ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 978-1-7281-6327-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICASSP49357.2023.10096490

MULTIPLE SIGNED GRAPH LEARNING FOR GENE REGULATORY NETWORK
INFERENCE

Abdullah Karaaslanli', Satabdi Saha®, Tapabrata Maiti® and Selin Aviyente*

'Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, US

2Department of Statistics and Probability, Michigan State University, East Lansing, MI, US

ABSTRACT

Many real-world data are represented through the relations between
data samples, i.e., a graph structure. Although many datasets come
with a pre-existing graph, there is still a large number of applications
where the graph structure is not readily available. An essential task
for such cases is graph learning (GL), which infers the graph struc-
ture from a set of graph signals. Existing GL techniques mostly
focus on learning a single graph structure; however, samples are
usually connected in multiple different ways. Furthermore, existing
works can only handle unsigned graphs, while contemporary tasks
require inference of signed graphs, which are better at representing
similarity and dissimilarity of samples. In this paper, we propose a
framework (mvSGL) for joint estimation of multiple related signed
graphs. mvSGL optimizes the total variation of graph signals with
respect to graphs while ensuring that the graphs are similar to each
other through a consensus graph. mvSGL is employed in the infer-
ence of multiple gene regulatory networks (GRN) from single cell
datasets that include multiple cell types. Performance evaluation
using simulated and real datasets demonstrates the effectiveness of
mvSGL in the inference of multiple related GRNs.

Index Terms— Graph Learning, Multiview Graphs, Gene Reg-
ulatory Networks

1. INTRODUCTION

In many modern data science applications, relationships between
data samples are well described with a graph structure. While many
real-world data are intrinsically graph-structured, e.g. social net-
works, there is still a large number of applications, such as single cell
gene expression data, where the graph is not readily available. In the
latter case, graphs are effective for revealing the relational structure
and may assist in a variety of learning tasks. Graph learning (GL)
deals with the construction of a topological structure among entities
from a set of observations on these entities, i.e., graph signals.

In recent years, GL problem has been addressed from a graph
signal processing (GSP) perspective, where the unknown graph is
learned by exploiting the relation between graph signals and graph
structure [1, 2]. However, most of the existing work on graph learn-
ing considers simple data, where all signals are assumed to be de-
fined on a single graph structure. In many applications, the data
may be heterogeneous or mixed and come from multiple related
graphs, also known as multiview graphs. Example of this setup
includes gene regulatory networks where the pairwise relations be-
tween genes varies across different cell types, functional connectiv-
ity of the brain where links differ across different frequency bands.

This work was in part supported by National Science Foundation grants
CCF-2211645 and CCF-2006800.

Recent works consider the problem of learning multiple related
graphs each with a subset of observations, also known as joint in-
ference of multiple graphs [3]. In this setting, it is assumed that for
each graph a set of graph signals are provided and unknown graphs
are defined over the same nodes with different but related edges.
This problem setting has been most widely studied for learning the
topology of dynamic networks [4, 5, 6]. Assuming that the evolution
of graph structure is smooth across time, the problem learns multi-
ple graphs regularized with a term that promotes variation between
consecutive graphs to be small. More recently, the problem of joint
inference of multiple graphs has been formulated in [3], where sig-
nals are assumed to be stationarity with respect to graph structure
and pairwise similarity between all graphs is promoted through reg-
ularization. An alternative to these approaches has been proposed
in [7], where multiple graphs representing the interactions between
nodes in different layers are available and this information is used
to learn a global graph structure. Thus, a single graph is learned
from multiview graphs rather than learning multiple graphs, simul-
taneously.

In this paper, we address the multiview GL problem with a spe-
cific focus on joint inference of gene regulatory networks (GRN)
from multiple cell classes (conditions/disease states) from single cell
data [8]. Unlike previous approaches which are limited to unsigned
graphs, we will focus on multiview signed graph learning as GRNs
are signed. To this end, we propose multiview signed graph learning
(mvSGL) that extends previous signed graph learning method in [9]
to multiview graph setup with the following contributions:

* mvSGL learns multiple signed graphs jointly while regulariz-
ing the learned graphs to be similar to each other,

* Similarity of view graphs is ensured through a learned con-
sensus, which captures the common structure across views.

