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Abstract—Distributed optimization enables networked agents
to cooperatively solve a global optimization problem even with
each participating agent only having access to a local partial
view of the objective function. Despite making significant inroads,
most existing results on distributed optimization rely on noise-
free information sharing among the agents, which is problematic
when communication channels are noisy, messages are coarsely
quantized, or shared information are obscured by additive noise
for the purpose of achieving differential privacy. The problem
of information-sharing noise is particularly pronounced in the
state-of-the-art gradient-tracking based distributed optimization
algorithms, in that information-sharing noise will accumulate
with iterations on the gradient-tracking estimate of these al-
gorithms, and the ensuing variance will even grow unbounded
when the noise is persistent. This paper proposes a new gradient-
tracking based distributed optimization approach that can avoid
information-sharing noise from accumulating in the gradient
estimation. The approach is applicable even when the inter-
agent interaction is time-varying, which is key to enable the
incorporation of a decaying factor in inter-agent interaction to
gradually eliminate the influence of information-sharing noise. In
fact, we rigorously prove that the proposed approach can ensure
the almost sure convergence of all agents to the same optimal
solution even in the presence of persistent information-sharing
noise. The approach is applicable to general directed graphs.
It is also capable of ensuring the almost sure convergence of
all agents to an optimal solution when the gradients are noisy,
which is common in machine learning applications. Numerical
simulations confirm the effectiveness of the proposed approach.

I. INTRODUCTION

We consider a distributed convex optimization problem
where multiple agents cooperatively solve a global optimiza-
tion problem via local computations and local sharing of infor-
mation. This is motivated by the problem’s broad applications
in cooperative control [1], distributed sensing [2], multi-agent
systems [3], sensor networks [4], and large-scale machine
learning [5]. In many of these applications, each agent has
access to only a local portion of the objective function. Such
a distributed optimization problem can be formulated in the
following general form:

min
θ∈Rd

F (θ) ≜
1

m

m∑
i=1

fi(θ) (1)
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where m is the number of agents, θ ∈ Rd is a decision variable
common to all agents, while fi : Rd → R is a local objective
function private to agent i.

To solve problem (1) in a distributed manner, plenty of
algorithms have been reported since the seminal works in the
1980s [6]. Some of the popular algorithms include gradient
methods (e.g., [7], [8], [9], [10], [11]), distributed alternating
direction method of multipliers (e.g., [12], [13]), and dis-
tributed Newton methods (e.g., [14], [15]). In this paper, we
focus on distributed gradient methods, which are particulary
appealing for agents with limited computational or storage
capabilities due to their low computation complexity and
storage requirement. Existing distributed gradient methods can
be generally divided into two categories. The first category
of distributed gradient methods directly concatenate gradient
based steps with a consensus operation of the optimization
variable (referred to as the static-consensus based approach
hereafter), with typical examples including [7], [16]. These
approaches are simple and efficient in computation since
they require each agent to share only one variable in each
iteration. However, they are only applicable in undirected
graphs and directed graphs that are balanced (the sum of
each agent’s in-neighbor coupling weights equal to the sum
of its out-neighbor coupling weights). The second category
of distributed gradient methods exploit a dynamic-consensus
mechanism to track the global gradient (and hence usually
called gradient-tracking based approach), and are applicable
to general directed graphs (see, e.g., [9], [10], [11], [17],
[18]). Such approaches can ensure convergence to an optimal
solution under constant stepsizes and, hence, can achieve
faster convergence. However, these approaches need every
agent to maintain and share an additional gradient-tracking
variable besides the optimization variable, which doubles the
communication overhead compared with the approaches in the
first category.

Although plenty of inroads have been made in distributed
optimization, most of the existing approaches assume noise-
free information sharing, i.e., every agent is able to acquire
neighboring agents’ intermediate local optimization variables
accurately without any distortion or corruption. Such an as-
sumption does not hold any longer, however, in many appli-
cation scenarios. For example, when communication channels
are noisy, every message will be distorted by channel noise
which is usually modeled as additive Gaussian noise [19], [20].
An even more pervasive source of noise in information sharing
comes from quantization in digital communication, which
maps continuous-amplitude (analog) signals into discrete-
amplitude (digital) signals, and hence leads to rounding errors
(so called quantization errors) on shared messages. Such
quantization errors are usually modeled as additive noises and



are non-negligible when the quantizer has a limited number
of quantization levels [21]. In fact, in deep learning applica-
tions where the dimension of optimization variables can scale
to hundreds of millions [22], many distributed optimization
algorithms purposely employ a coarse quantizer to reduce
the communication overhead [23], [24], [25], resulting in
large quantization errors. Furthermore, as privacy becomes
an increasingly pressing need while conventional distributed
optimization algorithms are proven to leak information of
participating agents [13], [26], [27], [28], many privacy-aware
distributed optimization algorithms opt to inject additive noise
in shared messages to ensure differential privacy [29], [30],
[31], [32]. The differential-privacy induced additive noise is
persistent throughout the optimization process to ensure a
strong privacy protection and will significantly reduce the
optimization accuracy of existing distributed optimization al-
gorithms.

