

So in this case,

2
Ao 2 T

2
> 5 (sin (diam(G)+1))' -

7. Average return probability

In this section, we deal with the average spectral measure of @ and average return
probabilities for simple random walk on generic non-bipartite, simple, finite, connected
graphs. Our method is inspired by [13, Section 5].

7.1. Estimate of average spectral measure

Define average spectral measure of Q as

= 23 20)

zeV
We also write p§ () = 3", g n2(6) for SC V.

Theorem 7.1. For any non-bipartite, finite, simple, connected, unweighted graph G and
§ € (0,2), we have

12(8) < (40000)Y/3.
Theorem 7.1 is comparable to [13, Theorem 5.1].

Corollary 7. 2 For any non-bipartite, finite, simple, connected unweighted graph G, we

haye)\ > 4000n3 for 1 < k < n. Therefore, )\k > —1+ 400%3

Proof. By the same argument as in the proof of Corollary 3.4, this corollary follows
easily from Lemma 3.3 and Theorem 7.1. O

To prove Theorem 7.1, we need some preparation.
Let m == | 2412(0)] + 1. For each z € V, set

o) o) HFxQHw Q Q || ||
@)= {ye Vs |F2 - F2|, < "= or [|F + B2, < = ).
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We will use Algorithm 1 to get some useful sets.

Algorithm 1 Set-Selection.

Let So + V.

for i =1 — m do
Choose a vertex x; in S;_; that maximizes ug (6).
Let S; <+ S;—1 \.%(1}1)

end for

return % (x1), Z(x2), ..., Z(Tm).

For each x € V, set

IF2,
N@) = {ye N@); I1F2 + F2), < =5 .

Let T(z) be the star formed by x and N(z). We pick T(z) as a maximal (with respect
to inclusion) connected bipartite graph including T'(z) such that

Vy c V(T(SL’)) HF:EQ _ (_1)dist(9c,y;T(ac))FyQHw || ”

Lemma 7.3. Let G be a non-bipartite, finite, simple, connected, unweighted graph and
5= A

min

(0) Fori=1,2,...,m, we have ,u{%(zi)(é) < %
Q
(1) Fori=1,2,...,m, we have u2(8) > * . In addition, Algorithm 1 is well de-
signed: each S;_1 is non-empty and x; could be chosen fori=1,2,...,m. Therefore,

Algorithm 1 is not stopping before i = m.
(2) For1<i<j<m, V(T(x;))NV(T(x;)) = 2.

Lemma 7.3 plays a similar role to that of Lemma 5.2 in [13].

Proof. (0) Since § > \S,

min’

we must have ||F2[|,, > 0. By the proof of [13, Lemma 3.13],
for any two non-zero vectors in a Hilbert space H,

f g 2/ f — gll3,
w(— 9N 5 W9l 8
ST )

where Rz is the real part of a complex number z. Also, for y € Z(x;), by the construction
of %#(x;), we have an integer o;(y) such that

H 0'1 y)FQH || ||

This implies || F,2|[,, > 0 for y € 2(x;).
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Therefore,

F2 F2 2
_ E Q42 Y z;

yER(xi)

Z ( )< (— 1)oz(y)FQ F2 > 2
= Y 1w ) |
! I(=1)7 @ ER1, " 12,

yEZ(x4)
212 — (1) WERI 2
Q T Yy Hw
> 3 W) (1- el )
YEZ (i) T llw

2\2 49
Q I D N ©)
2 /{@(xi)(é) (1 16) = 64M=%’($i)(6)’
where we use Eq. (8) to get the first inequality.
It follows that

64
”%(afi) (0) < 49

(1) We know M%O(S) = p2(8) = nu(s). In addition, by assertion (0), the total
spectral measure of removed vertices in each iteration of the for loop in Algorithm 1 is
at most %. We have, for each i < m,

nu2(9)
3 Y

4
Hg L (0) = nu(d) = Sm—1) >

where the last inequality holds by the definition of m. This implies S;_; # @ and =z;
could be chosen in Algorithm 1 for ¢ =1,2,...,m. In other words, the algorithm is well
designed and is not stopping before i = m.

