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ABSTRACT
We study the complexity of lattice problems in a world where algo-
rithms, reductions, and protocols can run in superpolynomial time.
Specifically, we revisit four foundational results in this context—two
protocols and two worst-case to average-case reductions. We show
how to improve the approximation factor in each result by a factor
of roughly

√︁
𝑛/log𝑛 when running the protocol or reduction in 2𝜀𝑛

time instead of polynomial time, and we show a novel protocol
with no polynomial-time analog. Our results are as follows.

(1) We show a worst-case to average-case reduction proving
that secret-key cryptography (specifically, collision-resistant
hash functions) exists if the (decision version of the) Short-
est Vector Problem (SVP) cannot be approximated to within
a factor of 𝑂 (

√
𝑛) in 2𝜀𝑛 time. This extends to our setting

Ajtai’s celebrated polynomial-time reduction for the Short
Integer Solutions (SIS) problem (1996), which showed (after
improvements by Micciancio and Regev (2004, 2007)) that
secret-key cryptography exists if SVP cannot be approxi-
mated to within a factor of 𝑂 (𝑛) in polynomial time.
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(2) We show another worst-case to average-case reduction prov-
ing that public-key cryptography exists if SVP cannot be
approximated to within a factor of 𝑂 (𝑛) in 2𝜀𝑛 time. This
extends Regev’s celebrated polynomial-time reduction for
the Learning with Errors (LWE) problem (2005, 2009), which
achieved an approximation factor of𝑂 (𝑛1.5). In fact, Regev’s
reduction is quantum, but we prove our result under a classi-
cal reduction, generalizing Peikert’s polynomial-time classi-
cal reduction (2009), which achieved an approximation factor
of 𝑂 (𝑛2).

(3) We show that the (decision version of the) Closest Vector
Problem (CVP) with a constant approximation factor has a
coAM protocol with a 2𝜀𝑛-time verifier. We prove this via a
(very simple) generalization of the celebrated polynomial-
time protocol due to Goldreich and Goldwasser (1998, 2000).
It follows that the recent series of 2𝜀𝑛-time and even 2(1−𝜀)𝑛-
time hardness results for CVP cannot be extended to large
constant approximation factors 𝛾 unless AMETH is false. We
also rule out 2(1−𝜀)𝑛-time lower bounds for any constant
approximation factor 𝛾 >

√
2, under plausible complexity-

theoretic assumptions. (These results also extend to arbitrary
norms, with different constants.)

(4) We show that 𝑂 (
√︁
log𝑛)-approximate SVP has a coNTIME

protocol with a 2𝜀𝑛-time verifier. Here, the analogous (also
celebrated!) polynomial-time result is due to Aharonov and
Regev (2005), who showed a polynomial-time protocol achiev-
ing an approximation factor of

√
𝑛 (for both SVP and CVP,

while we only achieve this result for SVP). This result implies
similar barriers to hardness, with a larger approximation fac-
tor under a weaker complexity-theoretic conjectures (as does
the next result).

(5) Finally, we give a novel coMA protocol for constant-factor-
approximate CVP with a 2𝜀𝑛-time verifier. Unlike our other
results, this protocol has no known analog in the polynomial-
time regime.

All of the results described above are special cases of more gen-
eral theorems that achieve time-approximation factor tradeoffs. In
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particular, the tradeoffs for the first four results smoothly inter-
polate from the polynomial-time results in prior work to our new
results in the exponential-time world.

CCS CONCEPTS
• Security and privacy → Mathematical foundations of cryp-
tography.
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Lattice problems, worst-case to average-case reductions, shortest
vector problem, closest vector problem
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1 EXTENDED ABSTRACT
A lattice L ⊂ R𝑛 is the set of all integer linear combinations of
linearly independent basis vectors 𝒃1, . . . , 𝒃𝑛 ∈ R𝑛 ,

L = L(𝒃1, . . . , 𝒃𝑛) = {𝑧1𝒃1 + · · · + 𝑧𝑛𝒃𝑛 : 𝑧𝑖 ∈ Z} .
The most important computational problem associated with lat-

tices is the 𝛾-approximate Shortest Vector Problem (𝛾-SVP), which
is parameterized by an approximation factor 𝛾 ≥ 1. Given a basis
for a lattice L ⊂ R𝑛 , 𝛾-SVP asks us to approximate the length of
the shortest non-zero vector in the lattice up to a factor of 𝛾 . The
second most important problem is the 𝛾-approximate Closest Vec-
tor Problem (𝛾-CVP), in which we are additionally given a target
point 𝒕 ∈ Q𝑛 , and the goal is to approximate the minimal distance
between 𝒕 and any lattice point, again up to a factor of 𝛾 . Here, we
define length and distance in terms of the ℓ2 norm (though, in the
sequel, we sometimes work with arbitrary norms).

We note that these problems are often referred to as 𝛾-GapSVP
and 𝛾-GapCVP, when one wishes to distinguish them from the as-
sociated search problems. In this paper, we are only interested in
the decision problems and we will therefore refer to these prob-
lems simply as 𝛾-SVP and 𝛾-CVP, as is common in the complexity
literature.

These two problems are closely related. In particular, CVP is
known to be at least as hard as SVP in quite a strong sense, as there is
a simple efficient reduction [23] from SVP to CVP that preserves the
approximation factor 𝛾 and rank 𝑛 (as well as the norm). Moreover,
historically, it has been much easier to find algorithms for SVP than
for CVP and much easier to prove hardness results for CVP.

Both SVP and CVP have garnered much attention over the past
twenty-five years or so, after Ajtai proved two tantalizing results.
First, he constructed a cryptographic (collision-resistant) hash func-
tion and proved that it is secure if 𝛾-SVP is hard for some approx-
imation factor 𝛾 = poly(𝑛) [7, 22]. This in particular implies that
secret-key encryption exists under this assumption. To prove his
result, he showed the first worst-case to average-case reduction
in this context. Specifically, he showed that a certain average-case
lattice problem called the Short Integer Solutions problem (SIS, cor-
responding to the problem of breaking his hash function) was as

hard as 𝛾-SVP, a worst-case problem. Second, Ajtai proved the NP-
hardness of exact SVP, i.e., 𝛾-SVP with 𝛾 = 1 (under a randomized
reduction) [8], answering a long-standing open question posed by
van Emde Boas [38].

Ajtai’s two breakthrough papers led to many follow-ups. In
particular, there followed a sequence of works showing the hardness
of 𝛾-SVP for progressively larger approximation factors 𝛾 [17, 24,
25, 28, 29], leading to the current state of the art: NP-hardness
(under randomized reductions) for any constant 𝛾 and hardness for
𝛾 = 𝑛𝑐/log log𝑛 under the assumption that NP does not have 2𝑛

𝑜 (1)
-

time (randomized) algorithms. A different, but related, line of work
showed hardness of 𝛾-CVP for progressively larger approximation
factors 𝛾 , culminating in NP-hardness for 𝛾 = 𝑛𝑐/log log𝑛 [18].