In recent years, adding a decaying factor on the coupling
weight has been proven effective in suppressing the influence
of persistent information-sharing noise in distributed opti-
mization [20], [33], [34], [35], [36], [37]. In combination
with a decaying stepsize in gradient descent (to alleviate the
effect of information-sharing noise on gradient directions),
these approaches can achieve almost sure convergence to an
optimal solution. However, these results are only applicable
to static-consensus based distributed optimization algorithms,
which work on symmetric or balanced graphs but cannot
be applied to general directed interaction graphs. In fact, in
gradient-tracking based distributed optimization algorithms,
information-sharing noise will accumulate on the estimate of
the global gradient, and its variance will grow to infinity when
the information-sharing noise is persistent, as will be explained
later in Sec. III. Recently, [38] proposed an algorithm which
can avoid information-sharing noise from accumulating on the
global-gradient estimate when the inter-agent interaction is
constant. However, when the inter-agent interaction is time-
varying, the approach cannot avoid noise accumulation from
happening, which precludes the possibility to incorporate a
decaying factor to attenuate the influence of noise. Directly
combining conventional gradient-tracking based approaches
with a decaying factor can reduce the speed of such noise
accumulation but is unable to avoid the noise from ac-
cumulating on the estimate of the global gradient and the
gradient-estimation noise variance from escaping to infinity.
Our recent result exploited heterogeneous decaying factors for
the optimization variable and the gradient-tracking variable,
and managed to avoid the accumulated gradient-estimation
noise variance from growing to infinity [39]. However, the
gradient-tracking noise still accumulates with iterations, which
significantly affects the accuracy of distributed optimization. In
this paper, we propose to revise the mechanics of the gradient-
tracking based approach to tackle information-sharing noise in
distributed optimization. More specifically, we propose a new
gradient-tracking based architecture which can avoid noise
from accumulation on every agent’s estimate of the global
gradient. This approach is applicable even when the inter-agent
interaction is time-varying, which enables the incorporation of
a decaying factor to attenuate the influence of noise. In fact,

by choosing the decaying factor appropriately, the proposed
approach can gradually eliminate the influence of information-
sharing noise on all agents’ local gradient-estimates even when
the noise is persistent, and hence ensures the final optimality
of distributed optimization.

The main contributions of this paper are as follows: 1) We
propose a new gradient-tracking based distributed optimization
architecture that can avoid the accumulation of information-
sharing noise in the estimate of the global gradient. Different
from [38], which is only applicable when the inter-agent
interaction is time-invariant, the new architecture allows inter-
agent interaction to be time-varying, which is key to enable
the incorporation of a decaying factor in the interaction to
gradually eliminate the influence of persistent information-
sharing noise; 2) By incorporating a decaying factor in the
inter-agent interaction, we arrive at two new algorithms that
are able to gradually eliminate the influence of information-
sharing noise on both consensus and global-gradient estima-
tion, which, to our knowledge, has not been achieved before.
The first algorithm requires each agent to have access to the
left eigenvector of the coupling weight matrix, whereas the
second algorithm uses a local eigenvector estimator to avoid
requiring such global information; 3) We prove that even under
persistent information-sharing noise, the proposed algorithms
can guarantee every agent’s almost sure convergence to an
optimal solution on general directed graphs. This is in contrast
to existing static-consensus based algorithms in [20], [35],
[36] that are only applicable to balanced directed graphs (the
sum of each agent’s in-neighbor coupling weights equal to
the sum of its out-neighbor coupling weights); 4) We prove
that the proposed approach can ensure all agents’ almost sure
convergence to an optimal solution even when the gradient
is subject to noise, which is a common problem in machine
learning applications; 5) The proposed convergence analysis
has fundamental differences from existing proof techniques for
gradient-tracking based algorithms. More specifically, existing
convergence analysis of gradient-tracking based algorithms
relies on formulating the error dynamics as a linear time-
invariant system of inequalities, whose convergence is deter-
mined by a constant systems matrix (even under time-varying
coupling graphs [40]). For example, in the existing gradient-
tracking based distributed optimization algorithms, this con-
stant systems matrix is denoted as A in [18], [41], J in [11],
G in [42], or M in [40]. Then, existing analysis establishes
exponential (linear) convergence by proving that the spectral
radius of this systems matrix is a constant value strictly less
than one. However, under a decaying coupling strength, the
spectral radius of the systems matrix in the conventional
formulation will converge to one, which makes it impossible to
use the conventional spectral-radius based analysis. Therefore,
to prove convergence of our algorithms, we propose a new
martingale convergence theorem based approach, which is
fundamentally different from conventional proof techniques
for gradient-tracking based optimization algorithms. Moreover,
our algorithms and theoretical derivations only require the
objective functions to be convex and Lipschitz continuous in
gradients, which is different from many existing results that
require the objective functions to be coercive [9] or strongly



