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ABSTRACT

An important problem in graph signal processing (GSP) is to infer
the topology of an unknown graph from a set of observations on
the nodes of the graph, i.e. graph signals. Recently, graph learn-
ing (GL) approaches have been extended to learn dynamic graphs
from temporal graph signals. However, existing work primarily fo-
cuses on unsigned graphs and cannot learn signed graphs, which are
important data structures that can represent the similarity and dis-
similarity of the nodes. In this paper, we propose a dynamic signed
GL (dynSGL) method based on the assumptions that (i) at each time
point signals are smooth with respect to the signed graph, i.e. sig-
nal values at two nodes connected with a positive (negative) edge
are similar (dissimilar) and (ii) evolution of the graph structures is
smooth across time. The performance of dynSGL is evaluated on
simulated data and shown to have higher accuracy compared to static
signed and dynamic unsigned GL techniques. Application of the
proposed method to a financial dataset gives important insights to
the time-varying changes to the interactions between stocks.

Index Terms— Signed Graphs, Graph Learning, Dynamic
Graphs, Graph Signal Processing

1. INTRODUCTION

In many scientific disciplines, graphs are used to study relational
data, where the nodes and edges of the graph represent the objects
and their relations, respectively [1]. In most applications, in addition
to having the edge weights, one may also have information on the
nodes, in the form of node attributes. These node attributes can be
viewed as graph signals. Examples of such data include user infor-
mation on a social network and congestion level in a traffic network.
Ubiquity of graph signals in many applications led to the field of
graph signal processing (GSP), which aims to process graph signals
by extending classical signal processing tools, such as Fourier trans-
form, filtering or sampling to non-Euclidean data [2, 3].

An important problem in GSP is graph learning (GL), where
one aims to infer the topology of an unknown graph from a set of
observed graph signals [4, 5]. Various methods have been developed
for this task by exploiting the graph Fourier domain representation
of the signals, such as smoothness [6, 7] or stationarity [8, 9, 10].
However, these methods are limited to learning a single static net-
work, which is restrictive when the connectivity between the nodes
of a graph changes with time. In such cases, one needs to learn dy-
namic graphs, which arise in a variety of applications. For instance,
gene regulations change over time with the development of cells or
relations between stocks in financial networks vary with time. To
this end, static GL approaches have been extended to learn dynamic
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graphs [11]. These extensions are based on the assumptions made on
the evolution of the unknown dynamic graph. Methods proposed in
[12, 13, 14] use the assumption that the graph structure varies slowly
across time, while [15] assumes the spectrum of the graph changes.

Although aforementioned static and dynamic GL approaches are
shown to perform well in some applications [16], they are all re-
stricted to unsigned graphs, where edge weights can only be posi-
tive. However, many applications require signed graphs, where the
edges can take on positive and negative weights, to model the inter-
actions between the nodes. For instance, amity and enmity in social
networks or activating and inhibitory gene regulations are best rep-
resented with signed graphs. Recent work has considered the exten-
sion of static GL methods to signed graphs. In [17], signed Laplacian
[18] is used to define smooth graph signals on signed graphs. Based
on this definition, a signal is smooth with respect to a signed graph
if the signal values at two nodes connected with a positive (negative)
edge are similar (dissimilar). However, dissimilarity is defined as the
two nodes’ signals having the same magnitude but different signs,
which can be restrictive in applications where the signal values are
always positive. To overcome this, [19] proposes to decompose a
signed graph into two unsigned graphs based on the edge signs. The
signed graph is then learned by assuming that signals are smooth and
non-smooth with respect to positive and negative parts of the signed
graphs, respectively. Similar to [17], signal values at two nodes con-
nected with a positive (negative) edge are similar (dissimilar); but
definitions of similarity and dissimilarity are more flexible.

In this work, our aim is to extend the method proposed in [19] to
learn dynamic signed graphs, which are signed graphs whose struc-
ture changes with time. To this end, we propose a dynamic signed
GL (dynSGL) algorithm with the following contributions:

* We define the temporal smoothness of signed graphs such that
both the structure and signs of the edges of the signed graph
change smoothly with time,

» The temporal smoothness is used to extend [19], leading to a
non-convex problem which is solved using alternating direc-
tion method of multipliers (ADMM) with convergence guar-
antees.