Furthermore, since z; has the largest vertex spectral measure in S;_1 for ¢ =
1,2,...,m, we have

“S%_l((s) S :“gm_l(5) u2(6)
n = " 3

s (8) >

(2) Suppose that some vertex y lies in V (T'(x;)) NV (T'(z;)). We deal with assertion
(2) in the following two cases. For ease of notation, we write 75 = dist(zy, y; T(x)) for
k = i,j. By the construction of T'(x;) and T'(x;),

. 1F2 |l || -
175 = 0™ ER, < k=i.j.
Case (a): [|F2]l,, > $IIF2ll,, In this case, we have

1ER1L, = I =0=ER],
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5

—H 2|\, >3 5lES

_ - Q
- 9 ||F907 |w'

w

Thus, we have

N 10
IO FRIL, = 1521, > 5 1B,

This contradicts our assumption that y € V(T (x;)).

Case (b): || F; ||w < 2||F2|,,- In this case, we have
(el G VNS o e 1 e G e S C I “”JFQI|
< ||Faf‘f —0ER, + (- “FQ —nmEg,
= 1E2 = GO R, + 1S - (- ”FyQHw

HFSII IFSl, 1 1
< i W J < (_ )
g 0 < (o) IFS,

_ IEE

4

Thus, z; € #(x;). But this is impossible.
Therefore, we may conclude that V(T'(z;)) NV (T(z;)) =@. O

For a subset E' C E(G) and a mapping F: V — H to a Hilbert space H, we define
energy

EE) = > |IF+F,l3

(z,y)EE’

For S C V, let E(S) be the collection of edges that are incident with the vertices in S.
We define the energy of S as £(S) = E(E(S)).

Lemma 7.4. Assume that the graph G is a non-bipartite, finite, simple, connected, un-
weighted graph. When 6 > )\I%n, for1 <i<m,

E(V(T(x))) > 250|V (T(x,))|*

Lemma 7.4 plays a similar role to that of Lemma 5.3 in [13].

Proof. a) We first consider the case w(z;) > |V(T'(z;))|. Recall that w(z;) equals the
degree of x;, since we are considering unwelghted graphs. In this case,
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E(V(T(x:))) > > IFS + F2|2
YyEN () )\V (T (x:))

0112
> [N @)\ V(T ()| - Pl

ZAQ)
= |N(2:) \ V(T ()] - 8lw(z;)
12(5
> (w(@:) = [V(T ()| + 1)W(())

12(9)
250V (T(2:))|

where the second inequality holds because V(T'(z;)) 2 N(z;), and the third inequality
holds thanks to Lemma 7.3(1).

b) We now turn to the case w(z;) < |V(T(z;))|. In this case, we claim that there
must be a path zgzq - - - z¢, such that ¢ < ‘V xl))|, zo = xi, and

#2 - -1y, > Ml

In fact, if V(T'(z;)) is a proper subset of V, there is a vertex y € V' \ V(T'(z;)) with
dist(y,T(:vi);G) = 1. Let 2921---2¢ be a path joining 2y := z; and 2, = y, with
2021 - - - z4—1 being a path in T'(z;). Because T (x;) is assumed maximal and y ¢ V (T'(x)),
we must have

121,
72 - (-verg), > V2
If V(T (x;)) =V, since T(x;) is assumed to be a maximal connected bipartite graph and
G is a connected non-bipartite graph, there must be an edge e = (u, v), whose addition
to T'(z;) results in an odd cycle. To be specific, we have
dist (i, u; T'(x;)) = dist(w;,v; T(2;)) mod 2.
Write 7 := dist(z;, u; T'(z;)). Then

. IF2
72— -y rey), < e

This implies

F2
178 - i, > 1l o
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172

In fact, if otherwise || F.2 — (—l)T‘HFuQHw < 2 then

||2Fm

w"

T T 1 1
— |FS (17 FR 4 E - (R, < (54 D))

=0. But [|[F2|, #0for 6 > A2,
w 2w

Now pick a shortest path zgzy - - 2z¢—1 joining z; and v in T(z;), where zg = z; and
ze—1 = v. Let zp = u. Then zpz1---2z¢_12¢ is a path joining x; and u. Hence, by our

assumption,
{—1=7 mod 2.