A separate line of work improved upon Ajtai’s worst-case to
average-case reduction. Micciancio and Regev showed that Ajtai’s
hash function is secure if 𝑂 (𝑛)-SVP is hard [31], improving on Aj-
tai’s large polynomial approximation factor. Regev also improved
on Ajtai’s results in another (very exciting!) direction, showing a
public-key encryption scheme that is secure under the assumption
that 𝑂 (𝑛1.5)-SVP is hard for a quantum computer [36]. To do so,
Regev defined an average-case lattice problem called Learning with
Errors (LWE), constructed a public-key encryption scheme whose
security is (essentially) equivalent to the hardness of LWE, and
showed a quantum worst-case to average-case reduction for LWE.
Peikert later showed how to prove classical hardness of LWE in a
different parameter regime, showing that secure public-key encryp-
tion exists if 𝑂 (𝑛2)-SVP is hard, even for a classical computer [33].
(The ideas in these works have since been extended to designmany
new and exciting cryptographic primitives. See [34] for a survey.)

One might even hope that continued work in this area would
lead to one of the holy grails of cryptography: a cryptographic con-
struction whose security can be based on the (minimal) assumption
that NP ⊈ BPP. Indeed, in order to do so, one would simply need to
decrease the approximation factor achieved by one of these worst-
case to average-case reductions and increase the approximation
factor achieved by the hardness results until they meet! However,
two seminal works showed that this was unlikely. First, Goldre-
ich and Goldwasser showed a coAM protocol for

√︁
𝑛/log𝑛-CVP,

and therefore also for
√︁
𝑛/log𝑛-SVP [21]. Second, Aharonov and

Regev showed a coNP protocol for
√
𝑛-CVP (and therefore also for√

𝑛-SVP) [6]. These results are commonly interpreted as barriers to
proving hardness, since they imply that if

√︁
𝑛/log𝑛-SVP (or even√︁

𝑛/log𝑛-CVP) is NP-hard, then the polynomial hierarchy would
collapse to NPNP, and that the hierarchy would collapse to NP
for 𝛾 =

√
𝑛. It seems very unlikely that we will be able to build

cryptography from the assumption that 𝛾-SVP is hard for some
𝛾 = 𝑜 (

√
𝑛), and so these results are typically interpreted as ruling

out achieving such a “holy grail” result via this approach.
Indeed, the state of the art has been stagnant for over a decade

now (in spite of much effort), in the sense that no improvement has
been made to the approximation factors achieved by (1) (Micciancio
and Regev’s improvement to) Ajtai’s worst-case to average-case
reduction; (2) Regev’s worst-case to average-case quantum reduc-
tion for public-key encryption or Peikert’s classical reduction; (3)
the best known hardness results for SVP (or CVP); (4) Goldreich
and Goldwasser’s coAM protocol; or (5) Aharonov and Regev’s
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coNP protocol. (Of course, much progress has been made in other
directions!)

However, all of the above results operate in the polynomial-time
regime, showing hardness against polynomial-time algorithms and
protocols that run in polynomial time (formally, protocols with
polynomially bounded communication and polynomial-time veri-
fiers). It is of course conventional (and convenient) to work in this
polynomial-time setting, but as our understanding of computational
lattice problems and lattice-based cryptography has improved over
the past decade, the distinction between polynomial and superpoly-
nomial time has begun to seem less relevant. Indeed, the fastest
algorithms for 𝛾-SVP run in time that is exponential in 𝑛, even for
𝛾 = poly(𝑛), and it is widely believed that no 2𝑜 (𝑛) -time algorithm
is possible for 𝛾 = poly(𝑛). This belief plays a key role in the study
of lattice-based cryptography.

In particular, descendants of Regev’s original public-key encryp-
tion scheme are nearing widespread use in practice. One such
scheme was even recently standardized by NIST [9, 32], with the
goal of using this scheme as a replacement for the number-theoretic
cryptography that is currently used for nearly all secure communi-
cation.1 In practice, these schemes rely for their security not only
on the polynomial-time hardness of SVP, but on very precise as-
sumptions about the hardness of 𝛾-SVP as a function of 𝛾 . (E.g.,
the authors of [9] rely on sophisticated simulators that attempt to
predict the optimal behavior of heuristic 𝛾-SVP algorithms, which
roughly tell us that 𝑛𝑘 -SVP cannot be solved in time much better
than 20.29𝑛/(2𝑘+1) for constant 𝑘 ≥ 0.)

Therefore, we are now more interested in the fine-grained, su-
perpolynomial complexity of 𝛾-SVP and 𝛾-CVP. I.e., we are not just
interested in what is possible in polynomial time, but rather we are
interested in precisely what is possible with different superpolyno-
mial running times, with a particular emphasis on algorithms that
run in 2𝐶𝑛 time for different constants𝐶 . And, the specific approxi-
mation factor really matters quite a bit, as the running time 2𝐶𝛾𝑛

of the best known 𝛾-SVP algorithms for polynomial approximation
factors 𝛾 = poly(𝑛) depends quite a bit on the specific polynomial
𝛾 . (This is true both for heuristic algorithms and those with proven
correctness. E.g., the best known proven running time for approxi-
mation factor 𝑛𝑐 is roughly 2𝑂 (𝑛/(𝑐+1)) for constant 𝑐 ≥ 0. See [4]
for the current state of the art.)

Indeed, a recent line of work has extended some of the seminal
polynomial-time results described above to the fine-grained super-
polynomial setting [2, 3, 5, 13, 14]. Specifically, these works show
exponential-time lower bounds for SVP and CVP, both in their
exact versions with 𝛾 = 1 and for small constant approximation
factors 𝛾 = 1 + 𝜀 (under suitable variants of the Exponential Time
Hypothesis). These results can be viewed as fine-grained generaliza-
tions of Ajtai’s original hardness result for SVP (or, perhaps, of the
subsequent results that showed hardness for small approximation
factors, such as [17, 28]), and they provide theoretical evidence in
favor of the important cryptographic assumption that (suitable)
lattice-based cryptography cannot be broken in 2𝑜 (𝑛) time.

1The number-theoretic cryptography that is currently in use is known to be broken
by a sufficiently large quantum computer. In contrast, lattice-based cryptography is
thought to be secure not only against classical computers, but also against quantum
computers, which is why it has been standardized. See [32] for more discussion.

However, there are no known non-trivial generalizations of
the other major results listed above to the regime of superpoly-
nomial running times. For example, (in spite of much effort) it
is not known how to extend the above fine-grained hardness re-
sults to show exponential-time lower bounds for approximation
factors 𝛾 substantially larger than one—say, e.g., large constants 𝛾
(let alone the polynomial approximation factors that are relevant to
cryptography)—in analogy with the celebrated hardness of approxi-
mation results that are known against polynomial-time algorithms.
And, prior to this work, it was also not known how to extend the
worst-case to average-case reductions and protocols mentioned
above to the superpolynomial setting in a non-trivial way (i.e., in a
way that improves upon the approximation factor).

1.1 Our Results
At a high level, our results can be stated quite succinctly. We gen-
eralize to the superpolynomial setting (1) Ajtai’s worst-case to
average-case reduction for secret-key cryptography; (2) Regev’s
worst-case to average-case quantum reduction for public-key cryp-
tography and Peikert’s classical version; (3) Goldreich and Gold-
wasser’s coAM protocol; and (4) Aharonov and Regev’s coNP pro-
tocol. In all of these results, in the important special case when
the reductions or protocols are allowed to run in 2𝜀𝑛 time, we im-
prove upon the polynomial-time approximation factor by a factor
of roughly

√︁
𝑛/log𝑛 (and a factor of 𝑂 (𝑛) for Peikert’s classical

worst-case to average-case reduction). We also show a novel coMA
protocol that has no known analog in the polynomial-time regime.