The rest of the paper is organized as follows. Section 2 gives the
necessary background material. dynSGL framework along with the
optimization procedure is given in Section 3. Results and concluding
remarks are presented in Sections 4 and 5, respectively.

2. BACKGROUND

2.1. Graphs and Graph Signals

A weighted undirected graph is defined as G = (V, E, W) where
V with |V| = n is the node set and £ C V x V is the edge set.
W € R™ " is the adjacency matrix with W;; = Wj; equal to
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the edge weight of (i,j) € E. G is an unsigned graph if all edge
weights are positive, otherwise it is signed. A signed graph G can
be decomposed into two unsigned graphs G* = (V, ET, W) and
G~ = (V,E~, W) based on the sign of its edge weights where
W:; = W,; if W;; > 0 and 0, otherwise and W = [W ;] if
W;; < 0and 0, otherwise.

A graph signal defined on G is a vector x € R™ where x; is the
signal value on the ith node. For an unsigned graph G, the total vari-
ation of x on G is measured by its Dirichlet energy, i.e. tr(x ' Lx)
where L = D — W is the graph Laplacian and D is the diagonal
matrix of node degrees [2]. For a signed graph with Laplacian ma-
trices L™ and L™ corresponding to G and G, respectively, the
total variation of x over the signed graph G can calculated using
tr(x " LTx) and tr(x "L~ x) [19].

2.2. Graph Learning

Given a set of graph signals X = {x;}?_, defined on an unknown
graph G, the structure of GG can be learned using the relation between
the signals and the graph. For unsigned graphs, [6] propose to learn
G based on the assumption that the signals are smooth with respect
to G, i.e. they have small total variation. This assumption results
in the following optimization problem where the total variation of
signals is minimized with respect to the Laplacian of G:

minimize tr(X LX) + a||L||3 subject totr(L) = 2n, (1)
where X € R™*P is the data matrix whose columns are x;’s, L. =
{L: L;; = Lj; <0Vi# j, L1 = 0} is the set of valid Laplacian
matrices. The Frobenius norm term in the objective function is added
to control the density of the learned graph such that larger values of
« result in denser graphs. Finally, the constraint is added to prevent
the trivial zero solution.

The problem in (1) is extended in [19] to learn an unknown
signed graph with the following two assumptions: signals have (i)
small total variation with respect to G and (ii) large total variation
with respect to G~ . An unknown signed graph G is then learned
with the following optimization problem where the total variation of
signals is minimized with respect to L™ and maximized with respect
toL™:

minimize
LteL,L— €L

Y. (KL + au[L7|I7
se{+,—} 2)
subject to tr(L°) = 2n Vs, and (LT,L7) € C,

where KT = XX, K~ = —XX" and we used the fact that
tr(XTLX) = tr(XX "L). L* and L™ are constrained to be in the

_ N .7t 0T - _ oifrt
set C = {(L",L7) : L = 0if Lj; # Oand L;; = 0if L #
0, Vi # j} in order to ensure that they are not non-zero for the same
indices.

3. TIME-VARYING SIGNED GRAPH LEARNING

3.1. Problem Formulation

A dynamic signed graph is a sequence of graphs, G = {G'},
where G* = (V, E*, W*) is the signed graph at time point . Struc-
ture of G can be learned from a given set of time-varying signals
X = {X'}L_, where the columns of X’ € R™*" are the p graph
signals defined on G* and |V| = n. Let Gt and G*~ be the de-
composition of G* based on the signs of its edges. In order to learn
G, we make the following assumptions:

AS1 Signals in X* have small and large total variations on G
and G*, respectively.

AS2 The topology and signs of the edges of G* change smoothly
over time.