Therefore, Eq. (9) can be written as

b2,
e2 - ey, >

Our claim is proved. By the claim, we have

~ 2 2
g ZHFQ + FZQk+1 = Z”(_l)kFZQk - (_1)k+1FZQk+1 Hu)

1 2
(Zn DEFES - ((FES, L) 2 IR - () E2I

11 1 15
> glFal > V(T ()] 81
R SR C) S S (5 )
V(T (x:))] 8lw(z:) ~ |V(T(z;))| 250w(a;)
pe(5)

" 250(V(T ()"

where the sixth inequality follows from Lemma 7.3(1), and the last inequality holds
thanks to our assumption that w(z;) |V xl))| The proof is complete. O

Proof of Theorem 7.1. To begin, we claim that

2
< Z(y,z)€E(G)HFyQ+FZQ”w
Z 2

ZIEVHFQJQwa(x)

This can be proved exactly in the same way as [13, Lemma 3.14]. In fact, for all x,y € V,

F2(y) = (Io(0)1s/w(z), 1,) = (1(8)1s/w(2), 1, /w(y)), = F2(x).
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Therefore, using Lemma 2.1, we have

S w@IFE+F2R = S wly2) S w@)|(F+ F2) (@)’

(y,2)€E(G) (y,2)€E(G) z€V
= > w2 Y w@)|FRy) + L)
(y,2)€EE(G) 2%

Proceeding further, we get that

S ww)FE+ FRL =Y w@) Y wly2)|F2(y) + FE(2)|

(y,2)€E(G) zeV (y,2)€E(G)
=Y w(@)(F2,QF2).,
zeV
<Y sw(@)|[F2,
zeV

The claim is thus proved.
Now we assume § > A\, without loss of generality. Since for different i and j,

V(T(z:)) NV(T(x;)) = 2,
we have Y7 |V(T'(z;))| < n. Therefore,

Z(my)EE ||FQ+FQH li
ZyevHFQwa( ) ”“Q 2=

SR () >m3>;»@<6>3
2nu9(8) & 1250|v (@) ~ 500m3 ~ 4000 ’

where the second inequality follows by Lemma 2.3 and the fact that each edge is counted
in at most two sets T'(x;) for energy, the fourth inequality follows by convexity of the
function s+ 1/s2, and the last inequality holds because m > nu<(d)/2. The proof of
Theorem 7.1 is complete. O

7.2. Average return probability

Using Theorem 7.1, we can bound average return probabilities. Theorems 7.5 and 7.6
together are comparable to [13, Corollary 5.4].

Theorem 7.5. Let G be a non-bipartite, finite, simple, connected, unweighted graph. Then
for t =0 mod 2, we have

0< ervpt(l'vx)*l < 30
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Proof. Set
nv/4000 if A > 0 and nv/4000\ < np*(1),
O(N) = < nu*(1) for intermediate values of A,

n—1—n<{/4000(2 — \) if A<2and n—1—ni{/4000(2 — A) = np*(1).

Then as in the proof of Theorem 3.5, by Theorem 7.1 and [13, Theorem 5.1],

<I>(0) —0, @2 =n-1,
(A for X e0,1],
(A) for Xe[l,2].

Therefore, by our calculation in part a) of the proof of Lemma 2.7, for ¢ = 0 mod 2,

Zpt(ﬂf,x):Z(ﬁ(x)—i—(l—ﬂ- _Hg/ Zﬂm ~ A

xzeV zeV 0 zeV

2 2
_ n+t/w*(A)(1 — AL < n+t/¢’()\)(1 — ) tdA
0 0

2 2
—n—(n—1) +/ d)\:1+/(17>\)t¢>’(>\)d)\
0 0
1
< 1+2/(1—A)f@x2/3(u
/ 3
<1420
t1/3°

where we are using Lemma 2.6 to get the third equality, and the last inequality holds by
Lemma A.2 in the appendix. Therefore,

Zmeth(x7x) -1 < ﬂ
n /3

On the other hand, for all z € V and even ¢, p;(x,z) > 7(x). Hence, we have

ZIGV pt(l',.lf) -1

n

=>0. O

Theorem 7.6. Let G be a non-bipartite, finite, simple, connected, unweighted graph. Then
fort =1 mod 2,



48 Z.-F. Wei / Journal of Functional Analysis 284 (2023) 109799

|Zmevpt( 71|
n t1/3

Proof. a) Let ¢ =1 mod 2. By our calculation in part a) of the proof of Lemma 2.7,

2

Zpt(iv,ff):Z(w(m)—(l—w +t/ Z/J‘a: A1 dA

zeV zeV 0 zeV

2
—2—n+t/nu A)hda.
0

b) Set
Ui(A) = (nflfn{)’/W) V0.
Then by Theorem 7.1,
¥1(0) =0, Ui(2)=n-1,

> i) =W\ for A€ [0,2].

zeV

By our calculation in part a),

2
> pila,x)=2-n +t/\111()\)(1 — A hda
0

zeV
2 2
=2-n+(n-1) +/ d/\_1+/( — NI (N) dA
0 0
1
/ NG 4000A 2/3d)\>1_15_n
$1/3”
0

where the first equality holds thanks to Lemma 2.6, and the last inequality follows from
Lemma A.2 in the appendix.
c) Set