convex [38], [42], or to have bounded gradients [20], [24],
[35], [36], [43].

The rest of the paper is organized as follows. Sec. II
formulates the problem and provides some results for a later
use. Sec. III presents a dynamic-consensus based gradient-
tracking method that can avoid noise accumulation on the
gradient-tracking estimate. Sec. IV establishes the almost
sure convergence of all agents to a same optimal solution.
Sec. V extends the results by incorporating a left-eigenvector
estimator into each agent’s local update, which ensures a
decentralized implementation of the approach even when
information of the coupling weight matrices is not locally
available to individual agents. Sec. VI extends the results to
the case where the gradient is subject to noise and establishes
almost sure convergence of all agents to an optimal solution.
Sec. VII presents numerical comparisons with existing gra-
dient methods to corroborate the theoretical results. Finally,
Sec. VIII concludes the paper.

Notations: We use Rd to denote the Euclidean space of
dimension d. We write Id for the identity matrix of dimension
d, and 1d for the d-dimensional column vector will all entries
equal to 1; in both cases we suppress the dimension when
clear from the context. A vector is viewed as a column vector.
For a vector x, xi denotes its ith element. We use ⟨·, ·⟩ to
denote the inner product of two vectors and ∥x∥ for the
standard Euclidean norm of a vector x. We write ∥A∥ for
the matrix norm induced by the vector norm ∥ · ∥, unless
stated otherwise. We let AT denote the transpose of a matrix
A. We also use other vector/matrix norms defined under a
certain transformation determined by a matrix W , which will
be represented as ∥ · ∥W . A matrix is column-stochastic when
its entries are nonnegative and elements in every column add
up to one. A matrix A is said to be row-stochastic when its
entries are nonnegative and elements in every row add up to
one. For two vectors u and v with the same dimension, we use
u ≤ v to represent that every entry of u is no larger than the
corresponding entry of v. Often, we abbreviate almost surely
by a.s.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider a network of m agents. The agents interact on
a general directed graph. We describe a directed graph using
an ordered pair G = ([m], E), where [m] = {1, 2, . . . ,m} is
the set of nodes (agents) and E ⊆ [m] × [m] is the edge set
of ordered node pairs describing the interaction among agents.
For a nonnegative weight matrix W = {wij} ∈ Rm×m, we
define the induced directed graph as GW = ([m], EW ), where
the directed edge (i, j) from agent j to agent i exists, i.e.,
(i, j) ∈ EW if and only if wij > 0. For an agent i ∈ [m],
its in-neighbor set Nin

i is defined as the collection of agents
j such that wij > 0; similarly, the out-neighbor set Nout

i of
agent i is the collection of agents j such that wji > 0.

By assigning a copy xi of the decision variable x to each
agent i, and then imposing the requirement xi = x for all
1 ≤ i ≤ m, we can rewrite the optimization problem (1) as

the following equivalent multi-agent optimization problem:

min
x∈Rmd

f(x) ≜
1

m

m∑
i=1

fi(xi) s.t. x1 = x2 = · · · = xm (2)

where xi ∈ Rd is agent i’s decision variable and the collection
of the agents’ variables is

x = [xT
1 , x

T
2 , . . . , x

T
m]T ∈ Rmd.

We make the following standard assumption on the individ-
ual objective functions:

Assumption 1. Problem (1) has at least one optimal solu-
tion θ∗. Every fi(·) is convex and has Lipschitz continuous
gradients, i.e., for some L > 0, we have

∥∇fi(u)−∇fi(v)∥ ≤ L∥u− v∥, ∀i and ∀u, v ∈ Rd.