Let L®T and L"~ be the Laplacians of G** and G*, then the
above assumptions lead to the following optimization problem:

minimize
t,— 1T
{Lt’+va }tzl se

T
3D tr(KYLY) + o LYY 3

(.-} =1
= t,s t—1,512 (3)
+ > D B =Ly
se{+4,—} t=2
subject to  tr(L"®) = 2n V¢, s, and (LT, L"7) € C,
where Kt = X!X!'", K~ = —X'X'" and [[|%.05 5 is the

Frobenius norm of the off-diagonal entries. AS1 is satisfied by opti-
mizing the total variation of X* with respect to L*" and L. AS2
is satisfied by regularizing the distance between L%* and L'~1*,
which ensures that the temporal evolution of G is smooth. Finally,
the constraints are the same as those in (2).

3.2. Optimization

In order to optimize (3), we first vectorize the problem where the
upper triangular parts of the Laplacians are learned. Define the oper-
ators upper : R™*" — R*"=1/2 and diag : R™*" — R", which
take a square matrix and return the upper triangular and diagonal
parts of the input matrix, respectively. Let k** = upper(K"*),
d“* = diag(K"*®) and £~ = upper(L"*®). Define matrix S €
R™*™(m=1/2 guch that S€4° = —diag(L"*). Then, (3) can be
vectorized as follows:

minimize

T
minimize 0 > ((2k"* —STd") L 4 oL
{et-+,et =31, i

T
2 1A [ e N N C A Ay Al | AN C)

se{+,—} t=2

subject to 17 £ = —n, £ < 0,Vt,s, and €1 16" v,

where the first term corresponds to the total variation term in (3), the
second and third terms correspond to the Frobenius norm control-
ling the density of the learned graphs and the last term is the regular-
izer for temporal smoothness. The first constraint prevents the triv-
ial zero solution and £ 1£%~ along with the non-positivity con-
straint are called complementarity constraints [20] and correspond
to (L»*, L") € C. This problem is non-convex due to comple-
mentarity constraints. ADMM is shown to converge for problems
with complementarity constraints under some conditions [21].

To solve (4) with ADMM, we first introduce auxiliary variables
vi* = 5 Vt, s and then rewrite (4) in ADMM form:

T
e . t,4+ pt,— T 6+ S t—
miniigize f({£77,67}) + Lo (v V)
t,4+ t,—T =
v sV Yi=1
+zH(£t‘+)+zH(£t”)} o)

subject to  £9° = v"* Wt s,
where f(-) is the objective function of (4), 1¢ and ¢y are the indica-
tor functions for the complementarity constraint and 17 £5° = —n,
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respectively. From the augmented Lagrangian of (5), ADMM steps
at kth iteration can be found as follows:

(¥, 99 1L = argmin e (v vhT)

vt vt —
= s s Rt,s (6)
+ Y D -t B,
se{+,—}
(et ey, = argmin f{€"T, 0 Y)
{et-+ et =31
r R %)
D0 Dow ) Bl v 3,
se{+,—} t=1
§t,5 — §t,s +Zt,s _ Qt,s7 Vt757 (8)

where ™ and = represent the values of the variables at the kth and
(k — 1)th iterations, respectively. y** is the Lagrangian multiplier
related to v** = £, and p is the parameter of the augmented La-
grangian. The problem in (6) can be solved for each (v, v* ™)
separately, where each subproblem is the projection onto the com-
plementarity set. The problem in (7) is separable across {£F}7_,
and {£€"~}{_;, where both subproblems can be solved with block
coordinate descent [22].

4. RESULTS

4.1. Simulated Data

In this section, the performance of dynSGL! is assessed on simu-
lated datasets. The results are compared to signed graph learning
(SGL, see the optimization problem in (2)) and dynamic unsigned
graph learning (dynGL, the optimization problem in (3) without the
L%~ terms). SGL and dynSGL require the selection of as param-
eters, which control the density of the positive and negative edges
of the learned signed graphs. We selected these parameters such
that the density of positive and negative edges are around 0.1. Simi-
larly, for dynGL, « is selected such that the learned unsigned graph
has an edge density of 0.1. dynSGL requires the selection of S,
which determines the amount of temporal smoothness. We set it to
a value such that the correlation between G* and G*~! is around
0.75 Vt. For dynGL, 5 is set the same way. For the performance
metric, we used the multiclass F1 score, which is the average of F1+
and F1-, which are calculated by comparing the positive and nega-
tive edges of the learned graph to the positive and negative edges
of the ground truth, respectively. For dynGL, which returns un-
signed graphs, learned edges are compared to the positive and nega-
tive edges separately to calculate F1+ and F1-.