See Figure 1 for a diagram showing the current state of the art
for both the polynomial-time regime and the 2𝜀𝑛-time regime for
arbitrarily small constants 𝜀 > 0. Below, we describe the results in
more detail and explain their significance.We describe the protocols
first, as our worst-case to average-case reductions are best viewed
in the context of our protocols.

1.1.1 Protocols for Lattice Problems.

A coAM protocol. Our first main result is a generalization of
Goldreich and Goldwasser’s coAM protocol, as follows.

Theorem 1.1 (Informal, see the full version [1, Section 3]). For
every 𝛾 = 𝛾 (𝑛) ≥ 1, there is a coAM protocol for 𝛾-CVP running in
time 2𝑂 (𝑛/𝛾2) .

Furthermore, for every constant 𝜀 > 0, there exists a 𝛿 > 0 such
that there is a two-round private-coin (honest-verifier perfect zero
knowledge) protocol for (

√
2 + 𝜀)-coCVP running in time 2(1/2−𝛿)𝑛 .

See the full version [1, Section 3] for the precise result, which is
also more general in that it also applies to arbitrary norms ∥ · ∥𝐾
(with different constants), just like the original theorem of [21].

This theorem is a strict generalization of the original polynomial-
time result of Goldreich and Goldwasser [21]. In fact, the protocol
itself is a simple generalization of the original [21] protocol. And,
just like [21] was viewed as a barrier to proving polynomial-time
hardness results for approximation factors 𝛾 ≥

√︁
𝑛/log𝑛, our result

can be viewed as a barrier to proving superpolynomial hardness for
smaller approximation factors 𝛾 . In particular, the theorem rules
out the possibility of using a fine-grained reduction from 𝑘-SAT
to prove, e.g., 2Ω (𝑛) hardness for large constants 𝛾 or 2(1−𝜀)𝑛-time
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√︁

𝒏/log 𝒏
in coAM

√
𝒏

in coNP

Cryptography

𝒏
if hard,

SIS is hard

𝒏3/2

if hard quantumly,
LWE is hard

𝒏2
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LWE is hard

Algorithms

2𝒏 log log𝒏/log𝒏

in P

𝛾 = 𝛾 (𝑛)

The poly(𝑛)-time world

Hardness

1 + 𝜺
Hard under

non-uniform Gap-ETH

Hardness Barriers

𝑶 (1)
coAM
protocol

𝑶 (1)
coMA
protocol

√︁

log 𝒏
coNP

protocol

Cryptography

√
𝒏

if hard,
SIS is hard

𝒏
if hard (classically),

LWE is hard

Algorithms

𝒏1/𝜺

in 2𝜀𝑛 time

𝛾 = 𝛾 (𝑛)

The 2𝜀𝑛-time world

Figure 1: This figure shows the current state of the art of the complexity of𝛾-SVP for different approximation factors𝛾 in two different regimes.
The top row shows polynomial-time results (polynomial-time hardness, protocols, worst-case to average-case reductions, and algorithms,
respectively). The bottom row shows 2𝜀𝑛-time results. Note that the scales are rather extreme, and are certainly not the same in the two rows.
The hardness barriers and cryptography results in the bottom row are the five new results in this paper. We have omitted some constants for
simplicity. (This figure is based on a similar one appearing in [12].)

hardness for any constant 𝛾 >
√
2 (assuming AMETH and IPSETH

respectively, See the full version [1, Section 9] for the precise state-
ment).2 We place a particular emphasis on the running time of
2(1−𝜀)𝑛 because (1) the fastest known algorithm for CVP runs in
time 2𝑛+𝑜 (𝑛) ; and (2) we know a 2(1−𝜀)𝑛-time lower bound for
(1 + 𝜀 ′)-CVP [2, 13] (under variants of SETH—though, admittedly,
only in ℓ𝑝 norms where 𝑝 is not an even integer, so not for the ℓ2
norm). Therefore, this protocol provides an explanation for why
fine-grained hardness results for CVP are stuck at small constant ap-
proximation factors. See the full version [1, Section 9] for a precise
discussion of these barriers to proving hardness and their relation-
ship to known hardness results.

As we explain in more detail in Section 1.2.1, our protocol is
a very simple and natural generalization of the original beautiful
protocol due to Goldreich and Goldwasser. And, as we explain

2It might seem strange that we describe a roughly 2𝑛/2-time protocol as ruling out
roughly 2𝑛 hardness. This is because 𝑘-coSAT is known to have a roughly 2𝑛/2-
time two-round protocol [39] (and even anMA protocol), but is not known to have a
2(1−𝜀 )𝑛-time algorithm (for sufficiently large 𝑘). The assumption that 𝑘-SAT has no
2(1−𝜀 )𝑛-time protocol for sufficiently large 𝑘 is called SETH, while the assumption
that 𝑘-coSAT does not have a 2(1/2−𝜀 )𝑛 -time two-round protocol for sufficiently large
𝑘 is called IPSETH. So, to prove 2(1−𝜀 )𝑛 -time hardness of𝛾 -CVP under SETH, it would
suffice to give a (2𝜀𝑛 -time, Turing) reduction from 𝑘-SAT on 𝑛 variables to 𝛾 -CVP on
a lattice with rank 𝑛 + 𝑜 (𝑛) . But, for constant 𝛾 >

√
2, such a reduction together with

Theorem 1.1 would imply a significantly faster protocol for 𝑘-coSAT than what is
currently known, and would therefore violate IPSETH. See the full version [1, Section
2.8] for more discussion of fine-grained complexity and related hypotheses and [1,
Section 9] for formal proofs ruling out such reductions under various hypotheses.

below, the same simple ideas behind this protocol are also used in
our worst-case to average-case reduction for LWE.

A co-non-deterministic protocol. Our second main result is a vari-
ant of Aharonov and Regev’s coNP protocol for

√
𝑛-CVP, as follows.

Theorem 1.2 (Informal, see the full version [1, Theorem 6.2]). For
every 𝛾 = 𝛾 (𝑛) ≥ 1, there is a co-non-deterministic protocol for 𝛾-SVP
that runs in time 𝑛𝑂 (𝑛/𝛾2) . In particular, there is a 2𝜀𝑛-time protocol
for 𝑂𝜀 (

√︁
log𝑛)-SVP.

This result is almost a strict generalization of [6], except that
Aharonov and Regev’s protocol works for CVP, while ours only
works for SVP.

Again, this result can be viewed as a barrier to proving hardness
of 𝛾-SVP (assuming NETH; see the full version [1, Section 2.8, Sec-
tion 9] for more discussions). And, just like how [6] gives a stronger
barrier against proving polynomial-time hardness than [21] (col-
lapse of the polynomial hierarchy to the first level, as opposed to the
second) at the expense of a larger approximation factor 𝛾 , our The-
orem 1.2 gives a stronger barrier against proving superpolynomial
hardness (formally, a barrier assuming NETH rather than AMETH)
than Theorem 1.1, at the expense of a larger approximation factor.

As we discuss more in Section 1.2.2, our protocol is broadly
similar to the original protocol in [6], but the details and the analysis
are quite different—requiring in particular careful control over the
higher moments of the discrete Gaussian distribution.



