Quasi-stable Coloring for Graph Compression

Approximating Max-Flow, Linear Programs, and Centrality

Moe Kayali
University of Washington
kayali@cs.washington.edu

ABSTRACT

We propose quasi-stable coloring, an approximate version of stable
coloring. Stable coloring, also called color refinement, is a well-
studied technique in graph theory for classifying vertices, which can
be used to build compact, lossless representations of graphs. How-
ever, its usefulness is limited due to its reliance on strict symmetries.
Real data compresses very poorly using color refinement. We propose
the first, to our knowledge, approximate color refinement scheme,
which we call quasi-stable coloring. By using approximation, we al-
leviate the need for strict symmetry, and allow for a tradeoff between
the degree of compression and the accuracy of the representation.
We study three applications: Linear Programming, Max-Flow, and
Betweenness Centrality, and provide theoretical evidence in each
case that a quasi-stable coloring can lead to good approximations
on the reduced graph. Next, we consider how to compute a maxi-
mal quasi-stable coloring: we prove that, in general, this problem
is NP-hard, and propose a simple, yet effective algorithm based on
heuristics. Finally, we evaluate experimentally the quasi-stable col-
oring technique on several real graphs and applications, comparing
with prior approximation techniques.

PVLDB Reference Format:

Moe Kayali and Dan Suciu. Quasi-stable

Coloring for Graph Compression. PVLDB, 16(4): 803 - 815, 2022.
doi:10.14778/3574245.3574264

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/mkyl/QuasiStableColors.jl.

1 INTRODUCTION

A well known technique for finding structure in large graphs is
the color refinement, or 1-dimensional Weisfeiler-Leman method. It
consists of assigning the nodes in the graph some initial color, for ex-
ample based on their labels. Then one repeatedly refines the coloring,
by assigning distinct colors to two nodes whenever those nodes have
a different number of neighbors of the same color; when no more
refinement is possible, then this is called a stable coloring. We show a
simple illustration in Fig. 1 (a): for example nodes 5 and 11 have the
same dark purple color, because both have one purple, one lavender,
and one dark purple neighbor, while node 7 has a different color be-
cause it additionally has an olive neighbor. The stable coloring can be

This work is licensed under the Creative Commons BY-NC-ND

4.0 International License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/
to view a copy of this license. For any use beyond

those covered by this license, obtain permission by emailing info@vldb.org. Copyright
is held by the owner/author(s). Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574264

803

Dan Suciu
University of Washington
suciu@cs.washington.edu

a @
o%

@ 0%

@l

e

@
o

&

66 6

%’

P o

17
a) Stable coloring
@ 9o
& ;
® g &
& Q‘J.
@ o ®

20
©

@ (5]

@

b) Quasi-stable coloring, g=3

Figure 1: Coloring Zachary’s karate club graph [45] where
|V|=34, |E| =78. While the stable coloring requires 27 colors,
for a quasi-stable color 6 colors suffice when g=3. Note in 1b
the club leaders {1,34} are put into their own color.

computed efficiently, in almost linear time [34], can be generalized to
labeled graphs, weighted graphs, directed or undirected graphs, and
multigraphs, and is used by graph isomorphism algorithms [17], in
graphkernels [41], and more recently has been used to explain and en-
hance the power of Graph Neural Networks [12, 29,31, 44]. We review
stable coloring in Sec. 2. Excellent surveys of color refinement and its
recent applications to machine learning can be found in [12, 13, 30].

In this paper we apply stable coloring as a compression technique
for large graphs. A stable coloring naturally defines a reduced graph,
whose nodes are the classes of colors of the original graph. The new
graph preserves many important properties of the original graph,
which makes it a good candidate for compression. For example, an
elegant theoretical result states that the reduced graph satisfies pre-
cisely the same properties expressible in the C2 logic as the original
graph [14]. Motivated by the fact that the reduced graph preserves
key properties of the original graph, Grohe et al. [15, 16] propose
using color refinement as a dimensionality reduction technique, and
show two applications: to Linear Programming and to graph kernels.

https://doi.org/10.14778/3574245.3574264
https://github.com/mkyl/QuasiStableColors.jl
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574264
https://www.acm.org/publications/policies/artifact-review-and-badging-current

o 1000 -|-@-stable @ [TTTTTTTT oo oo

(0] [} g-stable, g=4

8 750 | |~ — # of graph vertices

]

c

o 500

—

e

8 250 |

. ~ »—w—a—"

0 1 1 1 1 1 1 1 1 1 1
Original 1 2 4 8 16 32 64 128 256

Random edges added

Figure 2: Comparing the robustness of stable and g-stable
coloring. A synthetic graph with |V| = 1 000, |E| = 21 600 is
generated with a size 100 stable and q-stable coloring. As
a small fraction of edges (no more than 1.5%) are added,
the brittleness of stable coloring causes compression to
degenerate—quasi-stable colors are immune to this.

However, we notice that stable coloring is not effective for dimen-
sionality reduction because, in practice, the “reduced” graph is only
slightly smaller than the original graph. For example, the graph in
Fig 1 (a) has 34 nodes, but 27 colors, which means that the reduced
graph has 80% of the number of nodes of the original. We show in
Sec. 6 that, for typical large graphs, the size of the reduced graph is
between 70% - 80% that of the original graph. Moreover, even when
a graph happens to have a small reduced graph, any tiny update, e.g.
adding or deleting an edge, will immediately lead to a huge increase
of the reduced graph. We illustrate this phenomenon briefly in Fig. 2:
we started with an artificially regular graph, which compressed well
from 1000 nodes to only 100 colors, but the compression degrades
very rapidly when we add only a few edges.

In this paper we propose a generalization of stable coloring to
quasi-stable coloring, with a goal of reducing the size of the com-
pressed graph while still allowing applications to be processed ap-
proximatively. Our definition of g-stable coloring, given in Sec. 3,
allows two nodes to be in the same color if they have a number of
neighbors to any another color that differs by at most g, where ¢ >0
is a parameter. This has dual effect. First, it can dramatically reduce
the size of the compressed graph, since more nodes can now be as-
signed the same color. For example, the quasi-stable coloring in Fig. 1
(b) allows nodes 5 and 7 to have the same color, even though their
number of green neighbors differs by 1; the new compressed graph
has only 6 nodes. Second, this makes the technique less sensitive to
data updates, because it can tolerate nodes with a slightly different
number of neighbors. We can see in Fig. 2 that the number of quasi-
stable colors increases only marginally with the addition of random
edges. By varying the parameter g, the quasi-stable colors offer a
tradeoff between the compression ratio and the degree to which the
reduced graph preserves the properties of the original graph.

We start by investigating in Sec. 4 whether the result of an applica-
tion over the reduced graph is a good approximation of the result on
the original graph. We consider three applications: linear program-
ming, max flow, and betweenness centrality. In all three cases we pro-
vide a theoretical justification for why the result on the reduced graph
should be close to the true value. First, for linear programs, we prove

804

that the optimal value of the reduced program converges to the opti-
mal value of the original program when g — 0. This generalizes the re-
sultin [16], which proved that, when the coloring is stable (g=0) then
the LP has the same optimal value on reduced program and the orig-
inal program. Next, for the max flow problem we prove that, while
pathological cases exist where a “good” quasi-stable coloring has a
totally different max-flow than the original graph, under reasonable
assumptions the two are close and, in particular, when the coloring
is stable (g=0) then they are equal. Third, we examine betweenness
centrality, and show that, even a stable coloring can, in pathological
cases, lead to different centrality scores, but we prove that the 2-WL
method (a refinement of 1-WL) always preserves the centrality score.

Next, in Section 5 we study the algorithmic problem of efficiently
computing a quasi-stable coloring for a graph. While the stable
coloring can be computed in almost linear time, we prove, rather
surprisingly, that finding an optimal quasi-stable coloring is NP-
hard. The main difference is that there is always a maximum, “best”,
stable coloring, but none exist in general for quasi-stable coloring.
Based on this observation, we propose a heuristic-based algorithm
for computing a quasi-stable coloring, whose decisions are informed
by our theoretical analysis in Sec. 4.

Finally, we conduct an empirical evaluation of quasi-stable color-
ing in Section 6. Testing on twenty datasets from a variety of domains,
we find g-stable colorings favorably trade-off accuracy for speed.
For example, on the gqap15 linear program, an exact solution takes
22 minutes to compute while the q-stable approximation reduces the
problem size by 100X, solving it end-to-end within 17 seconds while
introducing only a 5% error. We observe similar trends for max-flow
and centrality applications. Next, we study the characteristics of
the compressed graphs, finding that they avoid the pitfalls of stable
colorings. We conclude by characterizing our algorithm, analyzing
its runtime, its ability to progressively improve the approximations
and testing its robustness to noise.

In summary, we make the following contributions in this paper:

e We propose a relaxation of stable coloring, called quasi-
stable coloring; Sec. 3.

e We provide theoretical evidence that the reduced graph de-
fined by a quasi-stable coloring can be useful in three classes
of applications; Sec. 4.

e We prove that an optimal quasi-stable coloring is NP-hard
to compute, and propose an efficient, heuristic-based algo-
rithm; Sec. 5.

e We conductan experimental evaluation on several real graphs
and applications; Sec. 6.

