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ABSTRACT: RAFT step-growth polymerization was previously
demonstrated with monomers that bear low rate of homopropa-
gation to favor the chain transfer process; by contrast, acrylates are
known to be fast homopropagating monomers, thereby posing
serious challenges for RAFT step-growth. Here, we identified a
chain transfer agent (CTA) that rapidly yields single unit monomer
inserted (SUMI) CTA adducts with a model acrylate monomer.
Using a bifunctional reagent of this CTA, we successfully
demonstrated RAFT step-growth polymerization with diacrylates,
yielding linear polymer backbones. Furthermore, we achieved
inclusion of functionality (ie., disulfide) into RAFT step-growth
polymer via a disulfide incorporated bifunctional CTA. Grafting
from this backbone resulted in molecular brush polymers with

RAFT Step-Growth Expands to Acrylates
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cleavable functionality in each repeat unit of the backbone, allowing selective degradation to afford well-defined unimolecular species
of two polymeric side chains. Given the wide selection of commercially available diacrylates, RAFT step-growth polymerization of
diacrylates will further enable facile synthesis of complex architectures with modular backbones.

Reversible-addition—fragmentation chain transfer (RAFT)'
polymerization of vinyl monomers is a robust and user-
friendly technique that can be used to create complex polymer
structures.” > However, the chain-growth nature of RAFT
polymerization usually dictates an all-carbon backbone with
functional groups—if desired—on the pendant side chain or at
the termini of the backbone.’ By contrast, step-growth
polymerization—which proceeds by joining two end groups
of monomers together—allows the possibility to incorporate
various functionalities along the polymer backbone. However,
traditional step-growth polymerization requires demanding
reaction conditions and offers limited control over polymer
architectures.”

Depending on the relative CTA reactivity and monomer, the
initial stages of RAFT polymerization can quantitatively yield a
single unit monomer inserted (SUMI) CTA adduct prior to
further propagation.® This important insight was first
investigated by McLeary and Klumperman,”™"" and independ-
ently confirmed by Chen and Ghiggino with stoichiometric
ratio of monomer to CTA.'>"® Taking advantage of the RAFT-
SUMI cycle, we recently reported RAFT step-growth polymer-
ization by using bifunctional reagents bearing CTA and
monomer functionalities that yield high SUMI-CTA adducts."*
RAFT step-growth polymerization synergistically combines the
desirable features of both RAFT (functional group tolerance
and user-friendly nature) and step-growth (functional back-
bone).'*"> Shortly after, Li and Zhu independently reported a
catalyst-free, photomediated RAFT step-growth.'®
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Figure 1A outlines the proposed mechanism of RAFT step-
growth polymerization. Specifically, the R® (fragmented CTA
end group species) adds to the monomer end group (M) to
generate the R-M* (k;), which can react with R-group bearing
CTA species (k,gq) to form the chain transfer intermediate
adduct. Fragmentation of this intermediate (kﬁag) regenerates
the R® and concurrently appends CTA to the backbone repeat
unit. However, branching would occur if R-M® reacts with
additional monomer species, which is dictated by the
homopolymerization rate of the monomer (k,). To limit this
occurrence, monomers with low k, were chosen (maleimides
and vinyl ether) in previous reports to promote chain transfer
cycle."*'° To date, more reactive monomers such as acrylates
that bear high k, have never been explored for RAFT step-
growth polymerization.

Interestingly, McLeary and Klumperman earlier showed that
methyl acrylate (in much greater excess than CTA) would
selectively react with CTAs until almost all CTAs were
converted into the SUMI-CTA (n = 1) adduct before forming
multiple monomer insertion adducts (n > 2);® this was
ascribed by Moad et al. to the significant chain transfer
constant of CTAs, which describes the likelihood of M* species
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Figure 1. (A) Proposed mechanistic cycle for RAFT step-growth
polymerization. Boxed is the undesirable homopolymerization. (B)
General structure of A,-B, RAFT step growth polymerization. (C)
Structure of monomers.

undergoing chain transfer over homopropagation.'”'® We
hypothesized that RAFT step-growth polymerization could be
achieved with acrylates if a suitable CTA was identified to
ensure k,qq outweighs k.

Here we show A, + B, RAFT step-growth with diacrylic
monomers, which are a class of monomers that are not only
synthetically easy to prepare but also widely commercially
available and often inexpensive (Figure 1B). In addition,
previously, incorporation of functional groups into the polymer
backbone was demonstrated though the bifunctional monomer,
and here we show the incorporation of a degradable disulfide
moiety through the bifunctional CTA unit (Figure 1C). Finally,
RAFT step-growth polymers were used to prepare molecular
brush polymers, and cleavage of the brush backbone was
demonstrated, forming narrow molecular weight species of two
linked polymer side chains.