Lattice Problems beyond Polynomial Time STOC ’23, June 20–23, 2023, Orlando, FL, USA

We note that we originally arrived at this protocol in an attempt
to solve a different (and rather maddening) open problem. In [6],
Aharonov and Regev speculated that their protocol could be im-
proved to achieve an approximation factor of

√︁
𝑛/log𝑛 rather than√

𝑛, therefore matching in coNP the approximation factor achieved
by [21] in coAM. And, there is a certain sense in which they came
tantalizingly close to achieving this (as we explain in Section 1.2.2).
It has therefore been a long-standing open problem to close this√︁
log𝑛 gap.
We have not successfully closed this gap between [6] and [21].

Indeed, for all running times, the approximation factor in Theo-
rem 1.2 remains stubbornly larger than that in Theorem 1.1 by a
factor of

√︁
log𝑛, so that in some sense the gap persists even into

the superpolynomial-time regime! But, we do show that a suitable
modification of the Aharonov and Regev coNP protocol can achieve
approximation factors less than

√
𝑛, at the expense of more running

time. This in itself is already quite surprising, as the analysis in [6]
seems in some sense tailor-made for the approximation factor

√
𝑛

and no lower. For example, prior to our work, it was not even clear
how to achieve an approximation factor of, say,

√
𝑛/10 in co-non-

deterministic time less than it takes to simply solve the problem
deterministically. We show how to achieve, e.g., an approximation
factor of

√
𝑛/𝐶 for any constant 𝐶 in polynomial time.

A coMA protocol. Our third main result is a coMA protocol for
CVP, as follows.

Theorem 1.3 (Informal; see the full version [1, Theorem 7.2]).
There is a coMA protocol for 𝛾-CVP that runs in time 2𝑂 (𝑛/𝛾 ) . In
particular, there is a 2𝜀𝑛-time protocol for 𝑂𝜀 (1)-CVP.

Unlike our other protocols, the protocol in Theorem 1.3 has no
analog in prior work. Indeed, the result is only truly interesting for
running times larger than roughly 2

√
𝑛 , since for smaller running

times it is completely subsumed by [6]. It is therefore unsurprising
that this result was not discovered by prior work that focused on
the polynomial-time regime.

This protocol too can be viewed as partial progress towards
improving the approximation factor achieved by [6] by a factor of√︁
log𝑛. In particular, notice that in the important special case of 2𝜀𝑛

running time, the approximation factor achieved in Theorem 1.3
is better than that achieved by Theorem 1.2 by a

√︁
log𝑛 factor.

(Indeed, since the approximation factor is constant in this case, it is
essentially the best that we can hope for.) So, in the 2𝜀𝑛-time world,
there is no significant gap between the approximation factors that
we know how to achieve in coMA and coAM, in contrast to the
polynomial-time world.

As a barrier to proving exponential-time hardness of lattice prob-
lems, the coMA protocol in Theorem 1.3 lies between the co-non-
deterministic protocol in Theorem 1.2 and the coAM protocol in
Theorem 1.1, since a co-non-deterministic protocol implies a coMA
protocol, which implies a coAM protocol (though at the expense of a
constant factor in the exponent of the running time; see the full ver-
sion [1, Section 2.8]). In particular, for 2𝜀𝑛 running time, the approx-
imation factor is (significantly) better than Theorem 1.2 but (just
slightly) worse than Theorem 1.1. But, the complexity-theoretic
assumption needed to rule out hardness in this case (MAETH) is

weaker than for Theorem 1.1 (AMETH) but stronger than for Theo-
rem 1.2 (NETH).

In fact, our coMA protocol is perhaps best viewed as a “mixture”
of the two beautiful protocols from [21] and [6]. As we explain in
Section 1.2.3, we think of this coMA protocol as taking the best
parts from [21] and [6], and we therefore view the resulting “hybrid”
protocol as quite natural and elegant.

1.1.2 Worst-Case to Average-Case Reductions.

Worst-case to average-case reductions for SIS. Our fourth main
result is a generalization beyond polynomial time of (Micciancio and
Regev’s version of) Ajtai’s worst-case to average-case reduction, as
follows.

Theorem 1.4 (Informal; see the full version [1, Theorem 8.1]). For
any 𝛾 = 𝛾 (𝑛) ≥ 1, there is a reduction from 𝛾-SVP to SIS that runs in
time 2𝑛

2 ·polylog(𝑛)/𝛾2 . In particular, (exponentially secure) secret-key
cryptography exists if 𝑂 (

√
𝑛)-SVP is 2Ω (𝑛) hard.

This is a strict generalization of the previous state of the art,
i.e., the main result in [31], which only worked in the polynomial-
time regime, i.e., for 𝛾 = Θ̃(𝑛). (In fact, our reduction is also a
generalization of the reduction due to Micciancio and Peikert [30],
which itself generalizes [31] tomore parameter regimes. Specifically,
our result holds in the “small modulus” regime, like that of [30].
But, in this high-level description where we have not even defined
the modulus, we ignore this important distinction. [31] also gives a
polynomial-time reduction from SIVP to SIS, but our techniques do
not seem to show a way to achieve a better approximation factor
for SIVP via a superpolynomial-time reduction.)

We are particularly interested in the special case of our reduc-
tion for 𝛾 = Θ̃(

√
𝑛). Indeed, as we mentioned earlier, it is widely

believed that 𝛾-SVP is 2Ω (𝑛) hard for any approximation factor
𝛾 ≤ poly(𝑛), and even stronger assumptions are commonly made
in the literature on lattice-based cryptography (both in theoretical
and practical work—and even in work outside of lattice-based cryp-
tography [16]). Therefore, we view the assumption that𝑂 (

√
𝑛)-SVP

is 2Ω (𝑛) hard to be quite reasonable in this context. Indeed, if one
assumes (as is common in the cryptographic literature) that the
best known (heuristic) algorithms for 𝛾-SVP are essentially optimal,
then this result implies significantly better security for lattice-based
cryptography than other worst-case to average-case reductions.

In fact, Theorem 1.4 follows from an improvement to just one step
inMicciancio and Regev’s reduction. Specifically, to achieve the best
possible approximation factor, Micciancio and Regev essentially
used their SIS oracle to generate the witness used in Aharonov
and Regev’s coNP protocol.3 Our generalization of Aharonov and
Regev’s protocol uses (a larger version of) the same witness, so
that we almost get our generalization of [31] for free once we have
generalized [6]. There are, however, many technical details to work
out, as we describe in Section 1.2.4.

3There are simpler ways to use a SIS oracle to solve SVP that achieve a worse approx-
imation factor—e.g., by using SIVP as an intermediate problem. But Micciancio and
Regev’s clever use of the [6] protocol yields the𝑂 (𝑛) approximation factor that has
remained the state of the art since a preliminary version of [31] was published in 2004.
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(To get the best approximation factor that we can, we actually
use our coMA protocol in some parameter regimes and our co-non-
deterministic protocol in others. This works similarly because the
witness is the same for the two protocols.)

Worst-case to average-case reductions for LWE. Our fifth and
final main result is a generalization of both Regev’s quantum worst-
case to average-case reduction for LWE [36] and Peikert’s classical
version [33]. Since LWE comes with many parameters, in this high-
level overview we simply present the special case of the result for
the hardest choice of parameters that is known to imply public-key
encryption.

Theorem 1.5 (Informal; see the full version [1, Theorem 5.3 and
5.5]). For any 𝛾 = 𝛾 (𝑛) ≥ 1, public-key encryption exists if 𝛾-SVP
is 2𝑛

2 polylog(𝑛)/𝛾 hard for a classical computer or 2𝑛
3 polylog(𝑛)/𝛾2

hard for a quantum computer. In particular, (exponentially secure)
public-key cryptography exists if 𝑂 (𝑛)-SVP is 2Ω (𝑛) hard, even for a
classical computer.

