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Abstract. We study the computational problem of finding a shortest
non-zero vector in a rotation of Zn, which we call ZSVP. It has been a
long-standing open problem to determine if a polynomial-time algorithm
for ZSVP exists, and there is by now a beautiful line of work showing how
to solve it efficiently in certain very special cases. However, despite all of
this work, the fastest known algorithm that is proven to solve ZSVP is
still simply the fastest known algorithm for solving SVP (i.e., the prob-
lem of finding shortest non-zero vectors in arbitrary lattices), which runs
in 2n+o(n) time.

We therefore set aside the (perhaps impossible) goal of finding an effi-
cient algorithm for ZSVP and instead ask what else we can say about the
problem. E.g., can we find any non-trivial speedup over the best known
SVP algorithm? And, if ZSVP actually is hard, then what consequences
would follow? Our results are as follows.
1. We show that ZSVP is in a certain sense strictly easier than SVP

on arbitrary lattices. In particular, we show how to reduce ZSVP
to an approximate version of SVP in the same dimension (in fact,
even to approximate unique SVP, for any constant approximation
factor). Such a reduction seems very unlikely to work for SVP itself,
so we view this as a qualitative separation of ZSVP from SVP. As a
consequence of this reduction, we obtain a 2n/2+o(n)-time algorithm
for ZSVP, i.e., the first non-trivial speedup over the best known
algorithm for SVP on general lattices. (In fact, this reduction works
for a more general class of lattices—semi-stable lattices with not-
too-large λ1.)

Due to space constraints, we have omitted some discussion, proofs, and figures from
this version of the paper. We strongly encourage the reader to look at the full version,
which is available at [7].
Part of this work was while H.B. was at the University of Michigan and supported by
the National Science Foundation under Grant No. CCF-2006857. N.S. was supported
in part by the National Science Foundation under Grant No. CCF-2122230. The views
expressed are those of the authors and do not necessarily reflect the official policy or
position of the National Science Foundation.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 252–281, 2023.
https://doi.org/10.1007/978-3-031-30589-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-30589-4_9


Just How Hard Are Rotations of Zn? Algorithms and Cryptography 253

2. We show a simple public-key encryption scheme that is secure if
(an appropriate variant of) ZSVP is actually hard. Specifically, our
scheme is secure if it is difficult to distinguish (in the worst case) a
rotation of Zn from either a lattice with all non-zero vectors longer
than

√
n/ log n or a lattice with smoothing parameter significantly

smaller than the smoothing parameter of Zn. The latter result has
an interesting qualitative connection with reverse Minkowski theo-
rems, which in some sense say that “Zn has the largest smoothing
parameter.”

3. We show a distribution of bases B for rotations of Zn such that, if
ZSVP is hard for any input basis, then ZSVP is hard on input B.
This gives a satisfying theoretical resolution to the problem of sam-
pling hard bases for Zn, which was studied by Blanks and Miller [9].
This worst-case to average-case reduction is also crucially used in
the analysis of our encryption scheme. (In recent independent work
that appeared as a preprint before this work, Ducas and van Woer-
den showed essentially the same thing for general lattices [15], and
they also used this to analyze the security of a public-key encryp-
tion scheme. Similar ideas also appeared in [5,11,20] in different
contexts.)

4. We perform experiments to determine how practical basis reduction
performs on bases of Z

n that are generated in different ways and
how heuristic sieving algorithms perform on Z

n. Our basis reduction
experiments complement and add to those performed by Blanks and
Miller, as we work with a larger class of algorithms (i.e., larger block
sizes) and study the “provably hard” distribution of bases described
above. Our sieving experiments confirm that heuristic sieving algo-
rithms perform as expected on Z

n.

1 Introduction

A lattice L ⊂ R
n is the set of all integer linear combinations of linearly indepen-

dent basis vectors B := (b1, . . . , bn) ∈ R
n×n, i.e.,

L = L(B) = {z1b1 + · · · + znbn : zi ∈ Z} .

Lattices have recently played a central role in cryptography, as many powerful
cryptographic schemes have been constructed using lattices. (See [32] and the
references therein.) These schemes’ security rests on the hardness of (worst-case)
computational problems related to lattices, such as the Shortest Vector Problem
(SVP), in which the goal is to find a non-zero lattice vector whose �2 norm is
minimal, given a basis B for the lattice.

Perhaps the simplest example of a lattice is the integer lattice Z
n, which has

the identity matrix as a basis. Of course, the shortest non-zero vectors in Z
n are

simply the standard basis vectors and their negations ±e1, . . . ,±en, which have
length one. So, it is trivially easy to find a shortest non-zero vector in Z

n by
simply outputting one of these vectors. Other computational lattice problems
are also easy when the relevant lattice is Z

n.
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However, suppose that we are given some basis B for a rotation of Zn, i.e.,
a basis B such that the lattice L(B) generated by this basis is RZ

n for some
orthogonal matrix R ∈ On(R). Of course, if the basis B is simply R itself, then
it is still easy to find a shortest vector in this lattice. (Any column of R will do.)
But, it does not need to be so easy. For example, the lovely matrix

B :=

⎛
⎜⎜⎜⎜⎜⎝

3
√

3898 −5382
√

2
1949

31195√
3898

15857
3 ·

√
2

1949

0
√

682378
1949 −110727

√
2

664977361
676011√

1329954722

0 0
√

64221
682378

67240
3 ·

√
2

21911498769

0 0 0 1
3
√
128442

⎞
⎟⎟⎟⎟⎟⎠

is a basis for a rotation of Z4, but it is not immediately clear how to find a vector
of length one in the lattice generated by B.1 We write ZSVP for the problem of
finding vectors of length one in a rotation L of Zn, given a basis for L.

Indeed, this is a well known problem, and it has been a long-standing open
problem to settle the complexity of ZSVP, leading to a beautiful line of work
[12,17,19,22,24,25,38]. Frustratingly, despite all of this wonderful work, the
fastest known algorithm that is proven to solve ZSVP is still simply the fastest
known algorithm that is proven to solve SVP on arbitrary lattices, a 2n+o(n)-
time algorithm [2]. So, we do not even know whether ZSVP is any easier at all
than SVP on arbitrary lattices, let alone whether there exists a polynomial-time
algorithm!

1.1 Our Results

In this paper, we set aside the (apparently difficult) question of whether a
polynomial-time algorithm for ZSVP exists and instead ask what else we can
say about ZSVP. Specifically, we study the following questions.

1. Can we at least solve ZSVP in time better than 2n+o(n)? (In other words,
can we at least do better than just plugging in an algorithm that solves SVP
on all lattices?)

2. If it is hard to solve ZSVP (or variants of it), does this imply any interesting
cryptography?

3. In particular, is there some (efficiently sampleable) distribution of instances
of ZSVP such that these instances are provably hard if ZSVP is hard in the
worst case? I.e., is there a “hardest possible” distribution of bases suitable
for use in cryptography?

4. Do known algorithms perform any differently on rotations of Zn empirically?

We essentially give positive answers to all of these questions, giving a richer
perspective on ZSVP and related problems, as we detail below.
1 Of course, this is not actually a hard problem, since it is only four-dimensional and

SVP can be solved efficiently when the dimension n is constant. Indeed, one example
of a unit length vector in this lattice is Bz, where z := (59, 396, 225, −326)T .
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Provably Faster Algorithms for Z
n. Our first main result, presented in

Sect. 5, is an exponential-time algorithm for ZSVP that is faster than the fastest
known algorithm for SVP over arbitrary lattices. In fact, we show something
significantly stronger: an efficient dimension-preserving reduction from ZSVP to
γ-approximate GapSVP over general lattices for any constant γ = O(1) (where
GapSVP is the decision version of SVP in which the goal is simply to determine
whether there exists a short vector, rather than to actually find one). In other
words, we show that in order to find an exact shortest non-zero vector in a rota-
tion of Zn, it suffices to simply approximate the length of a shortest non-zero
vector in an arbitrary lattice. (In fact, we reduce to the γ-unique Shortest Vector
Problem, which is SVP in which the shortest vector is guaranteed to be a factor
of γ shorter than “the second shortest vector,” appropriately defined.)

Theorem 1 (Informal. See Corolloary 2). There is an efficient reduction
from ZSVP to γ-approximate GapSVP (in fact, to γ-unique SVP, a potentially
easier problem) in the same dimension for any constant γ = O(1).

If we plug in the fastest known algorithm for O(1)-GapSVP, we immedi-
ately obtain a 2n/2+o(n)-time provably correct algorithm for ZSVP [2]. (And,
under a purely geometric conjecture, we obtain a running time of (4/3)n+o(n) ≈
20.415n [37].) See the full version [7] for a discussion of a more general class of
lattices to which these results apply.

However, the specific running times are perhaps less interesting than the high-
level message: solving exact SVP on rotations of Zn is no harder than solving
approximate (or even unique) SVP on arbitrary lattices in the same dimension.
We certainly do not expect such a reduction to work for arbitrary lattices, so
this shows that there is in fact something inherently “easier” about Z

n.

A Public-Key Encryption Scheme. Our next main result, presented in
Sect. 4, is a public-key encryption scheme whose security can be based on the
(worst-case) hardness of variants of ZSVP.

To be clear, we feel that it is premature to base the security of real-world
cryptography on the hardness of ZSVP and related problems. Indeed, although
ZSVP is fairly well-studied, it is not nearly as well-studied as, e.g., (plain) SVP or
factoring, and should therefore be treated with more skepticism. Furthermore,
there is currently no consensus about whether ZSVP is actually hard among
those who study it.