2 BACKGROUND ON COLOR REFINEMENT

Fix an undirected graph G = (V,E). We denote by N(x) the set of
neighbors of a node x € V. A coloring of G is a partition of V into
k disjoint sets, V =P; U---UPy. We say that a node x € P; has color
i, or that it has color P;. We denote the coloring by P = {Pl,...,Pk}.
A stable coloring is a coloring with the property that, for any two
colors, all nodes in the first color have the same number of neighbors
in the second color. Formally:

Vi,jVxy€P;: IN(x)NPj|=|N(y)NPj|

Given two colorings P,P’ we say that the first is a refinement of the
second, and denote this by P C P’, if for every color P; € P, there

exists a color PJ’. € P’ such that P; C Pj'.. Any two colorings P, P’
have a greatest lower bound, PA P, and a least upper bound, PV P’.
The greatest lower bound is easily constructed, by considering the
partition {P; ﬂPJ’. | Pie P,PJ’. € P’}; for a construction of PV P/, we
refer the reader to [42].

The smallest coloring, where each node x is in a separate color,
denoted P, is trivially a stable coloring. Somewhat less obvious is
the fact that, if both P and P’ are stable colorings, then their least
upper bound PV P’ is also a stable coloring (see also Th. 12 below).
This implies that every graph has a unique, maximum stable color-
ing, often called the stable coloring of G, namely P; VP2V ---, where
P1,Py,... are all stable colorings of the graph. The stable coloring
can be computed quite efficiently using the color refinement method,
sometimes also called the 1-dimensional Weifeiler-Leman method
(1WL). Start by coloring all nodes with the same color, then repeat-
edly choose two colors P;,P; and refine the set P; by partitioning its
nodes based on their number of neighbors in Pj; the stable coloring is
obtained when no more refinement is possible. There exist improved
algorithms that compute the stable coloring in time O(n+mlogn),
where n,m are the number of nodes and edges respectively [30]. The
reduced graph, G, has one node i for each color P;, and an edge from
i to j if some node x € P; has a neighbor y € P; (in which case every
node x € P; has a neighbor y € P;).

Color refinement can be generalized to directed graphs, to labeled
graphs, to multi-graphs, and to weighted graphs. We refer the reader
to [30] for an extensive survey of the theoretical properties of the
color refinement method. In this paper we will consider directed,
weighted graphs, but defer their discussion to Sec. 3.

Most applications of stable coloring work best on graphs that have
many colors, i.e. where there are many, small sets P;. For example,
in order to check for an isomorphism between two graphs G,G’, one
first computes the stable coloring of the disjoint union of G and G’,
thenrestricts the isomorphisms candidates to functions that preserve
the color of the nodes. The best case is when the stable coloring is
P, because then the only possible isomorphism is the function that
maps x €G to the similarly colored y € G’. In general, applications
of the 1WL method work best when there are many colors.

In this paper we use coloring for dimensionality reduction and
approximate query processing. Instead of solving the problem on
the original, large graph G, we solve it on the reduced graph G. This
technique works best when there are few colors, because then the
reduced graph is small. Real graphs tend to have many colors; we
found (see Sec. 6) that the number of colors is typically around 70% of
the number of nodes. This observation has a theoretical justification:
if G is a random graph, then with high probability its stable coloring
is P, [30, Sec.3.3]. This motivated us to introduce a new notion,
quasi-stable coloring, which relaxes the stability condition, in order
to allow us to construct fewer, larger colors.

3 QUASI-STABLE COLORING

We have seen that the stable coloring of a graph has many elegant
properties, but offers poor compression in practice. In this section
we introduce a relaxed notion, which preserves some of the desired
properties while improving the compression.

A weighted directed graph G = (X,E,w) is a directed graph with
a function w mapping edges to real numbers. We will assume that

805

the edge (x,y) exists iff w(x,y) # 0, and therefore we often omit E
and simply write the directed graph as G=(X,w). Conversely, given
a standard graph G = (X,E), we assume a default weight function
w(x,y) = 1 when (x,y) € E and w(x,y) = 0 otherwise. A bipartite
graphis a graph where the nodes consist of two sets X,Y and all edges
go from some node in X to some node in Y. We denote a bipartite
graph by (X,Y,E) or (X,Y,w) if it is weighted.

Given a weighted graph (X,w) and two subsets of nodes U,V, we
denote by w(U,V) the total weight from U to V:

wUNE S wxy)

xeU,yeV

(1)

Fix a reflexive and symmetric relation ~ on R.

DEFINITION 1. (1) Let G=(X,Y,w) be a weighted, bipartite graph
(i.e. w:X XY — R). We say that G is ~regular if the following two
conditions hold:

Vx1,x2 € X w(x1,Y) ~w(x2,Y)
Vy,y2 € Y: w(Xy1) ~w(X,y2)

(2) Let G=(X,w) be any weighted, directed graph, and P = {Pl,...,Pk}
be a partition of its nodes. We say that P is ~quasi-stable, or quasi-
stable w.r.t. ~, if, for any two colors P;,P; (including i = j), the bipartite
graph (P;,Pj,w) is ~regular.

Thus, a quasi-stable coloring partitions the nodes in such a way
that for any two colors P;,P;, any two nodes in P; have similar (ac-
cording to ~) outgoing weights to P}, and any two nodes in P; have
similar incoming weights from P;.

3.1 Examples

We illustrate with several examples.

Biregular Graphs, and Stable Coloring Recall that a bipartite
graph (X,Y,E) is (a,b)-biregular, or simply biregular when a,b are
clear from the context, if every node x € X has outdegree a and every
nodeiny €Y hasindegree b. Let ~ be the equality relationon R: u ~v
iffu=0. Then (X,Y,E) is =regular iff it is biregular. Furthermore, if G
is a directed graph, then a coloring P is =quasi-stable iff it is stable.

g-Stable Coloring The main type of quasi-stable coloring that
we use in this paper is called g-stable. Fix some number ¢ > 0, and
define the following similarity relation on R: u ~4 v if [u —0| < q.
Notice that ~qis reflexive and symmetric, but not transitive. In a
~gregular bipartite graph any two nodes in X have outgoing weights
that differ by at most g, and similarly for the incoming weights of the
nodes in Y. To reduce clutter, we will call a ~4quasi-stable coloring a
q-stable coloring, or simply a g-coloring. The standard stable coloring
is the special case when g=0.

e-Relative Coloring While g-stable coloring imposes a bound
on the absolute error, we briefly discuss an alternative: imposing
a bound on the relative error. Fix some number ¢ > 0, and define
u~fvasu-e ¢ <v<u-e. This relation is reflexive and symmetric,
but not transitive. We call a ~“quasi-stable coloring simply a -
relative coloring. Notice that isolated nodes (i.e. without incoming
or outgoing edges) are in a separate color. This is because zero is
similar only to itself: u ~¢ 0 implies u = 0. More generally, for any
two colors, either every node in the first color is connected to some
node in the second, or none is, and similarly with the role of the two
colors reversed.

Bisimulation Relation As a last example, defineu=vasu=0v=0
or u# 0,0 #0. In other words, = checks if both u,0 are zero, or none is
zero. This is an equivalence relation. Then, a =quasi-stable coloring
is a bisimulation relation on that graph [14].

3.2 The Reduced Graph

Let G=(X,w) be a directed, weighted graph and let P = {Pl,...,Pk}
be any coloring, not necessarily quasi- stable The reduced graph, is

defined as G (X w), where the nodes X% {l 2,...,k} correspond to
the colors. We will consider different choices for the weight function;
one example is that we can set it to be the sum of all weights between

two colors, i.e. w(i, j) def erpi;yepf w(x,y), but we will consider
other options too. Our goal in this paper is to use the reduced graph
to compute approximate answers to problems that are expensive to
compute on the original, large graph.

4 APPLICATIONS

Stable coloring preserves many nice properties of the graph. Will
a g-quasi stable coloring preserve such properties to some degree?
We explore this question here, and provide theoretical evidence that
quasi stable colorings provide some useful approximations for three
problems: linear optimization, maximum flow, and betweenness
centrality. In Section 6 we validate experimentally these findings.

4.1 Linear Optimization
We start with Linear Optimization. Consider the following linear
program:

T

maximize ¢ x where Ax <band x>0

@)
where A€R™*" beR™, c € R". We will denote by OPT (A,b,c) the
optimal value of ¢Tx. In general, it is possible to have OPT =—
(namely when the set of constraints is infeasible), or OP T = co, but
we will not consider these cases. We will apply quasi-stable color-
ing only to LPs that are well behaved, meaning that OPT (A,b,c)
is finite, and continues to be finite when b,c range over some small
neighborhood.

In this section, we view a matrix A as a function A(i,j). Follow-

ZIEP]EQA(I]) when

P C [m],Q € [n], and similarly, b(P) e Ziepb(l), c(Q)=2jepc())-
We write boldface A for the extended matrix of the LP:

Al b
CT (o)

The last row, m+1, is the vector (cT,OO), and the last column, n+1,
is the vector (b,00). We associate the LP with the weighted bipartite
graph G = ([m+1],[n+ 1], A), where the weights are the matrix
entries (they may be <0).

Consider a coloring (P,Q) of the bipartite graph G; it partitions
the [m+ 1] rows into Py,...,Pg,Pi41, and the [n+ 1] columns into
01,...Q¢,0Q¢+1. We further assume that the last row and last column
of A have a unique color, namely Py, ={m+1}, and Qp41 ={n+1}.
The partition defines a reduced bipartite graph, G = ([k+1],[£+1],A4),

ing the notation in (1), we denote A(P Q)

def

A= (3

806

where we define the weights as follows:

A()dff A(Pr,Qs)
|Pr[-1Qs]
In other words, the weight of the edge from color r to color s is the

sum of all A;; with i in color P» and j in color Qs, normalized by

VIPr|-|Qs|. The reduced LPis the LP defined by the matrix Aof the
reduced graph. In other words, the reduced LP is the following:

4)

maximize &7 % where A% <band >0 (5)
whereAl; ¢ are defined as:
A(P, b(P
A(r.s) L ALROs). (Pr.Qs) b(r) L) (Pr) ()defc(Qs) ©)
|Pr]-1Qs] |Pr| |Os|

We prove that, if the coloring is quasi-stable, then the solution to
problem (2) is close to that of problem (5).