Data Generation: Given a signed graph G with n nodes, a syn-
thetic graph signal x can be generated based on AS1. Let L™ and
L~ be the Laplacians of G and let LT = UAU' and L™ =
VIV be their eigendecompositions. AS1 states that x is the
linear combination of the eigenvectors of L™ and L~. In partic-
ular, a graph signal x that follows AS1 can be generated by x =
(Uh1(A)UT+Vhe(Z)V " xo+ewhere b1 (A) = AT/|AT||F is
a low-pass graph filter, h2(X) = 3/||X||r is a high-pass graph fil-
ter, T is the pseudo-inverse operator, xo ~ N (0, I) and € is additive
white Gaussian noise. Using this synthetic graph signal generation
process, we generate data for dynamic signed GL problem as fol-
lows. We first generate G* from either an Erdés—Rényi (ER) model

ICodes can be found at
SPLab-aviyente/dynSGL

https://github.com/
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Fig. 1. Performance of methods on simulated dynamic signed graphs
as a function of the number of signals at each time point. Left panel
shows the performance for the model and the right one shows the
performance for BA model.

(n = 100, prr = 0.2) or Barabdsi—Albert (BA) model (n = 100,
mpa = 8). Half of the edges of G' are selected randomly and set
to be negative edges, while the remaining ones are set as positive
edges. G = {G*}{_, with T = 10 is then constructed where each
G" is generated by perturbing  fraction of edges of G**. Finally, p
graph signals are generated from each G* following the graph signal
generation procedure described above to construct the data matrices
X', White Gaussian noise with variance equal to 10% of the sig-
nal power is also added to the data matrices. Each experiment is
repeated 20 times and average F1 score of these runs are reported.
Experiment 1: We first study how the different methods are affected
from varying the number of signals. In particular, at each time point
we generate p graph signals where p ranges from 20 to 200. Pertur-
bation fraction r is set to 0.05. In Fig. 1, F1 scores of the graphs
learned by the different methods are plotted as a function of p. All
methods perform better with increasing number of signals as ex-
pected. dynGL is the worst performing method, since it can only
learn unsigned temporal graphs. dynSGL performs better than SGL
for all values of p, i.e. there is up to 20% increase in F1 score when
graphs are learned with dynSGL. This result indicates that imposing
temporal smoothness leads to better learning. Finally, these obser-
vations hold for both ER and BA models.

Experiment 2: Next, we study how the performance of the different
methods changes when the value of 7, i.e. amount of temporal vari-
ation, is increased. We set the number of signals p to 100 and the
value of r varies from 0.05 to 0.5. r controls the amount of the tem-
poral smoothness in the ground truth graph, that is for larger values
of r, G is temporally less smooth. Results for the different methods
are given in Fig. 2. Since SGL learns a graph at each time individu-
ally, its performance is not affected from the change in . However,
F1 scores of both dynSGL and dynGL drop, since the ground truth
graphs do not fit AS2 anymore as r increases. Similar to the first
experiment, dynGL is the worst performing method. dynSGL per-
forms better than SGL up to » = 0.3, then its performance gets
worse, which is expected as imposing temporal smoothness would
degrade the quality of the learned graphs when AS?2 is not valid. As
above, the observations hold for both random graph models.