With that said, we show an encryption scheme that is secure if it is difficult
to distinguish a rotation of Zn either from (1) a lattice with no non-zero vec-
tors with length less than roughly γ for γ ≈ √

n/ log n; or (2) from a lattice
with smoothing parameter ηε(L) smaller than ηε(Zn)/α for any α > ω(1). (See
Sect. 2.1 for the definition of the smoothing parameter.) We call these problems
γ-ZGapSVP and α-ZGapSPP, respectively.

Theorem 2 (Informal, see Theorem 12). There is a public-key encryption
scheme that is secure if either γ-ZGapSVP or α-ZGapSPP is hard, for γ ≈√

n/ log n and any α > ω(1).
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We stress that both ZGapSVP and ZGapSPP are worst-case (promise) prob-
lems. In particular, our encryption scheme is secure unless there is a polynomial-
time algorithm that correctly distinguishes all bases of rotations of Zn from all
lattices that either have no short vectors or have small smoothing parameter. (A
critical step in our proof is a worst-case to average-case reduction showing how
to sample a basis for a rotation of Zn that is provably as secure as any basis.
We discuss this more below.)

We note that the approximation factor γ ≈ √
n/ log n might look quite

impressive at first. Specifically, prior work shows public-key encryption schemes
that are secure if γ′-GapSVP (as opposed to γ-ZGapSVP) is hard for γ′ ≈ n3/2,
where γ′-GapSVP asks us to distinguish a lattice with a non-zero vector with
length at most one from a lattice with no non-zero vectors with length less
than γ′. So, our approximation factor γ ≈ √

n/ log n seems much better. (And,
perhaps it is. In particular, we do not know algorithms that solve γ-ZGapSVP
faster than γ′-GapSVP or even γ-GapSVP.)

Of course, our reduction only works for γ-ZGapSVP, which is potentially
a much easier problem than γ-GapSVP, or even than γ′-GapSVP. (Indeed, we
are not even willing to conjecture that ZSVP is hard, let alone γ-ZGapSVP.)
And, from another perspective, the approximation factor of γ ≈ √

n/ log n seems
rather weak. Specifically, since Z

n (and any rotation of Zn) has determinant one,
it is trivial by Minkowski’s theorem to distinguish a rotation of Zn from a lattice
with no non-zero vectors with length less than roughly

√
n. So, from this point

of view, our approximation factor γ is just a factor of
√

log n smaller than trivial.
The approximation factor α for ZGapSPP is harder to interpret, but in the

full version [7] we include some discussion.

Sampling Provably Secure Bases. Our next main result, presented in Sect. 3,
is a way to sample a “hardest possible” basis B for a rotation of Zn. For example,
we show an explicit (efficiently sampleable) distribution of bases B for rotations
of Zn such that, if it is hard to solve ZSVP in the worst case, then it is hard to
solve ZSVP on input B. The basic idea is to use the discrete Gaussian sampling
algorithm of [18] to use any basis of a rotation L of Zn to obtain many discrete
Gaussian samples from L—sufficiently many that we have a generating set of L.
We can then apply any suitable algorithm that converts a generating set into a
basis. (Similar ideas have previously appeared in somewhat different contexts [5,
11,20]. In particular, [11] introduced the idea of sampling a “discrete Gaussian
basis” from an arbitrary basis. More recently, in independent work that was
published on ePrint before this work, [15] used similar ideas in a context very
similar to ours. See Sect. 1.2.)

This gives a theoretically rigorous answer to the question studied by Blanks
and Miller [9], who considered the relative hardness of solving ZSVP for different
input bases and asked whether there was a clear choice for a how to generate
“hardest possible” bases. We show that there is in fact a relatively simple input
distribution that is provably as hard as any other. Indeed, we have already
implicitly mentioned this result, as it is crucially used in the security reductions
for our encryption scheme.
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Experimental Results for ZSVP. Our final contribution, presented in Sect. 6,
consists of a number of experimental results showing how practical heuristic
lattice algorithms perform on Z

n.
Our first such set of experiments ran state-of-the-art basis reduction algo-

rithms on bases of Zn that were generated in different ways and compared their
effectiveness.2 These experiments complement similar experiments performed by
Blanks and Miller [9]. Our experiments differ from those of Blanks and Miller
in that we used the BKZ algorithm with larger block sizes; performed more tri-
als; and performed experiments on the distribution of bases resulting from our
worst-case to average-case reduction.

Here, our results were broadly comparable to those of [9]. See Sect. 6.1 for
the details. However, we note that our new experiments on the distribution of
bases resulting from worst-case to average-case reductions suggest that these
bases achieve comparable security to the bases studied in [9] with much shorter
vectors (which corresponds to a more efficient encryption scheme).

Our second set of experiments document a threshold phenomenon that is
evident in these basis reduction experiments with Z

n. Specifically, the output of
basis reduction algorithms run on bases of Zn is almost always an exact shortest
non-zero vector or a vector much longer than this. I.e., once basis reduction
finds a vector in Z

n whose length is below some threshold, it nearly always
simply finds a shortest vector. We document this phenomenon in our context.
(After a preliminary version of this paper was released, we learned of a body
of work studying this phenomenon in a larger context and providing compelling
heuristic explanations of it, such as in [4,13]. See [14, Sect. 4.2] for more recent
experiments, discussion of this phenomenon in the specific context of Zn, and
additional references.)

Our third and final set of experiments studies the performance of a heuristic
sieving algorithm on Z

n. Specifically, we ran the Gauss sieve, due to Miccian-
cio and Voulgaris [30], on Z

n. In fact, Zn is a particularly interesting lattice for
heuristic sieving algorithms because Z

n is known to grossly violate the heuristics
that are used to design and analyze these algorithms. (See Sect. 6.3.) Neverthe-
less, we confirm that the Gauss sieve performs more-or-less exactly the same on
Z

n as it does on other lattices—in spite of the fact that some of the heuristic
justification for the Gauss sieve does not extend to Z

n. To our knowledge, such
experiments had not been published before.

1.2 Related Work

As we mentioned above, there is by now a beautiful sequence of works showing
polynomial-time algorithms for certain special cases of ZSVP [12,17,19,24,25].
A summary of their results is beyond the scope of this work, but we note that
their techniques are very different from those in this work with the exception
of Szydlo’s heuristic algorithm [38]. In particular, Szydlo presented a heuristic

2 Note that we ran these experiments directly on bases of Zn, rather than on rotations
of bases of Zn because the algorithms themselves are rotation invariant.
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algorithm that solves ZSVP by finding many vectors of length roughly c
√

n
(where the constant c > 0 is unspecified), which can be viewed as a heuristic
reduction from ZSVP to c

√
n-SVP. In contrast, we give an efficient reduction

with a proof of correctness from ZSVP to γ-uSVP for any constant γ (and, more
generally, a roughly (n/γ2)γ2

-time reduction for γ ≤ √
n/2).

Our public-key encryption scheme is quite similar to a scheme recently pro-
posed by Ducas and van Woerden [15], in a beautiful independent work that
appeared as a preprint before the present work was finished. On one hand, Ducas
and van Woerden’s construction is more general than ours—it works with any
“remarkable” lattice, of which Z

n is an example. (We do note in passing that
our constructions also make sense for a more general class of lattices, but we
do not attempt to make this precise.) On the other hand, because we specialize
to Z

n, our scheme is arguably simpler, and the hardness assumptions that we
require for security, while formally incomparable, are arguably weaker.

Perhaps the biggest difference is that in [15], the ciphertext is a target point
that is very close to the lattice, effectively within the unique decoding radius
of Z

n, i.e., 1/2 (or for more general lattices, within whatever radius one can
efficiently decode, uniquely). And, the [15] decryption algorithm recovers the
unique lattice vector within this distance of the target point. In this context, Zn

is not a particularly good lattice because its unique decoding radius is rather
small (relative to, e.g., its determinant). (Of course, Ducas and van Woerden list
many “remarkable” lattices, many of which are better suited to their construc-
tion.) In contrast, our ciphertext is a target point that is quite far away from
the lattice, at distance Θ(

√
n) (well above the radius at which unique decoding

is possible), and our decryption algorithm simply determines whether the target
is closer or farther than a certain threshold value. Indeed, our scheme is par-
ticularly well suited to Z

n (as we discuss more in the full version [7]). Because
of this difference, our scheme achieves security under arguably weaker hardness
assumptions. The assumptions are not directly comparable, however, as [15]’s
hardness assumptions concern the lattice Z

n ⊕ αZn for a cleverly chosen scaling
factor α, whereas our hardness assumptions work with Z

n directly. Ducas and
van Woerden also show a signature scheme and a zero-knowledge proof, while
we do not.

Ducas and van Woerden’s work also contains more-or-less the same worst-
case to average-case reduction that we describe in Sect. 3, and therefore also
more-or-less the same distribution of bases that we propose. Indeed, in this
case their work is essentially strictly more general than ours. (Similar ideas also
appeared in [5,11,20], though in different contexts.)

Blanks and Miller introduced two of the basis-generating procedures that
we study, and performed experiments on them to determine if basis reduction
algorithms could break them [9]. Our empirical work on different bases for Zn is
best viewed as follow-up work to [9]. In particular, we perform more trials and
run BKZ with larger block sizes. Additionally, we perform experiments on the
discrete Gaussian bases described above, which were not considered in [9].
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Finally, we note that recent follow-up work to this paper [8] has continued
the study of the cryptosystem that we propose.

2 Preliminaries

We write In for the identity matrix. We write On(R) for the set of all orthogonal
linear transformations. That is On(R) is the set of matrices R ∈ R

n×n with the
property that RT R = In. We often informally refer to orthogonal transforma-
tions as “rotations.” We refer to integer-valued matrices with determinant ±1
(i.e., matrices in GLn(Z)) as unimodular. By default logarithms are base e.