THEOREM 2. Assume that the LP defined by A,b,c is well behaved.
Then there exists qo > 0 that depends only on A,b,c, such that, for all
q < qo, foranyq-quasistable coloring, |OPT (Ab,c)—OPT (Ab,¢)| <
qA, where A,l;,é is the reduced LP associated to the coloring, and the
constant A depends only on A,b,c.

We give the proof in Appendix A. The theorem guarantees that,
by improving the quality of the quasi-stable coloring, the value of
the reduced linear program eventually converges to the true value.

Example 3. Consider the linear program in Fig. 3 (a). Its matrix
has dimensions 5% 3. Fig. 3 (b) shows a block-parition of the extended
matrix A, which corresponds to a g-quasi stable coloring, for g=1.
More precisely, in each block, the row-sums differ by at most 1, and
the column sums differ by at most 1. For example, the three rows in
the first block have sums 4+8=12 and 64+5=11 and 7+4 =11, so they
differ by at most 1, while the column-sums are equal. The reduced
matrix is shown in Fig. 3 (c). The optimal value of the original LP is
128.157 and that of the reduced LP is 130.199.

Discusssion Mladenov et al. [28] and Grohe et al. [16] used stable
coloring of the matrix (which is also called there an equitable partition
of A) to reduce the dimensionality of a linear program. We recover
their result as the special case when g=0: in that case, our theorem
above implies OPT (A,b,c) :OP‘T(A,@,E). The reduced LP in [16]
is different from ours, however, we explain here that both are special
cases of a more general form of reduction. To explain that, recall that
a fractional isomorphism from A to A (Equations (5.1), (5.2) in [16])
is a pair of stochastic matrices U,V such that:

AvT=uT A UA=AV 7)

Our proof in Appendix A in fact shows the following:

THEOREM 4 (INFORMAL). If A, U,V are three matrices such that
Equations (7) hold exactly, or hold approximatively, and U, V are
non-negative, then OPT (A,b,c) and OP‘T(A,B,E‘) are equal, or are
approximatively equal.

Notice that we do not require U,V to be stochastic, only non-
negative. In fact, our particular choice U,V in (10) are not stochastic.
By using this result we derive many other choices for the reduced
LP, as follows. Let M, N be any diagonal matrices of dimensions

maximize 9x1+10x2+50x3
where 4x1+8x2+2x3 <20
6x1+5x2+x3 <20
7x1+4x2+2x3 <21
3x1+x2+22x3 <50

2x1+3x2+21x3 < 51

Optimal value: 128.157
(@)

(b)

19
maximize — X1 +50X2
V2

34
- 34
\/27 where —x1+5x3 <61
V22 V2
19 9
V12 —+43x, <101
V2

Optimal value: 130.199
(©

Figure 3: Example of (a) Linear Program, (b) constraint matrix reduced via q-stable coloring, and (c) the reduced Linear Program.

(k+1)x(k+1) and (£+1) x (£+1) respectively, where all elements
on the diagonal are >0, and define:

~ 7 def

A AN s def

v mu v/ &Ny

The reader may check that equations (7) continue to hold (exactly
or approximatively) when we replace A,U .V with A’,U’ V’.Now we
can explain the construction of the matrix that defines the reduced
LP in [16]. Start from (4) (or, equivalently, from (6)), and define the
diagonal matrices:

def

M =diag(V|Pi],oV|Prsr]) Ndﬁfdiag(\/lQlI,.-.,\/IQmI)

Then the new matrix A" defines reduced LP in [16]. More precisely:

def &' () Ee(05) /105

AP 0s) /10| &«

A (rs) b’ (r)=b(Py)

4.2 Maximum Flow

Next, we consider the maximum flow problem. We show that, while
in general quasi-stable coloring may not necessarily lead toa good ap-
proximate solution, we describe a reasonable property under which
it does. In particular, our result implies that stable coloring always
preserves the value of the maximum flow.

In the network flow problem we are given a network G=(X,c,S,T)
where X is a set of nodes, c: XXX — R, is a capacity function, and
S,T C X are sets of nodes called source and target nodes. A flowis a
function f: X xX — Ry satisfying the capacity condition, f(x,y) <
c(x,y), Vx,y € X, and the flow preservation condition, f(X,z) = f(z,X)
for all nodes z ¢ SUT (following the notation (1)). The quantities

f(X,z) and f(z,X) are called the incoming flow and outgoing flow

at the node z. The value of the flow is value(f) d:df(S,X) =f(X,T).

The problem asks for the maximum value of a flow, which we denote
by maxFlow(G). A cut in the network is a set of edges! C € X x X
whose removal disconnects S from T, and its capacityis the sum of ca-
pacities of all its edges. The max-flow, min-cut theorem [40, Th.10.3]
asserts that maxFlow(G) equals the minimum capacity of any cut.
Despite significant algorithmic advances for the max-flow problem,
see e.g. [25], practical algorithms are based on the augmenting path
method and remain slow in practice. We show here how to use the
reduced graph of a quasi-stable coloring to compute an approximate
flow. For that, we need to examine flows in bipartite graphs.

When G=(X,Y,c) isabipartite graph, then we will assume that the

!Usually the cut is defined as a set of nodes; in this paper we find it more convenient
to define it as a set of edges.

807

source nodes are X and the target nodes are Y. Obviously, the max-
imum flow is the total capacity of all edges, maxFlow(G) =c¢(X.,Y).
Next, we consider a restricted notion of a flow.

DEFINITION 5. We say that a flow f : X XY — R in a bipartite
graphG isuniform ifallVx1,x3 € X, f(x1,Y) =f (x2,Y) andVy1,y2 €Y,
f(X,y1) =f(X,y2); in other words, all source nodes have the same out-
going flow, and all target nodes have the same incoming flow.

We denote by maxUFlow(G) the max. value of a uniform flow in G.

THEOREM 6. Consider a network flow problem defined by G =
(X, ¢, {s},{t}), with a single source and a single target node, s # t.
LetP = {PO,PI,...,Pk_l,Pk} be any coloring, such that Py = {s} and
Pr={t}, i.e. the source and target nodes have their own unique colors.
Define two capacity functions on the reduced graph:

d d
¢1(4,7) éfmaxUFlow(Pi,Pj,c) ¢2(1,7) éfmaxFlow(Pi,Pj,c)

LetGl,Gz be the reduced graphs with nodes {0,1,....k} and capacity
functions ¢1,¢2 respectively. Then:

maxFlow(G1) <maxFlow(G) <maxFlow(Gs)

Proor. The second inequality follows immediately from the fact
that the total amount of flow from a set P; to a set P; cannot exceed
c(P;,Pj) = ¢2(i,j). We prove the first inequality. Fix any flow j‘ in
Gl; we show how to construct a flow f in G with the same value,
value(f)= value(f). Theideais to take the ﬂowj‘(i,j) between any
two colors i, j of the reduced graph, and divided it uniformly between
the nodes in P; and those in P;. For that purpose, we use the maximal
uniform flow f” in the bipartite graph (P;,Pj,c). Since f satisfies the
capacity condition, we have f(i,j) <é1(i,j) = f'(P;,Pj). Then, we
define f on the bipartite graph P;,P; to be equal to f” scaled down by
the factor f”(i,j)/f’(Pi,Pj). Then f (P;,Pj) =f(i,j). Importantly, f is
a uniform flow from P; to P;, which means that all nodes x € P; have
exactly the same outgoing flow to P;, namely f"(i, 7)/|P;|, and sim-
ilarly all nodes y € P; have the same incoming flow f(i, j)/1Pj|. This
allows us to prove that f satisfies the flow preservation condition
on G (since]f is a flow on G), and that value(f) =va1ue(j”).

[m}

We use theorem to approximate the flow in a network as follows.
Compute a quasi-stable coloring, construct the reduced graph, set
the capacities &2(i,j) = X xep, yep,c(x.y), and use the upper bound
in the theorem as an approximate value for the max-flow. The quality

R e e ~——
(1 2 3 n2 0 3)
o L |
SEENE.)
1 [[— l
2 3 2 1 n)
i - |
Gz 3 . - o om
ol |
1 2 3 n-2 n-1 rD
Py R A

Figure 4: A network with n?+2 nodes and a g-stable coloring
with g=1. The maximum flow is 2, because there exists a cut
of size 2 (the blue lower left and green upper right edges).
The maximum uniform flow of the bipartite graph induced
by P;—1 and P;, for i = 2,n— 1, is 0, hence ¢; = 0. The capacity
between any two consecutive colors is n or n+1 respectively,
hence éy(i—1,i) >n.

of this approximation depends on the how far apart ¢; and ¢ are. We
show below in Corollary 9 that ¢; =¢; if the reduced graph is defined
by the stable coloring. However, if we relax the coloring to be quasi-
stable, then the upper bound can be arbitrarily bad, as we show next.