Wy(A) = (nV4000X) A (n —1).
Then by [13, Theorem 5.1],
Uy(0) =0, Wa(2)=n—1,

> ui(h) < Wa(n)  for A€ [0,2].

zeV
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Using a similar argument as in b), we get

15n
z‘:/pt x,T) t1/3' O
xe

7.8. Sum of eigenvalue powers in absolute value

Since similar matrices have the same trace, we have

Toeypin2) =1 YL 0N =1 15~ py

n n n <

Therefore, when t > 2 is even, Theorem 7.5 gives

n—1
1 Pt DogevPi(z@) =1 30
N == < 10)

For odd ¢, we have

’Zpt:rx —1‘—‘2 /\P

zeV

n—1
<DL
=1

Theorem 7.6 will not give a bound on Y /| )\P " directly for odd t. But we can still
make a detour and bound Y . |)\P " by Theorem 7.5 as follows.

Proposition 7.7. Let G be a non-bipartite, finite, simple, connected, unweighted graph.
We have

IS 30
Ezp\ﬂtém for t=0mod 2 andt > 2

0
— A“g— or t=1mod?2 andt > 3.
n;' g

The bound in Theorem 7.6 is t1/3; we get the bound for odd t in Proposi-

(t2 1)1/6
tion 7.7. These two bounds are not far apart: they are of the same order in t.

Proof of Proposition 7.7. The assertion for even ¢ is nothing but Eq. (10). We now con-
sider odd t. When ¢ > 3 is odd, by Eq. (10),
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n—1 n—1
Zp\Pt_Z |>\P‘ |/\P| 1/2 (Z‘)\Pt 1) (Zp\ﬂtﬂ)l/
i=1 i=1

< (o) (5me) "
30n
/i2 -1

where the first inequality holds thanks to the Cauchy—Schwarz inequality. O
8. Bipartite case

Now we deal with bipartite graphs. On bipartite graphs, simple random walk has
period two. We have the following result on return probabilities, whose proof uses only
the bound on the vertex spectral measure of £ from [13, Theorem 4.9)].

Theorem 8.1. Consider a reqular, bipartite, simple, connected, unweighted graph G. For
each x € V, simple random walk on G satisfies
18
0 < pe(z,x) —2m(z) < — for t=0mod 2.
Vit
To prove Theorem 8.1, we don’t need to get a bound on the vertex spectral measure
of Q as we did in Section 3, because the following lemma gives us a relation between the
vertex spectral measures of £ and Q.

Lemma 8.2 (/17], Theorem 4.8). If G is bipartite, the spectrum of P is symmetric with
respect to zero. For each x € V', the verter spectral measure of P, <Ip(d5)ea:,ew>w, 18
symmetric with respect to 0. As a consequence, if G is bipartite, for each x € V and

6 €[0,2], pa(0) = /U'g((s) O

Proof of Theorem 8.1. a) Set

15\ if0<\<2,
pE () = _
1—27(z) it A =2,
and
10vV/A if A >0 and 10V < p#(1),
e? (\) = S p#(1) for intermediate values of A,

pi(2) —10v/2 - X if A< 2and pf(2) — 10v2 — X = p(1).

Then p#(0) = p#(0) = 0, ¢ (2) = pu#(2) = 1 — 2r(z). In addition, by Lemma 8.2 and
[13, Theorem 4.9], we have
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ui (N

©*(\) for A €0,1],
pE) = ¢

<
> o*(\)  for Ael,2).

b) Now let ¢ be a positive even number. We have

Pl z) = / (1= 2! ()

0,2
[0,2] (11)

Hence, we see that

¢) On the other hand,

P, z) = 2m(z) + / (1— N p#(an)
[0,2]

2
= 2n(a) + (1= Nt~ [uFO)da -
0

2
=2m(z) + (1 — 27 (z)) —i—t/uf()\)(l — N hdA
0

(1= N)"(") () dA

1 1
5(1— )t (1- A
< 2m(z) + 2 d\ = 27(z) + 10 dA
0/ VA O/ VA
18
< 271'(1’) + %7

where the fourth equality follows from Lemma 2.6, and we use Lemma A.1 to get the
last inequality.
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d) Summing up the above discussion, we get, for x € V and ¢ = 0 mod 2,

18
0 < pe(z,2) —2m(x) < 7 O
Theorem 8.1 is an example of treating simple random walk on bipartite graphs. Using
the same method, one may get parallel results to what we had in previous sections. For
instance, the following Corollary 8.3 is parallel to Corollary 6.3.