We refer the reader to the full version [7] for basic definitions of lattices, the
successive minima λi, the lattice determinant, the Gram matrix, SVP, GapSVP,
and unique SVP.

2.1 The Continuous and Discrete Gaussian Distributions
and the Smoothing Parameter

For a vector y ∈ R
n and parameter s > 0, we write

ρs(y) := exp(−π‖y‖2/s2)

for the Gaussian mass of y with parameter s. We write Dn
s for the symmetric

continuous Gaussian distribution on R
n, that is, the distribution with probability

density function given by

Pr
X∼Dn

s

[X ∈ S] =
1
sn

·
∫

S

ρs(y)dy

for any (measurable) subset S ⊆ R
n. We simply write Ds for D1

s .
We prove the following lemma in the full version [7]. It shows that when X

is sampled from Dn
s , dist(X,Zn) is highly concentrated.

Lemma 1. For any s > 0, positive integer n, and ε > ε0

Pr
X∼Dn

s

[|dist(X,Zn)2 − ν| > εn] ≤ 2 exp(−(ε − ε0)2n/10) ,

where ν := n
12 − exp(−πs2)

π2 · n, and ε0 := exp(−4πs2)
6 · (1 + 1/s2).

The Gaussian mass of a lattice L ⊂ R
n with parameter s > 0 is

ρs(L) :=
∑
y∈L

ρs(y) .

The discrete Gaussian distribution DL,s is the distribution over L induced by
this measure, i.e., for any y ∈ L,

Pr
X∼DL,s

[X = y] = ρs(y)/ρs(L) .

We will need the following theorem from [10], which is a slight strengthening
of a result in [18].
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Theorem 3. There is an efficient algorithm that takes as input a basis B =
(b1, . . . , bn) ∈ R

n×n for a lattice L ⊂ R
n and a parameter s ≥ √

log(2n + 4)/π ·
maxi ‖bi‖ and outputs a sample from DL,s.3

For ε > 0, the smoothing parameter of a lattice L ⊂ R
n is the unique param-

eter ηε(L) > 0 such that
ρ1/ηε(L)(L∗) = 1 + ε .

Lemma 2 ([29, Lemma 4.1]). For any lattice L ⊂ R
n and parameter s >

ηε(L) for some ε ∈ (0, 1), if X ∼ Dn
s , then X mod L is within statistical distance

ε/2 of the uniform distribution modulo L.

Lemma 3 ([29, Lemma 3.2]). For any lattice L ⊂ R
n and any ε > 2−n

ηε(L) ≤ √
n/λ1(L∗) .

Lemma 4 ([20, Lemma 5.4]). For any s ≥ 1 and m ≥ n2 + n log(s
√

n)(n +
20 log log(s

√
n)), if y1, . . . ,ym ∼ DZn,s are sampled independently from DZn,s,

then y1, . . . ,ym is a generating set of Zn except with probability 2−Ω(n).

2.2 Lattice Problems

We will use a result of Lyubashevsky and Micciancio that gives an efficient,
dimension-preserving reduction from γ-uSVP to γ-GapSVP for polynomially
bounded γ = γ(n).

Theorem 4 ([28, Theorem 3]). For any 1 ≤ γ ≤ poly(n), there is a
dimension-preserving Cook reduction from γ-uSVP to γ-GapSVP.

We will also make use of the following algorithm.

Theorem 5 ([2, Corollary 6.6]). There is a 2n/2+o(n)-time algorithm that
solves γ-GapSVP with γ = 1.93 + o(1).

Lattice problems on rotations of Z
n. We say that two lattices L1, L2 of

dimension n are isomorphic, which we denote by L1
∼= L2, if there exists R ∈

On(R) such that R(L1) = L2. We call lattices L satisfying L ∼= Z
n “rotations of

Z
n.” We define γ-ZSVP to be γ-SVP with the additional requirement that the

input basis B satisfy L(B) ∼= Z
n.

Definition 1. For γ = γ(n) ≥ 1, the γ-approximate Shortest Vector Problem
on rotations of Zn (γ-ZSVP) is the search problem defined as follows. Given a
basis B ∈ R

n×n of a lattice L satisfying L ∼= Z
n as input, output a non-zero

vector v ∈ L with ‖v‖ ≤ γ · λ1(L).

When γ = 1, we simply write γ-ZSVP as ZSVP.

3 In fact, the algorithm even works for any parameter s ≥ √
log(2n + 4)/π ·maxi ‖b̃i‖,

where b̃i is the ith Gram-Schmidt vector of the basis B.
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2.3 Primitive Vectors and Vector Counting

Given a lattice L, a vector x ∈ L is called primitive if x /∈ aL for any integer a >
1. Note that 0 is not primitive regardless of L. Let Lprim denote the set of prim-
itive vectors in L. For a lattice L and r > 0, let N(L, r) := |{x ∈ L : ‖x‖ ≤ r}|
and let Nprim(L, r) := |{x ∈ Lprim : ‖x‖ ≤ r}| /2, where in the latter expression
we divide by two so that we effectively count ±x ∈ L as a single vector.

We will use the following bound from [34] on the number of integer points in
a ball rBn

2 for various radii r, where Bn
2 denotes the closed Euclidean unit ball.

Proposition 1 ([34, Claim 8.2]). For any n ≥ 1 and any radius 1 ≤ r ≤ √
n

with r2 ∈ Z,
(2n/r2)r2 ≤ |Zn ∩ rBn

2 | ≤ (2e3n/r2)r2
.

A lattice L ⊆ R
n satisfying det(L′) ≥ 1 for all sublattices L′ ⊆ L is called

semi-stable. We will also use the following bound from [34] on |L ∩ rBn
2 | where

L is a semi-stable lattice.

Proposition 2 ([34, Corollary 1.4, Item 1]). Let t := 10(log n + 2) and let
L be a semi-stable lattice. Then for any r ≥ 1, |L ∩ rBn

2 | ≤ 3eπt2r2
/2.

2.4 Probability

Lemma 5 (Chernoff-Hoeffding bound [21]). Let X1, . . . , XM ∈ [0, 1] be
independent and identically distributed random variables. Then, for s > 0,

Pr
[∣∣∣ME[Xi] −

∑
Xi

∣∣∣ ≥ sM
]

≤ 2e−Ms2/10 .

3 How to Sample a Provably Secure Basis

In this section, we show how to sample a basis B for a rotation of Zn that is
“provably at least as secure as any other basis.” In particular, we show a distri-
bution of bases B of rotations of Zn that can be sampled efficiently given any
basis of a rotation of Zn together with the orthogonal transformation R map-
ping the original lattice to the new lattice. This implies that “if a computational
problem can be solved efficiently given a basis from this distribution, then it can
be solved efficiently given any basis.” (We do not try to make this very general
statement formal. In particular, we do not try to classify the set of computational
problems for which this result applies. Instead, we simply provide an example.)
Similar ideas appeared in [5,11,15,20].

We say that an algorithm A that takes as input vectors y1, . . . ,yN ∈ L that
form a generating set of a lattice L and outputs a basis B of L is rotation-
invariant if for any orthogonal transformation R ∈ On(R), A(Ry1, . . . , RyN ) =
R(A(y1, . . . ,yN )). For example, the LLL algorithm yields an efficient rotation-
invariant algorithm that converts a generating set to a basis, and in Sect. 3.1
we give a more efficient algorithm that also does this. Given such an A, our
distribution is then the following.
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Definition 2. For any efficient rotation-invariant algorithm A that converts a
generating set to a basis and parameter s = s(n) ≥ 1 the distribution (A, s)-
ZDGS is sampled as follows. For i = 1, 2, 3, . . . , sample zi ∼ DZn,s. Let
B := A(z1, . . . ,zi). If B ∈ Z

n×n is full rank and |det(B)| = 1, then sam-
ple a uniformly random orthogonal matrix R ∼ On(R) and output B′ := RB.
Otherwise, continue the loop.

Notice that the resulting basis is in fact a basis of a rotation of Zn, specifically,
RZ

n. By Lemma 4, the above procedure terminates in polynomial time except
with negligible probability.

Theorem 6. For any efficient rotation-invariant algorithm A that converts a
generating set into a basis, there is an efficient randomized algorithm that takes
as input a basis B = (b1, . . . , bn) ∈ R

n×n for a rotation L of Zn and a parameter
s ≥ √

log(2n + 4)/π ·max ‖bi‖ and outputs a basis B′ ∈ R
n×n generating L′ that

is distributed exactly as (A, s)-ZDGS together with an orthogonal transformation
R ∈ On(R) such that RL = L′.

Proof. The algorithm behaves as follows. For i = 1, 2, 3, . . ., the algorithm uses
the procedure from Theorem 3 to sample yi ∼ DL,s, where L is the lattice
generated by B. It then computes B† := A(y1, . . . ,yi). If the lattice generated by
B† has full rank and determinant one, then the algorithm outputs B′ := RB† and
R, where R ∼ On(R) is a uniformly random rotation. Otherwise, it continues.

To see why this is correct, let R′ ∈ On(R) be an orthogonal transformation
such that Z

n = R′L. Let y′
i := R′yi, and notice that the y′

i are distributed
as independent samples from DZn,s. It follows from the fact that A is rotation
invariant that R′B† = A(y′

1, . . . ,y
′
i). Clearly B† is full rank and has determi-

nant one if and only if R′B† has this same property. Therefore, B′ is distributed
exactly as R(R′)−1A(y′

1, . . . ,y
′
i) (conditioned on the rank and determinant con-

ditions being satisfied). Since R is a uniformly random orthogonal transforma-
tion, this is distributed identically to R′′A(y′

1, . . . ,y
′
i) for R′′ ∼ On(R). Notice

that this is exactly the ZDGS distribution.
Finally, as we observed above, Lemma 4 implies that after poly(n, log s) sam-

ples, y′
1, . . . ,y

′
i will generate Z

n with high probability, in which case y1, . . . ,yi

will generate L. Therefore, the algorithm terminates in polynomial time (with
high probability).