Example 7. Consider the network in Figure 4, where each edge
has capacity 1. The maximum flow is 2, because there exists a cut with
only two edges (lower left edge, and upper right edge in the figure).
The figure shows a coloring that is g-stable, for g=1; in other words
this is a “good” quasi-stable coloring, as close as it can get to a stable
coloring. Let’s examine the upper and lower bounds in Theorem 6. On
one hand, ¢2(i—1,i)=n+1fori=2,n—1,and é»(0,1)=¢2(n—1,n)=n.
Therefore, the upper bound given by the theorem is n, which isahuge
overestimate. The reason is that the maximum uniform flow from
P;_1 to P; is 0. For example, if f is a uniform flow from P; to P;, then
f(1,1)+£(1,2) = f(2,3) (uniformity at nodes 1,2 € P1) and f(1,1) =
f(1,2)=f(2,3) (uniformity at nodes 1,2,3 € P), which implies f=0.

Despite this negative example, we show that, under some reason-
able assumptions, the two bounds in the theorem can be guaranteed
to be close:

LEMMA 8. Let G = (X,Y,c) be a bipartite graph, with capacity
c(x,y) = 0.Leta,b> 0 be two numbers such that, forallxe X,c(x,Y) > a

d
and forally €Y, ¢(X,y) 2 b, and denote by F :efmin(a- IX],0-1Y)).
Assume that for any two sets of nodesS C X, T C Y, the following holds?

c(S,T)+F >a-|S|+b-|T| (8)
ThenmaxUFlow(G) =F.

We prove the lemma in Appendix A. Here, we show an application.
A bipartite graph G = (X,Y,c) is (a,b)-biregularif c¢(x,Y) = a and
c(X,y) =b for all x,y. We show:

CoROLLARYY. (1)IfG isan(a,b)-biregular graph, then condition (8)
holds. (2) If P is stable coloring of a network G, then ¢, =¢2 and the two

2The condition is somewhat similar to Hal’s marriage theorem [40, Th.16.7].

808

e / T
L uy u, u us Uy Vs v Ve
N A\ A
XXX
‘v AT — ¥
[X1 X2 X3 X4 X5 Y1 Y2 Y3 }
—A A A A ~S A A
DAVavAVARRYa Ve
"R A " A]
a, a, a; a; a by b, by
a(u)=6 a(v)=5

Figure 5: The two nodes u and v have the same color, but
different betweenness centrality values: g(u) =6,9(v) =5.

bounds in Theorem 6 are equal.

ProoF. (1) In a biregular graph, the quantity F defined in the
lemma is F=min(a-|X|,b-|Y|)=a-|X|=b-|Y|=c(X,Y), and:

F=c(S,T)+c(S,Y-T)+c(X—=S,T)+c(X~S,Y~T)
a-|S|=c(S,T)+c(S,Y-T) b-|T|=c(S,T)+c(X-S,T)

Condition (8) simplifies to ¢(X —S,Y —S) >0, which is true since all
edge capacities are > 0.

(2) If P is a stable coloring of a network, then every bipartite graph
(P;,Pj,c) is (a,b)-biregular for some a,b and, furthermore &1 (i,j) =
maxUFlow(P;,Pj.c)=a-|X|=c(P;,Pj)=¢2(i,j),provingtheclaim. O

4.3 Centrality

Finally, we consider the betweenness centrality in a graph and show
two results. The first is negative, showing that, even if we compute
a stable coloring, nodes with the same color may have different
centrality values. The second is positive, assuming we compute the
2-WL coloring instead of 1-WL.

The betweenness centrality is a measure of influence for graph
vertices [9]. The betweenness centrality of a vertex v is defined as:

2

S, LiSEVELES

def

g(0)% o(s,t|v)

o(s,t) ©)

over all vertices s,t, where o(s,t) is the number of shortest paths
between s,t and o(s,t |v) is the number of those that pass through v.

We usually need to compute the centrality vector, consisting of
the values g(v), for all nodes v. To speed up this computation, we
first compute a quasi-stable coloring, then assume that all nodes of in
the same color have the same centrality value: this reduces the cost
of the computation, since we only need to compute (9) once for each
color (by randomly sampling some v in that color). The question is
how reasonable is the assumption that nodes with the same color
have similar centrality values.

We observe that, even if the coloring is stable, two nodes u,v of
the same color do not necessarily have the same centrality value.
This is shown in Fig. 5, where nodes u and v have the same color, but
their centrality values differ.

However, we prove a positive result that still justifies our heuris-
tics. Recall that the stable coloring consists of a partition of the
nodes of the graph, also called the 1 Weisfeiler-Lehman method, or
1-WL. We prove that, if two nodes are equivalent under the 2-WL

n nodes

n+1 nodes n+2 nodes
// R

)

Figure 6: A graph with two maximal q-colorings, for g=1, or
two maximal ¢-relative coloring, for e=1/n. All nodes at the
top are in the same color (green) since all have exactly one
incoming edge. The nodes at the bottom can be partitioned
into either {1,2} and {3} (as shown) or {1} and {2,3}. Both are
maximal 1-stable colorings (because the degrees of two nodes
differ by at most 1), and also 1/n-relative colorings (because
the relative error is at most (n+1)/n<el/™).

equivalence, then they have the same centrality value. We refer the
reader to [30, pp.9] for the definition of 2-WL (and, more generally,
of k-WL), but instead use the following beautiful characterization
of k-WL proved by Cai, Fiirer, and Immerman [6, Th.5.2], which we
review here in a slightly simplified form:

TuroreM 10. Let CX*1 be the logic obtained by (a) extending First
Order Logic with counting quantifiers of the form 3= xq, which means
“there are at last m distinct values x that satisfy ¢, and (b) restricted to
use only k+1 variables. Then two nodes a,b in a graph have the same
k-WL color iff they satisfy the same CK*1 formulas.

We prove in Appendix A:

THEOREM 11. Letu,v be two nodes in a graph that have the same
2-WL color. Then they have the same centrality.

We anticipate further applications for our compression. Promis-
ing problems to approximate are those whose solutions are robust
to edge perturbations, capturing graph-wide properties, including:
clustering, node embedding, and computing graph layouts.

5 ALGORITHM

We have defined two variants of quasi-stable colorings, which allow
us to trade off the degree of stability (e.g. by varying q or ¢) for the
compression ratio (number of colors). It turns out that computing a
quasi-stable coloring is more difficult than computing the traditional
stable coloring, for both variants. We will describe the challenge first,
then introduce our proposed algorithm.

5.1 Complexity

The notion of stable coloring has the elegant property that every
graph has a unique, maximal stable coloring. We show here that
this property fails for quasi-stable. We use standard terminology
from partially ordered sets and call a valid coloring maximal when
no valid coarsening exists, i.e. it cannot be greedily improved, and
call it maximum or greatest element when it is a coarsening of all
valid colorings. Equivalently, a valid coloring is maximum if and
only if it is the unique maximal valid coloring. Consider the graph in

809

Fig. 6: there are two distinct maximal 1-stable colorings, and also two
distinct 1/n-relative colorings, because we can partition the nodes
1,2,3 either as {1,2},{3} or as {1},{2,3}, but cannot leave them in the
same color. In fact, we prove:

THEOREM 12. (1) If~ is a congruence w.r.t. addition (i.e. an equiv-
alence relation satisfying x ~y= (x+z) ~ (y+z)) then any graph ad-
mits a unique maximum ~quasi stable coloring, which can be computed
in PTIME. (2) Computing a maximal g-stable coloring is NP-complete,
and similarly for an e-stable coloring.

For a simple illustration, fix ¢ > 0 and define x ~ y if min(x,c) =
min(y,c); then ~ is a congruence. The theorem implies that there is
a unique maximal ~quasi stable coloring. When c=1 then this is the
maximal bisimulation, and when ¢ =oco then it is the stable coloring.

The theorem implies that while finding a quasi-stable coloring
is trivial (a unique color per node suffices), finding a coloring that
cannot be improved is difficult. The question of the practicality of
finding a “good enough” coloring is addressed in subsection 5.2.

PRrROOF. (1) Assume ~ is a congruence. We first prove that, if P,Q
are ~-stable colorings of a graph, then so is PVQ. A color C of PVQ
can be characterized in two ways: (a) for any two nodes x,x” € C,
there exists a sequence xg :=x,%1,X2,....Xn ‘=x’ such that every pair
(xj—1,x;) is either in the same color of P, or the same color of Q, and (b)
Cisbothadisjoint union of P-colors, and a disjoint union of Q-colors,
and is minimal such. Let C,D be two colors of PVQ, let x,x’ €C, let
w=w(x,D),w’ =w(x’,D) be their outgoing weights to D, and let x(:=
X,X1,X2,....Xn ‘=x" be the sequence given by (a). Fix i=1,n, and assume
w.l.o.g. that x;_1,x; have the same P-color. Then we use the fact that D
isaunion of P-colors, D=Pj, U---UPj, ,and observe that w(x;—1,D) =
w(xi-1,Pj) + - + w(xi—1, Pj) and w(x;, D) = w(x;, Pj,) + - +
w(x;,Pj,). Since P is ~-stable, we have w(xi—1,Pj,) ~ w(x;,Pj,)
for all ¢, which implies w(x;—1,D) ~ w(x;,D) because ~ is a congru-
ence. Finally, we derive w(x,D) = w(x’,D) because ~ is transitive.
Thus proves the claim that PV Q is ~stable. Finally, let P1,P,... be all
~stable colorings. Then P1V P2V -+ is the unique maximum ~stable
coloring, and can be computed in PTIME using color refinement.

