Optimizing Tensor Programs on Flexible Storage

MAXIMILIAN SCHLEICH, RelationalAI, USA
AMIR SHAIKHHA, University of Edinburgh, United Kingdom
DAN SUCIU, University of Washington, USA

Tensor programs often need to process large tensors (vectors, matrices, or higher order tensors) that require a
specialized storage format for their memory layout. Several such layouts have been proposed in the literature,
such as the Coordinate Format, the Compressed Sparse Row format, and many others, that were especially
designed to optimally store tensors with specific sparsity properties. However, existing tensor processing
systems require specialized extensions in order to take advantage of every new storage format. In this paper
we describe a system that allows users to define flexible storage formats in a declarative tensor query language,
similar to the language used by the tensor program. The programmer only needs to write storage mappings,
which describe, in a declarative way, how the tensors are laid out in main memory. Then, we describe a
cost-based optimizer that optimizes the tensor program for the specific memory layout. We demonstrate
empirically significant performance improvements compared to state-of-the-art tensor processing systems.

CCS Concepts: » Information systems — Query optimization; Query planning; Data layout.
Additional Key Words and Phrases: databases, tensor programs, query optimization, dense data

ACM Reference Format:
Maximilian Schleich, Amir Shaikhha, and Dan Suciu. 2023. Optimizing Tensor Programs on Flexible Storage.
Proc. ACM Manag. Data 1, 1, Article 37 (May 2023), 27 pages. https://doi.org/10.1145/3588717

1 INTRODUCTION

Linear algebra and, more generally, tensor algebra is used in a wide variety of domains, such
as science, engineering, machine learning, data analysis. Tensors are natural generalizations of
vectors and matrices from 1 and 2 dimensions to arbitrary dimensions, and highly optimized
implementations of tensor algebra operations are available today in several popular libraries, such
as SciPy, PyTorch, Julia, TensorFlow, or Matlab. While these libraries are highly optimized for
individual operations, compound operations require users to create temporary tensors, which often
destroys the locality and may even lead to out of memory errors, when the intermediate results
are too large. Such operations are frequently encountered in complex tensor programs, or tensor
kernels, terms that we will use interchangeably in this paper.

Several domain specific languages have been proposed for expressing and optimizing entire
tensor programs. Examples include SystemML [10], TVM [12], Halide [39], Taco [27], TASO [24].
The compiler community has addressed one challenge of the optimization problem, namely the
separation of the algorithm from the schedule. This idea was introduced by the Halide language,
which was designed for high-performance code generation for image processing pipelines [38, 39].
The programmer writes the algorithm in an imperative, high-level language, and writes separately
a schedule, which specifies low level optimizations, such as tiling, vectorization, or loop unrolling.

Authors’ addresses: Maximilian Schleich, Relational AI, USA; Amir Shaikhha, University of Edinburgh, United Kingdom;
Dan Suciu, University of Washington, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2836-6573/2023/5-ART37

https://doi.org/10.1145/3588717

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:2 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

TVM [12] extends this principle from image processing to tensor processing for general-purpose
ML applications.

In this work we are not concerned with schedules, but with a different challenge in tensor
processing: optimizing the query plan based on how the tensors are stored in memory. Storage
refers in this paper to memory layout, and not to persistent representation. When a tensor is sparse,
the programmer has many choices for representing it in main memory, and the best plan for a
tensor program varies dramatically depending on what storage was chosen, the statistics of the
data (e.g. how sparse or dense), and the particular tensor program. For example, a vector a(i) can be
stored as a dense array, or as a hash table indexed by i, or as two parallel arrays storing the indices
i and the values a(i). When the tensors are dense, then the best plan may be to use a linear algebra
library [31, 48], while for sparse tensors a better plan may be to use relational query operators, e.g.
hash joins. Tensors can be easily represented as relations, and tensor programs can be expressed
as SQL queries [9], but relational engines are not designed to support storage formats specifically
optimized for sparse tensors (e.g. the CSR format discussed later).

To address the storage problem, Taco [27] separates the tensor storage format from the tensor
program. In the storage format the user can specify separately for each dimension whether it
is dense or sparse, and can also order the dimensions, leading to d! - 2 possible formats for a
d-dimensional tensor.! Given a tensor program, the Taco compiler generates code that optimizes
the access to the storage formats. Taco does not perform cost-based optimizations, which means
that the programmer still needs to be aware of the storage specification. For example, if the vector
a is sparse while b, ¢ are dense, then a(i) = (b(i) + c(i)) is best rewritten as a(i) * b(i) + a(i) * c(i),
because computing b(i) + ¢(i) results in a large, dense vector, while a(i) * b(i) is a small, sparse
vector, no larger than a, and similarly for a(i) * ¢(i). However, the task of rewriting the expression
is left to the programmer.

In this paper we propose a rule-base approach to optimizing tensor programs over flexible
tensor storage, using a cost-based optimizer. The main novelty in our approach is that the storage
descriptors themselves are also defined in the same declarative language as the tensor program. To
specify how a tensor is stored, the user writes a storage mapping from the physical data structures
(arrays and/or hash tables) to the logical tensor. Our system evaluates the tensor program by first
composing it with the storage mappings, then optimizing it using rewrite rules. This improves in
two ways over previous systems. First, the storage formats are no longer hard coded, but the user is
free to define their own. For example, users may describe one of the popular storage formats COO,
CSR, etc, or define a format optimized for upper-triangular matrices, or for band-matrices, or a
space-filling curve, etc. There is no bound on the number of storage representations, the only limit
is the expressivity of the query language and the power of the optimizer. Second, the optimizer
is now able to perform a rich collection of high-level optimizations, such as factorization, loop
fusion, or join reordering, and optimize the tensor program specifically for the given storage. For
example, the optimizer may consider both expressions a(i) * (b(i) +¢(i)) and a(i) = b(i) + a(i) = c(i),
and choose the optimal one based on their physical storage and data statistics. To the best of our
knowledge, our system, called STOREL, is the first cost-based optimizer for a declarative tensor
language. We show in Sec. 6 that, due to the rewrite rules, STOREL significantly outperforms both
Taco [27] (a tensor algebra) and DuckDB [37] (an optimized relational engine) for several tensor
programs, although their physical execution engines are as good as, or even better than ours.

Fig. 1 illustrates how STOREL processes the matricized tensor times Khatri-Rao product, MT-
TKRP [27], A(i, j) = X B(i, k, 1) - C(k, j) - D(L, j). Fig. 1 (a) shows the tensor program written in
our declarative tensor language SDQLite (described in Sec. 3), while (b) shows the Compressed

Taco was later extended to support 6 formats per dimension [14].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:3

CREATE TENSOR A AS 6101918
sum(<(i,k,1), B_v> in B, <(k,j), C_v> in C,
<(3,1), b_v> in D) ¢ 0lol9 49
{ (1, j) >B_v * C_v x D_v } >]0]0]7
(@) MTTKRP kernel A(i, j) = > ; B(i, k,I) - C(k, j) - D(L, j) in -
SDQLite. C_lenl: |3
CREATE TENSOR C AS sum(<row, > in 0:C_len1) Cpos2: 10335
¢ row > c_idx2: [0[2[3] 03
sum(<off,col> in C_idx2(C_pos2(row):C_pos2(row+1))) C_val: 619]85]7
{ col -> C_val(off) }
¥ (b) Matrix C and its CSR
(c) The SDQLite storage mapping for CSR. format from [27, Fig.5(f)].

sum(<i_pos, i> in B_idx1)

{i-—>
sum(<k_pos, k> in B_idx2(B_pos2(i_pos):B_pos2(i_pos+1)))
sum(<j_pos, j> in C_idx(C_pos(k):C_pos(k+1)))
{
j >
C_val(j_pos) * (
merge(<l_posB,1_posD,1> in <B_idx3(B_pos3(k_pos):B_pos3(k_pos+1)),
D_idx(D_pos(j):D_pos(j+1))>)
B_val(l_posB) * D_val(l_posD)

(d) Optimized MTTKRP in SDQLite.

Fig. 1. lllustration of STOREL. (a) MTTKRP kernel, (b) CSR memory layout, (c) CSR storage mapping, (d)
optimized plan.

Sparse Row (CSR) memory layout of matrix C, which is one of several formats described in [14, 27]
(reviewed in Sec. 2). For each matrix or tensor, the user describes its memory layout by writing
a storage mapping, also in SDQLite; the storage mapping for the matrix C is shown in Fig. 1 (c),
and similar storage mappings need to be defined for B and D. To execute the program, the system
composes the tensor program with the storage mappings, then chooses an optimal plan using
a cost-based optimizer; the optimal plan is shown in Fig. 1 (d). While the plan could be further
optimized for some sophisticated schedule (as done by Halide, TVM, and Taco), we currently do
not support schedules and simply run the optimal plan directly in Julia.

The main challenge in developing the cost-based optimizer is the right choice of tensor processing
language. All query optimizers use the relational algebra as intermediate language. However,
we found that a calculus, rather than an algebra, is better suited for optimizing tensors; here
calculus refers to a language with explicit use of variables, while algebra refers to a variable-free
language. There are two reasons for that. First, the physical plan of a tensor program consists of
for-loops with explicit variables. They look like this: for i=1:m do for j=1:n do ... instead of
this: A ¢ (B pa - - -), and optimizing directly expressions with variables simplifies the generation of
the physical plan. Second, the intermediate language for tensor programs needs to support nested
collections, which occur in sparse formats like CSR, CSC, CSF, while standard relational algebra,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:4 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

as well as some recent extensions to linear algebra [23] support only flat collections. Algebras
for nested collections exists, but they tend to be much harder to read than calculus, making it
harder to design and debug optimization rules, e.g. compare the rules in Table 2 [55] to those in
Fig. 3 in our paper. For these reasons, we opted for a calculus-based intermediate language. We
are not the first to use a calculus-based intermediate language for query optimization: Worst Case
Optimal Join algorithms are also described as nested loops, in effect using a calculus as intermediate
language [18, 35, 51].

We describe in this paper a language, called SDQLite, used both for writing tensor programs, and
for performing optimizations. SDQLite has a syntax that is reminiscent of Unions of Conjunctive
Queries, but where A, V, 3 are replaced by *, +, sum, to which we add let-bindings, and nested
dictionaries as data model; our dictionaries are similar to those in SDQL (Semiring-Dictionary Query
Language) [42], hence we call our language SDQLite. Our language can express tensor programs
in a notation close to mathematics, and can express complex storage mappings corresponding to
sophisticated tensor memory layouts, including those described in [14, 27]. Any SDQLite query
can easily be converted directly to a physical, nested for-loop plan, because each quantified variable
i, j, ... becomes directly a for loop over that variable. However, it is more difficult to design an
optimizer. For example, Selinger’s dynamic programming algorithm for join re-ordering [5, 32] no
longer applies, because in a calculus there is no explicit binary join. Instead, our system is entirely
rule-based, and the rules must be designed for a calculus rather than an algebra. We designed a
suite of 44 SDQLite-rewrite rules, and use the equality saturation system Egg [54] as rewrite engine.
Egg uses a compact data structure called an e-graph to represent a large number of equivalent
expressions as a graph. However, like most term rewriting systems, Egg does not understand
variables in rules. For our optimizer, we developed a variant of the De Bruijn index that removes
the need for explicit variable representation.