Again, this is a strict generalization of the prior state of the
art, which matched the above result for polynomial running time.
And, again, we stress that 2Ω (𝑛) -hardness of 𝑂 (𝑛)-SVP is a widely
believed conjecture. Indeed, if one assumes (as is common in the
cryptographic literature) that the best known (heuristic) algorithms
for 𝛾-SVP are essentially optimal, then this result implies signif-
icantly better security for lattice-based public-key cryptography
than prior worst-case to average-case reductions.

In particular, notice that in the important special case of running
time 2𝜀𝑛 , our quantum reduction and classical reduction achieve
essentially the same approximation factor. (Indeed, they differ by
only a constant factor.) So, perhaps surprisingly, there is no real gap
between classical and quantum reductions in the exponential-time
regime, unlike in the polynomial-time regime.

We note that behind this result is a new generalization of the
polynomial-time reduction from SVP to the Bounded Distance De-
coding problem (BDD). This polynomial-time reduction was im-
plicit in [33] and made explicit in [27], and it can be viewed as a
version of the [21] coAM protocol in which Merlin is simulated by
a BDD oracle. We (of course!) generalize this by allowing the reduc-
tion to run in more time in order to achieve a better approximation
factor, using the same (quite simple) idea that we used to generalize
the [21] coAM protocol. (See the full version [1, Section 4].)

Furthermore, to obtain the best possible approximation factor
in the classical result (and, in particular, an approximation factor
that matches the quantum result in the 2𝜀𝑛-time setting), we also
observe that Peikert’s celebrated classical reduction from BDD to
LWE can be made to work for a wider range of parameters if it
is allowed to run in superpolynomial time. At a technical level,
this involves combining basis reduction algorithms (e.g., from [19])
with the discrete Gaussian sampling algorithm from [15, 20]. The
resulting improved parameters results in a significant savings in the
approximation factor, and even a small savings in the polynomial-
time setting. (E.g., in the exponential-time setting, this saves us a
factor of

√
𝑛.)

Both of these observations follow relatively easily from combin-
ing known techniques. But, they might be of independent interest.

1.2 Our Techniques
1.2.1 A coAM Protocol. At a high level, our coAM protocol uses the
following very elegant idea due to Goldreich and Goldwasser [21].
Recall that our goal is to describe a protocol between all-powerful
Merlin and computationally bounded Arthur in which Merlin (for
whatever mysterious reason) wishes to convince Arthur that 𝒕 is far
from the lattice. In particular, if dist(𝒕,L) > 2 (the FAR case), Merlin
should be able to convince Arthur that 𝒕 is far from the lattice. On
the other hand, if dist(𝒕,L) ≤ 𝑑 (the CLOSE case, where 𝑑 < 2 will
depend on Arthur’s running time), then even if all-powerful Merlin
tries his best to convince Arthur that 𝒕 is far from the lattice, Arthur
should correctly determine that Merlin is trying to trick him with
high probability.

To that end, consider the set

𝑆0 :=
⋃
𝒚∈L

(B +𝒚) ,

which is the union of balls of radius 1 centered around each lattice
point, and the set

𝑆𝒕 :=
⋃
𝒚∈L

(B +𝒚 − 𝒕) = 𝑆0 − 𝒕 ,

which instead consists of balls centered around lattice points shifted
by 𝒕 . See Figure 2.

Notice that dist(𝒕,L) > 2 (i.e., the FAR case) if and only if 𝑆0 and
𝑆𝒕 are disjoint (ignoring the distinction between open and closed
balls). On the other hand, if dist(𝒕,L) ≤ 𝑑 < 2 (the CLOSE case),
then the two sets must overlap, with more overlap if 𝑑 is smaller.
Specifically, the intersection of the two sets will contain at least a

𝑝𝑑 ≈ (1 − 𝑑2/4)𝑛/2 ≈ 𝑒−𝑑
2𝑛

fraction of the total volume of 𝑆0. (See the full version [1, Lemma
2.1] for the precise statement.)

So, Arthur first flips a coin. If it comes up heads, he samples a
point 𝒙 ∼ 𝑆0 uniformly at random from 𝑆0. Otherwise, he samples
𝒙 ∼ 𝑆𝒕 .4 He then sends the result to Merlin. Arthur then simply
asks Merlin “was my coin heads or tails?” In other words, Arthur
asks whether 𝒙 was sampled from 𝑆0 or 𝑆𝒕 . If we are in the FAR case
where dist(𝒕,L) > 2, then Merlin (who, remember, is all powerful)
will be able to unambiguously determine whether 𝒙 was sampled
from 𝑆0 or 𝑆𝒕 , since they are disjoint sets. On the other hand, if
dist(𝒕,L) ≤ 𝑑 , then with probability at least 𝑝𝑑 , 𝒙 will lie in the
intersection of the two sets. When this happens, even all-powerful
Merlin can do no better than randomly guessing Arthur’s coin.

Arthur and Merlin can therefore play this game, say, 𝑛/𝑝𝑑 times.
If we are in the FAR case, then an honest Merlin will answer cor-
rectly every time, and Arthur will correctly conclude that 𝒕 is far
from the lattice. If we are in the CLOSE case, then no matter what
Merlin does, he is likely to guess wrong at least once, in which case
Arthur will correctly conclude that Merlin is trying to fool him.

This yields a private-coin (honest-verifier perfect zero knowl-
edge) protocol that runs in time roughly 1/𝑝𝑑 ≈ 𝑒𝑑

2𝑛 for 𝛾-CVP
with 𝛾 = 2/𝑑 . Similarly to the polynomial-time setting, one can
then use standard generic techniques to convert any private-coin
4In fact, there is no uniformly random distribution over 𝑆0 or 𝑆𝒕 , since they have
infinite volume. In reality, we work with these sets reduced modulo the lattice. But, in
this high-level description, it is convenient to pretend to work with the sets themselves.
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dist(t,L) > 2 dist(t,L) ≤ 𝑑

Figure 2: Comparison of the sets 𝑆0 and 𝑆𝒕 in the FAR case and in the CLOSE case.

protocol into a true public-coin, two-round protocol (i.e., a true
coAM protocol), at the expense of increasing the constant in the
exponent.

1.2.2 A co-Non-Deterministic Protocol. Our co-non-deterministic
protocol (as well as our coMA protocol) is based on the beautiful
protocol of Aharonov and Regev [6]. The key tools are the periodic
Gaussian function and the discrete Gaussian distribution. For 𝒙 ∈ R𝑛 ,
we define

𝜌 (𝒙) := 𝑒−𝜋 ∥𝒙 ∥
2
,

and for a lattice L ⊂ R𝑛 and target vector 𝒕 ∈ R𝑛 , we extend this
definition to the lattice coset L − 𝒕 as

𝜌 (L − 𝒕) :=
∑︁
𝒚∈L

𝜌 (𝒚 − 𝒕) .

We can then define the periodic Gaussian function as

𝑓 (𝒕) := 𝜌 (L − 𝒕)
𝜌 (L) .

Very roughly speaking, we expect 𝑓 (𝒕) to be a smooth approxima-
tion to the function 𝑒−𝜋dist(𝒕,L)2 , or at least to be relatively large
when 𝒕 is close to the lattice and relatively small when 𝒕 is far from
the lattice. See Figure 3.