The key to a successful RAFT step-growth is to identify
suitable pairing of a CTA functionality with the monomer
(acrylate in this case); we followed the same protocol in our
earlier work'* to screen various CTAs that could yield selective
SUMI-CTA adducts under stoichiometrically balanced con-
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ditions (r = [M]o/[CTA], = 1) (Figure 2A). We decided to
employ trithiocarbonate based CTAs to match the Z-group
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Figure 2. General conditions for screening of CTA for RAFT step-
growth of acrylic monomer.

reactivity with monomer, to ensure rapid chain transfer while
limiting the RAFT retardation.'” We used butyl acrylate (BA)
as a model acrylic monomer at 2 M concentration ([BA], = 2
M) in dioxane, and we initiated the RAFT SUMI process with
AIBN as the initiator ([AIBN], = S0 mM) at 70 °C, leaving
the reaction for 4 h unless stated otherwise.

Initially, 4-cyano-4-(((dodecylthio)carbonothioyl)thio) pen-
tanoic acid (CDTPA, CTA,,) was examined (Figure 2B,
Figure S4), which had been reported to show high RAFT-
SUMI yields under stochiometric conditions with styrene and
acrylamidic monomers by Moad.””*" However, limited yields
(35%, Figure 2B) were obtained after 8 h (Figure S3). As the
fragmentation of CTA;, generates cyano-stabilized tertiary
radical (R-), we reason the addition to acrylic monomer to
form carbonyl ester stabilized secondary radical is rate limiting,
as suggested by Moad.”>*" Interestingly, CTAIC, which was
used in our previous RAFT step-growth report,"* was found to
have the highest SUMI CTA adduct yields (86%) as well as
equal consumption of monomer and CTA (Figure 1, Figures
S3, S6). We also explored CTA,; which bears intermediate
reactivity between CTA,, and CTA, in the literature (Figure
SS);22 however, it was found to generate even lower yields
(7.6%) than the former two CTAs (Figure 1, Figure S3).
Additionally, CTA, with a less-stabilized radical after
fragmentation (Figure 1, Figure S7) resulted in a higher
consumption of the monomer than the CTA (Figure S3),
indicative of multiple monomer addition, as the products of
fragmentation do not drive the chain transfer equilibrium.
Lastly, CTA,g that bears primary radical upon fragmentation
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Figure 3. (A) Conventional THF-SEC analysis using polystyrene calibration of RAFT step-growth polymerization of M,, and CTA,. (B)
Evolution of the molecular weight averages (M, M,, and M,) determined by SEC analysis and conversion from '"H NMR, plotted together with
theoretical molecular weight averages predicted for step-growth polymerization, which does not consider cyclization. (C) Conventional THF-SEC

analysis of poly(M,,-alt-CTA,) made in toluene, DMF, or DMSO.

resulted in retarded homopolymerization of BA, as fragmenta-
tion is disfavored (Figure S8).

As CTA,c demonstrated high SUMI-CTA adduct yields
with BA in our model RAFT SUMI study, CTA, was prepared
following our previous report."*'> 1,6-hexanediol diacrylate
(M,,) was chosen as our initial model diacrylate monomer to
match the linker length with CTA,. RAFT step-growth
polymerization was carried out in 2 M concentration of the
monomer functional groups in 1,4-dioxane using stoichio-
metrically equivalent CTA, and initiated using AIBN at 70 °C.
The monomer conversion (p) reached 98% after 4 h (Figure
3A), which was determined from '"H NMR by tracking the
disappearance of acrylate peaks (peak m, Figure S9) relative to
OCH, protons on the Z-group (peaks p and ¢, Figure S9).
Concurrently, the appearance of CH peak next to trithiocar-
bonate at 4.89 ppm (peak n, Figure S9) and diastereotopic
CH, peaks at 2.38/2.13 ppm (peaks r/r/, Figure S9) is
consistent with the bond formation during the polymerization.

Conventional SEC analysis disclosed that the number-
average (M,), weight-average (M,), and Z-average (M,)
molecular weight with conversion (p) tracked well with the
theoretical molecular weight averages (Figure 3B) 2 indicating
polymerization to follow step-growth molecular weight
evolution. It is important to note that the M, is expected to
be lower than predicted as cyclization is not considered in the
theoretical equation.”®

1081

We next investigated the effect of changing the concen-
tration of the polymerization ([CTA], = 1, 0.5, 0.25 M) with
constant initiator concentration ([AIBN], = S0 mM, Figures
S11, S13, S1S, S17, S19) or equivalence with respect to the
CTA ([CTA],/[AIBN], = 40, Figures S12, S14, S16, S18,
$20). It is important to note that, in traditional RAFT kinetics,
the rate is often dependent on the ratio of CTA to initiator due
to retardation, which is typically observed for highly active Z-
groups.'” Here, we found the rate was maintained by keeping
the initiator concentration constant, while changing this to
keep the equivalence of the initiator constant resulted in a
dramatic effect in rate, similar to our early work with
maleimidic monomers.'* It is noteworthy that lower
concentrations of [CTA] lead to an increased formation of
cyclic species (Figure S17, S18), resulting in much lower M,
(Figure S19, S20), which is an expected feature of step-growth
polymerization.”*