Corollary 8.3. Let G be a finite or infinite, vertex-transitive, d-reqular, bipartite, simple,
connected, unweighted graph with at least polynomial growth rate N#(r) > CrP, where
C > 0and D > 1 are constants and 0 < r < diam(G). Then for each x € V and
t =0 mod 2,

0 < pe(z, ) — 2m(z) < 20t P72,

~ D D/2+24D/2
where C' = (;;gwf(%) O
Note that the rate t—P/2 here is the correct decay rate for the simple random walk
on ZP, D € N. To prove Corollary 8.3, one need only follow our argument in the proof
of Theorem 8.1 and use the bound on the vertex spectral measure of £ obtained in [13,
Theorem 6.1]. Details are omitted.

9. Combinatorial signless Laplacian

We used spectral embedding to deal with random walk on graphs in previous sections.
In fact, this tool is also powerful in analyzing the spectrum of graph adjacency matrices.

Assume that G is a weighted finite graph. Let £2(V') be the Hilbert space of functions
f:V = R or C with inner product

(f.9) =3 F@)g(@)

zeV

and squared norm || f||* := (f, f). Let W be the diagonal weight matrix of the graph G:
W = diag(w(z); « € V). Then it is easy to see that the combinatorial signless Laplacian
© := W + A is a bounded self-adjoint operator on £2(V). We denote the resolution of
identity for © as Ig and define the vertex spectral measure of © at z € V as

1 (8) = (I ([0,0])1,, 1,), §>0.

For ease of notation, we also write Ig(d) := I ([0,4]) for 6§ > 0.
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Lemma 9.1. For f € (*(V), we have

©fLN) =Y wouw|f©)+ W]

(v,u)EE

Therefore, the spectrum of © is non-negative. Moreover, if f € img(I@(d)) for some
5> 0, then (0f, f) < d||fII°. ©

See the appendix for a proof.
For § > 0, we define the spectral embedding based on © as

FO:V = 2(V)
z = FO = Ig()1,.

It is clear that F is a real-valued function on V for each z € V.
Lemma 9.2. For each finite graph G and x € V,
|E2IP = F2(2) = u2(5).
Proof. Since Ig(d) is a self-adjoint projection operator on £2(V'), we see that
12" = (F2. EP) = (o(09)15. Lo(0)1s) = {Io(6)1. L),

By the definition of the vertex spectral measure of ©, we see that (Ig(d)1,,1,) = u2(6).
Moreover, since Ig(8)1, = F9, we have (Ig(6)1,,1,) = F2(z). O

(—)

We have

Lemma 9.3. If 49 () > 0, define f: V —C as f =

*‘C

M £l =1;
(2) f(2) = /B (®);
(3) f € img(Io(5)).

Proof. The first and third assertions are obvious. As for the second assertion, by
Lemma 9.2,

_FP@) _
T = 5o \W =V

We are now in position to present bounds on vertex spectral measures. Denote the
eigenvalues of the combinatorial signless Laplacian ©® on G as

=20 <A <AD < <00 <00 =08

max-*
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Recall that £ (G) is defined in Definition 5.1; Lemma 5.2 shows that # (G) >
when G is non-bipartite.

1
diam(G)+1

Proposition 9.4. Let G be a non-bipartite, finite, simple, connected, weighted graph with
weight at least 1 for each edge. Then for each § € [0,\2,.) and x € V', we have

? max

)
pg (6) < Y4

< (diam(G) + 1)4.

Proof. This proof is a mimic of the proof of Lemma 5.3. Fixing a vertex x € V', we define
f as in Lemma 9.3.
When 0 <6 < A9, 19 (d) = 0 by definition. So the inequality holds automatically.
When A2, < § < A9, we know that f is orthogonal to the eigenspace of ©

min max’
(S]

corresponding to A ., which is spanned by a positive vector according to the Perron—

Frobenius theorem. By Definition 5.1, we have

6= (f,0f)= Y wu)lf)+ W= f@)PA(G)=p(6)#(G). O

(vyu)EE

In order to get a lower bound on eigenvalues of © from Proposition 9.4, we need the
following Lemma 9.5.