III. THE PROPOSED APPROACH

In gradient-tracking based algorithms, besides an optimiza-
tion variable xk

i , every agent i ∈ [m] also maintains and
updates a gradient-tracking variable yki which estimates the
global gradient (“joint agent” descent direction). Both the
optimization variable and the gradient-tracking variable have
to be shared with neighboring agents. The two variables
can be shared using two different communication networks,
usually called, GR and GC , which are, respectively, induced
by matrices R ∈ Rm×m and C ∈ Rm×m; that is (i, j) is a
directed link in the graph GR if and only if Rij > 0 and,
similarly, (i, j) is a directed link in GC if and only if Cij > 0.
We make the following assumption on R and C. (Note that,
given a matrix A with non-negative off-diagonal entries, the
induced graph does not depend on the diagonal entries of the
matrix. Also, GAT is identical to GA with the directions of
edges reversed.)

Assumption 2. The matrices R,C ∈ Rm×m have nonnegative
off-diagonal entries (Rij ≥ 0 and Cij ≥ 0 for all i ̸= j). Their
diagonal entries are negative, satisfying

Rii = −
∑

j∈Nin
R,i

Rij , Cii = −
∑

j∈Nout
C,i

Cji (3)

such that R has zero row sums and C has zero column sums.
The induced graphs GR and GCT satisfy:

1) GR is strongly connected, i.e., there is a path (respecting
the directions of edges) from each node to every other
node;

2) The graph induced by CT , i.e., GCT , contains at least
one spanning tree.

Remark 1. The assumption on GCT is weaker than requiring
that the induced graph GC is strongly connected.

When there is information-sharing noise, shared messages
may be corrupted by noise. Namely, when agent i shares xk

i

with agent j, agent j can only receive a distorted version
xk
i +ζki of xk

i , where ζki denotes the information-sharing noise.
Similarly, when agent i shares yki with agent j, agent j can
only receive a distorted version yki +ξki of yki , where ξki denotes
the information-sharing noise. The noises ξki and ζki will



significantly impact the accuracy of optimization. In fact, as
conventional gradient-tracking algorithms feed the incremental
gradient to the y iterate, the noise on yki will accumulate and
the variance of noise can grow to infinity as iteration proceeds
(this will be detailed later).

To alleviate the influence of information-sharing noise, a
decaying factor can be applied to the coupling weight matrix,
which has been proven effective in static-consensus based
distributed optimization algorithms [20], [35], [36]. However,
for gradient-tracking based algorithms, even with a decaying
factor on the coupling weight matrices, the noise on yki will
still accumulate and increase with time, significantly affecting
the accuracy of optimization results. Recently, [38] showed
that instead of tracking the global gradient, tracking the cumu-
lative gradient can avoid information noise from accumulating
in gradient-tracking based distributed optimization. However,
this approach cannot eliminate the influence of persistent
information-sharing noise, and it is subject to steady-state er-
rors. Furthermore, it can only avoid noise accumulation when
the inter-agent interaction is time-invariant, precluding the
possibility of combining a decaying factor (which will make
inter-agent interaction time-varying) to gradually attenuate the
influence of noise. In this paper, we propose a new algorithm
that can achieve both avoidance of noise-accumulation and
incorporation of a decaying factor. By sharing the cumulative-
gradient estimate (denoted as an s variable) instead of the
direct gradient estimate (i.e., the y variable), we can gradually
annihilate the influence of information-sharing noise on the
estimate of the global gradient, even when the information-
sharing noise is persistent.

Algorithm 1: Robust gradient-tracking based distributed
optimization

Parameters: Stepsize λk and a decaying factor γk to suppress
information-sharing noise;
Every agent i maintains two states xk

i and ski , which are
initialized randomly with x0

i ∈ Rd and s0i ∈ Rd.
for k = 1, 2, · · · do

a) Agent i pushes ski to each agent l ∈ Nout
C,i , which will

be received as ski + ξki due to information-sharing noise.
And agent i pulls xk

j from each j ∈ Nin
R,i, which will be

received as xk
j + ζkj due to information-sharing noise. Here

the subscript R or C in neighbor sets indicates the neighbors
with respect to the graphs induced by these matrices.

b) Agent i chooses γk > 0 satisfying 1 + γkRii > 0 and
1+ γkCii > 0 with Rii and Cii defined in (3). Then, agent
i updates its states as follows:

sk+1
i =(1 + γkCii)s

k
i + γk

∑
j∈Nin

C,i

Cij(s
k
j + ξkj )