(2) By reduction from the 2-dimensional Geometric Set Cover
problem, more specifically from BOX-COVER, which is NP com-
plete [8]: we are given a set of points S = {(al,bl),...,(an,bn)} CR?,
with integer coordinates, and are asked to cover it with a minimum
number of squares with a fixed width g. Given this instance of BOX-
COVER, we construct the following 3-partite graph (X,Y,Z,E). All
edgesgofrom X to Y or from Y to Z. The set Y has nnodes. Each node
y; €y has exactly a; incoming edges from X, and exactly b; outgoing
edges to Z: thus | X|=3;a; and | Z|=}];b;. Any g-stable coloring of
the graph corresponds to a cover of S with gx g squares. O

5.2 RoTHKO Algorithm

Given the negative results above, we settle for a heuristic-based al-
gorithm for finding quasi-stable colorings that may not be maximal.
The main idea is that, instead of imposing some g, the algorithm
repeatedly applies a variant of color refinement, until a maximum
number of colors is reached. The value of q is the computed on this
coloring. The guarantees given by the theorems in Sec. 3 still hold
on the resulting colored graph, but the quality of the approximation
depends on how good the value q is when the algorithm terminates.

We call the Algorithm 1 RoTHKO. Its method of dividing matrices
into a few large regions and giving them distinct colors resembles
Rothko’s famous color field paintings.

Thisiterative algorithm operates by refining one color at a time, be-
ginning with the coarsest (i.e., single color) partition. At every step a
witness is identified: that is, the pair of partitions P;,P; that maximize
error in the P; — P; direction. The source color is then split into P/,P;’
to reduce the sum of errors P; — P; and P;’ — P;. This process is
repeated until the desired error bound or number of colors is reached.

A witness is identified by calculating the maximum, minimum
degrees between all colors (U, L respectively) and taking the differ-
ence of the two matrices. This produces the error matrix Err=U—L,
whose (i,j) entry records the g-error of color P; with respect to
P;. Then, a threshold is set by taking the mean degree into P; of the
nodes in P;. The elements of P; are then split depending on whether
their degree exceeds this threshold. We break ties arbitrarily—notice
if we have a tie, often at the next around we will split the other
tied-with color. We find ties to be rare in our experiments.

For some applications, it is desirable to weight the error by the size
of the partition, so that a g-error in a large partition is considered
worse than a g-error in a small partition. As such, the algorithm
accepts two parameters, @, f which allow for building a weight matrix
C. These parameters control the weight assigned to the source and
target colors, respectively. C is multiplied element-wise by E to
produce the weighted error matrix E,¢jgnseq- In practice, we set
a=f=0 for max-flow problems, as neither the number of source nor
target nodes affects the flow, but only the total edge capacity between
the colors; for linear programs, o =1,$=0 which prioritizes colors
with more rows; for betweenness centrality, & = f = 1 as the number of
paths depends on both the number of nodes in source and target color.

Further, for applications where all weights are non-negative, we
observe that using the geometric rather than arithmetic mean re-
sults in a more compact coloring. The intuition can be gleaned from
scale-free networks, where the proportion of nodes with degree k
tends is proportional to k=Y. Under the most common scale-free
model, Barabasi—Albert [3], where y =3 and the average degree is
2m, splitting using arithmetic mean yields unbalanced partitions
with 1/(8m?3) fraction of nodes. Even for modest values of m this
quickly becomes unbalanced (i.e. when m =3 the partition will be
split 1:216). Since the geometric mean is equivalent to the arithmetic
mean in log-space, the split is much less unbalanced (in the previous
example, it would be 1 : 4). Many natural networks—such as the
internet—are thought to be scale-free [2].

ROTHKO is an anytime algorithm. It can be interrupted and will
still produce in a valid coloring. The longer it is allowed to run, the
better the resulting coloring is. Further, the stopping condition can
be set depending on a desired number of colors, or target g-error, en-
coded in Algorithm 1 as n,¢ respectively. This is particularly valuable
in interactive applications, where RoTHKO can be run as a co-routine,
with the application alternating between color refinement and up-
dating its approximation based on the new colors.

Termination is guaranteed. At each iteration, a color is chosen
to be split. Singleton colors are never selected for splitting, as their
degree-difference into any partition is zero. After enough iterations
either the algorithm will reach its desired error bound, or refine into
only singleton partitions and so zero max g-error.

810

Algorithm 1: RoTHKO
Computing an approximate partition over a weighted graph
G, with n colors or ¢ maximum g-error
Data: G=(V,E),W:VxV —»R*
Parameters: n€Z",e€Rxg, ,f€R
Result: Pc P (V)
1 P—{V};
2 while |P|<n do
3 Ujj,Lij < maxyep,deg(,Pj),min,ecp,deg(v,P;);
4 Err—U-L;
5 if maxErr <e¢then
6 L break;
7 Cij<—|Pi|aX|Pj|ﬁ;
8 Erryeighted < Erro©C;

// weights
// element-wise product
9 i,j hargmaxi’jErrweighted; // witness
threshold<—mean({x|x=deg(v,Pj),uePi}) ;
// Split P; at threshold
Pretain < {U €P;|deg(v,Pj) < threshold};
Peject —P; \Pretain§

P—P\{P;}V {Pretain,Peject};

10

11

12

13

6 EVALUATION

We empirically evaluate our notion of quasi-stable coloring, address-
ing three questions:

(1) End-to-end performance: how good is the system down-
stream? Can it effectively trade-off accuracy for speedup?

(2) What are the characteristics of the colors? What are the
properties of the compressed graphs?

(3) How efficient and scalable is the RoTHKO algorithm?

We use 20 datasets for evaluation. Graphs are outlined in Table 2,
linear programs in Table 3. We list the primary sources in the table,
many of these graphs were found via dataset repositories [1, 24].
Trials are run on a MacOS machine with a 3.2 GHz ARMv8 processor
and 16GB of main memory. A single core is used for all experiments.
All code is run on Julia v1.7, with linear programs being solved
with the Tulip solver and max-flow problems with the GraphsFlows
library. Tulip is the fastest open-source solver [43], while Graphs-
Flows uses the state-of-the-art push-relabel algorithm [11]. Our
coloring implementation, as tested in this paper, is packaged as
QuasiStableColorsversionv@.1.0andisavailable for download.

6.1 End-to-end performance

In this section, we consider how well g-stable colors work as a func-
tion of downstream performance. We evaluate the trade-off between
accuracy and speed when using the colorings for approximating
linear-optimization, maximum-flow, and centrality tasks. On all
tasks, we compare against the baseline of solving the problem di-
rectly on the graph or linear system.

For maximum-flow and linear-optimization tasks, we use the rela-
tive error as the performance metric. We define this as max(v/9,0/v)

3https://github.com/mkyl/QuasiStableColors.jl

https://github.com/mkyl/QuasiStableColors.jl

2.00¢ s
= -5 1.00
simcells qapl5 ©
cells 2.1 ex10]
= 175} tsukuba0 - supportcasel0 =
o :tsukubaz o <> nug08-3rd o 0.95
A= venus0 = — -exact v
$ 1.50 ——venusl 018 &
g ~< sawtoothO 4 S 0.90
=] 2\ sawtoothl 515 © enron
© — -exact © = c astrophysics
© 1.25¢ o] © facebook
= “ £ 0.85 epinions
: 1.2 = deezer
) s 2) o — -exact
1.00f—= — —™= n — =l ; 1 2 0.80 I . |
0.0 0.5 1.0 1.5 0.0 0.2 0.4 0.6 0.8 1.0 v o 1 2 3
Runtime (% of baseline) Runtime (% of baseline) Runtime (% of baseline)
a) Maximum-flow b) Linear optimization c) Centrality

Figure 7: Speed-accuracy trade-off's for three task types and 20 datasets. Runtime reported is end-to-end, including the time
taken for graph coloring, building an approximate instance of the problem and solving it.

c
2.00 < R R T .
24 iqapls 2 100
simcells ex10 o
2" 3 I L
o tsukuba2 o = exact o
© 1.50 venus0 o L8 %
> —vemthlth0 E © 0.90 enron
- —< Sawtoo g
0 4\ sawtoothl © 1.5 c !?str%ph{sws
@ 425 — -exact g g 0.85f eapciﬁio(:wos
1.2 = deezer
o — -exact
1.00 | | = b ; : : < | i |
0.80
0 5 10 15 20 25 30 35 0 50 100 150 n o 50 100 150
Number of colors Number of colors Number of colors
a) Maximum-flow b) Linear optimization c) Centrality
Figure 8: Accuracy as a function of the number of colors, across the same three tasks.
Table 1: Runtime comparison of g-stable colors vs. prior Table 2: Summary of graphs used for evaluation
approximations (Riondato-Kornaropoulos [37] and early-
sto.pplng [33]) and exact. algorlthn.ls (Brandes [5] and 1.nte1'¥or- Name Vertices Edges Real/ Source
point solver [43]). Runtime to achieve a target approximation Sim
quality is measurtsd; targetis c.orrelatlon (p) with gro'un'd tl‘}lth General evaluation
values for centrality and relative error for linear optimization.
“x” is 20-minute timeout. Units in seconds, lower is better. Karate 34 75 R (10]
OpenFlights 3425 38513 R [35]
DBLP 317080 1049866 R [7]
Betweenness centrality: ours, [37], and [5] .
Centrality
p=0.90 p=0.95 p=0.97 Exact
Ours Prior Ours Prior Ours Prior Astrophysics 18772 198110 R [23]
Astroph. 013 152 | 1.03 414 | 249 611 | 223 FDaCEb"Ok 2: ‘2*;(1’ 13; 223 E [ig]
Facebook 0.07 32 | 053 7.1 |223 126 | 221 . cezer e o502 53501 R [21]
Deezer 0.05 3.6 111 7.2 | 856 148 | 295 En_ro,n Tesre sosss R [36]
Enron 041 26 |3.06 56 |108 87 380 pinions [3¢]
Epinions 0.18 17.1 3.15 365 7.95 58.2 2552 Maximum-flow
Linear optimization: ours, [33], and [43] Tsukuba0 110 594 506546 R (32]
rel. err.=3.0 rel.err.=2.0 relerr.=1.5 Exact Tsukuba2 110 594 500544 R (32]
Ours Prior Ours Prior Ours Prior Venus0 166 224 787946 R (39]
. 5 191 » 114 5 Venusl1 166 224 787716 R [39]
qap;z 2'43 1102’7 6':5 >24. s X ézog Sawtooth0 164922 79029 R [39]
nugoo. : | & x : x Sawtooth1 164922 789014 R [39]
support. O'gi 1‘913' ‘:;198 1‘913' >1<4 ><9 1 iio SimCells 903962 6738294 S [18]
ex10 0.247 795. 0 7% 0 7% 0 Cells 3582102 31537228 R [18]

811

Table 3: Summary of the linear programs used for evaluation.
All instances are from real problems.