One major motivation for our work is that most of existing tensor and linear algebra systems in
the compilers and HPC communities focus on dense data; in contrast, our focus in this work is
on sparse data. The reason for the traditional focus on dense data is that Linear Algebra packages
were originally developed for use in Physics and Engineering, where tensors are dense, and they
support highly optimized kernels for specific operations on dense data. Support in these packages
for sparse data is rare.? TACO [27] was the first recognized the need to optimize tensor programs
over sparse data; our work falls into the latter category.

In summary, we make the following contributions in this paper:

o We describe the architecture of STOREL, where tensor programs and tensor storage mappings
are defined in a common language, and optimized jointly (Sec. 3).

e We describe a declarative tensor calculus, SDQLite, for both tensor programs and storage
mappings, and show that it can express a rich variety of previously proposed storage formats,
and beyond (Sec 4).

e We describe a cost-based optimizer for the tensor calculus, which supports a rich suite of
optimizations, such as factorization, loop fusion, and join reordering (Sec. 5).

e Finally, we conduct an experimental evaluation showing that STOREL can significantly
outperform other tensor processing systems, by using a cost-based optimizer to choose the
best plan for the given storage representation (Sec. 6).

2 BACKGROUND

. £
Tensors Given a number n, we denote by [n) de {0,1,2,...,n—1}.Letd > landletny, ny,...,ng be

natural numbers. A tensor with d dimensions, is element A € R[")%*[na) A gcalar, a vector, and a

2Cf. GitHub issues #43497 for TensorFlow, #72065 for PyTorch, #4332 for TVM.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:5

matrix are tensors with 0, 1, and 2 dimensions respectively. Given d indices, i; € [ny),...,ig € [ng),
we denote by A(iy, ..., ig) the value of the tensor at those positions; we call each i; a dimension.

Tensor formats We briefly review some popular tensor formats following [14, 27]. A dense
representation of a tensor consists of a memory array with nyn; - - - ny elements. The coordinate
format, COO, stores only the non-zero elements in an array, and their coordinates in d separate
arrays. For example, the dense and COO representations of the vector v = (9,0, 7, 5) are:

DENSE: COO:

P v_pos: [0 |3

v_len: | 4
- v_idx: [0] 2|3
voval: [9[0]7]5] vval: [9T7 15

To access v(i) using the COO representation one has to first find i in v_idx, in other words one
has to find p such that v_idx(p) = i, then return v_val(p); the role of v_pos will become clear
shortly. The COO representation of a matrix has two index arrays, v_idx1, v_idx2, storing the
rows and columns of the non-zero element respectively. The COO representation is compact, but
no longer enables constant-time lookup. A hash-map representation of the matrix is a hash-map
where the keys are pairs (i, j). It is compact and allows access in time O(1), but no longer supports
a scan in either row-major or column-major order.

The Taco system [27] describes a general scheme for storage formats where the user can choose
an order of the d dimensions, and specify, independently for each dimension, whether it is dense or
sparse. This allows for d! - 2¢ formats. The storage uses segmented arrays, which consist of the
concatenation of several sub-arrays stored in a single array, with their starting positions stored in
a separate array. For example, the sparse-sparse representation of the matrix C in Fig. 1 (b) is the
following (taken from [27, Fig.5(g)]):

C_posl: |0 |2

C_idx1: | 0| 2

C_pos2: [0 |3 |5
C_idx2: |02 |3/ 0|3
C_val: 619|857

The arrays C_idx2 and C_val contain two segments each: the first segment represents row
0 of the matrix C, (6,0,9, 8); the second segment represents row 2, (5,0, 0, 7). The segments are
delimited by C_pos2, which indicates their starting point. The row number of each segment is
stored in C_idx1: only the values i = 0 and i = 2 occur here because row 1 is empty. Alternatively,
the dense-sparse representation, shown in Fig. 1 (b) stores every row, including row 1, and for that
reason there is no need to store the vector C_idx1 (since this vector would be (0, 1, 2)), but we only
store its length, C_len1 = 3. The dense-sparse representation is called compressed sparse row, or
CSR, and the sparse-sparse representation is called doubly CSR, or DCSR. In a later reference [14]
the authors extended the number of choices available at each dimension from 2 to 6.

Tensors as Relations Any d-dimensional tensor can be represented as a relation with d + 1
attributes. For example, a matrix A can be represented as a relation R(i, j,v), where i, j is the
primary key, and o the value of A(i, j). A clustered index on (i, j,v) corresponds roughly to a
row-major ordering of the matrix; a hash-index corresponds to a hash-map representation; while a
column-oriented storage [2] corresponds to a COO representation. However, since relations are
unordered, it is not possible to use some of the other formats, like CSR or CSC.

Semiring Dictionary A semiring is a quintuple (S, +, %, 0, 1), where S is a set, the operations
+, * are associative with identities 0 and 1 respectively, + is commutative, * distributes over +,
and 0 * x = x * 0 = 0. For example, the real numbers form a semi-ring, (R, +, *,0,1). A semiring
dictionary, or simply a dictionary, is a mapping K — S, from a finite set of keys K to values in some

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:6 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

semiring S [42]. If kq, . . ., k;,, are distinct keys, then {k; — vy, ..., k;;, — v, } denotes the dictionary
that maps each key k; to the value v;, and maps each key k ¢ {ki,...,k;,} to 0. In other words,
missing keys default to 0; it follows that {k; — 0,k; — 0,...} = { }, in other words a dictionary
containing only 0 values is the same as empty dictionary. In this paper the key space is always

of the form K % [n1) X - -+ X [ng), and we view interchangeably a tensor A € RK as a dictionary
A : K — R. When d = 0, then the dictionary is of the form {() — v}, which we identify, with some
abuse, with the scalar value v.

It was observed in [42] that semiring dictionaries generalize K-relations [20]; the set of semiring
dictionaries over a fixed key-set K forms another semiring, where the plus and multiplication are
defined element-wise. For example, if A, B are two m X n matrices, then they both can be viewed
as dictionaries [m) X [n) — R, and A + B, A * B denote their element-wise sum and product
respectively. One consequence is that we obtain the following rule:

{k—>1)1+?)2} ifklzkzzk

k +{k =
{ 1—)01} { 2—>02} {{kl_)vl’kzﬂvz} 1fk1¢kz

Another consequence is that one can define nested dictionaries, by defining a dictionary whose
values are other dictionaries. For example, let S def [[n) — R] denote the set of dictionaries with
keys [n) and real values. A dictionary in S is a vector of length n. Then, a dictionary A : [m) — S
is a vector of length m of vectors of length n, which is equivalent to a matrix.

SDQL We briefly review here SDQL from [42]. In a nutshell, the query language SDQL is like
Unions of Conjunctive Queries, where 3, A, V are replaced with sum, *, +, and the head variables
are moved to the end of the query expression. We show here side-by-side in CQ and SDQL how
to transform a vector V by removing its negative values (equivalently: setting them to 0) and

multiplying the others by 5:
cQ: SDQL:
. Ty sum(<i,v> in V)
QG5+ 0) =V(i,0) A(v>0) if v>0 then { i -> 5%v }

The semantics of SDQL uses the fact that dictionaries form a semiring, i.e. can be “added”. The
SDQL query above is executed by iterating over the pairs < i,0 > in V, and summing up singleton
dictionaries. For example, if the vector V is (v, 01, v2, U3, v4), Where vg, v3,v4 > 0 and vq, 05 < 0, then
the query above returns {0 — 5v0} + {3 — 503} + {4 — 504} = {0 — 500,3 — 5v3,4 — 504}
For another illustration, the following two SDQL queries compute the dot product }; u;0; and the
element-wise product (u;0;); of two vectors U, V respectively:

sum(<i,u> in U, <i,v> in V) {() -> u*v}
sum(<i,u> in U, <i,v> in V) {i -> u*v}

The operator * is overloaded to define the multiplication of scalars and dictionaries. For example,

a * Vrepresents a scalar-vector multiplication and is equivalent to the following SDQL query:
sum(<i,v> in V) {i -> a * v}

3 STOREL
Here we describe architecture of our system STOREL, and its declarative language SDQLite.

3.1 Architecture

The architecture of STOREL is shown in Fig. 2. All yellow-gold boxes represent SDQLite programs,
described below, while the blue box represents rewrite rules described in Sec. 5. The end user (for
example a data scientist) writes a Tensor Program (TP) in SDQLite. Separately, the data administrator

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:7

Data Admin |
M
/ TSM {} RR
create tensorAas ... e1*(e2+e3) = e1*e2+e1*e3 | | Data
create tensorB as ... el+e2 = e2+e1 statistics

—

compose —

Cost
estimate

letA=...in
sum(<i,v>inA)...

Naive
Plan

KTP ﬁ STOREL

Data Scientist

Execution
Engine

Fig. 2. System’s architecture. TSM=Tensor Storage Mapping; TP=Tensor Program; RR=Rewrite Rules.

(possibly the same user) familiar with low level optimizations, writes Tensor Storage Mappings
(TSM), one for each tensor. STOREL composes the two expressions, by substituting each tensor
variable in TP with its corresponding definition in TSM. This results in a SDQLite expression which
we call the Naive Plan. The Naive Plan is then submitted to the Egg equality saturation system [54].
Egg has access to a knowledge base of Rewrite Rules (RR), and applies all rules until saturation,
i.e. until no more rule can be applied. The current collection of rewrite rules includes about 44
rules, described in Sec. 5. Egg stores all equivalent plans in a very compact data structure called
an e-graph. Next, STOREL uses data statistics and a simple cost model to associate a cost to each
equivalent plan; currently, the user needs to provide the data statistics manually. Egg then extracts
the cheapest plan from the e-graph, and this plan is finally submitted to the execution engine. We
currently use Julia [8] as our execution engine. Alternatively, the optimal plan could be further
optimized by applying schedules, but this is not currently supported in our system.