The following corollary shows that we can achieve the same result for a fixed
parameter s (regardless of the length of the input basis).

Corollary 1. For any efficient rotation-invariant algorithm A that converts a
generating set into a basis, there is an efficient randomized algorithm that takes
as input any basis B ∈ R

n×n for a rotation L of Zn and outputs a basis B′ ∈
R

n×n generating L′ and rotation R such that B′ is distributed as (A, s)-ZDGS
and RL = L′, where s = 2n.

Proof. The algorithm simply runs the LLL algorithm on B, receiving as output
some basis B† = (b†

1, . . . , b
†
n) for L with ‖b†

i‖ ≤ 2n/2. It then runs the procedure
from Theorem 6 and outputs the result.
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Using Corollary 1, we can easily reduce worst-case variants of lattice problems
on rotations of Zn to variants in which the input basis is sampled from ZDGS.
As an example, we show a random self-reduction for SVP over rotations of Zn

below. (We also use this idea in Sect. 4.)

Definition 3. For any γ = γ(n) ≥ 1 and any efficient rotation-invariant algo-
rithm A, the (A, γ)-acZSVP problem is defined as follows. The input is a basis
B ∈ R

n×n sampled from (A, 2n)-ZDGS generating a rotation L of Zn. The goal
is to output y ∈ L with 0 < ‖y‖ ≤ γ.

Theorem 7. For any efficient rotation-invariant algorithm A and any γ ≥ 1,
there is an efficient reduction from γ-ZSVP to (A, γ)-acZSVP.

Proof. The reduction takes as input a basis B ∈ R
n×n for a rotation L of Zn

and simply runs the procedure from Corollary 1, receiving as output a basis B′

sampled from (A, 2n)-ZDGS generating L′ together with a rotation R such that
RL = L′. It then calls its (A, γ)-acZSVP oracle on input B′, receiving as output
some vector y′ ∈ L′. Finally, it outputs y := R−1y′.

3.1 A Rotation-Invariant Generating Set to Basis Conversion
Algorithm

For completeness, we now specify and analyze a rotation-invariant algorithm
(Algorithm 1) for converting a generating set Y = (y1, . . . ,yN ) to a basis.
After we published a preliminary version of this work, we learned that Li and
Nguyen developed a very similar algorithm in [26, Algorithm B.1], and showed
an optimized variant in [27, Section 4].

The algorithm A itself is perhaps best viewed as a “lazy” variant of the LLL
algorithm. In particular, unlike LLL, A simply works to find some basis of the
lattice generated by Y , and makes no attempt to further reduce the basis. More
quantitatively, in Theorem 8, we upper bound the number of swaps performed
by Algorithm 1 for (rotations of) integer lattices by n log2 β, where n is the
rank of the input lattice and β is the maximum norm of a vector in the input
generating set Y . (It is common in the literature to state the running time of
basis reduction algorithms in this form.) For comparison, standard analysis of
the LLL algorithm (see, e.g., [33]) upper bounds the number of swaps it performs
by O(n2 log β).

Define the (generalized) Gram-Schmidt vectors corresponding to a sequence
y1, . . . ,yN of (not necessarily linearly independent) vectors as follows:

ỹ1 := y1 ,

ỹi := yi −
∑
j<i,
ỹj �=0

〈yi, ỹj〉
〈ỹj , ỹj〉

ỹj for i = 2, . . . , N .

We next prove that Algorithm 1 is correct, rotation invariant, and in fact
quite efficient. Recall that a generating-set-to-basis conversion algorithm A being
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Algorithm 1: Rotation-Invariant Generating Set to Basis Conversion
Input: A generating set Y = (y1, . . . ,yN ) ∈ R

m×N of a lattice L of rank
1 ≤ n ≤ N .

Output: A basis of L.

// Size-reduction step.

Compute the Gram-Schmidt vectors ỹ1, . . . , ỹN corresponding to y1, . . . ,yN .
for i = 2, . . . , N do

for j = i − 1, . . . , 1 with ỹj �= 0 do
yi ← yi − �μi,j	 · yj // μi,j := 〈yi, ỹj〉/〈ỹj , ỹj〉.

end

end
Delete any identically zero columns from Y , and update N to be the new
number of columns in Y .

// Swap step.

if there exists i ∈ {2, . . . , N} such that ỹi = 0 then
Swap yj and yi, where j < i is the minimum index such that
yi ∈ span(y1, . . . ,yj).

goto size-reduction step.
end

return Y .

rotation invariant means that for all input generating sets Y ∈ R
m×N and R ∈

Om(R), RA(Y ) = A(RY ).

Theorem 8. On input a generating set Y = (y1, . . . ,yN ) ∈ R
m×N of a lattice

L of rank n ≥ 1, Algorithm 1 outputs a basis of L. Furthermore, Algorithm 1 is
rotation invariant and performs at most n log2 β − log det(L) swap operations,
where β := maxi∈{1,...,N} ‖yi‖. In particular, if L is (a rotation of an) integer
lattice then det(L) ≥ 1 and so Algorithm 1 performs at most n log2 β swaps.

Proof. In the full version [7], we include a (straightforward) proof that Algorithm
1 does in fact output a basis and is in fact rotation invariant.

It remains to upper bound the number of swaps performed by Algorithm 1.
Define the potential function

P (Y ) :=
∏

i∈{1,...,N},
ỹ i �=0

‖ỹi‖ ,

and note that P (Y ) is equal to the determinant of the sublattice of L spanned by
vectors yi with ỹi �= 0. Therefore, because the algorithm maintains the invariant
that Y is a generating set of L, we have that P (Y ) ≥ det(L). Using the same
invariant, we also have that at each iteration there are exactly n vectors with
non-zero Gram-Schmidt vectors. So, by definition of β, the input generating set
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Y0 = (y1, . . . ,yN ) satisfies

P (Y0) =
∏

i∈{1,...,N},
ỹ i �=0

‖ỹi‖ ≤
∏

i∈{1,...,N},
ỹ i �=0

‖yi‖ ≤ βn . (1)

Finally, we show that P (Y ) decreases by a multiplicative factor of at least 2
after each swap operation. Let Y = (y1, . . . ,yN ) and Y ′ = (y′

1, . . . ,y
′
N ) denote

the respective generating sets in Algorithm 1 before and after performing a given
swap operation on yj and yi for j < i.

We claim that ỹ′
k = ỹk for all k �= j. This is immediate for k < j because

y′
k = yk for such k. For k > j, it follows by noting that span(y′

1, . . . ,y
′
j) =

span(y1, . . . ,yj), which in turn follows by noting that, by the algorithm’s choice
of i and j, y′

j = yi and yi ∈ span(y1, . . . ,yj)\ span(y1, . . . ,yj−1). Furthermore,
yi ∈ span(y1, . . . ,yj) \ span(y1, . . . ,yj−1) implies that ỹj is non-zero.

Let πk denote projection onto span(y1, . . . ,yk)⊥. We then have that

P (Y ′)
P (Y )

=
∏

k∈{1,...,N},
ỹk �=0

‖ỹ′
k‖

‖ỹk‖ =
‖ỹ′

j‖
‖ỹj‖

=
‖πj−1(yi)‖

‖ỹj‖
=

|μi,j | · ‖ỹj‖
‖ỹj‖

≤ 1/2 .

The final equality again uses the fact that yi ∈ span(y1, . . . ,yj), and the inequal-
ity holds because μi,j := 〈yi, ỹj〉/〈ỹj , ỹj〉 has magnitude at most 1/2 after the
size-reduction step.

Therefore, by Eq. (1), Algorithm 1 performs at most

log2(P (Y0)/det(L)) ≤ n log2 β − log det(L)

swap operations, as needed.

4 We Have an Encryption Scheme to Sell You

We now consider the possibility that it actually is “hard to recognize Z
n” (where

we must formalize what this means rather carefully), and we show that this
implies the existence of a relatively simple public-key encryption scheme. (See
also [8] for follow-up work implementing the scheme and studying its security.)

The encryption scheme itself is described below. There are public parameters
s > 0 and r > 0, which are functions of the security parameter n (i.e., s = s(n)
and r = r(n)). In particular, the parameter s will control the length of the basis
used as the public key, and the parameter r is a noise parameter. In the full
version [7], we provide more discussion of these parameters.

– Gen(1n): Sample vectors z1,z2,z3, . . . independently from DZn,s until
z1, . . . ,zk generate Z

n. Run Algorithm 14 on input z1, . . . ,zk to obtain a
basis B of Zn and let G := BT B. Output sk := B and pk := G.

4 One can instead run any rotation-invariant algorithm that converts generating sets
into bases, as defined in Sect. 3. We simply suggest Algorithm 1 for concreteness.
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– Enc(pk, b ∈ {0, 1}):
• If b = 0, sample X ∈ R

n from a continuous Gaussian distribution with
probability density function

det(G)1/2

rn
· exp(−πXTGX/r2) =

det(B)
rn

· exp(−πXTGX/r2) ,

and output c := X mod 1 (i.e., the coordinates of c are the fractional
parts of the coordinates of X).

• If b = 1, output uniformly random c ∼ [0, 1)n.
– Dec(sk, c): Set t = (t1, . . . , tn)T := Bc. Output 1 if

∑
(ti − �ti�)2 > d and 0

otherwise, where

d :=
n

12
− exp(−πr2)

2π2
· n .