Lemma 9.5. Let G be a finite, connected, weighted graph. We have

> ug0) = {5 AY <6}

zeV

Proof. Note that

ST u86) = 3 o (9)1a,1.).

zeV zeV

This is the trace of Ig(d), which equals the dimension of its image. Therefore, we have

S u0)=|{j; A <} o
eV

Corollary 9.6. Let G be a non-bipartite, finite, simple, connected, weighted graph with
weight at least 1 for each edge. For 1 < k < n, we have

20> kA (G) > k '
n (diam(G) + 1)n
Proof. By Proposition 9.4,
) nd
os) < _9 _
210 2 G ~ o
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Hence, Lemma 9.5 gives

nod
H(G)

1{7: A9 <} <

kA (G)

Therefore, we must have )\? > O

For the adjacency matrix A of G, we denote its eigenvalues as

—Wmax < Ain = A AP <AF < S <AL = Miax < Wimaxs
where wpax = maxgey w(z). The following Corollary 9.7 improves [1, Theorem 1.1],

which obtained that dpay + A > m for unweighted graphs.

Corollary 9.7. Let G be a non-bipartite, finite, simple, connected, weighted graph with
weight at least 1 for each edge. For 1 < k < n, we have

kA (G) k

4> > .
’UJmax"‘Ak = = (dlam(G)+1)n

Proof. Let X; be the linear subspace of £2(V) spanned by the eigenvectors of A corre-
sponding to A, A, ..., )\f, and X5 be the linear subspace of £2(V) spanned by the
eigenvectors of © corresponding to )\?, )\%_1, ooy A9, Then

dimX; >k, dimXo>n—FEk+ 1.
It follows that
dim X; + dim Xy > n = dim £2(V).

Therefore, the intersection of X; and X5 contains a non-zero vector h of unit norm.
Hence,

kA (G)

<AL < (Oh,h) = (Wh,h) + (Ah,h) < Wiax + A\p. O
n

Remark. The combinatorial signless Laplacian is also related to line graphs. Let p; >
p2 = -+ = pr be the positive combinatorial signless Laplacian eigenvalues of G. Then by
Brouwer and Haemers [2, Proposition 1.4.1], the eigenvalues of the line graph of G are

0;
0; = —2, i=r+1,r+2,...,|EG).

pi — 2, 1=1,2,...,m7,

Using this relation and Corollary 9.6, one may do some quick analysis on the spectrum
of the line graph of G.
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Appendix A
A.1. Miscellaneous lemmas and proofs

In the proof of Theorem 3.5, the following elementary calculation is needed.

Lemma A.1. Fort > 0, we have

1 tl
0/(1—/\)ﬁd)\<

ot
gle

Proof. We have

1

1 o
1
/(1 - A)tﬁ dX < /exp{—)\t})\_l/Q dr < /exp{—/\t}/\_l/2 dA.
0 0 0

Taking a change of variable At = s, we get that

e (s/t) 2 d(s/t) < —= [ e s/ ds
/ x/
0
9
S5VE

Hence, the inequality follows immediately. 0O

Lemma A.2 is useful in the proofs of Theorems 7.5 and 7.6.
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Lemma A.2. Fort > 0, we have

1
$/4000 40 s 15
/ 34\ < 7
0
Proof. We have
1 [e%e]
/ A28 dAx < / exp{—AIA"2/3d).
0 0

Taking At = s, we get

o0

/ exp{-MIA"2/3 d) = / o= (s/8)"2/3 d(s1)

0

L oo, T(/3)
:—// 5723 ds = VER
0

Therefore,
1
d 3
40 A2 ) < /4000 F(1/3) -
3t1/3 t1/3
0

Proof of Lemma 2.1. We need prove the first assertion only. First, we claim that

3" w(v,w)[f©)|If(v) + f(u)] < co.

v,ueV

In fact, we have

> ww)fO)F©) + )] < Y we,u)([f©)7+ £ )] f(w)])

v,ueV v,ueV
= > wu)lf@)*+ Y wv,u)|f©)lf(w)].
v,ueV v,ueV

By the Cauchy—Schwarz inequality, we may proceed and get

Y wlow)[ f@)If )+ fw)] < Y wlo,w)|f()]

v, u€V v,ueV

(X wwarP) (2 wewlwP)

v,ueV v,ueV

1/2
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= 3 wewlf )P+ Y wlow)lf©)

v,ueV v,u€V

=2 > wEwlfEF =23 If@)F > w,u)
v,ueV veV ueV

=2 If(0)*w(v) = 2||f],, < oo
veV

The claim is proved. By this claim, using Fubini’s theorem, we have

> wv,u)f () (f(v =Y f©0)> w,u)(f(v) + f(u))