3.2 SDAQLite

STOREL needs a language to express the tensor programs, a formalism for expressing tensor storage
formats, an intermediate language in which to express the optimizations, and a physical language
in which the programs are executed. In this paper we are introducing a declarative language called
SDQLite, which serves the first three purposes: it can express Tensor Programs (TP), it can express
sophisticated Tensor Storage Mappings (TSM), and we also use it as intermediate language for
performing optimizations. SDQLite can be easily converted to physical plans, as we describe in
Sec. 5. A language that satisfies all these goals requires a careful design: we describe SDQLite in
this section, and note that it is derived from SDQL [42]; we discuss the differences at the end of
this section.

The data model for SDQLite consists of scalars (integers or reals), and nested dictionaries. The
latter have type [n) — S, where the value space S is the set of integers, reals, or another dictionary.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:8 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

Thus, the data model in SDQLite consists of the following types:

[n1) = [n2) = -~ [na) = R
[n1) = [n2) = ---[na) = Z

where d > 0; when d = 0 then these are scalar types. One can equivalently view the data model of
SDQLite as consisting of real- and integer-valued tensors. To see this, we recall the curry operation,
which converts a function of type K X K’ — S into a function of type K — [K’ — S], and the
uncurry operation which goes the other way. By repeatedly uncurrying a nested dictionary, we
can convert it to a ny X ny X - - - X ng tensor. For that reason, in this paper we blur the distinction
between (nested) dictionaries and tensors, and view the data model of SDQLite as consisting of
tensors.
Syntax The expressions in SDQLite are the following:
el+e2, el*xe2, {k -> e}, e(i), i1:i2, e(il1:1i2),
if (c) then e, let v = el in e2, sum(<k,v> in el) e2
where k, v are variables, e, e1, e2, e3 are dictionary expressions, i, i1, i2 are index expression, i.e. of
type int, and c is a Boolean expression. Each of the SDQLite expressions above returns a dictionary,
which may, in particular, be a scalar. We also include standard primitive operations over scalars of
type real or integer, like division /, modulo %, exponentiation exp(...) comparison el<e2, etc.
Semantics We briefly describe the semantics of SDQLite. e1+e2 and e1xe2 compute the sum and
product of dictionaries; e(i) applies the dictionary e to the key i.
The range expression i1:12 returns the dictionary consisting of the sum of {i -> i}, forall i in
the range i1,...,i2-1,i.e:
i1:12 = { i1 => i1, i1+1 => i1+1, ..., i2-1 -> i2-1 }
The sub-array expression e(i1:i2) is used for representing segmented arrays and returns the
following dictionary:
e(i1:12) = { i1->e(i1),i1+1->e(i1+1),...,i2-1->e(i2-1) }
The conditional if (c) then e returns e if ¢ is true, and returns zero (@ or {} depending on the
type of e) otherwise, and the let construct introduces a temporary variable v, with value e1, which
may be used in e2.
We explain the summation. Assume the value of e1 is:
el ={ k1l -=>v1, ..., kn => vn }
Then the value of sum(<k,v> in el) e2is:
e2[k1/k,v1/v] + e2[k2/k,v2/v] + ... + e2[kn/k,vn/v]
where e2[k_i/k,v_i/v] represents the result of substituting in e2 the variables k, v with the values
k_iand v_i.
Syntactic Sugar We also included some convenient syntactic sugar extensions in SDQLite,
described in Table 1.

Example 3.1. For a simple illustration, the following SDQLite query computes the product of
two matrices A and B:
sum(<(i,j),a> in A, <(j,k),b> in B) { (i,k) -> axb }
It is internally desugared to:
sum(<i,rowA> in A) sum(<j1,a> in rowA)
sum(<j2,rowB> in B) sum(<k,b> in rowB)
if (j1==j2) { i -> { k -> a*b }}
Notice the power of viewing dictionaries as semirings. The semantics of query above consists of
emitting n® singleton dictionaries of the form {i->{k-axb}}, which are “added” up and result in

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:9

Construct Desugars to Notes
e(el,e2) e(el)(e2) curry
{ (el, e2) > e } {el >{e2->e}} curry
sum(<(k1,k2),v> in el1) | sum(<k1,w> in el) uncurry
e2 sum(<k2,v> in w) e2
let vi=el
let vi=el, v2=e2 et vi=e
. in let v2=e2
in
in ...
<k1l,vi> i 1
sum(<k1,v1> in el, sum(<kt, v 1r'1 el
. sum(<k2,v2> in e2)
<k2,v2> in e2) e3
e3
. sum(<k1,v1> in el) k is used
sum(<k,v1> in e1l, R ..
<k,v2> in e2) e3 sum(<k2,v2> in e2) twice in
Vv e2) e .
if (k1 == k2) then e3 | LHS

Table 1. Syntatic sugar extensions in SDQLite.

only n? pairs i,k. “Addition” acts like a group-by, in other words we have:

{i -> {k -> ailxblk}} + {i->{k->ai2*xb2k}} + ...
= {i > {k -> ail*b1k} + {k->ai2xb2k} + ... }
= {i -> {k -> ailxblk+ai2#b2k+...}}
Alternatively, if the dimensions of the two matrices are known to be m X n and n X p, then matrix
multiplication can be written as:
sum(<i,_> in @:m, <j,_> in 0:n, <k,_> in 0:p)
{ (1,k) => A(1,3)*B(j,k) }

Discussion SDQLite is a declarative language, in that it does not specify the order of operations.
This similar to, say, SQL, where the order of the tables in the FROM, or the order of the predicates in
the WHERE clause do not specify that the joins, or the evaluation of predicates, need to be executed
in that order. In fact, SDQLite is basically UCQ, where 3, A, V are replaced with sum, *, +, as we
explained in Sec. 2; UCQ is generally accepted to be a declarative language, and SDQLite is similarly
declarative. While SDQLite borrows several ideas from SDQL [42], it differs in some important
ways, as follows. SDQLite adds subarray expressions (needed in Sec. 4), the merge operator (needed
in Sec. 5.6), and has several syntactic sugar extensions, shown in Table 1. We restricted the keys to
be numbers only (while SDQL allows records and dictionaries), which is necessary to enable the
optimization rules in Sec. 5.2. Finally, we defined cardinality and cost estimation rules and extended
optimization rules, as described in Sec. 5.

4 TENSOR STORAGE MAPPINGS

We have described in the previous section the declarative tensor language SDQLite, which can
be used to write tensor programs in a notation close to a mathematical notation; as we discussed,
we use tensors and dictionaries interchangeably in this paper. So far, all tensors manipulated in
SDQLite have only a logical data model, and we have not defined yet a physical model. In this
section we extend SDQLite with a physical data model, and show how we use it to define Tensor
Storage Mappings (TSM), from a physical to a logical representation.

The physical data model in SDQLite consists of four data types: (a) scalar values, which can be
of type real or int, (b) arrays of type int or real, and (c) hash-maps that map tuples of integers to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:10 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

int or real, or (d) tries, which are trees of hash-maps. The data admin (Fig. 2) defines named data
values using the following syntax:

CREATE [real | int] SCALAR U;

CREATE [real | int] ARRAY A(n);

CREATE [real | int] HASHMAP B(n1, n2, ..., nd);
CREATE [real | int] TRIE C(n1)(n2)...(nd);
Here U, A, B, C are names, i.e. identifiers, n, n1, ..., nd are expressions of type int. An array is a

continuous memory array of fixed size n. Both a hash-map and a trie logically represent a dictionary
[n1) X -+ X [ng) = R (or --- — Z), but differ at the physical level. The hash-map maps a key
(i1,...,iq) to a real or integer value, while a trie is a hash map that maps a key i; to another
hash-map of type [nz) X --- X [ng) — R. All symbols U, A, B are global symbols, in contrast to
symbols introduced by the let binding, which are local.

Next, the data administrator writes a Tensor Storage Mapping (TSM) for each logical tensor,
using the following statement:

CREATE TENSOR T AS ...;
where the ellipsis represent a SDQLite expressions that uses the named data values defined earlier,
and returns a logical tensor (dictionary) T.

By combining a simple physical data model with a powerful tensor language, SDQLite allows
the data administrator to define sophisticated storage mappings, which helps the administrator
exploit the particular characteristics of her tensors.

We illustrate with several TSM examples, showing various formats for representing a matrix C.

Example 4.1. The following TSM defines a dense, row-major representation of C:
CREATE int SCALAR M, N; CREATE ARRAY V(MxN);
CREATE TENSOR C AS

sum (<i,_> in 0:M, <j,_> in 0:N) { (i,3j) -> V(i*N+j) 3};

Example 4.2. Suppose we want to store C using the DCSR format (sparse-sparse) described in
Section 2. Then we need to define the following physical data types, and TSM:
CREATE int ARRAY C_posi(2);
CREATE int ARRAY C_idx1(C_pos1(1));
CREATE int ARRAY C_pos2(C_pos1(1)+1);
CREATE int ARRAY C_idx2(C_pos2(C_pos1(1)));
CREATE real ARRAY C_val(C_pos2(C_pos1(1)));
CREATE TENSOR C AS
sum (<i_pos, i> in C_idx1)
let j_start = C_pos2(i_pos),
j_end = C_pos2(i_pos+1)
in sum(<j_pos, j> in C_idx2(j_start:j_end))
{ (1,3 > Coval(j_pos)}
We then materialize the physical data types as follows:
e C_pos1 has size 2 and values C_pos1(0)=0, C_pos1(1)= the number of non-empty rows in the
matrix C.
e C_idx1 contains all indexes i of the nonempty rows in C, in increasing order.
e C_pos?2 defines the segments in the arrays C_idx2 and C_val; there is one segment for each
non-empty row in the matrix, hence the size of C_pos?2 is the number of non-empty rows plus
1. Its last position defines the sizes of C_idx2 and C_val.
e Finally, C_idx2 and C_val contain the segmented arrays that represent the non-empty rows
of C as sparse vectors.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:11

The TENSOR expression defines how to build C from these arrays.
For a similar example, Fig. 1 (c) defines the Tensor Storage Mapping from the CSR representation
Fig. 1 (b) to the matrix C.

Example 4.3. We briefly illustrate HASHMAP and TRIE. The following represents C using a HASHMAP:

CREATE real HASHMAP H(M,N);

CREATE TENSOR C AS sum(<(i,j),v> in H) {(i,j) -> v};
This is commonly known as the Dictionary of Keys (DOK) format in SciPy [15].

Alternatively, we could store C in a TRIE of depth 2:

CREATE real TRIE T(M)(N);

CREATE TENSOR C AS

sum (<i,row> in T, <j,v> in row) { (i,j) > v };

The difference is that now the key of the hash-map T is a single index i, and the value is another
hash-map that maps the columns j to values.