We first concern ourselves with the correctness of this scheme. In particular,
the following lemma tells us that the decryption algorithm will answer correctly
except with probability roughly exp(−e−πr2

n). In order to be conservative, we
will want to take r to be as big as possible, so we will take r to be slightly smaller
than

√
log n/π. E.g., we can take r =

√
log n/(10π). This is the maximal choice

for r up to a constant, since if we took, e.g., r ≥ √
log n, then ciphertexts of zero

would be statistically close to ciphertexts of one, making decryption failures
unreasonably common.

Lemma 6. For r ≥ 1, let δ := exp(−πr2). Then, the decryption algo-
rithm described above outputs the correct bit b except with probability at most
2 exp(−cδ2n) for some constant c > 0.

Proof. For the case b = 1, we simply notice that t is uniformly random in
a fundamental domain of Z

n. It follows that ti − �ti� is uniformly random in
the interval [−1/2, 1/2) and independent of the other coordinates. In particular
E[(ti−�ti�)2] = 1/12. It then follows from the Chernoff-Hoeffding bound (Lemma
5) that

Pr
[ ∑

(ti − �ti�)2 ≤ d
]

≤ exp(−δ2n/1000) .

We now consider the case b = 0. Write c = X + z for z ∈ Z
n. Then,

t = Bc = BX + Bz = BX mod 1. (Here, we crucially rely on the fact that
B is an integer matrix.) Notice that BX is distributed exactly as a continuous
Gaussian with covariance B(r2G−1)BT = r2, i.e., as Dn

r . Therefore,
∑

(ti−�ti�)2
is distributed identically to dist(Y ,Zn)2, where Y ∼ Dn

r . By Lemma 1,

Pr[dist(Y ,Zn)2 > d] ≤ 2 exp(−(d − ν − εn)2/10) ,

where ν := n
12 − δ

π2 ·n, and ε := δ4/3. Notice that d−ν−εn
n = δ

2π2 −δ4/3 > δ/100.
The result follows.
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4.1 Basic Security

We now observe that the above scheme is semantically secure if (and only if)
the following problem is hard. The only distinction between this problem and
the problem of breaking the semantic security of the encryption scheme is that
in the problem below the underlying lattice is specified by a worst-case basis
B instead of an average-case Gram matrix G. We will reduce between the two
problems using the ideas from Sect. 3.

Here and below, we have an additional parameter ρ, which is a bound on the
lengths of the input basis vectors. If we set s = 2n in our encryption scheme,
then we could remove ρ by using the LLL algorithm, as we did in Sect. 3.

Definition 4. For parameters ρ = ρ(n) > 0 and r = r(n) > 0, the (ρ, r)-ZGvU
problem (Gaussian versus Uniform mod Z

n) is the promise problem defined as
follows. The input is a basis B = (b1, . . . , bn) ∈ R

n×n such that ‖bi‖ ≤ ρ
that generates a rotation of Z

n, and a vector y ∈ [0, 1)n, where y is sampled
as follows. A bit b ∼ {0, 1} is sampled uniformly at random. If b = 0, y =
B−1X mod 1 for X ∼ Dr, and if b = 1, y ∼ [0, 1)n. The goal is to output b.

We say that (ρ, r)-ZGvU is hard if no probabilistic polynomial-time algorithm
A can solve this problem with probability better than 1/2 + negl(n).

Theorem 9. If (ρ, r)-ZGvU is hard for some ρ, r, then the above encryption
scheme is semantically secure with parameters s :=

√
log(2n + 4)/π · ρ and r.

Proof. Suppose that there is a probabilistic polynomial-time adversary B that
has non-negligible advantage in breaking the semantic security of the encryption
scheme. We construct an efficient algorithm E that solves ZGvU with probability
non-negligibly larger than 1/2.

The algorithm E takes as input a basis B ∈ R
n×n generating a lattice L,

and y ∈ [0, 1)n. It then uses the procedure from Theorem 6 with Algorithm 1 to
convert this into a basis B′ for a rotation of L and sets G := (B′)T B′. It then
sets c := (B′)−1By mod 1. Finally, E calls B on input G and c and outputs
whatever B outputs.

It is clear that E is efficient. Furthermore, if y is uniformly random modulo
1, then clearly c is also uniformly random modulo 1. On the other hand, if
y = B−1X mod 1 for X ∼ Dr, then

c = (B′)−1By mod 1 = (B′)−1X mod 1 .

Notice that (B′)−1X is distributed exactly as a Gaussian with covariance r2G−1.
Therefore, when b = 0, c is distributed exactly like an encryption of zero, and
when b = 1, c is distributed exactly like an encryption of one.

4.2 A Worst-Case to Average-Case Reduction (of a Sort)

Of course, ZGvU is a rather artificial problem. Below, we show reductions to
it from worst-case problems that ask us to distinguish Z

n from a lattice that is
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different from Z
n in a specific way. These can be thought of as “Zn versions” of

the traditional worst-case lattice problems GapSPP and GapSVP.
Recall that ηε(Zn) ≈ √

log(2n/ε)/π for small ε.

Definition 5. For any approximation factor α = α(n) ≥ 1, ε ∈ (0, 1/2), and a
length bound ρ = ρ(n) > 0, the problem (α, ε, ρ)-ZGapSPP is defined as follows.
The input is a basis B = (b1, . . . , bn) ∈ R

n×n for a lattice L satisfying ‖bi‖ ≤ ρ.
The goal is to output YES if L ∼= Z

n and to output NO if ηε(L) < ηε(Zn)/α.

The below reduction shows that if (α, ε, ρ)-ZGapSPP is hard, then our
encryption scheme with r :=

√
log n/(10π) is secure for any ε < n−ω(1) and

α ≤ ηε(Zn)/r ≈ √
10 log(n/ε)/ log n ≈ √

log(1/ε)/ log n.

Theorem 10. For any efficiently computable ε = ε(n) ∈ (0, 1/2) and integer
� = �(n) ≥ 100n/(δ − ε)2, there is a reduction from (α, ε, ρ)-ZGapSPP to (ρ, r)-
ZGvU that runs in time poly(n) · � and answers correctly except with probability
at most 2−n, where α := ηε(Zn)/r and the success probability of the ZGvU oracle
is 1/2 + δ, provided that δ > ε.

In particular, if (α, ε, ρ)-ZGapSPP is hard for any negligible ε = ε(n) <
n−ω(1), then (ρ, r)-ZGvU is hard.

Proof. The reduction takes as input a basis B for a lattice L ⊂ R
n and behaves

as follows. For i = 1, . . . , �, it samples a uniformly random bit bi ∼ {0, 1}. If
bi = 0, it samples Xi ∼ Dn

r and sets yi := B−1Xi mod 1, and if bi = 1, it
samples yi ∼ [0, 1)n. It then calls the ZGvU oracle on input B and yi, receiving
as output some bit b∗

i ∈ {0, 1}.
Let p be the fraction of indices i such that bi = b∗

i . The algorithm outputs
YES if p ≥ 1/2 + ε +

√
20n/�. Otherwise, it outputs NO.

The running time is clear. To prove correctness, we first notice that in the
YES case, the input to the ZGvU oracle is distributed identically to the ZGvU
input. It follows that for each i, Pr[b∗

i = bi] = 1/2+ δ. Furthermore, these events
are independent. Therefore, by the Chernoff-Hoeffding bound (Lemma 5),

Pr[p < 1/2 + ε +
√

20n/�] ≤ 2 exp(−�(δ − ε −
√

20n/�)2/10) ≤ 2−n ,

as needed.
On the other hand, in the NO case, by Lemma 2, yi is within statistical

distance ε of a uniformly random element in [0, 1)n. It follows that, regardless
of the behavior of the oracle, for each i, Pr[b∗

i = bi] ≤ 1/2 + ε, and again these
events are independent. Therefore, by the Chernoff-Hoeffding bound again,

Pr[p ≥ 1/2 + ε +
√

20n/�] ≤ 2 exp(−2n) ≤ 2−n ,

as needed.

(Note that the following definition is not simply the restriction of GapSVP to
rotations L of Zn—which would be a meaningless problem since all such L have
λ1(L) = 1. Instead, it is the problem of distinguishing Z

n from a lattice L with



Just How Hard Are Rotations of Zn? Algorithms and Cryptography 269

significantly larger λ1(L∗). Of course, since Z
n is self dual, and since one can

efficiently test whether a lattice is self dual, we could without loss of generality
restrict our attention to self-dual lattices and then equivalently work with λ1(L)
instead of λ1(L∗).)

Definition 6. For parameters ρ = ρ(n) > 0 and γ = γ(n) ≥ 1, the problem
(ρ, γ)-ZGapSVP is defined as follows. The input is a basis B = (b1, . . . , bn) ∈
R

n×n for a lattice L satisfying ‖bi‖ ≤ ρ. The goal is to output YES if L ∼= Z
n

and to output NO if λ1(L∗) > γ.

Theorem 11. For any ε = ε(n) with 2−n < ε < 1/2, ρ = ρ(n) > 0, and
γ = γ(n) ≥ 10

√
n/ log(n/ε), there is an efficient reduction from (ρ, γ)-ZGapSVP

to (α, ε, ρ)-ZGapSPP for α := γ
√

log(n/ε)/n/10.

Proof. The reduction simply calls its ZGapSPP oracle on its input, and outputs
whatever the oracle outputs. To see that this reduction is correct, it suffices to
consider the NO case. Indeed, by Lemma 3 if λ1(L∗) > γ, then ηε(L) <

√
n/γ ≤

10
√

n/ log(n/ε) · ηε(Zn)/γ = ηε(Zn)/α, so that the oracle must output NO.