+ λk∇fi(x
k
i ),

xk+1
i =(1 + γkRii)x

k
i + γk

∑
j∈Nin

R,i

Rij(x
k
j + ζkj )

− sk+1
i − ski

ui
,

(4)

where ui denotes the ith element of the left eigenvector uT

of I + γkR associated with eigenvalue 11.
c) end

Remark 2. As discussed before, a key difference between the
proposed Algorithm 1 and the existing gradient-tracking based
algorithms is that Algorithm 1 introduces a decaying factor
γk to suppress the information-sharing noise. Introducing the
decaying factor is reasonable for the following reasons: In
the early stages of the iteration, the decaying factor is still
far from zero, and hence its attenuation effect on information-
sharing is not significant, which allows the necessary mixture
of information and hence consensus of individual agents’ op-
timization variables; As the iteration proceeds and individual
agents’ optimization variables converge to each other (thus
diminishing the need for information-sharing), the decaying
factor approaches zero and hence its attenuation effect on
information-sharing noise becomes more severe, which effec-
tively eliminates the influence of information-sharing noise.
Of course, to ensure that necessary gradient descent steps
and information-mixture operations can be performed, the
decaying factor has to decrease slower than λk, which will
be specified later in the convergence analysis.

To compare our algorithm with conventional gradient-
tracking based algorithms, we write the algorithm in matrix
form. Defining

xk =


(xk

1)
T

(xk
2)

T

...
(xk

m)T

 ∈ Rm×d, sk =


(sk1)

T

(sk2)
T

...
(skm)T

 ∈ Rm×d,

gk =


(gk1 )

T

(gk2 )
T

...
(gkm)T

 ∈ Rm×d,

with gki = ∇fi(x
k
i ) and

ζζζkw =


(ζkw1)

T

(ζkw2)
T

...
(ζkwm)T

 ∈ Rm×d, ξξξkw =


(ξkw1)

T

(ξkw2)
T

...
(ξkwm)T

 ∈ Rm×d,

with
ζwi ≜

∑
j∈Nin

R,i

Rijζ
k
j , ξwi ≜

∑
j∈Nin

C,i

Cijξ
k
j ,

we write the dynamics of (4) in the following more compact
form:

sk+1 = Cksk + γkξξξkw + λkgk

xk+1 = Rkxk + γkζζζkw − U−1(sk+1 − sk)
(5)

where
Rk = I + γkR,

1Under Assumption 2, the matrix I + γkR always has a unique positive
left eigenvector uT (associated with eigenvalue 1) satisfying uT 1 = m (see
details in Lemma 1). When R is balanced, u becomes the vector 1 [44].



Ck = I + γkC,

and
U = diag(u1, u2, · · · , um),

with ui denoting the ith element of Rk’s left eigenvector u
associated with eigenvalue 1.

It can be seen that in the proposed algorithm, sk−sk−1 is fed
into the optimization variable and acts as the global-gradient
estimate. This new approach will avoid the accumulation
of information-sharing noise on the global-gradient estimate,
which plagues existing gradient-tracking based approaches.
To see this, we use the Push-Pull gradient-tracking algorithm
as an example. In the absence of information-sharing noise,
the conventional Push-Pull algorithm takes the following form
[18]:

xk+1 = Rkxk − λkyk

yk+1 = Ckyk + gk+1 − gk.
(6)

By setting y0 = g0, one can obtain by induction that

1Tyk = 1Tgk,

i.e., the agents can track the average gradient 1T gk

n by ensuring
the consensus of all yki (which leads to yki = 1Tyk

m for all i).
However, when exchanged messages are subject to noises,

i.e., exchanged xk
i and yki are received as xk

i +ζki and yki +ξki ,
respectively, the update of the conventional Push-Pull becomes
(after incorporating a decaying factor γk)

xk+1 = Rkxk + γkζζζkw − λkyk,

yk+1 = Ckyk + γkξξξkw + gk+1 − gk,
(7)

and one can obtain by induction that

1Tyk = 1T

(
gk +

k−1∑
l=0

γlξξξlw

)
(8)

even under y0 = g0.
Therefore, under the conventional Push-Pull algorithm, the

information-sharing noise accumulates with time (even with
a decaying factor γk) in the estimate of the global gradient,
which significantly compromises optimization accuracy. (This
statement is corroborated by the numerical simulation result
for the conventional Push-Pull algorithm in [18] in Fig.
1, whose optimization-error variance grows with iterations.)
It can be easily verified that other gradient-tracking based
distributed optimization algorithms have the same issue of
accumulating information-sharing noise.