We end this section by emphasizing that storage mappings defined in a declarative language like
SDQLite are significantly more expressive than fixed, predefined storage formats. For example, it
is easy to represent in SDQLite a storage mapping for a dense lower-triangular matrix A, a band
matrix B (where B(i, j)<>0 only when abs(i-j)<=1), or the Z-order space-filling curve C, although
SDQLite was not explicitly designed for these types of storages:

CREATE real ARRAY A_val(Nx(N+1)/2);

CREATE TENSOR A AS // lower triangular

sum(<i,_> in 0:N, <j,_> in 0:(i+1))
{(i,3) -> A_val(ix(i-1)/2+i)}

CREATE real ARRAY B_val(3*N-2);
CREATE TENSOR B AS // band matrix
sum(<p,_> in 0:N)
{ (p,p) —> B_val(3*p)} +
if (p<N)
then { (p,p+1) -> B_val(3*p+1),
(p+1,p) -> B_val(3*p+2) }

CREATE real ARRAY C_val(Nx*N); // N is power of 2
CREATE TENSOR C AS // Z-order curve
sum (<d,v> in C_val)
let i = even_bits(d), // even bits of d
j = odd_bits(d) // odd bits of d
in { (1,5) > v}

5 OPTIMIZATIONS

We have seen that tensor processing in STOREL consists of two separate tasks: writing the Tensor
Program (TP), and writing the Tensor Storage Mappings (TSM), see Fig. 2. The TP simply refers
to logical tensor names, like A or B or C, while the TSM describes how these tensors are stored in
physical arrays, hash-maps, or tries. Both programs are expressed at a logical level, in the same
declarative language SDQLite. In this section we describe how STOREL combines these two into a
single, optimized physical plan, which can be directly executed by an engine; we currently use Julia
as our physical execution engine. In this section we will refer to any logical SDQLite query as a

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:12 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

Associativity/Commutativity Rules: Algebraic Simplifications:
Al: el % (e2 x e3) — (el x e2) * e3 L1: e+0 ~ e
A2: { el >e2 xe3} o {el >e2} xe3 L2: ex0 ~ 0
A3: { el >e2 *xe3} — e2x{el >e3} L3: ex1 ~ e
A4: if(el) then e2 x e3 & €2 % if(el) then e3 L4: -o ~ 0
Cl: el + e2 o e + el L5: e-0 ~ e
C2: el ==¢e2 o e2 == ¢l L6: e-e ~ 0

Distributivity (Factorization) Rules:

D1: el x e2 + el % e3 — el x (e2 + e3)

D2: sum(<k,v> in el) e2 * e3 if k,vgFV(e2) < e2 * (&sum(<k,v> in el) e3)

D3: sum(<k,v> in el) e2 * e3 if k,v¢FV(e3) <« (sum(<k,v> &in el) e2) * e3

D4: sum(<k,v> in el1) { e2 -> e3 } if k,v¢ FV(e2) < { e2 -> sum(<k,v> in el) e3 }

Fusion Rules:

sum(<k,v> in el) let k = e2 in
F1: if(k == e2) then if k,vgFV(e2) < let v =el(k) in
e3 e3
sum(<k1,v1> in sum(<k2,v2> in el)
F2: (sum(<k2,v2> in el) {k2 -> e2})) — let k1=k2, vi1=e2 in
e3 e3
sum(<k1,v1> in sum(<k2,v2> in el)
F3: (sum(<k2,v2> in el1) {@unique e2 -> e3})) — let k1=e2, vi1=e3 in
e4 e4
sum(<k1,v1> in el) merge(<k1,k2,v1> in <el,e2>)
F4: sum(<k2,v2> in e2) if k1,v1 ¢ FV(e2) & let v2 = v1 in
if(vi==v2) then e3 e3
Dictionary Rules:

T1: sum(<k,v> ine) { k > v } e

T2: e2(e1) + e3(el) (e2 + e3)(el)

T3: {el >e2 3} +{el >e3} { el >e2+e3}

TITT|T

T4: (el:e2)(e3) if(e3 >= el && e3 < e2)

then el + e3

T5: sum(<k,v> in el:e2) e3 — sum(<k,_> in el:e2)
let v=k+el in e3

Fig. 3. Selected transformation rules of the 44 rules that form the basis of our cost-based optimizer.

logical plan. Then, we describe some refinements of the logical operators into physical operators: a
query expression using the physical operators will be called physical plan.

5.1 The Naive Logical Plan

The first step of the optimizer consists of composing the Tensor Program with the Tensor Storage
Mappings, to obtain the Naive Logical Plan, obtained by simply appending the TSM and the TP.
More precisely, if the TP operates over tensors A, B, ..., and each is defined by one TSM, then the
naive logical plan looks like this:
let A = TSM-for-A
B = TSM-for-B

in TP

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:13

The input to the Naive Logical Plan consists of the physical arrays, hash maps, and tries mentioned
in the TSMs. Its output is the final answer of the TP.

Evaluating the naive plan directly is very inefficient, because it involves materializing all tensors
in some naive representation, which is what we wanted to avoid in the first place. Instead, the
system performs a sequence of logical rewritings in order to optimize the program.

5.2 Logical Rewritings

Our optimizer is a cost-based optimizer that applies a set of rules to find expressions equivalent
to the given query, then uses a cost model to select the cheapest expression. It uses Egg [54] for
simplifying a SDQLite expression using the rules. Our rule base currently consists of 44 rules of
the form:

Patternl ~» Pattern2
When we assert rules in both directions then we write:

Pattern1 ¢ Pattern2

We show a few selected rules in Fig. 3. We start by showing some simple associativity and

commutativity rules, followed by algebraic simplifications rules, which are unidirectional. The
factorization rules allow us to move constant factors in or out of the summation; as we explain in
Sec. 6, this leads to some significant performance improvements. The next group contains loop
fusion rules, which are known to be of key importance for linear algebra or tensor algebra [10].
Finally, the dictionary rules capture the way that summation interacts with dictionaries.

Example 5.1. For a simple illustration, we show how to convert an iteration into a lookup.
Consider the following inner product of two vectors:

sum (<i,a> in A, <i,b> in B) { () -> a*b }
After desugaring the query becomes:

sum (<i,a> in A) sum (<j,b> in B) if (i==j) { () -> a*B }
At this point the optimizer can apply fusion rule F1 and rewrite the query to:

sum (<i,a> in A) let k=j, v=b(k) in axv
When A is sparse and B is stored as a hash map, then this expression is much more efficient, because
it iterates only over the non-zero elements of A, and uses a lookup to retrieve the values of B.

Unique Constraint To increase the power of our optimizer, we have extended SDQLite with a
constraint called @unique, which may be specified in a dictionary construction:
{ @Qunique k -=> e }
The semantics of @unique is that, in a sum, all keys are asserted to be distinct. Fusion rule F3 requires
the @unique constraint, and allows two nested loops to be fused into a single loop. The role of
@unique is only to inform the optimizer: it has no effect at runtime.
We explain now the rule F3. Consider the following subexpression of the LHS of the rule:
sum(<k2,v2> in el1) {@unique e2 -> e3}
Suppose that e is a dictionary with n elements. Then the meaning of the sum is the summation of n
terms:
{ @Qunique e2_1 -> e3_1 } + { @unique e2_2 -> e3_2 } + ...
and the @unique constraints guarantees that their keys e2_1, e2_2, e2_3, ... are distinct. Then, the
outer sum will bind the variables k1,v1 to exactly one pair e2_i,e3_i. Rule F3 fuses the two loops
into a single loop, and uses a let construct to bind k1,v1 to e2,e3.
In some cases the @unique constraint can be inferred from the query, but in most cases it is data
dependent, and must be asserted by data administrator when defining the TSM. For example, the
TSM for the CSR representation of the tensor C in Fig. 1 (c) should be written as follows:

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:14 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

CREATE TENSOR C AS sum(<row,_> in 0:C_len1)
{ @Qunique row ->
sum(<off,col> in C_idx2(C_pos2(row):C_pos2(row+1)))
{ @unique col -> C_val(off) }

3
The expression sum(... <(k,j), C_v> in C ...) ... in Fig. 1 (a) desugars into two nested iter-
ations, one for k and one for j, and the optimizer can now use rule F3 twice to fuse these two
iteration in TP with the two iterations in the TSM, leading to the much more efficient program in
Fig. 1 (d).

5.3 Rule Engine: Egg

The rule engine takes as input the naive tensor plan and the collection of rules, and repeatedly
applies the rules in order to obtain all equivalent query plans. This task is non-trivial: the rule engine
needs to memorize all generated plans and check for duplicates, and also needs to avoid running
into an infinite loop. Every cost-based query optimizer that we are aware of implements its own
rule engine, which does pattern matching, duplicate detection, and memoization of expressions.

Instead of implementing our own expression manager, we adopt a state-of-the-art rewriting
system called an Equality Saturation (EQSAT) system [49]. Specifically, we used Egg [54]. An
EQSAT system has access to a collection of rewrite rules, and receives as input an expression e. It
then constructs the plan space by maintaining a data structure, called an e-graph, that compactly
represents a set of expressions, together with an equivalence relation over this set that can be
derived from the rules. The e-graph consists of a set of e-classes, each e-class consists of a set of
e-nodes, and each e-node is a function symbol with e-classes as children.

For example, Fig. 4 shows the compact representation of all expressions equivalent toa * {k ->
b+c}. The top e-class has 3 operators. The first is -> and has children k and the e-class for a * (b+c),
which corresponds to the associativity rule A3. The second is a x and its children are a and the
e-class for { k -=> b + ¢ 3}, representing the original input. The third is another *, with { k -> a }
and b+c as its children, and corresponds to the associativity rule A2. This e-graph corresponds to
the following equivalent expressions:

{k>ax*x(+tc) }=ax {k->btc }={k->a} * (b+tc)

This e-graph is obtained by only applying the associativity rules and contains 11 nodes and 9
e-classes. By applying the rest of transformation rules (e.g., distributivity), we obtain a more
complicated e-graph with 28 nodes and 15 classes.

The e-graph (i.e., plan space) is iteratively expanded by applying all the provided rewrite rules.
This process is continued until either the e-graph is saturated (i.e., applying rewrite rules does not
change the e-graph) or a threshold (e.g., number of iterations or timeout) is reached. Finally, Egg
performs the search for the best plan through the extraction procedure by a user-provided cost
model.