Name Rows Cols. Non- Sol. Source
Zeros time

qap15 6331 22275 110700 22min [27]

nug08-3rd 19728 20448 139008 100min [27]

supportcasel0 10713 1429098 4287094 31min [27]

ex10 69 609 17680 1179680 24min [27]

Table 4: Runtime and compression ratios of quasi-stable color-
ing vs. prior work (stable coloring [4, 22]) for selected datasets.

Dataset Maxq Meanq Colors Compression Time
OpenFlights stable (g=0) 2637 1.29:1 150ms
q=064 15.8 9 380:1 10ms
q=32 6.96 17 200:1 20ms
q=16 2.22 39 87:1 60ms
q=8 0.52 106 32:1 350ms
Epinions stable (q=0) 53068 1.42:1 49s
q=064 4.42 71 1000:1 2.39s
q=32 1.17 144 526:1 8.95s
q=16 0.79 316 240:1 40.5s
q=8 0.22 869 87:1 5m19s
DBLP stable (g=0) 233 466 1.35:1 14mb52s
q=064 11.94 21 15000:1 2.28s
q=32 2.22 89 3500:1 22.6s
q=16 0.39 373 850:1 6m39s
q=38 0.06 1513 210:1 2h38m

for an actual, predicted v,0 so that 1.0 is the ideal score. For be-
tweenness centrality, the actual and predicted scores are compared
pair-wise using Spearman’s rank correlation coefficient, where 1.0
is also the ideal score. In all experiments, the time reported is end-
to-end ie., includes coloring the graph or matrix, computing the
reduced problem, and solving it.

Figure 7 illustrates the trade-off for three task types across twenty
datasets. Overall, accuracy can be exchanged for speed favorably:
in the average case, using a budget of 1% of the baseline (i.e., a 100X
speedup) results in an average error within 12% of the optimal value.
Figure 8 shows the number of colors required to achieve the same
accuracy. Across all tasks, no more than 150 colors are required to
converge to an approximation. We observe a consistent diminishing-
returns pattern: the initial color refinement results in large gains in
accuracy, but as more and more colors are added the gains shrink in
size. Comparing the densities of the graphs (omitted for brevity) with
the difficulty of coloring them, we find no consistent trend. Next, we
consider the tasks individually.

Maximum Flow. We test our algorithm on problem instances de-
fined by min-cut/max-flow benchmarks [1, 19]. This involves com-
puting maximum flows over the eight flow networks. We compare
against a baseline of computing the exact flow using the push-relabel
algorithm, considered to be the benchmark for max-flow [11].

812

Figure 7(a) shows the results: our approximation achieves an av-
erage geometric-mean error of 1.17 while using less than 1% of the
time needed for direct solution. At the same time, as outlined in Fig-
ure 8(a), this error is achieved using no more than 35 colors. Recall
that the flow networks are composed of 100K-2M nodes.

We consider comparing with prior approximation algorithms.
The state-of-the-part push-relabel algorithm for max-flow cannot
be stopped early, as it computes pre-flows which are not valid flows
and violate the principle of flow conservation. Further, while linear-
time approximations have been developed in the theory [20], these
algorithms remain slower than push-relabel algorithm in practice.

Linear programs. Next, we evaluate the ability of quasi-stable
coloring to approximate solutions to linear systems of equations. We
test on four real-world linear programs, outlined in Table 3. These are
relatively difficult tasks: the easiest can be solved in 20 minutes while
the most difficult requires about two hours for an exact solution.

g-stable colors provide a good speed-accuracy tradeoff, shown in
Figure 7(b). On average, a geometric-mean relative-error of 1.13 is
reached in under 0.5% of the direct runtime. Figure 8(b) shows the
number of colors required for the results. Similarly to max-flow, a
relatively small number of colors is required for an accurate answer.
Unlike other tasks, the error on LPs is not monotone.

Table 1 (bottom) compares our approximation with early stop-
ping the interior-point-method solver, the recommended approach
in practice [33]. We set a relative error and solve until that bound
is met. Q-stable coloring outperforms the baseline runtime by 102x
on average and times out in only one configuration (vs. five).

Centrality. Next, we test the utility of g-stable colorings in ap-
proximating betweenness centrality. We measure the approximation
error using Spearman’s rank correlation coefficient. We compare
against the baseline of solving for exact centralities using Brandes
algorithm [5], the algorithm with the best asymptotic runtime.

Figure 7c shows the speedup-accuracy tradeoff on five medium-
size datasets. On all datasets, the approximation is favorable: using
1% of the time of the direct computation, it produces centralities with
correlation 0.973 to the ground truth. Figure 8 outlines the number
of colors required for these results. We find that using 50 colors is
sufficient to ensure a rank correlation of greater than 0.948, while
100 colors allow for 0.965. Recall the graphs have 18-75K vertices.
We exclude the datasets DBLP and larger because the baseline timed
out after 16 hours.

We note a few trends. First, the speed-accuracy trade-off is more fa-
vorable the larger the dataset. The largest dataset, epinions, shows
the steepest slope at the beginning; the dataset with the fewest ver-
tices, Astrophysics, shows the shallowest slope. As with maximum-
flow, the approximation error is found to be monotone over all
datasets: the more colors used, the better the correlation is.

Table 1 (top) compares the performance of our approximation
with prior works [37]. By compressing all nodes in the graph rather
than focusing on selecting paths to sample, we obtain a 30X better
average runtime across various tasks and approximation budgets.

6.2 Coloring Characteristics

Coloring size. Table 4 compares the g-stable coloring of three
datasets with stable coloring. Stable coloring results in compressed

Table 5: Characteristics of the constraint matrix for some
compressed linear programs.

Dataset Colors Rows Cols. Non- Comp- Rel
Zeros ression error
ratio
qap15 10 4 7 11 10* 18.91
50 27 24 179 103 1.45
100 52 49 478 102 1.05
nug08-3rd 5 3 3 5 10* 8.19
50 30 21 254 103 1.45
100 61 40 930 103 1.45
supportcasel0 5 3 3 4 10° 1010
50 30 21 131 103 1.39
100 62 39 368 103 1.51
ex10 5 5 1 4 106 5.28
50 25 26 347 103 1.02
100 51 50 864 103 1.02

Table 6: Average latency and responsiveness of the RoTHKO
algorithm across task types.

Task Time-to- Update Time to
first-result frequency converge
Linear opt. 560 ms 2.71s 72.2s
Max-flow 845ms 1.57 s 21.0s
Centrality 32 ms 1.60 s 5.88s

graphs with 70%-78% of the full graph size. We find that small max-
imum values of g, such as g = 8 result in an order-of-magnitude
improvement in the compression ratios over stable coloring. Mod-
erate maximum values of g, such as ¢ =16 result in a two or more
orders-of-magnitude improvement. While the choice of ¢ caps the
worst-case degree error, the average errors are much smaller, on
average < 1.0 on all datasets: less than one differing edge per color.

Color distribution. Unlike stable coloring, single-element parti-
tions do not dominate any dataset. For example, on cells, DBLP,
nug@8-3rd and epinions, the median partition contains 6, 14, 56,
206 nodes in each dataset respectively. This evidences the ability of
g-stable colors to avoid stable-coloring-like single-color partitions.

Compression ratios. Table 5 shows the compression ratios enabled
by using quasi-stable colors on linear programs. A maximum com-
pression of 10°X is recorded, but corresponds to a large error of
5.28. Typical space savings of a ratio of 102-10° while maintain-
ing a geometric mean error of 1.23. The outlier error of 10° on
supportcase10 is explained by the measured g-error of 107 when
only 5 colors are used—this sharply decreases with more colors.

6.3 Algorithm Properties

Runtime. Table 4 compares runtime against the state-of-the-art
stable-coloring algorithm [4] with complexity O((n + m) logn).

813

RoTHKO’s runtime is competitive against this highly optimized im-
plementation [22], with an order-of-magnitude better compression.

Responsiveness. Because of the progressive nature of the RoTHKO
algorithm, an initial prediction is produced promptly. Table 6 outlines
the latency and responsiveness metrics. The first prediction occurs
within 480 ms on average, with centrality tasks having the consis-
tently lowest latency and max-flow the highest. Average latency is
strongly influenced by outliers, such as cells with 6.5s of latency.
Further, the algorithm iterates well, with a new color computed
every 1.96s on average. The time taken for the subtasks varies: for
max-flow and linear-program problems, the coloring step dominates,
using > 99.9% of the runtime on the measured datasets. For centrality
the solving step dominates, taking up 68%-94% of the runtime.