Banaszczyk proved a number of important and beautiful results
about the periodic Gaussian function [10]. In particular, he showed
that

𝑒−𝜋 dist(𝒕,L)2 ≤ 𝑓 (𝒕) ≤ 1 .

So, if 𝒕 is close to the lattice, then 𝑓 (𝒕) cannot be too small. On the
other hand, if dist(𝒕,L) ≥

√
𝑛, then Banaszczyk proved that 𝑓 (𝒕) <

2−𝑛 . So, if we could somehow approximate 𝑓 (𝒕) up to an additive
error of 𝛿 ∈ (2−𝑛, 1), then we could distinguish between the case
when dist(𝒕,L) ≲

√︁
log(1/𝛿) and the case when dist(𝒕,L) ≥

√
𝑛,

and therefore solve 𝛾-CVP for 𝛾 ≈
√︁
𝑛/log(1/𝛿).

Of course, it is not immediately clear how to approximate 𝑓 (𝒕),
even with additional help from an all-powerful prover. However,
Aharonov and Regev observed that suitably chosen short vectors
from the dual lattice L∗ can be used for this purpose. Specifically,
they recalled from the Poisson summation formula that

𝑓 (𝒕) = E
𝒘∼𝐷L∗

[cos(2𝜋 ⟨𝒘, 𝒕⟩)] , (1)

where 𝐷L∗ is the discrete Gaussian distribution, defined by

Pr
𝒘∼𝐷L∗

[𝒘 = 𝒛] := 𝜌 (𝒛)
𝜌 (L∗)

for any 𝒛 ∈ L∗. So, Aharonov and Regev had the prover provide
the verifier with𝑊 := (𝒘1, . . . ,𝒘𝑁 ) sampled independently from
𝐷L∗ . The verifier can then compute

𝑓𝑊 (𝒕) := 1
𝑁

𝑁∑︁
𝑖=1

cos(2𝜋 ⟨𝒘, 𝒕⟩) .

I.e., 𝑓𝑊 is the sample approximation of Equation (1). By the Chernoff-
Hoeffding bound, 𝑓𝑊 (𝒕) will provide an approximation of 𝑓 (𝒕) up
to an error of roughly 1/

√
𝑁 . So, this almost yields a roughly𝑁 -time

non-deterministic protocol for distinguishing the FAR case when
dist(𝒕,L) ≥

√
𝑛 from the CLOSE case when dist(𝒕,L) ≲

√︁
log𝑁 ,

i.e., a protocol for
√︁
𝑛/log𝑁 -CVP.

The one (rather maddening) issue with this protocol is that it is
not clear how to maintain soundness against a cheating prover in
the case when 𝒕 is close to the lattice. I.e., suppose that the prover
provides vectors𝑊 := (𝒘1, . . . ,𝒘𝑁 ) that are not sampled from the
discrete Gaussian distribution. Then, 𝑓𝑊 (𝒕) will presumably no
longer be a good approximation to 𝑓 (𝒕), and the verifier might
therefore be fooled into thinking that 𝒕 is far from the lattice when
it is in fact quite close.

It seems that what we need is some sort of “test of Gaussianity”
to “check that𝑊 looks like it was sampled from 𝐷𝑁L∗ .” Or, more
accurately, we need some efficiently testable set of properties that
(1) are satisfied by honestly sampled vectors𝑊 = (𝒘1, . . . ,𝒘𝑁 ) ∈
R𝑛×𝑁 with high probability in the FAR case; and (2) are enough
to imply that 𝑓𝑊 (𝒕) is not too small in the CLOSE case when 𝒕 is
relatively close to L. One crucial observation is that, as long as
the 𝒘𝑖 are dual lattice vectors, then it suffices in the CLOSE case
to consider 𝑓𝑊 (𝒖) for 𝒖 that are relatively short. This is because
the function 𝑓𝑊 is periodic over the lattice, so that 𝑓𝑊 (𝒕) = 𝑓𝑊 (𝒖)
where 𝒖 := 𝒕 −𝒚 for 𝒚 ∈ L a closest lattice vector to 𝒕 . (It is crucial
to remember that 𝒖 is only used for the analysis. In particular, the
verifier cannot compute 𝒖 efficiently.)

To create a sound protocol, Aharonov and Regev therefore stud-
ied the second-order Taylor series expansion of 𝑓𝑊 (𝒖) around 𝒖 = 0,
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Figure 3: The periodic Gaussian function 𝑓 (𝒕) for two different two-dimensional lattices L.

i.e.,

𝑓𝑊 (𝒖) = 1 − 2𝜋2

𝑁
·
𝑁∑︁
𝑖=1

⟨𝒘𝑖 , 𝒖⟩2 +
2𝜋4

3𝑁

𝑁∑︁
𝑖=1

⟨𝒘𝑖 , 𝒖⟩4 − · · ·

≥ 1 − 2𝜋2

𝑁
·
𝑁∑︁
𝑖=1

⟨𝒘𝑖 , 𝒖⟩2

≥ 1 − 2𝜋2 · ∥𝑊𝑊𝑇 /𝑁 ∥ · ∥𝒖∥2 ,

where𝑊𝑊𝑇 /𝑁 = 1
𝑁

∑
𝑖 𝒘𝑖𝒘

𝑇
𝑖
∈ R𝑛×𝑛 and ∥𝑊𝑊𝑇 /𝑁 ∥ is the spec-

tral norm. In particular, 𝑓𝑊 (𝒖) will be large for short 𝒖, provided
that𝑊𝑊𝑇 /𝑁 has small spectral norm. One can show (again using
the Poisson summation formula) that an honestly sampled witness
𝑊 will satisfy, say, ∥𝑊𝑊𝑇 /𝑁 ∥ ≤ 1 with high probability. And, the
verifier can of course efficiently check this because the spectral
norm is efficiently computable. So, Aharonov and Regev used this
simple test as their “test of Gaussianity.”

Putting everything together, we see that by checking that𝑊
consists of dual vectors, that ∥𝑊𝑊𝑇 /𝑁 ∥ ≤ 1, and that, say, 𝑓𝑊 (𝒕) <
1/2, the verifier will always reject when dist(𝒕,L) is smaller than
some constant in the CLOSE case, regardless of𝑊 . And, it will
accept (with high probability over the choice of witness𝑊 ) when
𝑊 is sampled honestly and dist(𝒕,L) ≥

√
𝑛 in the FAR case. This

yields the final approximation factor of 𝑂 (
√
𝑛) achieved in [6].

Notice, however, that by using this spectral-norm-based “test of
Gaussianity,” Aharonov and Regev only achieved an approximation
factor of𝑂 (

√
𝑛), rather than the approximation factor𝑂 (

√︁
𝑛/log𝑁 )

that they would have gotten if they could have somehow guarantee
that the𝑊 were sampled honestly. In particular, when 𝑁 = poly(𝑛),
this costs a factor of roughly

√︁
log𝑛 in the approximation factor.

(At a technical level, this factor of
√︁
log𝑛 is lost because the second-

order approximation cos(𝑥) ≈ 1 − 𝑥2/2 is of course only accurate
when |𝑥 | is bounded by some small fixed constant.)

Fixing this (again, rather maddening) loss of a
√︁
log𝑛 factor has

been a major open problem ever since. More generally, it is not

at all clear how to achieve even a slightly better approximation
factor using these ideas, even if we are willing to increase 𝑁 and
the running time of our verifier substantially. It seems relatively
clear that a more demanding “test of Gaussianity” is needed.