5.4 Managing Free Variables

A major challenge for our cost-based optimizer is that, unlike the traditional Cascades based
framework [19], our rules operate on a calculus instead of an algebra. This creates significant
challenges for managing the free variables in the expressions.
For example, consider a let-rule like this:
let x = el ine2 ~» e2[el/x]
There are two important challenges here. First, this rule must match with its a-equivalent terms, i.e.,
terms that become equivalent by substituting their variable names such as let x = el in x x 2and

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:15

Fig. 4. The e-graphofa * { k -=> b + ¢ }.

let y = el in y * 2. Keeping track of a-equivalence requires a sophisticated matching strategy
that imposes scalability challenges for equality saturation. Second, e2[e1/x], which represents the
result of substituting x by e1 in e2, is not a valid pattern in Egg. Egg uses a compact representation of
equivalent expressions, which makes it impossible to express substitution, since different equivalent
representations of e2 may or may not have x as a free variable, or x may mean different things.
We use De Bruijn indexing [17] to provide a nameless representation for variables. This way,
the term let x = el in x * 2isrepresented as let el in %0 x 2, where %0 refers to the variable
introduced by the closest let-binding. It was shown [29] that De Bruijn indexing can solve the
scalability of equality saturation by avoiding the e-graph to be overloaded with a-equivalent terms.

5.5 Cardinality Estimation

After applying all rules, STOREL uses a cardinality and cost estimator to select the best rewriting.
We adopt ideas from [28] to represent cardinalities of nested dictionaries. A cardinality expression
is given by the following grammar, where s is a symbol that means that the quantity is a scalar (e.g.
has size 1), n is a real number, and #m represents a scalar expression that stores the size m:

c == s|n[c]|#m

For example, if A is a dictionary of type [n;) — [n;) — [n3) — R, then we may estimate its
cardinality as 100[10[50(s]]], which means: for an estimated 100 indices i, A(i) is non-zero; for
each such i, for an estimated 10 j’s, A(i) (j) is non-zero, and for each of these, for an estimated 50
k’s, A(i) (j) (k) is non-zero.

We use the rules in Fig. 5 to estimate the cardinality of a SDQLite expression. For example,
consider the cardinality of the expressions:

sum (<i,v> in A) if (v==25) then {i -> ix3}

and assume that the cardinality of A is 1000[s]. Further assume that the selectivity of the predicate
is sel(v==25) = 0.02. Then:

card{i -> ix3}) =1[s]
card(if (v==25) then {i -> i*3}) =0.02* 1[s] = 0.02[s]
card(sum(<i,v> in A) if ...) = 1000 % 0.02[s] = 20(s]

For the cardinality of input tensors (e.g., card(A)) and the selectivity estimates (e.g., sel(e1)),
STOREL currently relies on the information provided by DBAs or uses constants (e.g., 0.1 for

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:16 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

elem(e) = ¢ if card(e) = n|c]
size(e) = n if card(e) = n[c]
card(e1(e2)) = elem(el)
card({ el -> e2 }) = 1[card(e2)]
card(0:e1) = m[s] if card(el1) = #m
card(let x = el in e2) = card(e2)
card(if(e1) then e2) = S ?f card(e2) = s
sel(e1) - n[c] if card(e2) = n[c]
s if card(e2) = s

d k,v> in el) e2) =
card(sun(<k,v> in e1) e2) size(e1) - n[c] if card(e2) = n[c]

Fig. 5. Cardinality estimation rules.

cost(e1(e2)) = cost(el) + cost(e2) +Yiookup(e1)

cost el -> e2 })
cost{@dense el -> e2 })
cost{@hash el -> e2 })
)

)

)=

(00)
cost(e1) + cost(e2) +Yarr—insert (€1, €2)
cost(e1) + cost(e2) +Ynash-insert(e1, €2)
Ymater(e1)-cost(e1) + cost(e2)
cost(if(e1) then e2)=cost(el)+sel(e1)-cost(e2)
cost(sum(<k,v> in el) e2)=cost(e1)+yizer(e1)-size(el)-cost(e2)
cost(merge (<k1,k2,v> in <el,e2>) e3)=
cost(e1)+cost(e2)+(Yirer(e1)-size(e1) + yiter(e2)-size(e2))- cost(e3)

Fig. 6. Cost estimation rules.

cost(let x = el in e2

selectivity estimates). We leave the usage of histograms and more advanced cardinality estimation
techniques for the future.

5.6 Physical Plans

So far all expressions in SDQLite are logical plans. We describe here how we convert SDQLite
expressions into physical plans, which we execute on our runtime system, Julia. Simple scalar
operators like a+b or a*b get converted immediately into physical operations. Julia also supports
plus and times operators on dictionaries (tensors); if that were not the case, then we can force the
optimizer to write such operations explicitly as loops, e.g. we rewrite the expression a*b, where a
is a scalar and b is a dictionary, into:

sum (<i,vb> in b) { i -> a*vb }
and assign a cost of oo to + and * operators applied to dictionaries.

The physical operator associated to sum (<k,v> in el) e2is a for loop iterating over the dictio-
nary el. To make this loop concrete, STOREL needs to know how the dictionary e1 is represented.
In our system, there are two choices: as a dense vector, or as a hash-map. STOREL knows the type
of storage for the arrays, hash maps, and tries of the physical storage, since they were explicitly
declared in the TSM. For all other constructed dictionaries, STOREL needs to choose whether
to construct a dense vector, or a hash map. We do this by adding the following two rules to the

collection of rules:
{k => e} ~ { @dense k -> e}
{k -> e} ~ { @hash k -> e}
In the first rule {k -> e} becomes an entry of a dense array, in the second rule it becomes an
entry of a hash-map. We assign a cost of oo to any expression that still contains a logical dictionary
{k -> e}, thus forcing the optimizer to choose either a dense array or a hash-map representation.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:17

Tensor Dimensions Density # non-zeros
cant 62K x 62K 1x1073 2.03M
consph 83K x 83K 9x107* 3.05M
cop20k_A 121K X 121K 2x 1074 1.36M
pdb1HYS 36K x 36K 3x1073 2.19M
rmal0 46K x 46K 1x 1073 2.37M
webbase 1M x 1M 3%x107° 3.11M
NIPS 24K x 2.8K x 14K 3 x107° 31.31M
NELL 12K x 92K x 29K 2 x 107 76.88M
Facebook 1.6K X 64K x 64K 1x 1077 0.74 M
Enron 6K x 57K x 244K 3 x 107 3.10 M

Table 2. Real-world matrices and rank-3 tensors used in the experiments.
Finally, we add one additional physical operator to SDQLite:
merge(<k1,k2,v> in <el,e2>) e3
Both e1 and e2 must be dictionaries of real values, in other words they must be vectors, and, in
that case, the semantics of merge is:
sum(<k1,v> in el, <k2,u> in e2) (if (v==u) then e3)
This is captured by the Fusion Rule F4 in Fig. 3.

5.7 Cost Estimate

Finally, the cost of a physical plan is estimated using the rules shown in Fig.6. These inference rules
include parameters that are dependent on the type of the underlying collection (e.g., yio0kup and
Yiter for a dense-array is smaller than the one for a hash-map). We notice that a logical plan for
which we have not chosen between a dense array and hash map will have cost oo.

6 EXPERIMENTS

In this section we present an empirical evaluation of STOREL, by running on several common
tensor kernels, with a variety of real and synthetic matrices and tensors, and comparing it with six
other systems. We studied the following questions:

(1) How much do tensor programs over flexible storage benefit from cost-based optimization?

(2) How do different choices of storage formats for different data sparsities affect the run-time
performance, and does STOREL take best advantage of the given storage format?

(3) How much do specific sets of rewrite rules contribute to the optimization? In particular we
would like to understand the contribution of loop fusion and factorization.

(4) How complex is the optimization task? How many applications of rules are needed to optimize
Tensor Programs?

(5) How practical is the optimization process? Does the run time improvement outweight the
optimization overhead?

In addition, we discuss our experience with using Egg as our rule rewrite system at the end of
the section.
Experimental Setup. We conducted our experiments on an AWS t2.2xlarge instance with 8 vCPUs,
32 GBs of RAM, and Ubuntu 22.04 LTS. Our system uses Julia 1.7.3 [8] for executing the generated
code. The other systems we benchmark are Taco [27], NumPy 1.22.3 [22], SciPy 1.8.1 [52], PyTorch
1.11.0, TensorFlow 2.9.1, and DuckDB 0.3.2 [37]. We use G++ 11.2.0 to compile the generated C
code in Taco, and use Python 3.10.4 for NumPy, SciPy, PyTorch, and TensorFlow. In DuckDB, all
tensors are encoded as relations, which are comparable to the coordinate (COO) format in tensor
systems, and we provide all relevant indices. In addition, we use an in-memory database and the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:18 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

Program [[Sec. 6.1 Dimension| Sec. 6.2 Dimension
MMM |Q(i, j) = Sk AGi k) - B(k, j) B: _x 250 A:10% x 103 B:_ x 10°
SMMM [Q() = 3k Al k) - B(k, j) B: %250 A:10° X 10° B:_ x 10°
BATAX [Q(j) = Xix B-AG, j) - A(i, k) - X (k) X: _ A:10° X 10° X
TIM |0G, j.k) = %, A, j, 1) - B(k,]) B:_x25 -
MTTKRP|Q(i, j) = X5 AG, k1) - B(k, j) - C(L, j) B:_x25 —

Program ISTOREL/ Tacol SciPy l NumPy leTorch TensorFlow DuckDB

MMM CSR, CSR CSR, CSR |Dense, Dense | CSR, Dense | COO, Dense COO, COO
> MMM CSC, CSR CSR, CSR |Dense, Dense |CSR, Dense | COO, Dense COO, COO
BATAX CSR, Dense |CSR, Dense |Dense, Dense | CSR, Dense |COO, Dense COO, COO
TTM CSF, CSC/CSR - — — — COO, COO
MTTKRP| CSF, CSR, CSC — — — — COOQ, CO0O, COO

Table 3. Tensor Programs, the dimensions used for experiments in Sec. 6.1 and 6.2, and the best storage
formats for each system. SciPy, NumPy, PyTorch, and TensorFlow do not support higher-order sparse tensors.
DuckDB encodes the tensors as relations, which are comparable to the coordinate (COO) format in tensor
systems. The missing dimensions, denoted by _ or not included, can be inferred from the context (e.g., for
Sec. 6.1 the dimension of A is specified in Table 2 and the number of rows of B is the same as the number of
columns of A).

Python API to interact with DuckDB. Python-based frameworks do not support sparse tensors
with more than two dimensions, so we only report the times for kernels that only contain matrices
and vectors. In addition, NumPy only supports dense storage formats.

All experiments are run on one CPU core, and we report the average execution time of five runs.