* Results on simulated and real single cell data illustrate the
effectiveness of mvSGL.

The remaining of the paper is organized as follows. In Section 2,
background on graphs and GL is provided. Section 3 describes the
proposed method for joint learning of multiple signed graphs. Sec-
tion 4 and 5 include results on simulated and real single cell datasets,
respectively. Concluding remarks are in final section.

2. BACKGROUND

A weighted signed graph is G = (V, E, W) where V is the node
set with cardinality n, E is the edge set and W is the adjacency
matrix with the weights of edges between two nodes allowed to
take on both positive and negative values. A signed graph can be
decomposed into two unsigned graphs, GT = (V, E*, W™) and
G = (‘/7 E, Wi), where W; = Wij (WZ; = |WZJ‘) ifWij >0
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(W3;; < 0), and 0, otherwise. Combinatorial Laplacian matrix of an
unsigned graph G is L = D — W where D is the diagonal matrix
with node degrees, i.e. D;; = E;L:l Wi;. Since L is a positive
semi-definite matrix, its eigendecomposition is L = VAV " with
eigenvalues ordered such that 0 = A1 < Aga < --- < Ay

A graph signal defined on a graph is a vector x € R"™ where
x; is the signal value on the sth node. An unknown unsigned graph
G can be learned from a given set of graph signals {x; € R"}7_,
that are defined on GG using assumptions made about the relation
between graph structure and graph signals. Dong et. al. [10] use
the assumption that graph signals are smooth with respect to G to
learn the structure of G. A graph signal x is smooth with respect
to G if the signal values of two nodes connected with an edge are
similar to each other. The smoothness of x can be quantified by its
total variation with respect to G, i.e. tr(x " Lx). Thus, the following
optimization problem is proposed in [10] to learn GG, where the total
variation of signals are minimized with respect to L:

mirﬁierilize tr(X LX) + a||L||% subject totr(L) = 2n, (1)

where X € R™*? is the data matrix with columns x;’s, L = {L :
L;; = Lj; <0Vi# j, L1 = 0} is the set of valid Laplacian matri-
ces. The first term is the total variation of signals, Frobenius norm of
L regularizes the density of the learned graph such that larger values
of « result in denser graphs. Finally, the last constraint prevents the
trivial solution L = 0.

Recently, we have introduced an extension of the unsigned graph
learning problem in (1) to learn an unknown signed graph G based
on the assumptions that the graph signals are (i) smooth with respect
to G, and (ii) non-smooth with respect to G~ [9]. These assump-
tions state that graph signals have small total variation on G* and
large total variation on G~. Thus, the signed graph G is learned
with the following optimization problem:

minimize
LEL,L—cL

> w(KL) + oL 7
se{t-} )
subject to tr(L°) = 2n Vs, and (LT,L7) € C,

where Lt and L™ are the Laplacian matrices of G™ and G~. K+ =
XXT, K~ = —XXT and the cyclic property of trace operation,
ie. tr(XTLX) = tr(XXTL), is employed. In order to make
sure that L™ and L™ are not non-zero at the same indices, they are
constrained to be in the set C = {(L*,L7) : L;Lj = 0if Lj;
Oand L;; = Oif Lz;. # 0,Vi # j}. Finally, trivial zero solutions
are prevented as in (1).

3. MULTIVIEW SIGNED GRAPH LEARNING

3.1. Problem Formulation

Let {X* € R"*Pi} | be an N-view dataset of graph signals, where
the columns of X" are the p; graph signals defined on an unknown
signed graph G* = (V, E', W*). While the node set is assumed
to be common across the different view, the edge sets £*’s and the
corresponding edge weights are assumed to be different but similar
to each other across views. Based on this assumption, G can be
inferred jointly, which will allow information sharing across views
during learning. To this end, we propose an optimization problem
that extends (2) to learn G*’s simultaneously while ensuring that
they are similar to each other. Similarity of learned G"’s is achieved
through a regularization term that forces each G* to be close to a

consensus signed graph G, which is also learned by combining in-
formation from G*’s. Thus, the structure of G reflects the common
connections shared across G*’s.