= w@)f@)(f@)+ > plv,u)f(u)
veV uev

=S w()f@) (I +P)f)(v) = (f, L+ P)f)u
veV

= <f7 Qf>w

By interchanging v and v, we have

> ww,u) fu)(f(0) + f(w) = (f, Qf -

v,u€eV

Therefore,

> w4 Fw) =5 Y wl,u)| @) + )’

(v,u)EE v,u€V
=2 (3w w @) (F@) + 1) + 2 wlo,w) ) (F@) + )
v,u€V v,ueV
= 5((£,Q)w+(£.Qf)u)
= (£,Qf)u- ©

Proof of Lemma 9.1. We need to prove the first assertion only. Notice that

Y wlo, ) f@)(f(0) + flw) = Y f0) Y wlvu)f(o) + Y f(0) Y wlv,u)f(u)

v, ueV veV ueV veV ueV
=Y f@uw@) )+ f
veV veV
= (LW +(f,Af)
= (f,0f).

By interchanging v and v, we have
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> wv,u)f(w)(f(v) + f(u) = (f,0f).

v,ueV

Therefore,

3w w)|f) + fw)]

(vyu)EE
_ %( > w(o,w) @) () + f) + 3w, f@)(F©) + ()
v,u€V v,ueV
=L((f.0f) +(f.01))
=(f,0f). O

A.2. Return probability bound involving relaxzation time

In this part, we consider finite graphs only. We use essentially a similar method to
Oliveira and Peres [19]; yet the negative spectrum of P is also considered. Let G be a
non-bipartite, finite, simple, connected, unweighted graph. Then A\, = AP > —1. Set
A= M| VAL |, tee = (1 — A)7L = 2[ta1 /2] — 2.

Theorem A.3. Let G be a non-bipartite, finite, simple, connected, unweighted graph. For
t > 0, simple random walk on G satisfies

20d(x)v/trel + 1

|pi(z,2) —7(2)] < (t + 1)dmin

Theorem A.3 is analogous to Oliveira and Peres [19, Theorem 1.2]. To prove The-
orem A.3, we need some preparation. Recall that the hitting time of A C V is
T4 =inf{t > 0; X; € A} and Green’s function is

t

gt(xay) = Zpt(xvy)7 t>o7 x,yEV
s=0

Lemma A.4. For t =0mod 2 and x € V, we have

1 gv (2, 7)
O < 9 - g : .
pul@, @) = 7(@) S 7 L+l

Proof. By Eq. (1), for t = 0 mod 2, p;(z,x) — m(x) is nonnegative and decreasing in t.
Therefore, we have

t/2

z i 1 (ZPQS(mwx) -+ 1)7T(3:)> (A1)

0 < pi(z,x) —w(x) <
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In addition,

t/2 /2 t/2
> pwa) - (3 + D) = > [ 0 p(N)e ]} =
s=0 SZO(—l,l)

(- 22) Izp(ane. I,

(=1,1) s=0
1— M2
= / T)\QHIP(d)\)exHi

(_171)
1 2
< T2 [1p(dN)ezx |,
(_171)

(A.2)
where Ip is the resolution of identity for P.
On the other hand, since for 1 < i < n,

()\lP)t'+2 < AL+2 < AVA=8) ot
we have

1—e! 1—\'+2
[ s i@t < [

IEESVE ||IP(d)‘)e:C||fu
(-1,1) (-1,1)

t'/2

t'/2

, (A.3)
S e 6+ ) < St
s=0 5=0

< g (2, ).
By Egs. (A.1) to (A.3),

t)2
5 ‘11‘ 1 (;p%(ﬂf, z)— (& + 1)7T(:E)>
< )

. L e (Ve
2Ly

B 1

RCERVCE

—1
[ 5 Iea@ved
(=1,1)

1
< mgt’(%z)-

Lemma A.4 is proved. O
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Proposition A.5. We have

24n? dave

dmin

trel <

Proof. a) Suppose G = (V, E). We construct an auxiliary graph G= (17, E) as follows:

(1) Let V' = {z; 2 € V} be a copy of V. The vertex set of G is V := V U V’;
(2) If (z,y) € E, we introduce two edges (z,y’) and (z/,y) in E.