The proposed algorithm successfully circumvents this prob-
lem. In fact, using the update rule of sk in (5), one has

1T (sk+1 − sk) = 1T
(
Cksk + γkξξξkw + λkgk − sk

)
= 1T

(
γkCsk + γkξξξkw + λkgk

)
= 1T

(
γkξξξkw + λkgk

)
,

(9)

where we used the property 1TC = 0 from the definition
of Cii in (3). It is clear that the proposed algorithm avoids
information-sharing noise from accumulating on the gradi-
ent estimate. It is worth noting that the proposed algorithm

achieves avoidance of noise-accumulation even when the inter-
agent interaction is time-varying, which enables the incorpora-
tion of the decaying factor γk and further the final elimination
of the influence of information-sharing noise on gradient
estimate, even when the noises ζki and ξki are persistent. In
fact, we can prove that when the decaying factor γk is chosen
appropriately, the proposed algorithm can guarantee that all
agents’ xk

i will converge to the same optimal solution almost
surely.

IV. CONVERGENCE ANALYSIS

For the convenience of convergence analysis, we first
present the following properties for the inter-agent coupling
Rk = I + γkR and Ck = I + γkC:

Lemma 1. [44] (or Lemma 1 in [18]) Under Assumption
2, for every k, the matrix I + γkR has a unique positive
left eigenvector uT (associated with eigenvalue 1) satisfying
uT1 = m, and the matrix I + γkC has a unique nonnegative
right eigenvector v (associated with eigenvalue 1) satisfying
1T v = m.

Remark 3. It is worth noting that the left eigenvector uT

in Lemma 1 is time-invariant and independent of γk. In fact,
using the definition of left eigenvector, it can be seen that
uT satisfies uT (I + γkR) = uT , and thus uT (γkR) = 0
and further uTR = 0. Namely, uT corresponds to the left
eigenvector of R associated with eigenvalue 0. Given that
R has zero row-sums according to Assumption 2, we know
that such a uT always exists. Similarly, we know that the
right eigenvector v of I + γkC is also time-invariant and
independent of γk.

According to Lemma 3 in [18], we further know that
the spectral radius of R̄k ≜ I + γkR − 1uT

m is equal to
1−γk|νR| < 1, where νR is an eigenvalue of R. Furthermore,
there exists a vector norm ∥x∥R ≜ ∥R̃x∥2 (where R̃ is
determined by R [18]) such that ∥R̄k∥R < 1 is arbitrarily
close to the spectral radius of R̄k, i.e., 1 − γk|νR| < 1.
Without loss of generality, we represent this norm as ∥R̄k∥R =
1−γkρR < 1, where ρR is an arbitrarily close approximation
of |νR|. (Note that for the convergence analysis, we only need
the fact that such an R̃ exists, but do not require knowledge
of its explicit expression. For an arbitrarily small difference
ϵ > 0 between ∥R̄k∥R and the spectral radius of R̄k, Lemma
5.6.10 in [44] provides a constructive way of finding R̃.
Also see Lemma 5 of the extended version of [38] for more
discussions about R̃.) Similarly, we have that the spectral
radius of C̄k ≜ I + γkC − v1T

m is equal to 1 − γk|νC | < 1,
where νC is an eigenvalue of C. Furthermore, there exists
a vector norm ∥x∥C ≜ ∥C̃x∥2 (where C̃ is determined by
C [18]) such that ∥C̄k∥C < 1 is arbitrarily close to the spectral
radius of C̄k, i.e., 1− γk|νC | < 1. Without loss of generality,
we represent this norm as ∥C̄k∥C = 1− γkρc < 1, where ρc
is an arbitrarily close approximation of |νC |.

For convenience in analysis, we also define the following
(weighted) average vectors:

x̄k =
uTxk

m
, s̄k =

1T sk

m
, ḡk =

1Tgk

m
, (10)



and

ζ̄kw =
uTζζζkw
m

, ξ̄kw =
1Tξξξkw
m

. (11)

To analyze the convergence of the proposed algorithm, we
first present a generic convergence result for gradient-tracking
based distributed optimization algorithms. To this end, we first
define a matrix norm for xk following [18]:

∥xk∥R =
∥∥∥[∥xk

(1)∥R, ∥x
k
(2)∥R, · · · , ∥x

k
(d)∥R

]∥∥∥
2

(12)

where the subscript 2 denotes the 2−norm and xk
(i) denotes

the ith column of xk for 1 ≤ i ≤ d. One can easily see that
∥xk − 1x̄k∥R measures the distance between all xk

i and their
weighted average x̄k.