Let L"* be the Laplacian matrices of G** foralli € {1,..., N}
and s € {4, —}. Also, let the Laplacian matrices of positive and
negative part of the consensus graph G be L™ and L™. Define sets
LY ={L>", . LYt Lt}and £~ = {LY,... . LV~ L7}
The optimization problem for joint learning of G*’s and G is then:

N

C e tr(KL® 55|12

minimize Z Z{ r( )+ as |||z
selti—) im1

B = L Fops b+ 4 IL 1orr + 7 1L 1107
subject to L"® € L, tr(L"®) = 2n, Vi, Vs € {+, -} 3)
(L"t,L"")eCVi, L™, L™ eL, (L",L7) e C,

where K = XX K™ = XX, ||| progs and ||][1,07 ¢
are the Frobenius norm and the £;-norm of the off-diagonal entries,
respectively. Following (1), for each view ¢, we minimize the total
variation of signals with respect to G** and maximize the total vari-
ation of signals with respect to G*~. The second term controls the
density of the learned G (G* ™) such that for larger values of o
(a—), we learn denser graphs. The third term is the regularizer that
ensures that each view graph G is similar to the consensus graph
G with 54 (6-) controlling amount of the regularization. The last
term is a added to control the density learned consensus graph with
smaller values of v4 and y_ resulting in a denser consensus graph.
Finally, each G and G are subject to the same constraints as in (2).

3.2. Optimization

The problem in (3) can be written in a vectorized form, where one
learns the upper triangular parts of the Laplacian matrices. For this,
we first define the following operators: diag() : R™*"™ — R”™ is an
operator that returns the diagonal of the input matrix. The operator
upper() : R™*"™ — R™"~1/2 returns the upper triangular part of
the input matrix. For an n X n symmetric matrix A, define S €
RM*™ such that Supper(A) = A1l — diag(A). Finally, let 1
and O be all-one and all-zero vectors. To vectorize (3), let k¥'* =
upper(K**®), d* = diag(K"*), £"* = upper(L“*) and £° =
upper(L®) for s € {4, —}. Also, let £} = {e>F, ... VT ¢}
and £, = {€7,..., €Y7, €7 }. The vectorized form of (3) is:

minimize
L.y

N
Z Z {(ki,s _ STdi,57ei,s> + a”_sez,s”g

se{+,—} i=1

+2al€7°3 + BI1€%° — 13} + v lleF ] + -l I @)
subject to 1700 = p,17e0 = —n, £t <0, £47 <0,
£ 10" Viand €T <0, €7 <0, £71e,

where the first term in the summation corresponds to the first term
in (3), and the correspondence between the remaining terms to the
terms in (3) can be deduced using the hyperparameters. First two
constraints correspond to the trace constraints in (3). 25T 165 to-
gether with non-negativity constraint is called complementarity con-
straint [11] and corresponds to (L"’J’7 Li”) € Cin (3).

The problem in (4) is non-convex due to complementarity con-
straints. ADMM is shown to be convergent for problems with com-
plementarity constraints under some assumptions [12]. To write the
problem in ADMM form, introduce auxiliary variables v** = £%°
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forall i and s € {+,—}. Similarly, introduce v° = £° for all s.
Also, let V* = {v'* ...,v* v*} for s € {4, —}. Then, the
problem in its standard ADMM form is:

N N
J{nirlimize 1s(vit Vi) +Z Zf(li’s,fs)+u{(li’s)
L3 Ly YV VTS se{+,—}i=1
+us(vE V) F sl -l Q)

subject to viT =gt Vi = 0hT vi=gt, and v =£",
where f(£°,€°) = (kb* — S7d%*, £5°) + «f —S£"*||3 +
2a||€7%||53 + Bll€"° — £°]|3, vs(-,-) is the indicator function for
the complementarity set S = {(v,w) : v < 0, w < 0, vlw},
and 2x (+) is the indicator function for the hyperplane H = {£ :
172 = —n}. Let A° = {A\1s,...,ANs, As} for s € {+,—} be
the set of Lagrangian multipliers associated with constraints in (5).
Augmented Lagrangian is then:

N
Ly(L3, L5,V VT AT AT) =) as(viF v
=1

N
Y ST ) ) AL )

se{+,~} i=1
+ DIV - €5} s (v v (®)
s T/..s s P s s
+ > {wlelA (v -2 )+ 5lve—¢ 13},
se{+,—}

where p is the parameter of augmented Lagrangian. Using aug-
mented Lagrangian, ADMM steps at kth iteration are then:

(V*,V7) = argmin L, (L, L, , V™, V), @)
v+ w—

(L3, LT) = argmin Ly (LT, £, V7, V7), ®)
£3.Ly

Niis = Aiss + p(¥° —€7°), Vi, s ©)

e = As + p(¥° — %), Vs (10)

where ~and ~ represent the values of variables at kth and (k — 1)th
iteration, respectively. To solve (7), we use the fact that it can be
solved for each (v, w?) pair (and (v, w)), separately. This sepa-
ration leads to a set of optimization problems all of which can be
solved by projection onto the complementarity set S. The problem
in (8) is separable across £ and £, leading to two optimization
problems both of which can be solved with Block Coordinate De-
scent (BCD) [13].

4. SIMULATIONS

In this section, we test mvSGL! on simulated single cell data with
multiple gene expression datasets generated from multiple related
GRNs. We also compare the performance of mvSGL to SGL (see
optimization problem in (2)). Since SGL can learn a single signed
graph at a time, it is applied to each dataset separately to learn GRNs.
Both SGL and mvSGL require the selection of «’s, which is set
such that the learned G** has edge density around 0.1 for all 7 and

ICodes can be found at https://github.com/
Single-Cell-Graph-Learning/scMSGL
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Fig. 1. AUPRC ratios of the methods on simulated data generated
by two different random graph models. Left and right panels show
how the performance of methods changes with increasing number of
cells and increasing dropout ratios, respectively.

s € {+, —}. Similarly, s parameters are selected such that G° has
edge density around 0.1. s is selected such that the correlation be-
tween G* and G7 is around 0.5 Vi # j. The multiclass version of
area under the precision-recall curve (AUPRC), i.e. the average of
AUPRC+ and AUPRC-, is used as the evaluation metric, where the
activating and inhibitory edges of the learned GRNs are compared
to the activating and inhibitory edges of the ground truth GRNs, re-
spectively. We report the ratio of AUPRC values obtained by the
methods to those of a random estimator.

Data Generation: We simulate gene expression data from a multi-
variate zero-inflated negative binomial (ZINB) distribution, which is
shown to accurately capture the characteristics of single cell datasets
[14, 15]. Given a known graph structure, we generate synthetic
datasets using an algorithm developed by [16] and illustrated in [17,
9]. In order to generate multiple single cell datasets, we first cre-
ate a baseline graph G with 100 nodes using either an Erd6s—Rényi
(ER) model or a Barabasi—Albert (BA) model. G is then converted
to a signed graph by randomly selecting half of its edges as negative,
while the remaining ones are set as positive. Next, {G;}i—; are gen-

erated by adding 0.9 x (g) x 1 new edges to the baseline graph G.