Robustness. We compare the robustness of q-colors to graph per-
turbations against that of stable coloring. We construct a synthetic
graph |V|=1000,E=121 600| with a compact, 100-color stable color-
ing. TheninFigure 2, a smallnumber of edgesisadded at random. The
initial stable coloring has a compression ratio of 10x. Perturbing 1.5%
of edges causes the stable coloring to degrade to a compression ratio
of 75% (750 nodes, down from 1000), with a majority of nodes given
a unique color. Computing a g-stable color (g=4), the compression
ratio can be maintained at 6.5X with the same perturbation.

7 CONCLUSION

We have introduced quasi-stable colorings, an approach for vertex
classification that allows for the lossy compression of graphs. By
developing an approximate version of stable coloring, we are able to
practically color real-world graphs. We show the ability of these col-
orings as approximations of max-flow/min-cut, linear optimization
and betweenness centrality and prove their error bounds. Discover-
ing that the construction of maximal g-stable colorings is NP-hard,
we develop a heuristic-based algorithm to efficiently compute them.
We empirically evaluate the characteristics and approximation util-
ity of quasi-stable colors; validating their practicality on wide range
of real datasets and tasks.

ACKNOWLEDGMENTS

This project was partially supported by NSFIIS 1907997 and NSF-BSF
2109922.

A APPENDIX

Proof of Theorem 2. We prove here Theorem 2. In general, it is well
known that OPT (A,b,c) is a continuous function in A,b,c. We prove
here a stronger statement: if A,b,c is well behaved (see Sec. 4.1), then
the function is Lipschitz continuous in b,c.

LEmMMA 13. Given A,b,c as above, there exists qo > 0 such that, forall
ueR™veR", if|lullo < qo and ||| < qo, then |OPT (Ab+u,c+
0) =OPT (Ab,c)|=0(|[ulleo +[[v]|oo)-

Proor. Recall that the optimal solution x* can always be chosen
to be a vertex of the polytope defined by the LP. More precisely, con-
sider the m+n inequality constraints Ax <b, x > 0. Choose any n of
them and convert them to equalities; if they uniquely define x, then
we call x a candidate solution, and we denote by x1,...,x all candidate
solutions. Let x; be candidate solution that is feasible and optimal for

A,b,c, and let x; be the candidate solution that is feasible and optimal
for A,b,c+v respectively. Then |OPT (Ab,c+v) —OPT (Ab,c)| =
|vT(xj =xi)| <|v]]eollxj —xi||1 < O(q), where the constant in O(-)
is 2max;||x;||1. By applying the same argument to the dual LP we
obtain |[OPT (A,b+u,c) —OPT (Ab,c)| = O(q). Returning to the
primal LP, we notice that if we replace b with b +u, then the can-
didate solutions x; will change to some x;; since u ranges over a
compact set, sup,, ||xlf||1 exists and is finite, for all i = 1, N, which
implies |OPT (A, b +u,c +v) — OPT (Ab +u,c)| = O(q). Thus,

|OPT (Ab+u,c+v)—OPT (Ab,c)|=0(q) as required. O
Using the lemma, we can now prove Theorem 2. Define:
e 1i e 1 s
U(ri) &= V(s &L (10)

Py | Qs

where 1 is the indicator function of a predicate 7, equal 1 when 7 is
true, and equal 0 otherwise. U and V represent mappings between the
original LP and the reduced LP, and we will show that they satisfy a
relaxed version of Eq. (7). Observe that the last row and last column of
both U and V are 0,0....,0,1, and denote by U,V (without boldface) the
matrices obtained by removing the last row and last column. Then

A=UAVT,b=Ub, and ¢T =cTVT (see their definitions in Eq. (6)).
Next, we define the following matrices D,E, which capture the error

introduced by the mapping from A,b,c to Al;é We also show them
as block matrices, by exposing the last row and last column:

DY AVT _UT A= E¥ua-av=
dy = Ub
b —
D=AVT-UTA | - E=UA-AV | b (11)
uTh =0
IvT—¢T=g ‘ 0 ezT :CTféTV‘ 0

We show that the error matrices are small:

. q i q
ID(s,)] < E(r))) <
RRNTX RN T

We only show the first inequality, the second is identical:

D(s.i) =Z A(i’j)ljegs _Z 1ePrA(r s)

(12)

Jj vV QS‘I r
A(l Qs) A(Pr Qs) _ 1 ((i Q\)_A(Pr»Qs>)
Vol e Vi e TR

where in the last line r is the unique color that contains i. The quan-
tity A(i,Qs) represents the total weight from i to the color Qs, while
A(Pr,Qs)/|Pr|is the average of this quantity over all i € P,.. Since the
coloring is g-quasi stable, this difference is bounded by q.

For any feasible solution x to the LP (2), define x def Vx. Since
Ax < b, we derive UAx < Ub, which becomes (AV +E)x < b, or
AVx < b — Ex. Moreover, ¢l x = (éTV + ezT)x =eTx+ e2 x. It fol-
lows that OPT (A,b,c) < OPT (A,b—Ex,¢) + e2 x. We set x := x*
(an optimal solution to the LP) and observe that Eq. (12) implies
[|IEx*||1 < ql|x*||1, and ||eZTx*||1 < q||x*|]1. Therefore, Lemma 13
implies OP‘T(A,[;—Ex,E) < OPT(A,I;,éHqA, for some constant A.
We have proven that OP 7 (A,b,c) < OPT (A, b ,6)+0(q).

Conversely, for % any feasible solution to (5), define x = VT %
Since A% < b, we derive UT A% <UTb, or (AVT —D)% <b—dy, which
we rearrange as Ax < b+ (Dx —dp). Moreover, Tx=cTvTz=¢T%.
It follows that OPT (A,b,¢) < OPT (A b+ (D — dy),c). We set
X := X" (an optimal solution to the reduced LP), and observe that

814

[IDx* —di||1 =0(q). Therefore, Lemma 13 implies OPT (A,b+(Dx —
d1),¢) <OPT (Ab,c)+qA, for some constant A. This completes the
proof of the theorem.

Proof of Lemma 8. We prove here Lemma 8. Extend G to a net-
work by adding two nodes s, t and setting c(s, x) " F /1X| and
c(y,t) def F/|Y| for all x € X,y € Y. We claim that this network
admits a flow of value F. The claim implies that the flow is uniform,
since all edges (s,x) and (y,t) must have a flow up to their capacity.

To prove the claim it suffices to show that every cut in the network
has a capacity > F. Let C be any cut. Define the sets:

def
TS {y|yeY.(y.t)¢C}

The cut must contain all edges (x,y) with x € S, y € T, hence its
capacity is:

Sdef{x |xeX,(s,x)¢C}

c(ST)+(1X |- \SI) +(1Y]- |T|)

X 1Y

F F
=(c(S,T)+F-|S|—=-IT|—

+F > (c(S,T)+F-a-|S|-b-|T|)+F>F. O
X1 Y] ()

Proof of Theorem 11. We write d(a,b) for the length of the shortest
path from a to b in the graph. We claim that, for all numbers M >0

and d > 0, the following formula ®,; 4 can be expressed in c3:
Opra(s,0) E(d(s,0)=d) A(o(s,0) > M)

The claim implies the theorem, because we can write g(v) as follows.

Notice that o (s,t |v) =0 (s,0)0(v,t) when d(s,t) =d(s,0)+d(v,t) and

o(s,t|v) =0 otherwise. Then:

Z [Mle

M
My, My.M.dy.dy,s.t

g(v)= [, .y (5,0) ANy dy (0.8) A¥M .y +dy (5.2)

where ¥y 4 def @p1a A Ppry1,q4 asserts that o = M. The claim im-
plies that, if u,0 have the same 2-WL color, then, by Theorem 10, we
have @y 4(s,u) =@y 4(s,0) for all M,d,s, and similarly @y 5(u,t) =
@y 4(v,t), which implies g(v) =g(u). It remains to prove the claim.
Recall that, for all d > 0, the formula IT. ;(x,y) saying “there exists
a path of length < d from x to y” is expressible in C3. For example,
M<4(x, y) Ez(E(x z) A Ix(E(z,x) A 3z(E(x,z) AE(z,y)))). Then

I d(xy) H<d(xy)/\—|H<(d 1) (x.y) asserts that d(x,y) =d.

o(s,0)= o(s,w)
w:E(w,0)A(d(s,0)=d(s,w)+1)
If n is the number of nodes in the graph, then for each £ =1,n we
denote by M, the set of all strictly increasing ¢-tuples of natural
numbers M = (My,...,M;), where 0 < M; < My < -+ < My < M.
Similarly, denote by Cy the set of all ¢-tuples of natural numbers
c=(c1,....c¢), where 0<c; <M. Then:

\/ J\ T W a1y (5,9) AWt a1 (5,W)
MeM;,ceC =1t
2iciMi > M

(13)

Ppa(s,w)=

In other words, for every combination of numbers M;,c; such that
>iciM; > M, the formula checks if, for each i, there exists at least
c; parents w at distance d — 1 from s, where o (s,w) = M;. We prove
that the formula is correct. Suppose the RHS is true. Then, for each
i, there are at least ¢; distinct nodes w that satisfy the formula
- (g—1) (5;w) A¥py, -1 (s, w). For each such w, we have o(s,w) =M;,
and therefore their contribution to the sum in (13) is ¢; M;. Since the
numbers Mj,...,M; are distinct, it follows that the set of nodes w asso-
ciated to distinct values i are disjoint, hence their total contribution
to (13) is > ;ciM;, which is > M as required.