Obviously, Gis a bipartite graph. So the spectrum of the transition matrix Pon G is
symmetric about 0. Denote the eigenvalues of P as

—1=XA <A <A< < Aop1 < Agn =1

Set tpe == N Xl . Because the eigenvalues of P are also eigenvalues of P, we have
—A2n-—1

trel < trel .

b) It is easy to show that diam(G) < 4diam(G) + 1. Using a similar argument as in
Oliveira and Peres [19, Proposition 3.1], one may get that

tre < diam(G) wt(V) < 2(4 diam(G) + 1) wt(V)

3 24 24n2d,,
< 2(4( no 1) + 1) wt(V) < 2 wy(v) = 2 Gave

min min dmin

For non-empty A C V and z € V' \ A, define G(z,z; A) = EZ[Zgial 1{X5¢A}].

Proposition A.6. We have

G(z,x; A) < 9(davgn 2
7(x) 2

) (1= n(4)).

dmin
Proof. By Lyons and Peres [15, Eq. (2.5)] and network reduction, we have

G A
Gl a5 4) (VR > A) = g Reir(z < A),

m(x)
where Rog(z <> A) is the effective resistance between x and A. Then we need only follow
the proof of Oliveira and Peres [19, Proposition 3.2] to get

daven
2d?

min

Reff(w > A) <

(1-m(4)). o
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Now fix z € V. For a > 1, let
Ao ={yeV; gu(y,2) <am(z)(t' +1)}.

We claim that A, # @ for a > 1. In fact,

I—n(d) = 3 ) < 3 wly) —2D)

!

iyl i am(z)(t' + 1)

_ Z (@) gr (2, y) <! 1 gv (2, y) (A.4)
ar(z)(t +1) t+1
yEV

1
=— <1

e!

So for a > 1, A, is non-empty.

Lemma A.7. Forxz €V,

g (z, x) P 6davgn\/m

ﬂ'(l') dmin
Proof. a) Set o = 53"‘—@" . t,—+ We claim «ag > 1. In fact, we have
Sdavgn 1 5davgn 1
ao — . — .
dmin t’ +1 dmin 2 [trcl/2w -
> Sdavegn . 1 o Sdavgn . 1
dmin Vv trel +2-1 dmin 24d '1vgn +2—-1
S Sdayvgn . /d.
- dmin 25ddvg” mln

Therefore, oy > 1. As a consequence, A,, is non-empty.
b) If z € A,,, by the definition of A,,,
(x,x
ge( ) <

()

c) If x ¢ A,,, by the strong Markov property, Proposition A.6, and the definition of
Aag )

5dav
ao(t +1) = vl T,

dmin

g (x,x) . G(z,z; Aay) E [gt’(XmaO:I)}

mx) (@) ()

< g . (davgn)2(1 — W(Aao)) —l—ao(t/ +1)

dmin
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9 /davgn\2 1
<= ﬂ) _ t+1
2 (dmin O40—'_a0( N )
Aayen
= (35 +OV + 15

6day
< —da LIV

where the third inequality is by Eq. (A.4). O
We are now in position to prove Theorem A.3.

Proof of Theorem A.3. a) Recalling that ¢’ = 2[t,e1/2] — 2, we have ¢ < t,. By Lem-
mas A.4 and A.7, for t =0mod 2 and z € V,

1 g (x, 1)
Ol w0 < == Ty
6davenm(z) 6d(x)
< t'+1= ¥ +1
0o D+ Ddo T T T Dl T
6d(x) 10d(z) Vtre + 1
X V trc 1 < Y T L
(1 — e_l)(% + ]-)dmin L dmin % +1
~20d(x)v/tra + 1
B (t + 2)dmin ’
Therefore, for t = 0 mod 2 and =z € V', we have
20d(x)y/trel + 1
0< ,T) — < ————7—.
pt(l‘ m> 77(33) (t + 1)dmin

b) Our calculation in part a) implies that for ¢ = 0 mod 2,

20d(z)v/Fral + 1
B _ LI ollf < S
plwa) = ale) = [ N Ie@Ve &+ 2domn
(—1,1)

Therefore, for ¢t = 1 mod 2, we have

o) —n@| = | [ N l@ved| < [N Ip@ve?
—-1,1

( ) ) (7111)

/ A2\ D2 ey |12,

(71’1)

Hence, the Cauchy—Schwarz inequality gives



64 Z.-F. Wei / Journal of Functional Analysis 284 (2023) 109799

_ 1/2 1/2
o) = w(@)| < ([ T e@en2) ([ N e )
(-1,1) (-1,1)
20d(z)\/trel + 1 _ 20d() /b + 1
S V=14 2)(t+ 1+ 2) duin (t+1)dmin
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