We set 7 = 0.1 such that 90% of the edges are common across G’s.
Half of the added edges are set as negative edges, while the other
half is positive. From each G*, simulated gene expressions from p
cells are generated using the ZINB simulator to create X°. The three
parameters of the ZINB distribution were determined using a real
scRNA-seq dataset [18]. Each simulation is repeated 10 times and
the average performance over 10 realizations is reported.
Experiment 1: In the left panel of Fig.1, we report how the per-
formance of the methods changes with varying number of cells p.
It is seen that for the different cell numbers, mvSGL has higher
AUPRC ratios than SGL, with the difference in performance in-
creasing with increasing number of cells. This indicates that mvSGL
shares valuable information across views, thus leading to improved
performance. As expected, the performance of both methods im-
proves with increasing number of cells. These observations hold for
both random graph models.
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Fig. 2. Genes with the highest node strengths. Orange and blue bars indicate that the strength is calculated using activating and inhibitory
edges, respectively. Only genes whose activating or inhibitory strength is among the top 10 genes in any view are shown.

Experiment 2: An important feature of single cell data is dropout
phenomena, where a high percentage of genes are not expressed in
cells due to technical noise or genuine biological variability [19].
To observe how methods are influenced from the dropout ratio of
single cell datasets, we generate datasets with increasing dropout
ratio while p = 400. Right panel of Fig. 1 shows the AUPRC
ratios for mvSGL and SGL for both random graph models. Similar
to cell sensitivity analysis, sScMSGL performs better compared to
SGL. Increasing dropout ratio causes a drop in the performance of
both methods. This is expected as increasing the number of zeros
in the datasets due to technical or biological noise makes learning
harder. As in the previous experiment, these observations hold for
both ER and BA models.

5. REAL DATA

In this section, mvSGL is employed to study the differentiation
process in mouse embryonic stem cells (mESC) [20]. Single
cell datasets from [21] generated using high-throughput droplet-
microfluidic approach were used to study differentiation in mESC
before and after leukemia inhibitory factor (LIF) withdrawal. The
dataset contains cells sampled from 4 states: before LIF withdrawal
(day 0) and after the withdrawal (days 2, 4 and 7). Each cell type has
72 genes and the number of cells in each subgroup are respectively:
933, 303, 683 and 798. Hyperparameters of mvSGL are selected the
same way as in simulated datasets.

Since there is no ground truth, we validate the results by ana-
lyzing the centrality of different nodes in the learned graphs. In Fig.
2, the positive and negative edge strengths of central genes in the
learned GRNSs are plotted. NANOG, SOX2, ZFP42 are found to be
the central inhibitory genes in the early stages of differentiation with
their inhibitory strength diminishing as cells proceed to a mature
state. POUSF1 and UTF1 also exhibit higher number of inhibitory

relationships in the the first few days and their strength reduces in
Days 4 and 7. Centrality of these genes in early stages of the de-
velopment is inline with previous works [22, 23, 24]. Reduction in
the expression of NANOG has been shown to be correlated with the
induction of genes GATA4 and GATAG6 which initiate differentiation
of pluripotent cells [25] and therefore GATA4 and GATAG6 has been
correctly identified as central in Days 2, 4 and 7. Collectively, these
results indicate that mvSGL manages to find GRNs whose central
nodes are inline with previous research.

6. CONCLUSIONS

In this work, we proposed mvSGL for learning multiple related
signed graphs with a specific focus on GRN inference from single
cell datasets containing gene expressions from multiple cell types.
Compared to previous work on multiview graph learning, mvSGL
learns signed graphs, which are important structures to represent
similarity and dissimilarity between nodes. Furthermore, mvSGL
can learn a consensus signed graph, that captures the shared struc-
ture across multiview graphs. Although we did not explicitly study
the properties of learned consensus graphs, they can be beneficial
when the focus is on aggregation of multiview graphs as in [7]. Our
results on simulated and real single cell datasets that contain gene
expressions from multiple cell types indicate the effectiveness of the
method in learning multiple related signed graphs.

There are some open problems that can considered as future
work. First, in our current formulation the node set is assumed to be
the same across views. However, in some applications some of the
nodes may be hidden in different views. Second, we used squared
Frobenius norm for the regularization term to ensure that the view
graphs are close to the consensus graph. Other norms, such as L1
norm, can be considered to promote the sparsity of the variation
across views.
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