REFERENCES

(1]
(2]

(3]
(4]

[10]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

2013. Max-flow problem instances in vision. https://vision.cs.uwaterloo.ca/data/
maxflow

Albert-Laszl6 Barabasi. 2013. Network science. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences 371, 1987 (2013),
20120375.

Albert-Laszl6 Barabasi and Réka Albert. 1999. Emergence of scaling in random
networks. science 286, 5439 (1999), 509-512.

Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. 2017. Tight Lower and
Upper Bounds for the Complexity of Canonical Colour Refinement. Theory
Comput. Syst. 60, 4 (2017), 581-614. https://doi.org/10.1007/s00224-016-9686-0
Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of
mathematical sociology 25, 2 (2001), 163-177.

Jin-yi Cai, Martin Fiirer, and Neil Immerman. 1992. An optimal lower bound on
the number of variables for graph identifications. Comb. 12, 4 (1992), 389-410.
https://doi.org/10.1007/BF01305232

The dblp team. [n.d.]. DBLP computer science bibliography. https://dblp.uni-
trier.de/

Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. 1981. Optimal Packing
and Covering in the Plane are NP-Complete. Inf. Process. Lett. 12,3 (1981), 133-137.
https://doi.org/10.1016/0020-0190(81)90111-3

Linton C. Freeman. 1977. A Set of Measures of Centrality Based on Betweenness.
Sociometry 40,1 (1977), 35-41. http://www.jstor.org/stable/3033543

Michelle Girvan and Mark E] Newman. 2002. Community structure in social and
biological networks. Proceedings of the national academy of sciences 99, 12 (2002),
7821-7826.

Andrew V. Goldberg. 2008. The Partial Augment-Relabel Algorithm for the
Maximum Flow Problem. In ESA (Lecture Notes in Computer Science, Vol. 5193).
Springer, 466—477.

Martin Grohe. 2020. word2vec, node2vec, graph2vec, X2vec: Towards a Theory of
Vector Embeddings of Structured Data. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2020, Portland,
OR, USA, June 14-19, 2020, Dan Suciu, Yufei Tao, and Zhewei Wei (Eds.). ACM, 1-16.
Martin Grohe. 2021. The Logic of Graph Neural Networks. In 36th Annual
ACMY/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June
29 - July 2, 2021. IEEE, 1-17.

M. Grohe and Association for Symbolic Logic. 2017. Descriptive Complexity,
Canonisation, and Definable Graph Structure Theory. Cambridge University Press.
Martin Grohe, Kristian Kersting, Martin Mladenov, and Pascal Schweitzer. 2021.
Color Refinement and its Applications. MIT Press.

Martin Grohe, Kristian Kersting, Martin Mladenov, and Erkal Selman. 2014.
Dimension reduction via colour refinement. In European Symposium on
Algorithms. Springer, 505-516.

Martin Grohe and Pascal Schweitzer. 2020. The Graph Isomorphism Problem.
Commun. ACM 63, 11 (Oct. 2020), 128-134.

Patrick M. Jensen, Anders B. Dahl, and Vedrana Andersen Dahl. 2020. Multi-object
Graph-based Segmentation with Non-overlapping Surfaces. In CVPR Workshops.
Computer Vision Foundation / IEEE, 4204-4212.

Patrick M. Jensen, Niels Jeppesen, Anders B. Dahl, and Vedrana A.
Dahl. 2021. Min-Cut/Max-Flow Problem Instances for Benchmarking.
https://doi.org/10.5281/zenodo.4905882

Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. 2014. An
Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected Graphs,
and its Multicommodity Generalizations. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, Chandra Chekuri (Ed.). SIAM, 217-226.
https://doi.org/10.1137/1.9781611973402.16

Bryan Klimt and Yiming Yang. 2004. Introducing the Enron Corpus. In CEAS.
Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. 2016.
NetworKit: A Tool Suite for Large-scale Complex Network Analysis. Network
Science 4, 4 (12 2016). https://doi.org/10.1017/n1ws.2016.20

Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1, 1
(2007), 2.

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

815

[25

[26

[27]

[28

[29

[30

[31

[42]

T~
&

(44

[45]

Aleksander Madry. 2016. Computing Maximum Flow with Augmenting Electrical
Flows. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, Irit Dinur
(Ed.). IEEE Computer Society, 593-602.

Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles
in Ego Networks. In NIPS. 548-556.

Hans Mittelmann. 2022. Benchmark of Barrier LP solvers.
//plato.asu.edu/ftp/Ipbar.html

Martin Mladenov, Babak Ahmadi, and Kristian Kersting. 2012. Lifted Linear
Programming. In Proceedings of the Fifteenth International Conference on Artificial

Intelligence and Statistics, AISTATS 2012, La Palma, Canary Islands, Spain, April
21-23, 2012 (JMLR Proceedings, Vol. 22), Neil D. Lawrence and Mark A. Girolami

(Eds.). JMLR.org, 788-797. http://proceedings.mlr.press/v22/mladenov12.html
Christopher Morris, Matthias Fey, and Nils M. Kriege. 2021. The Power of the
Weisfeiler-Leman Algorithm for Machine Learning with Graphs. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, [JCAI 2021,
Virtual Event / Montreal, Canada, 19-27 August 2021, Zhi-Hua Zhou (Ed.). ijcai.org,
4543-4550.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege,
Martin Grohe, Matthias Fey, and Karsten M. Borgwardt. 2021. Weisfeiler and
Leman go Machine Learning: The Story so far. CoRR abs/2112.09992 (2021).
arXiv:2112.09992

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and Leman Go Neural:
Higher-Order Graph Neural Networks. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019. AAAI Press, 4602-4609.
University of Tsukuba. 2001. Tsukuba Stereo Datasets.
//vision.middlebury.edu/stereo/data/scenes2001/

Google OR-Tools. [n.d.]. Setting solver limits. https://developers.google.com/
optimization/cp/cp_tasks#time-limit

Robert Paige and Robert Endre Tarjan. 1987. Three Partition Refinement Algo-
rithms. SIAM J. Comput. 16, 6 (1987), 973-989. https://doi.org/10.1137/0216062
Jani Patokallio. 2014. OpenFlights. https://openflights.org/data. html#route
Matthew Richardson, Rakesh Agrawal, and Pedro M. Domingos. 2003. Trust
Management for the Semantic Web. In ISWC (Lecture Notes in Computer Science,
Vol. 2870). Springer, 351-368.

Matteo Riondato and Evgenios M. Kornaropoulos. 2014. Fast approximation of
betweenness centrality through sampling. In WSDM. ACM, 413-422.

Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic Functions on
Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models.
In Proceedings of the 29th ACM International Conference on Information and
Knowledge Management (CIKM °20). ACM, 1325-1334.

Daniel Scharstein and Richard Szeliski. 2002. A Taxonomy and Evaluation of
Dense Two-Frame Stereo Correspondence Algorithms. Int. J. Comput. Vis. 47,
1-3 (2002), 7-42.

A.Schrijver. 2003. Combinatorial Optimization - Polyhedra and Efficiency. Springer.
Nino Shervashidze and Karsten M. Borgwardt. 2009. Fast subtree kernels on
graphs. In Advances in Neural Information Processing Systems 22: 23rd Annual
Conference on Neural Information Processing Systems 2009. Proceedings of a meeting
held 7-10 December 2009, Vancouver, British Columbia, Canada, Yoshua Bengio,
Dale Schuurmans, John D. Lafferty, Christopher K. I. Williams, and Aron Culotta
(Eds.). Curran Associates, Inc., 1660-1668.

Richard P. Stanley. 2012. Enumerative combinatorics. Volume 1 (second ed.).
Cambridge Studies in Advanced Mathematics, Vol. 49. Cambridge University
Press, Cambridge. xiv+626 pages.

Mathieu Tanneau, Miguel F. Anjos, and Andrea Lodi. 2021. Design and implemen-
tation of a modular interior-point solver for linear optimization. Math. Program.
Comput. 13,3 (2021), 509-551. https://doi.org/10.1007/s12532-020-00200-8
Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
Wayne W Zachary. 1977. An information flow model for conflict and fission in
small groups. Journal of anthropological research 33, 4 (1977), 452-473.

http:

https:

https://vision.cs.uwaterloo.ca/data/maxflow
https://vision.cs.uwaterloo.ca/data/maxflow
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/BF01305232
https://dblp.uni-trier.de/
https://dblp.uni-trier.de/
https://doi.org/10.1016/0020-0190(81)90111-3
http://www.jstor.org/stable/3033543
https://doi.org/10.5281/zenodo.4905882
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1017/nws.2016.20
http://snap.stanford.edu/data
http://plato.asu.edu/ftp/lpbar.html
http://plato.asu.edu/ftp/lpbar.html
http://proceedings.mlr.press/v22/mladenov12.html
https://vision.middlebury.edu/stereo/data/scenes2001/
https://vision.middlebury.edu/stereo/data/scenes2001/
https://developers.google.com/optimization/cp/cp_tasks#time-limit
https://developers.google.com/optimization/cp/cp_tasks#time-limit
https://doi.org/10.1137/0216062
https://openflights.org/data.html#route
https://doi.org/10.1007/s12532-020-00200-8

	Abstract
	1 Introduction
	2 Background on Color Refinement
	3 Quasi-stable Coloring
	3.1 Examples
	3.2 The Reduced Graph

	4 Applications
	4.1 Linear Optimization
	4.2 Maximum Flow
	4.3 Centrality

	5 Algorithm
	5.1 Complexity
	5.2 Rothko Algorithm

	6 Evaluation
	6.1 End-to-end performance
	6.2 Coloring Characteristics
	6.3 Algorithm Properties

	7 Conclusion
	Acknowledgments
	A Appendix
	References