A natural idea would be to approximate 𝑓𝑊 via a higher-order
Taylor series approximation,

𝑓
(𝑘)
𝑊

(𝒖) := 1 −
𝑘∑︁
𝑗=1

(2𝜋)2𝑗
(2 𝑗)!

𝑁∑︁
𝑖=1

⟨𝒘𝑖 , 𝒖⟩2𝑗/𝑁 .

It is not hard to see that 𝑓 (𝑘)
𝑊

is quite close to 𝑓𝑊 provided that 𝒖 is
not too long. Specifically,

|𝑓 (𝑘)
𝑊

(𝒖) − 𝑓𝑊 (𝒖) | ≲ 1
𝑁

·
𝑁∑︁
𝑖=1

(⟨𝒘𝑖 , 𝒖⟩/𝑘)2𝑘 .

We know that when𝑊 is sampled honestly, this error cannot be
much larger than roughly (∥𝒖∥2/𝑘)𝑘 (with high probability). There-
fore, when𝑊 is sampled honestly, it must be the case that the mo-
ments

∑𝑁
𝑖=1⟨𝒘𝑖 , 𝒖⟩2𝑗/𝑁 of𝑊 have some property that guarantees

that 𝑓 (𝑘)
𝑊

(𝒖) ≳ 𝑒−𝜋 ∥𝒖 ∥
2 − (∥𝒖∥2/𝑘)𝑘 . If we could somehow identify

and test this property efficiently for sufficiently large 𝑘 , then we
could use this as our “test of Gaussianity,” and we would be done.

However, we do not know how to test this property efficiently,
and it seems quite hard to do so in general. Even just for 𝑗 = 2, it is
in general computationally hard even to approximate, say,

max
∥𝒖 ∥≤𝑑

1
𝑁

·
𝑁∑︁
𝑖=1

⟨𝒘𝑖 , 𝒖⟩2𝑗 ,

as this is exactly the matrix two-to-four norm [11]. (Compare this
with the case of 𝑗 = 1, which yields the easy-to-compute spectral
norm.) And, bounding the specific sum 𝑓

(𝑘)
𝑊

that interests us seems
significantly more complicated than bounding an individual term—
perhaps particularly because it is an alternating sum. It is therefore
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entirely unclear how to efficiently certify that the sum defining
𝑓
(𝑘)
𝑊

(𝒖) is bounded whenever 𝒖 is bounded.
We solve this problem by asking for additional properties of

our lattice L in the FAR case that allow us to make this problem
tractable. Specifically, we require that in the FAR case, not only do
we have dist(𝒕,L) ≥

√
𝑛, but we also have that L has no non-zero

vectors shorter than
√
𝑛. (Intuitively, this means that “the Gaussian

peaks of 𝑓 (𝒕) are well separated,” as in the left example in Figure 3.)
Micciancio and Regev [31] considered this more restrictive promise
problem (for roughly the same reason) and observed that 𝛾-SVP
can be reduced to it. (It is this additional requirement in the FAR
case that prevents us from obtaining a protocol for CVP, rather
than SVP.)

Via Fourier-analytic techniques, we show that this new require-
ment implies that in the FAR case, the moments of the discrete
Gaussian 𝐷L∗ ,

E
𝒘∼𝐷L∗

[𝑤 𝑗1
1 · · ·𝑤 𝑗𝑛

𝑛 ] ,

are extremely close to the corresponding moments of the continu-
ous Gaussian distribution as long as the 𝑗𝑖 are non-negative integers
such that

∑
𝑗𝑖 is not too large. (See the full version [1, Lemma 2.11].)

We then observe that these moments for
∑

𝑗𝑖 ≤ 2𝑘 completely char-
acterize 𝑓 (𝑘)

𝑊
(𝒖).

So, while in general it seems to be difficult to determine whether
a given witness𝑊 has the property that 𝑓 (𝑘)

𝑊
(𝒖) is not too small

for all sufficiently short 𝒖, we show that in our special use case, it
suffices for the verifier to check that the sample moments

1
𝑁

𝑁∑︁
𝑖=1

𝑤
𝑗1
𝑖,1 · · ·𝑤

𝑗𝑛
𝑖,𝑛

are close to some specific known values for
∑

𝑗𝑖 ≤ 2𝑘 .
There are roughly 𝑛2𝑘 such moments to check, and each can be

checked in time essentially 𝑁 . If these checks pass, then we can
use 𝑓𝑊 (𝒕) to distinguish the CLOSE case from the FAR case as long
as in the close case we have

1/
√
𝑁 + (dist(𝒕,L)2/𝑘)𝑘 ≲ 𝑒−𝜋dist(𝒕,L)2 .

In particular, by setting 𝑁 = 𝑛𝑂 (𝑘) , we will not be fooled in the
CLOSE case as long as dist(𝒕,L) ≲

√
𝑘/10, which gives our approx-

imation factor of roughly
√︁
𝑛/𝑘 in time roughly 𝑛𝑂 (𝑘) .5 See the full

version [1, Section 6].

1.2.3 A coMA Protocol. Our coMA protocol combines some of the
beautiful ideas from [6] with some of the equally beautiful ideas
from [21].

Indeed, recall that [6] and our generalization show how to gen-
erate a witness𝑊 of size roughly 𝑁 such that, if𝑊 is sampled hon-
estly, it can be used to distinguish the case when dist(𝒕,L) ≥

√
𝑛

from the case when dist(𝒕,L) ≲
√︁
log𝑁 . Specifically, there is a

simple function 𝑓𝑊 (𝒕) that is large in the CLOSE case but small in
the FAR case, provided that the witness𝑊 is generated honestly.
The difficulty, in both the original Aharonov and Regev protocol
5This description might suggest that we can take 𝑁 ≤ 2𝑂 (𝑘 ) , yielding a 𝑛𝑂 (𝑘 ) -time
protocol with 2𝑂 (𝑘 ) -sized witness. However, in this informal discussion we are ignor-
ing the error that we incur from the fact that the sample moments 1

𝑁

∑
𝑖 𝑤

𝑗1
𝑖,1 · · ·𝑤

𝑗𝑛
𝑖,𝑛

will deviate from their expectation. After accounting for this, we are forced to take
𝑁 ≥ 𝑛Ω (𝑘 ) .

and in our version described above, is in how to handle dishonestly
generated𝑊 , in which case 𝑓𝑊 might not have this property and
might therefore lead Arthur to incorrectly think that 𝒕 is far from
the lattice when in fact it is close.

On the other hand, [21] and our generalize work by either sam-
pling 𝒙 from a ball around a lattice point or sampling 𝒙 from a
ball around (a lattice shift of) 𝒕 . Then, in the FAR case, a random
vector 𝒙 sampled from a ball around a lattice point will always be
closer to L than a random vector 𝒙 sampled from a ball around 𝒕 .
So, in the FAR case, an honest Merlin can determine whether 𝒙 was
sampled from one distribution or the other by checking whether
dist(𝒙,L) is large or small. On the other hand, in the CLOSE case,
there is some overlap between the distributions, so that no matter
how Merlin behaves, he will not be able to consistently distinguish
between the two cases. (Recall Figure 2.)