In all cases we measure only the execution time (which includes the assembly time for Taco), and
we exclude from the run time the creation and indexing of storage format, loading time, compilation
time, and optimization times respectively, for the systems that have these components.
Datasets. We use both real world and synthetic datasets. For the former, we collected six sparse
matrices from the SuiteSparse Matrix Collection [16], and four rank-3 tensors from the FROSTT
Tensor Collection [45]. Table 2 presents a summary of these datasets. For synthetic data, we generate
random matrices and vectors with specified sparsity and dimensions.
Workloads. Table 3 presents the tensor programs we consider in this evaluation. MMM stands for
matrix-matrix multiplication; XMMM computes the summation over a matrix-matrix multiplication;
BATAX was previously studied in [34]; TTM computes the tensor times matrix multiplication; and
MTTKRP stands for matricized tensor times Khatri-Rao product. Both TTM and MTTKRP have
been studied extensively in papers on Taco (see e.g., [14, 27]).

6.1 Benchmarking Tensor Programs

Here we addressed the first question: how much do tensor programs over flexible storage benefit
from the application of rewrite rules? We present the benchmark of STOREL, Taco, SciPy, NumPy,
PyTorch, TensorFlow, and DuckDB on all considered tensor programs.
Storage Formats. Table 3 presents the best storage formats we found for each considered tensor
program and system. For each experiment, the A matrix or tensor in the respective kernel is defined
by one of the datasets in Table 2. All other matrices are synthetically generated with sparsity 27°.
DuckDB and NumPy only support a single storage format, i.e., relations and respectively dense
matrices/vectors. For that reason, we only consider them for the kernels that operate on matrices

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:19

MMM MMM
I STOREL W PyTorch
™y I I % 104 | mmm TACO TensorFlow I
£ 104 £ . NumPy W DuckDB
4] ()
£ > > I I I lrl 2 £
2100 B ofe fcb Lol iBEL S
S = = = = S
4 5 s s |5 o
5
102 C
\Y > S Q
\e)

o~ 3N e
& Co(\sQ I\ o “(\a\ e
o®
BATAX (Hand Optimized) 107 BATAX (Naive)
. 104 - I I _
E £, 1 |
21 2’ I
= g = g g g
c 102 - < | : i n I ;
2 210
101 H H 5

o o N A < B x s N A0 e
@ P NN 2 oo o P NN @ NG
o 5 o «) COQ’L o « e
MTTKRP 105 ™
104 | W STOREL W= DuckDB BN STOREL (CSF,CSC) Wmm TACO (CSF,CSR)
5 = TACO @ BEN STOREL (CSFICSR) m=m Du¢kDB B
£ E10* E— |
o 103 o
£ £
- -
3
el B 10
210 E
102
S " N o S \ N)
N W& e‘o"o g\‘o N\ V\("\’ e“oo 6\(0
¢ <o

Fig. 7. End-to-end run time (in milliseconds) for STOREL, Taco, SciPy, NumPy, PyTorch, TensorFlow, and
DuckDB for different kernels and real-world matrices and tensors.

and vectors. For SciPy and PyTorch we use the CSR format for all matrices, because our experiments
with CSC matrices were consistently slower. For TTM, we report the performance for two storage
formats in STOREL. The first uses a CSF tensor and a CSC matrix, which is the optimal storage
specification for this kernel. Taco, however, fails to compile the kernel with the CSC matrix, which
we reported to the Taco developers. Thus, we also report the performance for a CSF tensor and a
CSR matrix for a direct comparison of Taco and STOREL. Finally, PyTorch and TensorFlow have a
limited support for sparse matrix operations®. Thus, we include the results for a hand-optimized
plan for the BATAX kernel.
Results. Figure 7 presents our run-time benchmarks for the above workloads. STOREL is always
at least competitive with Taco, and achieves significant performance improvements for kernels that
benefit from our factorization rewrite rules. This is the case for the SMMM, BATAX, and MTTKRP
kernels. For instance, STOREL can compute BATAX up to 16.4X faster than Taco for webbase.
Thus, our rewrite rules can lead to significant performance improvements for a variety of tensor
programs.

The MMM benchmark is a simple matrix multiplication and offers almost no opportunity for
optimization, but instead is a good benchmark for comparing the physical runtimes of the systems.
SciPy has the best run time of all, while those of STOREL and Taco are comparable. SciPy has a

3PyTorch and TensorFlow only support a sparse-dense matrix multiplication.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:20 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

BATAX MMM
106 106
€100 g0
[d)
£ £ 102
g10? S
o o
10°
271 279 277 275 273 o7l 1 271t 279 277 275 273 o7l 1
Density Density
104
E 102
[
£ 100 -
S —e— STOREL (CSR) ---- TACO (Dense)
< 10-2 —e— STOREL (Dense) SciPy
--=- TACO (CSR) - NumPy
271t 279 277 275 273 27l 1
Density

Fig. 8. Runtime of STOREL, Taco, SciPy, and NumPy for varying sparsity using sparse and dense storage
formats.

suite of highly optimized low-level primitives, like sparse-sparse matrix multiplication. PyTorch
and TensorFlow, however, support sparse-dense matrix multiplication, and thus show a worse
performance for MMM. These frameworks require the composition of such primitives with costly
materialization of intermediate results for the other benchmarks. We observe that STOREL can
be up to two orders of magnitude faster than them when high-level optimizations are possible.
However, for hand-optimized plans (e.g., BATAX) the highly optimized primitives show better
performance than the Julia-based runtime of STOREL. NumPy requires all inputs to be dense, and
runs out of memory for all but four experiments, where STOREL outperforms it by two orders of
magnitude. This exemplifies the importance of flexible storage.

DuckDB uses quite different physical operators, and a direct comparison of the wall clock time
is not very informative. We observe, however, that DuckDB is remarkably efficient for the kernels
that do not offer opportunities for cost-based optimization. For instance, DuckDB has excellent
performance for the TTM kernel, which translates into a simple aggregate-join query. In contrast,
DuckDB is significantly slower for the XMMM, BATAX and MTTKRP kernels. For XMMM, this is
because DuckDB does not push the summation past the join. For BATAX and MTTKRP kernels,
DuckDB is not able to factorize the computation, and uses binary join plans which construct costly
intermediate results.

6.2 Effect of the Storage Mapping

Next, we turn our attention to the second question: do different choices of storage format for
different data sparsities affect the run-time performance, and does STOREL take best advantage of
the given storage format?

We consider the BATAX, MMM, and MMM kernels and present the run time for STOREL, Taco,
NumPy, and SciPy for different sparsity factors in the input matrices. For STOREL and Taco, we
further consider both the sparse storage format as in Sec. 6.1, as well as the fully dense storage
format. We only use synthetic datasets for this benchmark. For XMMM and MMM, we vary the
sparsity in both matrices, and we use the same sparsity factor for both. For BATAX, we consider
the naive plan and only the matrix varies the sparsity, while the vector remains dense.

The results are presented in Figure 8. We observe that STOREL adapts to the given storage
format: the sparse variant is more efficient in most cases, at high densities the dense format

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:21

becomes more efficient, as expected. Note that for XMMM and BATAX STOREL outperforms all
other systems independent of the sparsity, due to the factorization rules. However, for MMM
the low-level primitives of NumPy and SciPy outperform the nested loops generated by STOREL
and Taco. As an example, for higher densities NumPy outperforms all competitors, thanks to the
heavily-tuned low-level primitive provided by BLAS. We leave the synthesis of such primitives
(e.g., BLAS routines), instead of the nested loops, for future.

6.3 Effect of Rewrite Rules

Here we address the third question: study the contribution of two classes of rewrite rules, loop
fusion and factorization, on the overall optimization. For that purpose we use the BATAX kernel as
an example. The results are presented in Figure 9 (left).

We first consider the case where the input matrix is a nested hash-map (trie), in which case
we only benefit from the factorization rules. The following expression presents the unoptimized
program, which we use as the baseline (the green line in Figure 9 (left)):

sum(<i, Ai> in A)
sum(<j, Aij> in Ai)
sum(<k, Aik> in Ai)
{ j -> beta x Aij * Aik * x(k) }

This kernel has two factorization opportunities. The first rewriting hoists the construction of the
dictionary with key j out of the inner sum:

sum(<i, Ai> in A)

sum(<j, Aij> in Ai)
{ j -> sum(<k, Aik> in Ai)
beta * Aij x Aik * x(k) }
The rewritten kernel, represented by the blue line, is between one to two orders of magnitude faster
than the non-optimized kernel, depending on the sparsity.
The second factorization opportunity hoists the inner sum over k outside the sum over j:
sum(<i, Ai> in A)
let t = (sum(<k, Aik> in Ai) Aik * x(k))
in (sum(<j, Aij> in Ai) { j -> beta * Aij * t})
This optimization can further improve the run time by an order of magnitude. For very sparse data,
however, it is more beneficial to avoid hoisting the loop outside. This is because the inner sum may
not be executed at all for many i values.

We further consider the case where the matrix is stored with a CSR format, in which case there
is a fusion opportunity. The two dashed lines in Figure 9 (left) represent the run time of STOREL
with and without the fusion of the CSR matrix, while at the same time exploiting both factorization
opportunities as described above. We observe that the unfused variant comes with heavy overhead,
because the program first materialized the matrix that is defined by the storage representation
and then executes the program. This would be 2x worse than the non-optimized baseline, despite
the use of factorization. It is only with the fusion of the storage representation and the actual
program that we achieve the best performance, which is 3x faster than the optimized hash-based
implementation.

6.4 Cost and Complexity of the Rewrite-based Optimization

Finally, we address here the fourth question: what is the cost and the complexity of the cost-based
optimization? Recall that we have not included the optimization cost in our experiments so far.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:22 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

10*{ —e— Unopt., Hash Fully Fact., CSR, Unfused @ 10°
—_ —e— Part. Fact., Hash -~ Fully Fact., CSR, Fused _® E
E Fully Fact., Hash r v 104 x
= 102 € =
9} 10 B x R
€ c 103
= y &
5.5 + 102 —e— Unoptimized
& 10 "é'_ Opt. Phase 1
o 10! x- Fully Optimized
272 O o O ® 0 WA O . o®
. oY a0 QY a0 Q N Q N Q
Density ke A0 N 0 AOF bﬁqﬁ '\/63% 666’56

Dimension (N)

Fig. 9. (left) Impact of factorization and fusion rules on the BATAX kernel. The dimension of matrix A is
10% x 103. (right) The total execution time of different versions of the BATAX kernel. The dimension of matrix
Ais 10 X N.

Our rewrite rules define a huge search space, and it proved to be too large for the current version
of Egg to saturate. Our solution was to restrict the search space by splitting our optimization
pipeline into two stages. First, we apply our rewrite rules to the tensor program without taking
the storage format into account. Then, we further optimize the resulting program in conjunction
with the provided storage format. We notice that most Cascade-style optimizers also partition the
optimization into several stages, in order to reduce the search space and make the optimization
possible.