4.3 Putting Everything Together

Finally, we put the reductions above together to obtain a correct public-key
encryption scheme that is secure assuming that ZGapSVP (or even ZGapSPP) is
hard.

Theorem 12. Let r :=
√

log n/(10π), and let d be as in Lemma 6. Then,
the above encryption scheme is correct, and for any s = s(n) > 0 and any
2−n < ε < n−ω(1) the scheme is secure either if (α, ε, ρ)-ZGapSPP is hard
for α := ηε(Zn)/r ≈ √

10 log(n/ε)/ log n and ρ := s/
√

(log 2n + 4)/π or if
(ρ, γ)-ZGapSVP is hard for γ := 10

√
n/ log(n/ε) · α ≈ √

10n/ log n.

5 Reductions and Provable Algorithms

In this section, we give a reduction from ZSVP to approximate (unique-)SVP. In
particular, our main result yields a randomized polynomial-time reduction from
ZSVP to γ-uSVP for any constant γ ≥ 1. By combining this reduction with a
known approximation algorithm for uSVP, we show that for any constant ε > 0
there is a 2n/2+o(n)-time algorithm for ZSVP.5 This improves exponentially over
the fastest known algorithm for SVP on general lattices [2], which runs in 2n+o(n)

time and was previously the fastest known algorithm even for the special case of
ZSVP. In fact, our 2n/2+o(n)-time algorithm works more generally for semi-stable
lattices whose minimum distance is not too large.

We note that our reduction is similar to the reduction from SVP to uSVP
in [36] though it works in a very different regime (we solve exact ZSVP using
5 We note again in passing that under a purely geometric conjecture we would in fact

obtain a running time of (4/3)n+o(n) ≈ 20.415n [37].
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a γ-uSVP oracle for any constant γ, while [36] solves approximate SVP using a
γ-uSVP oracle for γ ≤ 1 + O(log n/n)).

Interpreted differently, our reduction also shows conditional hardness of
uSVP. Namely, if one were to hypothesize that there is no (possibly randomized)
polynomial-time algorithm for ZSVP, then it implies that there is no random-
ized polynomial-time algorithm for solving γ-uSVP for any constant γ ≥ 1. This
is notable because uSVP is not known to be NP-hard for any constant factor
greater than 1. We also note that our main reduction generalizes to arbitrary
lattices with few short vectors and may be of independent interest.

5.1 The Main Reduction and Algorithms

We next present our main reduction, from which we get our main algorithms.

Sampling using a γ-uSVP oracle Our reduction crucially uses the following
theorem, which shows how to use a γ-uSVP oracle to sample short primitive
vectors. It is very similar to results in [1,35], but those results are in a slightly
different form from what we need. See the full version of the paper [7] for a proof.

Theorem 13. For any γ = γ(n) ≥ 1 and r > 0, there is a polynomial-time
randomized algorithm with access to a γ-uSVP oracle that takes as input (a
basis of a) lattice L and an integer A′ ≥ A := Nprim(L, γr) and outputs a vector
y ∈ L such that if x ∈ L is a primitive vector with ‖x‖ ≤ r then

Pr[y = x] ≥ 1
200A′ log(100A′)

.

Furthermore, the algorithm makes a single query to its γ-uSVP oracle on a full-
rank sublattice of L.

We emphasize that Theorem 13 holds for any r > 0, but that r need not be
provided as input.

The Main Reduction. We now present our main reduction. Intuitively, it says
that exact SVP is not much harder than approximate uSVP on lattices with few
short vectors. Namely, it says that there is an algorithm for solving exact SVP
by making roughly A/G queries to a γ-uSVP oracle (and which uses roughly
A/G time overall), where A := Nprim(L, γ · λ1(L)) and G := Nprim(L, λ1(L)).6

Theorem 14. Let γ = γ(n) ≥ 1 and let L be a lattice of dimension n. Let G :=
Nprim(L, λ1(L)) and let A := Nprim(L, γ · λ1(L)). Then there is a randomized
Turing reduction from (exact) SVP on L to γ-uSVP that makes (A/G) ·poly(n)
queries to its γ-uSVP oracle, runs in (A/G) · poly(n) time overall, and makes
all oracle queries on full-rank sublattices of L. In particular, the reduction is
dimension-preserving.
6 We have used the standard mnemonic of G representing “good” vectors and A rep-

resenting “annoying” vectors, although here A representing “all” primitive vectors
shorter than γ · λ1(L), including the good vectors, is more appropriate. We note in
passing that 2G is the so-called kissing number of L.
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Proof. It suffices to prove the claim for γ ≤ 2n/2. Indeed, suppose that the claim
is true for γ = 2n/2. Then we can solve SVP on L using Nprim(L, 2n/2 · λ1(L)) ·
poly(n) queries to a 2n/2-uSVP oracle and in Nprim(L, 2n/2 ·λ1(L)) ·poly(n) time
overall. But, because the 2n/2-uSVP oracle can be instantiated with a poly(n)-
time algorithm (the LLL algorithm [23]), this implies that there is an algorithm
that solves SVP on L and runs in Nprim(L, 2n/2 · λ1(L)) · poly(n) time (without
using any oracles), and therefore an algorithm that runs in Nprim(L, γ · λ1(L)) ·
poly(n) time and has access to a γ-uSVP oracle for any γ > 2n/2.

The reduction from SVP on L to γ-uSVP for γ ≤ 2n/2 works as follows:

1. Guess G′ satisfying G/2 ≤ G′ ≤ G, and guess A′ satisfying A ≤ A′ ≤ 2A.
2. Sample K := �200A′ log(100A′)/G′�·n vectors y1, . . . ,yK using the algorithm

in Theorem 13 with (a basis of) L and A′ as input.
3. Return a shortest vector among the vectors y1, . . . ,yK .

Due to space constraints, we defer proving correctness and performing run-
time analysis to the full versionof the paper [7].

Algorithms from Theorem. 14 Let TuSVP(γ, n) denote the fastest runtime of
a (possibly randomized) algorithm for γ-uSVP on lattices of dimension n. By
combining the reduction in Theorem 14, the point counting bound for Z

n in
Proposition 1, the reduction from approximate uSVP to approximate GapSVP
from Theorem 4, and the algorithm for (1.93 + o(1))-uSVP from Theorem 5 we
get the following algorithmic result for ZSVP.

Corollary 2. For 1 ≤ γ ≤ √
n, there is a randomized algorithm that solves

ZSVP on lattices of dimension n in (2e3n/γ2)γ2 · TuSVP(γ, n) · poly(n) time. In
particular, there is a randomized algorithm that solves ZSVP on lattices L of
dimension n in 2n/2+o(n) time.

Proof. By the rotational invariance of the �2 norm and Proposition 1,

A := Nprim(L, γ · λ1(L)) = Nprim(Zn, γ · λ1(Zn)) ≤ N(Zn, γ) ≤ (2e3n/γ2)γ2
.

The main result then follows immediately from Theorem 14.
The 2n/2+o(n)-time algorithm for ZSVP follows by instantiating the main

result with TuSVP(1.93+o(1), n) ≤ 2n/2+o(n), which follows by combining the fast
algorithm for (1.93+o(1))-GapSVP from Theorem 5 with the efficient dimension-
preserving reduction from uSVP to GapSVP in Thoerem 4.

We again emphasize that the 2n/2+o(n)-time algorithm in Corollary 2 sub-
stantially improves over the 2n+o(n)-time SVP algorithm for general lattices from
[2], which was also the previous fastest known algorithm for ZSVP.

In fact, Theorem 14 leads to a 2n/2+o(n)-time algorithm for SVP on a much
larger class lattices than rotations of Zn, namely, on semi-stable lattices L with
λ1(L) not too large. (Recall that a semi-stable lattice L is one with det(L′) ≥ 1
for all sublattices L′ ⊆ L.) Namely, combining Theorem 14 with the point-
counting bound for semi-stable lattices in Proposition 2 gives such an algorithm.
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Corollary 3. Let γ = γ(n) ≥ 1 and let t := 10(log n + 2). There is a ran-
domized algorithm that solves SVP on semi-stable lattices L of dimension n
in (3eπt2(γ·λ1(L))2/2) · TuSVP(γ, n) · poly(n) time. In particular, there is a ran-
domized algorithm that solves SVP on semi-stable lattices of dimension n with
λ1(L) ≤ o(

√
n/ log n) in 2n/2+o(n) time.

Proof. The main result follows by plugging r := γ · λ1(L) into Proposition 2
to upper bound A := Nprim(L, γ · λ1(L)) and then invoking Theorem 14. The
2n/2+o(n)-time algorithm for semi-stable lattices of dimension n with λ1(L) ≤
o(

√
n/ log n) follows by noting that, if γ = O(1) (in particular, if γ = 1.93+o(1)),

then eπt2(γ·λ1(L))2/2 = 2o(n). Indeed, the claim then follows by again using the
fact that TuSVP(1.93 + o(1), n) ≤ 2n/2+o(n).

We note that Theorem 14 and Corollaries 2 and 3 answer a special case of an
interesting question of Ducas and van Woerden [15], which asks whether there is a
reduction from exact SVP on “f -unusual” lattices—essentially lattices for which
Minkowski’s Theorem (or, more-or-less equivalently, the Gaussian heuristic) is
loose by a factor of at least f—to (approximate) uSVP. Semi-stable lattices L are
Ω(

√
n/λ1(L))-unusual in this sense (in particular, rotations of Zn are Θ(

√
n)-

unusual), and so we answer a special case of this question. Our results do not
hold for f -unusual lattices more generally, essentially because a lattice that is
loose with Minkowski’s Theorem may nevertheless have a dense sublattice (i.e.,
may not be semi-stable).