Our idea is therefore to have Arthur “use𝑊 to simulate Merlin’s
behavior in the coAM protocol.” In particular, the witness for our
protocol is exactly the same𝑊 that we use as a witness in our co-
non-deterministic protocol (and therefore simply a larger version of
the original [6] witness). However, Arthur’s verification procedure
is quite different (and, of course, it is now randomized, which is
why we obtain a coMA protocol). To verify Merlin’s claim that
dist(𝒕,L) ≥

√
𝑛, Arthur repeatedly samples 𝒙0 from a ball of radius

𝑟 around 0 and 𝒙1 from a ball of radius 𝑟 around 𝒕 , where 𝑟 is to
be set later. Arthur then computes 𝑓𝑊 (𝒙0) and 𝑓𝑊 (𝒙1) and rejects
(i.e., guesses that he is in the CLOSE case) unless 𝑓𝑊 (𝒙0) is large
and 𝑓𝑊 (𝒙1) is small.

Note that, at least at a high level, the completeness of our protocol
in the FAR case follows from the analysis of [6]. In particular, if𝑊 is
sampled honestly, then 𝑓𝑊 (𝒙0) will be large as long as 𝑟 ≲

√︁
log𝑁 ,

and 𝑓𝑊 (𝒙1) will be small as long as dist(𝒕,L) − 𝑟 ≳
√
𝑛. On the

other hand, the soundness of our protocol in the CLOSE case follows
from the analysis of [21]. In particular, if dist(𝒕,L) ≤ 𝑑 ≤ 𝑟 , then
regardless of our choice of 𝑓𝑊 , Arthur will reject with probability
at least

𝑝𝑑/𝑟 /2 ≈ (1 − 𝑑2/(4𝑟2))𝑛/2 ≈ 𝑒−𝑑
2𝑛/𝑟 2 ,

as in our discussion of the coAM protocol above. By running this
test, say, 𝑛/𝑝𝑑/𝑟 times, Arthur will reject with high probability in
the CLOSE case.

Plugging in numbers, we take 𝑟 as large as we possibly can
without violating completeness, so we take 𝑟 ≈

√︁
log𝑁 . Our fi-

nal protocol then has a witness of size roughly 𝑁 , an approxi-
mation factor of roughly

√
𝑛/𝑑 , and a running time of roughly

𝑁 · 𝑒𝑑2𝑛/𝑟 2 ≈ 𝑁 · 𝑒𝑑2𝑛/log𝑁 . The most natural setting of parame-
ters takes 𝑑 ≈ log𝑁 /

√
𝑛, which gives an approximation factor of

𝑛/log𝑁 in poly(𝑁 ) time. (However, we note that the protocol is
also potentially interesting in other parameter settings; e.g., one
can obtain non-trivial approximation factors with relatively small
communication size 𝑁 by allowing Arthur to run in more time.
In contrast, our other protocols seem to require roughly as much
communication as computation.) See the full version [1, Section 7].

1.2.4 Worst-Case to Average-Case Reductions for SIS. Our gener-
alization of Micciancio and Regev’s worst-case to average-case
reduction for SIS comes nearly for free after all the work we did
to develop our variant of Aharonov and Regev’s coNP protocol
(and our coMA protocol). In particular, Micciancio and Regev’s
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worst-case to average-case reduction essentially shows how to use
a SIS oracle to sample from 𝐷L∗ (provided that 𝜆1 (L) is not too
small). They then used this to generate the witness for Aharonov
and Regev’s protocol, allowing them to solve 𝛾-SVP. Our co-non-
deterministic protocol also uses samples from 𝐷L∗ as a witness
(as does our coMA protocol). So, we are more-or-less able to use
the exact same idea to obtain our generalization of Micciancio and
Regev’s result. (In fact we are able to work in the more general
setting of Micciancio and Peikert [30], who showed a reduction
that works for smaller moduli than [31].)

However, our co-non-deterministic protocol is a bit more delicate
than the protocol in [6]. Specifically, our reduction really does need
to produce samples from𝐷L∗ in the FAR case. In contrast, [31] (and,
to our knowledge, all other worst-case to average-case reductions
for SIS) were only able to show how to use a SIS oracle to produce
samples from some mixture of discrete Gaussian distributions with
potentially different parameters (i.e., different standard deviations).
At a technical level, this issue arises because the SIS oracle can po-
tentially output vectors with different lengths, resulting in discrete
Gaussian samples with different parameters.

We overcome this (annoying!) technical difficulty by showing
how to control the parameter of the samples generated by the re-
duction, showing that a SIS oracle is in fact sufficient to produce
samples from the distribution 𝐷L∗ itself (provided that the smooth-
ing parameter ofL∗ is small enough). Our reduction mostly follows
the elegant and well known reduction of Micciancio and Peikert
[30]. And, though the proof does not require substantial new ideas,
we expect that the result will be useful in future work—as a re-
duction directly from discrete Gaussian sampling should be quite
convenient. (See the full version [1, Theorem 8.3].)

Finally, in order to get the best approximation factor that we
can, we actually use our coMA protocol when the running time is
large, rather than our co-non-deterministic protocol. E.g., our coMA
protocol saves a factor of

√︁
log𝑛 in the approximation factor over

our co-non-deterministic protocol in the important special case
when the running time is 2𝜀𝑛 . And, our worst-case to average-case
reduction inherits this savings. See the full version [1, Section 8].

1.2.5 Worst-Case to Average-Case Reductions for LWE. Recall that
we show twoworst-case to average-case reductions for LWE. One is
a quantum reduction, following Regev [36]. The other is a classical
reduction, following Peikert [33]. In both cases, our modifications
to prior work are surprisingly simple.

In the quantum case, the only difference between our reduction
and prior work is in a single step. Specifically, Regev’s original quan-
tum reduction is most naturally viewed as a reduction from BDD
to LWE. However, BDD is not nearly as well studied as SVP. Regev
therefore used elegant quantum computing tricks to obtain hard-
ness directly from SVP. However, Peikert [33] and Lyubashevsky
and Micciancio [27] later showed a simple classical reduction from
SVP to BDD that is perhaps best viewed as a version of the coAM
protocol from [21] in which the BDD oracle is used to simulate Mer-
lin. (This reduction was implicit in [33] and made explicit in [27].)

Using the same ideas that we used to generalize the coAM proto-
col from [21], we show how to generalize this reduction from SVP
to BDD—showing that a better approximation factor is achievable
if the reduction is allowed more running time. By composing this

reduction with Regev’s reduction from BDD to LWE, we similarly
show a time-approximation-factor tradeoff for LWE.

To generalize Peikert’s classical reduction, we use the above
idea and also make one other simple modification to the reduction.
Specifically, Peikert showed how to use a sufficiently “nice” basis of
the dual lattice L∗ to reduce BDD to LWE, where the modulus of
the LWE instance depends on how “nice” the basis is.6 He then used
the celebrated LLL algorithm [26] to efficiently find a relatively nice
basis. We simply plug in generalizations of [26] that obtain better
bases in more time [19, 37]. (In fact, even in the polynomial-time
regime, this improves on Peikert’s approximation factor by a small
polylogarthmic term. See the full version [1, Section 5].)

To achieve the best parameters, we rely on the “direct-to-decision”
reduction of [35] (in both the classical and quantum setting), allow-
ing us to avoid the search-to-decision reductions that were used
in work prior to [35]. (Search-to-decision reductions that do not
increase the approximation factor are known for some moduli, but
for other moduli, the only known search-to-decision reductions
incur a loss in the approximation factor.)
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