Similarly, we define a matrix norm ∥ · ∥C for sk ≜[
sk1 , s

k
2 , · · · , skm

]T ∈ Rm×d:

∥sk∥C =
∥∥∥[∥sk(1)∥C , ∥sk(2)∥C , · · · , ∥sk(d)∥C]∥∥∥

2
(13)

and use ∥sk − vs̄k∥C to measure the distance between all s
iterates and their average s̄k (weighed by v).

We also need the following lemmas about sequences of
random vectors:

Lemma 2. ([39], Lemma 4) Let {vk} ⊂ Rd and {uk} ⊂ Rp

be random nonnegative vector sequences, and {ak} and {bk}
be random nonnegative scalar sequences such that

E
[
vk+1|Fk

]
≤ (V k + ak11T )vk + bk1−Hkuk

holds almost surely for all k ≥ 0, where {V k} and
{Hk} are random sequences of nonnegative matrices and
E
[
vk+1|Fk

]
denotes the conditional expectation given

vℓ,uℓ, aℓ, bℓ, V ℓ, Hℓ for ℓ = 0, 1, . . . , k. Assume that {ak}
and {bk} satisfy

∑∞
k=0 a

k < ∞ and
∑∞

k=0 b
k < ∞ almost

surely, and that there exists a (deterministic) vector π > 0
such that

πTV k ≤ πT , πTHk ≥ 0, ∀k ≥ 0

hold almost surely. Then, we have
1) {πTvk} converges almost surely to some random vari-

able πTv ≥ 0;
2) {vk} is bounded almost surely;
3)
∑∞

k=0 π
THkuk < ∞ holds almost surely.

Lemma 3. ([39], Lemma 7) Let {vk} ⊂ Rd be a sequence
of non-negative random vectors and {bk} be a sequence of
nonnegative random scalars such that

∑∞
k=0 b

k < ∞ and

E
[
vk+1|Fk

]
≤ V kvk + bk1, ∀k ≥ 0

hold almost surely, where {V k} is a sequence of non-negative
matrices and Fk = {vℓ, bℓ; 0 ≤ ℓ ≤ k}. Assume that there
exist a vector π > 0 and a deterministic scalar sequence {ak}
satisfying ak ∈ (0, 1),

∑∞
k=0 a

k = ∞, and πTV k ≤ (1 −
ak)πT for all k ≥ 0. Then, we have limk→∞ vk = 0 almost
surely.

Now we are in a position to present the generic convergence
result for gradient-tracking based distributed optimization al-
gorithms:

Theorem 1. Assume that the objective function F (·) is contin-
uously differentiable and that the problem (1) has an optimal
solution θ∗. Suppose that a distributed algorithm generates a
sequence {xk

i } ⊆ Rd under coupling weight matrix R and a
sequence {ski } ⊆ Rd under coupling weight matrix C, such
that the following relationship holds almost surely for some
sufficiently large integer T ≥ 0 and for all k ≥ T :

E
[
vk+1|Fk

]
≤
(
V k+ ak11T

)
vk+bk1−Hk

[
∥∇F (x̄k)∥2

∥ḡk∥2
]

(14)
where

Fk = {xℓ
i , s

ℓ
i ; 0 ≤ ℓ ≤ k, i ∈ [m]},

and

vk =

 vk
1

vk
2

vk
3

 ≜

 F (x̄k)− F (θ∗)
∥xk − 1x̄k∥2R
∥sk − vs̄k∥2C

 ,

V k =

 1 κ1λ
k 0

0 1− κ2γ
k κ3γ

k

0 0 1− κ4γ
k

 ,

Hk =

 κ5λ
k κ6λ

k − κ7(λ
k)2

0 0
0 0

 ,

with κi > 0 for all 1 ≤ i ≤ 7 and κ2, κ4 ∈ (0, 1),
while the nonnegative scalar sequences {ak}, {bk}, and
positive sequences {λk} and {γk} satisfy

∑∞
k=0 a

k < ∞
a.s.,

∑∞
k=0 b

k < ∞ a.s.,
∑∞

k=0 λ
k = ∞,

∑∞
k=0 γ

k = ∞,∑∞
k=0(γ

k)2 < ∞,
∑∞

k=0
(λk)2

γk < ∞, and limk→∞ λk/γk =
0. Then, we have:
(a) limk→∞ F (x̄k) exists almost surely and

lim
k→∞

∥xk
i − x̄k∥ = lim

k→∞
∥ski − vis̄

k∥ = 0, ∀i, a.s.