Hardness from Thoerem. 14 Corollaries 2 and 3 combine the reduction in
Theorem 14 with algorithms for γ-uSVP to get algorithms for SVP on rotations
of Zn and certain semi-sstable lattices. However, interpreting the reduction in the
other direction—assuming that SVP on rotations of Zn and certain semi-stable
lattices is hard—leads to new hardness results for approximate uSVP. Namely,
if one assumes that there is no randomized polynomial-time algorithm for ZSVP
then there is also no randomized polynomial-time algorithm for solving γ-uSVP
for any constant γ ≥ 1. This is notable because γ-uSVP is not known to be
NP-hard (or to the best of our knowledge, known to be hard under any other
generic complexity-theoretic assumption) for any constant γ > 1. Indeed, it is
only known to be NP-hard (under randomized reductions) for γ = 1+1/poly(n);
see [3,36]. Similarly, if one assumes that there is no randomized quasipolynomial-
time algorithm for SVP on stable lattices with sufficiently small minimum dis-
tance then there is also no randomized quasipolynomial-time algorithm for solv-
ing γ-uSVP for any quasipolynomial γ.

We also get similar hardness for the α-Bounded Distance Decoding Problem
(α-BDD), the problem in which, given a (basis of a) lattice L and a target point
t satisfying dist(t,L) ≤ α · λ1(L) as input, the goal is to output a closest lattice
point to t (i.e., x ∈ L satisfying ‖t − x‖ = dist(t,L)).

Corollary 4. The following hardness results hold for γ-uSVP and α-BDD:

1. If there is no randomized poly(n)-time algorithm for ZSVP, then there is no
randomized poly(n)-time algorithm for γ-uSVP for any constant γ ≥ 1 or for
α-BDD for any constant α > 0.
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2. If there is no randomized 2poly(log n)-time algorithm for SVP on stable lat-
tices L with λ1(L) ≤ poly(log n), then there is no randomized 2poly(log n)-time
algorithm for γ-uSVP for any γ ≤ 2poly(log n) or for α-BDD for any α with
(1/α) ≤ 2poly(log n).

Proof. The contrapositive of the claims for uSVP follow immediately from
Corollaries 2 and 3. The claims for BDD follow from this by additionally not-
ing that [28] gives an efficient reduction from γ-uSVP to (1/γ)-BDD for any
γ = γ(n) ≤ poly(n).

6 Experiments

The code and raw data for our experiments can be found at [6].

6.1 Experiments on Different Procedures for Generating Bases

In this section, we present experimental results examining the effectiveness of
standard basis reduction algorithms for solving ZSVP. Specifically, we generate
bases of Zn (which we then treat as instances of ZSVP) using three procedures:
discrete-Gaussian-based sampling, unimodular-matrix-product-based sampling,
and Bézout-coefficient-based sampling. Using each of these procedures, we gen-
erate bases in dimensions n = 128, 256, and 512 with a variety of settings for
procedure-specific parameters.7 These results extend those in [9], which included
experiments on bases generated using the second two procedures.

For each basis generating procedure (and corresponding set of parameters),
we run the LLL algorithm and BKZ reduction algorithm (as implemented in
fplll [16]) with different block sizes. For BKZ, we use block sizes 3, 4, 5, 10,
and 20—though in dimension 512, we left out block size 20 for most of our
experiments due to computational constraints. We often treat LLL as “BKZ
with block size 2” (though this is not strictly true). We run these algorithms
sequentially. That is, we run BKZ with block size 3 on the matrix returned by
the LLL algorithm, we run BKZ with block size 4 on the matrix returned by
BKZ with block size 3, and so forth.

For each parameter set of each basis generation procedure, we performed this
experiment twenty times, and we report below on the smallest block size that
found a shortest non-zero vector in the lattice (where, again, we think of LLL
as BKZ with block size 2), if one was found. More data can be found in the
associated repository [6].

At a high level, the data tell a relatively simple story. We were able to find
a shortest vector in all cases in dimension 128 (often with block size 10). In
dimensions 256 and 512, we were generally unable to find shortest vectors when
the basis was generated with “reasonable parameters,” where the definition of
which parameters settings are reasonable of course depends on the procedure
used to generate the basis.
7 We note that these experiments were actually performed on bases of Zn itself—not

rotations of Zn—because this allows us to work with bases with integer entries. This
does not affect our results because all of our algorithms are invariant under rotation.
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Discrete Gaussian-Based Sampling. We start by presenting the results of
experiments performed on bases generated essentially as described in Sect. 3
(which is also what we use for our encryption scheme in Sect. 4). However, we
make three minor modifications. First, instead of sampling vectors one at a time
until we find a generating set of Zn, we simply sample n+10 vectors. Empirically,
we found that this yielded a generating set with high probability. Notice that
this is much better than what is proven in Lemma 4. See also [31].

Second, recall that the basis sampling procedure in Sect. 3 requires an algo-
rithm A that converts such a generating set into a basis (and is rotation invari-
ant), as does our description of the sampling technique below. Since LLL is such
an algorithm, and since we intend to run LLL anyway, we simply skip this step
and run LLL directly on the generating set. Third, we do not bother to apply a
rotation to the basis, because the algorithms that we are running are invariant
under rotation (as noted in Footnote 7).

Table 1. Experimental results for basis reduction performed on bases generated using
the discrete-Gaussian-based construction described in Sect. 6.1. The entries under each
block size represent the number of times (out of a total of twenty experiments) that a
shortest non-zero vector was found with a given block size (but no smaller block size),
and the entries in the “unbroken” column represent the number of times that we failed
to find a shortest non-zero vector. Non-zero entries are highlighted.

block size

n s 2 3 4 5 10 20 unbroken

128 1 20 0 0 0 0 0 0

128 10 0 0 1 1 18 0 0

128 1000 0 0 0 3 17 0 0

256 1 2 2 1 0 3 3 9

256 10 0 0 0 0 0 0 20

256 1000 0 0 0 0 0 0 20

512 1 0 0 0 0 0 0 20

512 10 0 0 0 0 0 0 20

512 1000 0 0 0 0 0 0 20

In our experiments, we took s ∈ {1, 10, 1000}. See Table 1. Setting s = 1
is not a “reasonable” parameter choice, as the resulting vectors are unreason-
ably sparse. (Each coordinate of each vector in the generating set is zero with
probability roughly 0.92.) In particular, we would certainly not recommend using
parameter s = 1 for cryptography. Nevertheless, interestingly, in all twenty runs,
we were actually unable to find a shortest vector even for s = 1 in dimension
n = 512.

For s = 10 and s = 1000, we found shortest vectors in dimension n = 128
(as we did in all experiments in n = 128 dimensions) and failed to find shortest
vectors in dimensions n = 256 and n = 512. The data suggest that there was not
too much difference between parameter s = 10 and parameter s = 1000. E.g., in
dimension n = 128, there is no obvious difference between the block size needed
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to break the s = 10 case and the block size needed to break the s = 1000 case.
(In contrast, LLL was able to break the s = 1 case.)

Unimodular Matrix Product Sampling. The second basis sampling tech-
nique that we analyze was proposed in [9], where it is called Algorithm 3. To
introduce it, we start by discussing a family of embedding maps φk1,...,kd

:
R

d×d → R
n×n for size d subsets of indices {k1, . . . , kd} ⊆ {1, . . . , n} that embed

a smaller d × d matrix H into a larger n × n matrix φ(H):

(φk1,...,kd
(H))i′,j′ =

{
Hi,j if i′ = ki and j′ = kj for some i, j ≤ d;
1i′=j′ otherwise,

where H = (Hi,j) ∈ R
d×d and φk1,...,kd

(H) = H ′ = (H ′
i′,j′) ∈ R

n×n. With this,
we can define the next basis sampling technique, which we call “unimodular
matrix product” sampling.

The algorithm takes as input a dimension n, a block size 2 ≤ d ≤ n, an
entry magnitude size bound B ≥ 1, and a word length L ≥ 1. It then samples L
uniformly random matrices M1, . . . ,ML from GLd(Z) ∩ [−B,B]d×d. I.e., each
Mi is sampled from the set of all integer matrices with entries of magnitude
at most B and determinant ±1. Additionally, it samples L uniformly random
subsets K1, . . . ,KL ⊆ {1, . . . , n} of d indices with Ki = {k

(i)
1 , . . . , k

(i)
d }. Finally,

it outputs the basis A :=
∏L

i=1 φ
k
(i)
1 ,...,k

(i)
d

(Mi). (We also refer the reader to the
description of this algorithm in [9, Algorithm 3].)

In our experiments, we considered all combinations of parameters d ∈
{2, 3, 4}, B = 1, and L ∈ {10n, 20n, 30n, 40n, 50n}, except that we did not per-
form experiments with some of the larger parameter choices when n = 512 when
our experiments failed to find short vectors with smaller parameters. See Table 2.
(These parameter settings are roughly in line with those studied in in [9].)

We refer the reader to the full version [7] for discussion of our results and a
comparison with those in [9].

Bézout-Coefficient-Based Sampling. We next describe our third basis-
sampling algorithm, which was suggested by Joseph Silverman and studied as
Algorithm 4 in [9]. The algorithm is based on the following observation. Given
the matrix M = (m1, . . . ,mn−1) ∈ Z

n×(n−1), if (and only if) all the minors in
M of size n − 1 have no non-trivial common factor, then there exists a vector
a for which the matrix M ′ := (m1, . . . ,mn−1,a) is unimodular. Moreover, if
this is the case, then we can find such a vector a efficiently using the extended
Euclidean algorithm.