One advantage in traditional RAFT polymerization is the
robustness in the use of different solvents. Previously in the
case of maleimidic monomers, we found a significant high-
molecular-weight shouldering when RAFT step-growth poly-
merization was carried out in DMF or DMSO;'* we speculate
that this was due to the occurrence of side reactions with
maleimides in polar solvents. Pleasingly, RAFT step-growth
polymerization of acrylates (M,, and CTA,) using the same
conditions above ([M], = 2 M, [AIBN], = 0.05 M, [M],/
[CTA], = 1, at 70 °C for 4 h) in toluene, DMF, and DMSO all
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Figure 4. RAFT step-growth polymerization of various diacrylate monomers. The graphs showing evolution of molecular weight averages with
conversion of (A) tripropylene glycol diacrylate (M,5), (B) neopentyl glycol diacrylate (M), (C) tricyclo[5.2.1.02,6]decanedimethanol diacrylate
(M,p), all of which polymerized with CTA,, and (D) 1,6-hexanediol diacrylate (M,,) polymerized with disulfide tethered CTA (CTAgq).
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Figure S. (A) Mark—Houwink plot, the slope is determined from linear regression across the same range of data points used in the molecular
weight analysis (red-line in Figures $37—539). (B) LS-SEC analysis of p(M,,-alt-CTA,s) and p(M,,-alt-CTA,gs)-g-PBA. The M, 5 of the linear
backbone is used to calculate the expected M, y, of the graft copolymer. (C) Conventional SEC analysis of p(M,,-alt-CTA,gs)-g-PBA before and

after degradation with PBus.

successfully proceeded (Figure 3C, Figures $22—S25), with
experimental molecular weight averages tracking well with
theoretical values (Figure S26). Interestingly, macro-phase
separation had occurred during the polymerization in DMSO
(Figure S21), which resulted in apparent autoacceleration in
rate (Figure S26).

We next screened various commercially available diacrylate
monomers (M,g.p, Figure 1C) to prepare a library of polymer
backbones (Figure 4). Pleasingly, each reaction reached high p
(Figures S27—S30) under the same reaction conditions and
maintained step-growth molecular weight evolution (Figure 4).
In all cases, low-molecular-weight cyclic species were removed
upon precipitation, yielding the desired polymer structures.
Furthermore, Mark—Houwink analysis was carried out by
logarithmic plots of intrinsic viscosity as a function of
molecular weight (Figure SA). Typically, the exponent
parameter, o, which describes conformation of polymers in
dilute solution, is in the range of 0—0.5 and 0.5-0.7 for
branched and linear polymers, respectively. Indeed, our RAFT
step-growth polymers reveal exponent parameters of 0.5—0.72
(Figure SA), consistent for linear polymers.

A key benefit of step-growth polymerization is the ability to
incorporate functionality into the polymer backbone. Pre-
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viously we have demonstrated this through bifunctional
monomer incorporating silyl ether;'* here we show an
alternative entry of inserting functionality through the
bifunctional CTA. This was successfully demonstrated using
disulfide tethered bifunctional CTA (CTA,gs, Figure 1C)
(Figure 4D, Figures S30, S31). Indeed, RAFT step-growth
polymerization with M,, and CTA,gs proceeded with the
expected molecular weight evolution (Figure 4D). As there is
vast selection of commercially available diacrylate monomers,
shifting the synthetic efforts to preparing functional CTAs
should be the future focus.

One key advantage of RAFT step-growth polymers is facile
preparation of molecular brush polymers by directly grafting
from the backbone.'*
synthesis with our acrylic step-growth backbone, using BA as a
model monomer to graft side chains (Figure SB). The
conversion of BA was determined by 'H NMR analysis, by
following the disappearance vinyl protons at 5.70 ppm with
respect to CH; at 0.93 ppm (Figures S34—S36). Indeed, the
absolute M, of the brush polymer, determined by SEC with
light scattering, is consistent with the calculated value from the
absolute M, of the linear backbone (Figure SB, Figures S37—
S39). Additionally, Mark—Houwink plots of the resulting

Here we demonstrate molecular brush
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brushes confirms changes in chain confirmation, as the a value
dramatically decreases, suggesting a transition from linear to
denser branched conformation in solution (Figure S, Figure
$40).

Finally, to highlight the benefit of versatility of the polymer
backbone made with our methodology, we demonstrate
cleavage of the disulfide units along the molecular brush
polymers made with poly(M,,-alt-CTA,g). Using butanol as
the protic solvent, we introduced stochiometric equivalence of
tributyl phosphine with respect to disulfide (Figure SC, Figure
S41). Remarkably, after 1 h of introducing the reducing agent,
SEC analysis revealed unimolecular species with narrow
molecular weight distribution that is close to the expected
molecular weight of 2 polymeric side chains (Figure SC, Figure
S41). Such ease of incorporation of degradable functionalities
into the polymer backbone opens up RAFT step-growth to
applications where degradability is desired such as drug
delivery and tissue engineering.”®

In summary, we successfully demonstrated RAFT step-
growth polymerization with diacrylate monomers, expanding
the accessibility and potential utility of this new RAFT step-
growth method. Further, incorporation of functionality in the
polymer backbone can now be achieved via embedding such
functionality in the bifunctional CTA. Together with earlier
reports,'*~'® these new results demonstrate that RAFT step-
growth polymerization is a robust method to prepare a variety
of functional linear and brush polymers.
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