Table 4 presents the key metrics for the two optimization passes in Egg per tensor program. We
observe that, even with the separation of the optimization pipeline, Egg explores a large search space
and constructs an e-graph with tens of thousands of equality classes. As a result, the optimization
time can take up to 1.7 seconds in total, which is longer than the execution time of the kernel for
small tensors. In the next section, we investigate in more detail the trade-off between optimization
and run time.

6.5 Optimization Overhead

In order to better demonstrate the practiciality of the optimization process, we compare the run
time and optimization time with the following coarse-grained rewrites: (1) storage-independent
optimizations, and (2) optimizations that take storage into account. These two coincide with the
optimization stages reported earlier. As the tensor program, we consider the BATAX kernel because
(1) it has the longest optimization overhead, and (2) it largely benefits from the two stages of
optimization.

Figure 9 (right) shows the total execution time of the BATAX kernel, including the optimization
overhead, by varying the dimension, for which we considered a time out of five minutes. We
observe that although for smaller matrices the unoptimized program is performing better, for
larger matrices the optimization overhead is amortized by the improved run time. The 1.7 seconds
spent for the fully optimized kernel are well justified. They enable the system to scale to matrices
that are three orders of magnitude larger than those supported by the kernel with only storage-
independent optimizations. Note that, while the optimization time is high, it needs to be compared
to compilers for tensor systems, which typically take much longer. For instance, the BTO compiler
can take several minutes to find the optimal execution plan [34]. In addition, Egg has been shown to
outperform alternative approaches, such as using SMT solvers [54]. In the next section, we discuss
the implications of these results.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:23

Kernel | Time (ms) | Iters. | Nodes | Classes | Memos
445 31 47441 30810 51508

BATAX 1212 59 | 46456 8043 59010
1 6 42 25 42

ZMMM 52 22 2077 530 2698
10 18 571 135 821

MTTKRP 239 35 8414 1130 10700
10 11 910 123 1242

MMM 1708 61 33058 6479 43407
™ s o | T | [zm

Table 4. Compilation metrics reported by Egg.

6.6 Discussion

The use of the Equality Saturation System Egg was of great help for us. Egg supports the entire
functionality needed for a rule engine, it is an open source system, and it has been developed on
solid theoretical foundations [54]. Nevertheless, Egg is a research project, still under development,
and has limitations that affected our system STOREL; we discuss them here.

Performance We used Egg version 0.6.0 and its optimizations adds significant overhead (c.f.,
Table 4). A very recent version was reported recently [57], and it improves the matching significantly
by adopting a Worst Case Optimal Join [35], since pattern matching is, in essence, the same as
computing a (usually cyclic) join query. That version is not yet available.

Cost computation The biggest limitation for us is the way Egg handles the cost. Egg allows the
user to define a cost model, and uses this cost model to extract the cheapest expression from the root
e-node. However, it does not separate between the cardinality estimate and the cost, and, worse,
the cost can only be a number, while our cardinality, defined in Sec. 5, has a complex structure. For
that reason we had to use hacks to approximate our cost using what is available in Egg. We were
able to always extract the optimized plan for the given TSM, but were not able to compare in a
meaningful way plans derived from alternative storage formats, i.e. alternative TSMs. If this was
possible, the programmer could specify several alternative storage mappings for one tensor. The
system would then optimize the program separately for each of them and return the cheapest plan.

Other minor limitations The inability of Equality Saturation Systems in general, and of Egg in
particular, to handle expressions with variables is well known. In addition, a minor limitation is
that the current version of Egg does not have a DSL for the rules, instead they need to be written in
Rust. We are in contact with the Egg authors and are optimistic that Egg will continue to improve.

7 RELATED WORK

There is a vast literature on tensor and linear algebra systems in the compilers and HPC communities.
Most of them focus on dense data (e.g., [13, 34, 36, 39, 46, 47]). Similarly, the database community
studied Array DBMS [7, 48] and SQL extensions for matrices (e.g., [31, 41, 56]), which are also
primarily designed for dense data. Both lines of work are not concerned with different tensor
storage representations and thus orthogonal to this work. Packages like SciPy [52] or the MATLAB
Tensor Toolbox [6] support different sparse matrix/tensor representations, but rely on composing
hardcoded operations, which can become a severe bottleneck as shown in Sec. 6. The closest related
work from the tensor systems literature is the Taco system [14, 26, 27], as highlighted in Sec. 1.
We drew many inspirations from the database literature. At the top is the classic work on
GMAP [50], which pioneered the idea of using a declarative language for representing physical
data layout: for example, a secondary index can be described as a view obtained by projecting the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:24 Maximilian Schleich, Amir Shaikhha, & Dan Suciu

relation on the indexed attribute and the primary key. GMAP uses Local As View (LAV), while
our Tensor Storage Mappings are defined as Global As View (GAV) [21]. More recently the Hadad
system [4] has applied a similar high level principle for hybrid RA/LA analytics. Hadad uses integrity
constraints to express relationships between hybrid data sources, and uses chase to optimize a
query given those relationships. The chase applies to relational queries, over the Boolean domain,
and does not extend to queries over semirings, thus, it was not an option for our system. The
SPORES system [53] describes an optimizer for linear algebra, in the context of SystemML [10].
The key approach in SPORES is to convert every query into a normal form, which is a sum of
sum-of-products, i.e. similar to Unions of Conjunctive Queries. This is not possible in SDQLite,
which we designed specifically to cope with complex storage formats. For example see the two
quite different expressions for matrix multiplication in Example 3.1: there is no unique normal
form for that query.

Our work is also related to factorized learning, a line of work that uses database optimizations
to improve the performance of machine learning tasks [11, 25, 30, 40, 43, 44]. Factorized learning,
however, optimizes for normalized relational data; whereas we optimize for dense and sparse tensor
representations. Normalized schemas are very different from COO/CSC/CSR/CSF representations.
The SystemML optimizer [10] has demonstrated the usefulness of loop fusion, an optimization that
we capture with rule Rule F4 in Fig. 3. Our optimizer is closest in spirit to SPORES [53], which
optimizes linear algebra expressions by first converting them to relational algebra, optimizing these,
then converting back to linear algebra. The SPORES optimizer relies on the fact that the queries in
that system have a unique normal form (since they are, essentially, UCQs). Our optimization task is
harder, because queries in SDQLite do not have a unique normal form, for example, consider the
two matrix multiplication expressions in Example 3.1, none of which can be considered to be the
“normal form” of the other.

At the time of writing, TensorFlow develops a graph optimization system called Grappler [1];
it is currently restricted to dense tensors, and is heuristic-based, while our system is cost-based.
A heuristic-based optimizer could, for example, prefer some physical plan when the tensors are
dense, and another plan when they are sparse; in contrast, our cost-based optimizer can consider
combinations of sparse and dense tensors and choose the most appropriate plan using a cost model.

8 CONCLUSIONS

We have described STOREL, which, to the best of our knowledge, is the first system to use a
cost-based optimizer to optimize tensor programs over flexible storage. The key contributions are
the use of a common declarative language for both the Tensor Program and the Tensor Storage
Mappings, and a cost-based optimizer that can take advantage of rich storage formats. We have
shown experimentally that the rule based optimizer can lead to performance improvements over
other systems. In future work, we plan to extend STOREL to automatically choose between different
storage formats. We also plan to integrate a scheduler, which is inspired by the significant progress
in automating the scheduler in Halide [3, 33].

While our ultimate goal is to optimize entire ML pipelines, extending the current optimizer to
large tensor programs will require significant engineering effort, and may also requires future
research on how to propagate sparsity information of intermediate results.

ACKNOWLEDGEMENT

The authors would like to thank Remy Wang for his help with the Egg framework. Shaikhha
would like to thank Huawei for their support of the distributed data management and processing
laboratory at the University of Edinburgh. Suciu was partially supported by NSF IIS 1907997 and
NSF-BSF 2109922. This project was partially supported by Relational Al

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:25

REFERENCES

(1]

[2

—

(3]

(8]

[9

—

[10]

[11

—

[12

—

(13

[t

[14]
[15]
[16]
[17]

[18]

[19]
[20]

[21]

2022. TensorFlow graph optimization with Grappler. https://www.tensorflow.org/guide/graph_optimization. Accessed:
2022-06-30.

Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel Madden. 2013. The Design and
Implementation of Modern Column-Oriented Database Systems. Found. Trends Databases 5, 3 (2013), 197-280.
https://doi.org/10.1561/1900000024

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaél Gharbi, Benoit Steiner, Steven
Johnson, Kayvon Fatahalian, Frédo Durand, et al. 2019. Learning to optimize halide with tree search and random
programs. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1-12.

Rana Alotaibi, Bogdan Cautis, Alin Deutsch, and Ioana Manolescu. 2021. HADAD: A Lightweight Approach for
Optimizing Hybrid Complex Analytics Queries. Association for Computing Machinery, New York, NY, USA, 23-35.
https://doi.org/10.1145/3448016.3457311

Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Jim Gray, W. Frank King III, Bruce G. Lindsay, Raymond A.
Lorie, James W. Mehl, Thomas G. Price, Gianfranco R. Putzolu, Mario Schkolnick, Patricia G. Selinger, Donald R.
Slutz, H. Raymond Strong, Paolo Tiberio, Irving L. Traiger, Bradford W. Wade, and Robert A. Yost. 1979. System R: A
Relational Data Base Management System. Computer 12, 5 (1979), 42-48. https://doi.org/10.1109/MC.1979.1658743
Brett W Bader and Tamara G Kolda. 2008. Efficient MATLAB computations with sparse and factored tensors. SIAM
Journal on Scientific Computing 30, 1 (2008), 205-231.

Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, and Norbert Widmann. 1998. The multidimensional
database system RasDaMan. In Proceedings of the 1998 ACM SIGMOD international conference on Management of data.
575-577.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia: A fresh approach to numerical computing.
SIAM review 59, 1 (2017), 65-98. https://doi.org/10.1137/141000671

Mark Blacher, Joachim Giesen, S6ren Laue, Julien Klaus, and Vikor Leis. 2022. Machine Learning, Linear Algebra, and
More: Is SQL All You Need?. In CIDR.

Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V. Evfimievski, and Niketan Pansare.
2018. On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML. Proc. VLDB Endow. 11, 12
(2018), 1755-1768. https://doi.org/10.14778/3229863.3229865

Lingjiao Chen, Arun Kumar, Jeffrey F. Naughton, and Jignesh M. Patel. 2017. Towards Linear Algebra over Normalized
Data. Proc. VLDB Endow. 10, 11 (2017), 1214-1225. https://doi.org/10.14778/3137628.3137633

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan, Leyuan
Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX
Association, 578-594. https://www.usenix.org/conference/osdi18/presentation/chen

Charisee Chiw, Gordon Kindlmann, John Reppy, Lamont Samuels, and Nick Seltzer. 2012. Diderot: A Parallel DSL for
Image Analysis and Visualization. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (Beijing, China) (PLDI’12). ACM, 111-120.