4.2. Real Data

dynSGL is applied to a financial dataset to learn the time-varying
interactions between 89 stocks from NASDAQ 100 index. Adjusted
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Fig. 2. Performance of methods on simulated dynamic signed graphs
as a function of perturbation amount over time. Left panel shows
the performance for ER model and the right panel shows the perfor-
mance for BA model.

day close prices of stocks for the year 20207 are used to calculate the
daily log-returns, which are considered as graph signals. We split the
dataset into sliding overlapping time windows, where graph signals
in each window are used to construct X = {X*}7_;’s with T = 49.
Each window includes data from 10 days, i.e. Xt e R®9*19 and the
overlap between consecutive windows is 5 days. dynSGL is applied
to X to find the temporal signed graph G = {G*}12; where a;’s
are selected such that the positive and negative edge densities of G*
are 0.1 and B3,’s are selected such that the correlation between G*
and G*~! is 0.9. For comparison, SGL is also applied to each X"
separately to find G* where a;’s are selected the same way as for
dynSGL.

Since there is no ground truth temporal graph, we validate the
learned G by analyzing its properties. In particular, sectoral divi-
sion® of stocks is considered as the ground truth community struc-
ture and we calculate the signed modularity [24] with respect to this
division at each time point. High values of signed modularity indi-
cates that the graph is modular, i.e. positive edges are mostly within
communities, while negative edges are mostly between communi-
ties. In Fig. 3, the signed modularity values for dynSGL and SGL
are plotted across time. For dynSGL, a significant drop in modularity
value is observed from February to March and another smaller drop
happens from September to October. The former corresponds to the

2Data is obtained from Yahoo! Finance using [23].
3Sector information is obtained from tradingview.com
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Fig. 3. Signed modularity values when learned graphs are parti-
tioned based on the sectors of stocks.

From Jan 2 to Jan 16 From Mar 09 to Mar 23

Fig. 4. The signed graphs induced by the sector division. Only sec-
tors that has at least 5 stocks are shown. Blue and orange correspond
to negative and positive edges, respectively. Node sizes are propor-
tional to the number of stocks in the sectors. Sector names: 1) Elec-
tronic Technology, 2) Technology Services, 3) Health Technology,
4) Retail Trade, 5) Consumer Services, 6) Consumer Non-Durables.

start of COVID-19 pandemic, and the latter is before US presiden-
tial election. Drop in modularity indicates that the modular structure
of the financial network disappears, meaning that the prices of most
stocks move in the same direction. This result is inline with [25],
which finds increasing graph connectivity in financial data at the
time of uncertainty using unsigned temporal graph learning. Com-
paring SGL and dynSGL, we observe that SGL’s modularity values
are noisier than those of dynSGL. Thus, significant drops in modu-
larity are more visible for dynSGL than SGL. For instance, SGL’s
modularity values are very noisy after July, making drop due to US
presidential election less visible. Finally, dynSGL learns more mod-
ular graphs than SGL, since it can preserve graph structure through
temporal smoothness.

To get a better insight into the graph structures across time,
Fig. 4 shows the inter-sectoral edges of the two learned graphs,
where each node corresponds to a sector. In January, most edges
are negative, indicating strong modular structure. While in March,
the strengths of negative edges between sectors 1 and 3 and 2 and
3 decrease and a very strong positive edge appears between sectors
1-2. This implies that sectors 1 and 2 become a single community,
while the separation between sectors 1-3 and 2-3 reduces.

5. CONCLUSIONS

This paper introduced a new algorithm for learning temporal signed
graphs. Temporal GL is important in a variety of applications where
the interactions between the nodes of a graph change with time such
as in biological, social and financial networks. While there has been
some work on temporal GL for unsigned graphs, this paper is the
first to extend this line of work to signed graphs that model similar-
ity and dissimilarity of nodes. In particular, we extended the con-
cept of graph signal smoothness and temporal smoothness to signed
graphs and formulated the graph learning problem as an optimization
problem. The results from both simulated and real data illustrate the
effectiveness of the proposed method.

Future work will consider different extensions of the proposed
formulation. First in the current formulation, we assumed that the
number of nodes is constant across time. However, in many real
applications nodes may appear or disappear with time. Second, cur-
rent formulation uses squared Frobenius norm to regularize temporal
variation of graphs, future work will consider other distances, such
as L1-norm, which imposes sparse temporal variation.
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