Indeed, with these observations, this Bézout-coefficient-based sampling algo-
rithm is straightforward to describe. It takes as input a dimension n and an entry
magnitude size bound B ≥ 1. It repeatedly samples a uniformly random matrix
M = (m1, . . . ,mn−1) ∈ {−B,−(B − 1), . . . , B − 1, B}n×(n−1) until the minors
of M of size n−1 have no non-trivial common factors. It then uses the extended
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Table 2. Experimental results for basis reduction performed on bases generated using
the product of sparse unimodular matrices method described in Sect. 6.1. The entries
under each block size represent the number of times (out of a total of twenty trials)
that a shortest non-zero vector was found with a given block size (but no smaller block
size), and the entries in the “unbroken” column represent the number of times that we
failed to find a shortest non-zero vector. Non-zero entries are highlighted. Cells that
are grayed out represent block sizes that were not tested.

block size

n B L d 2 3 4 5 10 20 unbroken

128 1 1280 2 20 0 0 0 0 0 0

128 1 2560 2 0 0 1 3 16 0 0

128 1 3840 2 0 0 1 5 14 0 0

128 1 5120 2 0 0 1 3 16 0 0

128 1 6400 2 0 0 0 2 18 0 0

128 1 1280 3 0 0 2 5 13 0 0

128 1 2560 3 0 0 0 4 16 0 0

128 1 3840 3 0 0 1 5 14 0 0

128 1 5120 3 0 0 1 4 15 0 0

128 1 6400 3 0 0 1 4 15 0 0

128 1 1280 4 0 0 1 5 14 0 0

128 1 2560 4 0 0 3 5 12 0 0

128 1 3840 4 0 0 2 4 14 0 0

128 1 5120 4 0 1 3 2 14 0 0

128 1 6400 4 0 0 0 4 16 0 0

block size

n B L d 2 3 4 5 10 20 unbroken

256 1 2560 2 20 0 0 0 0 0 0

256 1 5120 2 0 0 0 0 0 0 20

256 1 7680 2 0 0 0 0 0 0 20

256 1 10240 2 0 0 0 0 0 0 20

256 1 12800 2 0 0 0 0 0 0 20

256 1 2560 3 0 0 0 0 0 0 20

256 1 5120 3 0 0 0 0 0 0 20

256 1 7680 3 0 0 0 0 0 0 20

256 1 10240 3 0 0 0 0 0 0 20

256 1 12800 3 0 0 0 0 0 0 20

256 1 2560 4 0 0 0 0 0 0 20

256 1 5120 4 0 0 0 0 0 0 20

256 1 7680 4 0 0 0 0 0 0 20

256 1 10240 4 0 0 0 0 0 0 20

256 1 12800 4 0 0 0 0 0 0 20

block size

n B L d 2 3 4 5 10 20 unbroken

512 1 5120 2 20 0 0 0 0 0

512 1 10240 2 20 0 0 0 0 0

512 1 15360 2 0 0 0 0 0 20

512 1 20480 2 0 0 0 0 0 20

512 1 25600 2 0 0 0 0 0 20

512 1 5120 3 0 0 0 0 0 20

512 1 10240 3 0 0 0 0 0 20

512 1 15360 3 0 0 0 0 0 20

512 1 5120 4 0 0 0 0 0 20

Euclidean algorithm to compute a such that M ′ := (m1, . . . ,mn−1,a) is uni-
modular, and outputs M ′. (We also refer the reader to the description of this
algorithm in [9, Algorithm 4].) In our experiments, we took B ∈ {1, 10, 100}. See
Table 3.

We refer the reader to the full version [7] for discussion of minor differences
between our implmentation and the implementation in [9].

Our experiments showed that the effect of the parameter B was not dis-
cernible in our experiments. Indeed, for dimensions 256 and 512, our algorithms
failed to find a shortest vector for all choices of B, including B = 1. And, in
dimension 128, we found a shortest vector in all cases (as we always did), but
the block size needed shows no obvious dependence on B. These results are quite
similar to those in [9].
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Table 3. Experimental results for basis reduction performed on bases generated using
the Bézout-coefficient-based construction described in Sect. 6.1. The entries under each
block size represent the number of times (out of a total of twenty experiments) that
a shortest non-zero vector was found with a given block size (but no smaller block
size), and the entries in the “unbroken” column represent the number of times that we
failed to find a shortest non-zero vector. Non-zero entries are highlighted. Cells that
are grayed out represent block sizes that were not tested.

block size

n B 2 3 4 5 10 20 unbroken

128 1 0 0 0 3 17 0 0

128 10 0 0 1 2 17 0 0

128 100 0 0 1 6 13 0 0

256 1 0 0 0 0 0 0 20

256 10 0 0 0 0 0 0 20

256 100 0 0 0 0 0 0 20

512 1 0 0 0 0 0 20

512 10 0 0 0 0 0 20

512 100 0 0 0 0 0 20

6.2 A Threshold Phenomenon

In our data, we noticed a phenomenon. We found that the shortest vector in the
bases returned by our basis reduction algorithms almost always had either length
one or had length larger than some threshold τ . After a preliminary version
of this work was published, we learned about a body of work studying such
phenomena and providing compelling heuristic explanations for it. And, Ducas,
Postlethwaite, Pulles, and van Woerden did additional experiments shedding
much more light on this phenomenon [14].

In an earlier version of this work, we speculated more about the causes of this
phenomenon and guessed that the threshold was roughly τ ≈ √

n/2, but [14] give
strong evidence that it actually happens at τ ≈ Θ(n). We now simply include
the results of our experiments in Fig. 1 and refer the reader to [14] for more
information and additional references.

6.3 Sieving Experiments

Finally, we ran experiments with heuristic sieving on Z
n. In some sense, Zn is

a particularly interesting lattice for heuristic sieving algorithms because Z
n vio-

lates the Gaussian heuristic, which says that the number of non-zero lattice vec-
tors of length at most r (in a determinant-one lattice) should be approximately
equal to the volume of a ball with radius r, which is roughly (2πer2/n)n/2 in
large dimensions. Of course, Zn completely violates this for small radii. E.g., Zn

has 2n non-zero lattice vectors with length at most 1, while the ball of radius
1 has volume roughly (2πe/n)n/2, which is much less than one. More generally,
for small radii r � √

n, Zn has roughly (Cn/r2)r2
points in a ball of radius r
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Fig. 1. On the left is a histogram of the squared norm of the shortest vector found by
BKZ with block size ≤ 5 for discrete Guassian bases with n = 128 and s = 1000. On
the right is the same histogram without the trials where this norm was 1.

(as in Proposition 1), which is of course much larger than the volume of such a
ball.

One might not expect this to cause actual problems for sieving algorithms,
but it is worth testing. So, we ran experiments using the Gauss sieve, due to
Micciancio and Voulgaris [30], running trials in dimensions 20 ≤ n ≤ 50 with
Gaussian parameters s ∈ {10, 100, 1000}. We ran twenty trials with each pair of
values (n, s) (for a total of 20 · 31 · 3 = 1680 trials). We found that the behavior
of this sieving procedure on Z

n was quite similar to its predicted behavior on
lattices that do satisfy the Gaussian heuristic.

Of course, the most important metric of a sieving algorithm is whether it
actually finds a shortest non-zero vector. We adopted the common heuristic of
running the algorithm until it finds the zero vector (i.e., until there is a collision),

Fig. 2. Scatter plot of the number of vectors sampled by the sieving algorithm in
different dimensions with different parameters s, together with the fitted line 6.4·1.15n.
(The fact that the three different parameter values are not distinguishable in the plot
reflects the fact that the number of sampled vectors was essentially independent of the
parameter size, which is to be expected.)
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and we studied how often the algorithm found a shortest non-zero vector before
this happened. It would be natural to guess that this should happen in all but a
1/(2n+1) fraction of the trials—i.e., we assume that the first vector found with
length either 0 or 1 is chosen uniformly at random from the 2n+1 such vectors.
This heuristic matches the data reasonably well.

Next, the number of vectors N sampled by the algorithm (a measure of
its space complexity) was well approximated by N ≈ 6.4 · 1.15n, as shown
in Fig. 2. This is completely in line with the predicted behavior of roughly
N = O∗((4/3)n/2) ≈ 1.15n (even though this prediction is partially based on
a heuristic that does not directly apply to Z

n), and in line with the numbers
reported by Micciancio and Voulgaris and others for sieving experiments on
other lattices. So, if sieving algorithms perform differently on Z

n, the difference
is rather small. This result did not noticeably depend on the parameter s—i.e.
on the lengths of the vectors sampled—which is also what one would expect from
a basic heuristic model.

Fig. 3. The number of comparisons made by Micciancio and Voulgaris’s Gauss sieve
algorithm on Z

n with different Gaussian parameters s. The trend lines are (roughly)
500 · 1.37n, 1000 · 1.37n, and 1500 · 1.37n respectively.

The running time of the algorithm is also well within what we would expect.
For example, for parameter s = 10, our running times were well approximated
by 1.40n/43000 seconds (we did not attempt to optimize our code for speed),
compared to the expected running time of O∗((4/3)n) ≈ 1.33n, and the running
time appears to be proportional to the logarithm of the parameter s, which is
again what would be expected. Of course, this running time is subject to many
minor implementation details. A less fickle measure is the number of comparisons
made by the algorithm (i.e., the number of times that the algorithm tests whether
subtracting one vector from another will make the latter vector shorter). For
this data the simple exponential fit is quite tight and relatively close to what
we expect. E.g., for s = 10, the number of comparisons is well approximated by
500 · 1.37n; for s = 100, the fit was 1000 · 1.37n; and for s = 1000, the fit was
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1500 · 1.37n. See Fig. 3. The slightly larger base of the exponent can likely be
explained by lower-order effects, which would require data from a wider range
of dimensions to fully explore.
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