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Abstraction for Sparse Tensor Algebra
Compilers. Proc. ACM Program. Lang. 2, OOPSLA, Article 123 (Oct. 2018), 30 pages. https://doi.org/10.1145/3276493
The SciPy community. 2022. scipy.sparse.dok_matrix — SciPy v1.8.0 Reference Guide. https://docs.scipy.org/doc/scipy/
reference/generated/scipy.sparse.dok_matrix.html. Accessed: 2022-04-14.

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM Transactions on
Mathematical Software (TOMS) 38, 1 (2011), 1-25.

Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. In Indagationes Mathematicae (Proceedings), Vol. 75.
Elsevier, 381-392.

Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann. 2020. Adopting
Worst-Case Optimal Joins in Relational Database Systems. Proc. VLDB Endow. 13, 11 (2020), 1891-1904. http:
//www.vldb.org/pvldb/vol13/p1891-freitag.pdf

Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE Data Eng. Bull. 18, 3 (1995), 19-29.
http://sites.computer.org/debull/95SEP-CD.pdf

Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semirings. In Proceedings of the twenty-sixth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 31-40.

Alon Y. Halevy. 2001. Answering queries using views: A survey. VLDB 7. 10, 4 (2001), 270-294. https://doi.org/10.
1007/s007780100054

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

37:26

[22]

[23

[t

[24

[l

[25]

[26

—

[27

—

[28]

[29

—

[30]

[31]

[32]

[33]
[34]
[35]

[36]

[37]

Maximilian Schleich, Amir Shaikhha, & Dan Suciu

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357-362. https://doi.org/10.1038/s41586-020-2649-2
Dylan Hutchison, Bill Howe, and Dan Suciu. 2017. LaraDB: A Minimalist Kernel for Linear and Relational Algebra
Computation. In Proceedings of the 4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond,
BeyondMR@SIGMOD 2017, Chicago, IL, USA, May 19, 2017, Foto N. Afrati and Jacek Sroka (Eds.). ACM, 2:1-2:10.
https://doi.org/10.1145/3070607.3070608

Zhihao Jia, Oded Padon, James J. Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: optimizing
deep learning computation with automatic generation of graph substitutions. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019, Tim Brecht and Carey
Williamson (Eds.). ACM, 47-62. https://doi.org/10.1145/3341301.3359630

Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. 2020. Learning
Models over Relational Data Using Sparse Tensors and Functional Dependencies. ACM Trans. Database Syst. 45, 2
(2020), 7:1-7:66. https://doi.org/10.1145/3375661

Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. 2019. Tensor algebra compilation with
workspaces. In 2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE, 180-192.
Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The Tensor Algebra
Compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (Oct. 2017), 29 pages. https://doi.org/10.1145/3133901
Yannis Klonatos, Andres Notzli, Andrej Spielmann, Christoph Koch, and Victor Kuncak. 2013. Automatic synthesis
of out-of-core algorithms. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data.
133-144.

Thomas Koehler, Phil Trinder, and Michel Steuwer. 2021. Sketch-Guided Equality Saturation: Scaling Equality Saturation
to Complex Optimizations in Languages with Bindings. arXiv preprint arXiv:2111.13040 (2021).

Arun Kumar, Jeffrey F. Naughton, and Jignesh M. Patel. 2015. Learning Generalized Linear Models Over Normalized
Data. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 1969-1984.
https://doi.org/10.1145/2723372.2723713

Shangyu Luo, Zekai J. Gao, Michael N. Gubanov, Luis Leopoldo Perez, Dimitrije Jankov, and Christopher M. Jermaine.
2020. Scalable linear algebra on a relational database system. Commun. ACM 63, 8 (2020), 93-101. https://doi.org/10.
1145/3405470

Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One New Dynamic Programming Algo-
rithm for the Generation of Optimal Bushy Join Trees without Cross Products. In Proceedings of the 32nd International
Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, Umeshwar Dayal, Kyu-Young Whang, David B.
Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim (Eds.). ACM, 930-941.
http://dl.acm.org/citation.cfm?id=1164207

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and Kayvon Fatahalian. 2016. Automati-
cally scheduling halide image processing pipelines. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1-11.

Thomas Nelson, Geoffrey Belter, Jeremy G Siek, Elizabeth Jessup, and Boyana Norris. 2015. Reliable generation of
high-performance matrix algebra. ACM Transactions on Mathematical Software (TOMS) 41, 3 (2015), 1-27.

Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew strikes back: new developments in the theory of join
algorithms. SIGMOD Rec. 42, 4 (2013), 5-16. https://doi.org/10.1145/2590989.2590991

Markus Pischel, José M. F. Moura, Jeremy R. Johnson, David A. Padua, Manuela M. Veloso, Bryan Singer, Jianxin Xiong,
Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nicholas Rizzolo. 2005. SPIRAL:
Code Generation for DSP Transforms. Proc. IEEE 93, 2 (2005), 232-275. https://doi.org/10.1109/JPROC.2004.840306
Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: an Embeddable Analytical Database. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 -
July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM,
1981-1984. https://doi.org/10.1145/3299869.3320212

[38] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Sylvain Paris, Marc Levoy, Saman P. Amaras-

inghe, and Frédo Durand. 2018. Halide: decoupling algorithms from schedules for high-performance image processing.
Commun. ACM 61, 1 (2018), 106-115. https://doi.org/10.1145/3150211

[39] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519-530.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

Optimizing Tensor Programs on Flexible Storage 37:27

[40] Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q. Ngo, and XuanLong Nguyen. 2019. A Layered
Aggregate Engine for Analytics Workloads. In Proceedings of the 2019 International Conference on Management of Data,
SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia
Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 1642-1659. https://doi.org/10.1145/3299869.3324961
Maximilian E. Schiile, Tobias G6tz, Alfons Kemper, and Thomas Neumann. 2022. ArrayQL Integration into Code-
Generating Database Systems. In Proceedings of the 25th International Conference on Extending Database Technology,
EDBT 2022, Edinburgh, UK, March 29 - April 1, 2022. OpenProceedings.org, 1:40-1:51. https://doi.org/10.5441/002/edbt.
2022.04
Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. 2021. Functional Collection Programming with
Semi-Ring Dictionaries. CoRR abs/2103.06376 (2021). arXiv:2103.06376 https://arxiv.org/abs/2103.06376
Amir Shaikhha, Maximilian Schleich, Alexandru Ghita, and Dan Olteanu. 2020. Multi-layer optimizations for end-to-
end data analytics. In CGO °20: 18th ACM/IEEE International Symposium on Code Generation and Optimization, San
Diego, CA, USA, February, 2020. ACM, 145-157. https://doi.org/10.1145/3368826.3377923
Amir Shaikhha, Maximilian Schleich, and Dan Olteanu. 2021. An Intermediate Representation for Hybrid Database and
Machine Learning Workloads. Proc. VLDB Endow. 14, 12 (2021), 2831-2834. https://doi.org/10.14778/3476311.3476356
Shaden Smith, Jee W Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George Karypis. 2017. FROSTT: The
formidable repository of open sparse tensors and tools.
[46] Daniele G Spampinato and Markus Piischel. 2014. A basic linear algebra compiler. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization. 23-32.
Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015. Generating Performance Portable Code
Using Rewrite Rules: From High-level Functional Expressions to High-performance OpenCL Code. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Programming (Vancouver, BC, Canada) (ICFP 2015).
ACM, New York, NY, USA, 205-217.
Michael Stonebraker, Paul Brown, Donghui Zhang, and Jacek Becla. 2013. SciDB: A Database Management System for
Applications with Complex Analytics. Comput. Sci. Eng. 15, 3 (2013), 54-62. https://doi.org/10.1109/MCSE.2013.19
Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality saturation: a new approach to optimization.
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 264-276.
Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. 1996. The GMAP: A Versatile Tool for Physical
Data Independence. VLDB 7. 5, 2 (1996), 101-118. https://doi.org/10.1007/s007780050018
Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm. In Proc. 17th International Conference
on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, Nicole Schweikardt, Vassilis Christophides, and Vincent
Leroy (Eds.). OpenProceedings.org, 96-106. https://doi.org/10.5441/002/icdt.2014.13
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod
Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, ilhan Polat, Yu
Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020),
261-272. https://doi.org/10.1038/s41592-019-0686-2
[53] Yisu Remy Wang, Shana Hutchison, Dan Suciu, Bill Howe, and Jonathan Leang. 2020. SPORES: Sum-Product Optimiza-
tion via Relational Equality Saturation for Large Scale Linear Algebra. Proc. VLDB Endow. 13, 11 (2020), 1919-1932.
http://www.vldb.org/pvldb/vol13/p1919-wang.pdf
[54] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast
and extensible equality saturation. Proc. ACM Program. Lang. 5, POPL (2021), 1-29. https://doi.org/10.1145/3434304
[55] Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and Chris Jermaine. 2021. Tensor Relational
Algebra for Distributed Machine Learning System Design. Proc. VLDB Endow. 14, 8 (2021), 1338-1350. https:
//doi.org/10.14778/3457390.3457399
[56] Ying Zhang, Martin Kersten, and Stefan Manegold. 2013. SciQL: Array data processing inside an RDBMS. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data. 1049-1052.
[57] Yihong Zhang, Yisu Remy Wang, Max Willsey, and Zachary Tatlock. 2022. Relational e-matching. Proc. ACM Program.
Lang. 6, POPL (2022), 1-22. https://doi.org/10.1145/3498696

[41

—

[42

—

[43

—

[44

[l

[45

—

[47

—

[48

—

[49

—

[50

—

[51

—

[52

—

Received April 2022; revised July 2022; accepted August 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 37. Publication date: May 2023.

	Abstract
	1 Introduction
	2 Background
	3 STOREL
	3.1 Architecture
	3.2 SDQLite

	4 Tensor Storage Mappings
	5 Optimizations
	5.1 The Naive Logical Plan
	5.2 Logical Rewritings
	5.3 Rule Engine: Egg
	5.4 Managing Free Variables
	5.5 Cardinality Estimation
	5.6 Physical Plans
	5.7 Cost Estimate

	6 Experiments
	6.1 Benchmarking Tensor Programs
	6.2 Effect of the Storage Mapping
	6.3 Effect of Rewrite Rules
	6.4 Cost and Complexity of the Rewrite-based Optimization
	6.5 Optimization Overhead
	6.6 Discussion

	7 Related Work
	8 Conclusions
	References