(b) lim inf
k→∞

∥∇F (x̄k)∥ = 0 holds almost surely. Moreover,

if the function F (·) has bounded level sets, then {x̄k}
is bounded and every accumulation point of {x̄k} is an
optimal solution almost surely, and

lim
k→∞

F (xk
i ) = F (θ∗), ∀i ∈ [m], a.s.

Proof. Since the results of Lemma 2 are asymptotic, they
remain valid when the starting index is shifted from k = 0
to k = T , for an arbitrary T ≥ 0. So the idea is to show that
the conditions in Lemma 2 are satisfied for all k ≥ T , where
T ≥ 0 is large enough.
(a) Because κi > 0 for all 1 ≤ i ≤ 7, for π = [π1, π2, π3]

T

to satisfy πTV ≤ πT and πTHk ≥ 0, we only need to show
that the following inequalities are true

κ1λ
kπ1 + (1− κ2γ

k)π2 ≤ π2,

κ3γ
kπ2 + (1− κ4γ

k)π3 ≤ π3,(
κ6λ

k − κ7(λ
k)2
)
π1 ≥ 0.

(15)

The first inequality is equivalent to π2 ≥ κ1λ
k

κ2γk π1. Given
that limk→∞ λk/γk = 0 holds and γk as well as λk is positive
according to the assumption, it can easily be seen that for any
given π1 > 0, we can always find a π2 > 0 satisfying the
relationship when k is larger than some T ≥ 0.



The second inequality is equivalent to π3 ≥ κ3

κ4
π2, which

can always be satisfied by setting π3 = κ3

κ4
π2 after fixing π2.

The third inequality is equivalent to κ6 − κ7λ
k > 0, which

is always satisfied given that (λk)2 is summable (and hence
λk tends to zero).

Thus, we can always find a vector π satisfying all inequal-
ities in (15) for k ≥ T for some large enough T ≥ 0, and
hence the conditions in Lemma 2 are satisfied.

By Lemma 2, it follows that for the three entries of vk, i.e.,
vk
1 , vk

2 , and vk
3 , we have that

lim
k→∞

π1v
k
1 + π2v

k
2 + π3v

k
3 (16)

exists almost surely, and
∞∑
k=0

πTHkuk < ∞

holds almost surely with

uk = [∥∇F (x̄k)∥2, ∥ḡk∥2]T .

Since πTHk has the following form

πTHk =
[
κ5λ

kπ1, (κ6λ
k − κ7(λ

k)2)π1

]
and (λk)2 is summable, one has

∞∑
k=0

λk∥∇F (x̄k)∥2 < ∞,

∞∑
k=0

λk∥ḡk∥2 < ∞, a.s. (17)

Hence, it follows that

∥∇F (x̄k)∥ < ∆1, ∥ḡk∥ < ∆2, a.s. (18)

for some random scalars ∆1 > 0 and ∆2 > 0 due to the
assumption

∑∞
k=0 λ

k = ∞.
Now, we focus on proving that both vk

2 = ∥xk − 1x̄k∥2R
and vk

3 = ∥sk − vs̄k∥2C converge to 0 almost surely. The idea
is to show that we can apply Lemma 3. By focusing on the
second and third elements of vk, i.e., vk

2 and vk
3 , from (14)

we have[
vk+1
2

vk+1
3

]
≤
(
Ṽ k + ak11T

)[ vk
2

vk
3

]
+ b̂k1,

where
b̂k = bk + ak(F (x̄k)− F (θ∗)),

Ṽ k =

[
1− κ2γ

k κ3γ
k

0 1− κ4γ
k

]
,

which can be rewritten as[
vk+1
2

vk+1
3

]
≤ Ṽ k

[
vk
2

vk
3

]
+ b̃k1 (19)

with

b̃k =bk

+ ak
(
F (x̄k)− F (θ∗) + ∥xk − 1x̄k∥2R + ∥sk − vs̄k∥2C

)
.

To apply Lemma 3, noting that γk is not summable, we
show that the inequality π̃T Ṽ k ≤ (1−αγk)π̃T has a solution
in π̃ = [π2, π3] with π2, π3 > 0 and α ∈ (0, 1).

From
π̃T Ṽ k ≤ (1− αγk)π̃T ,

one has

(1− κ2γ
k)π2 ≤ (1− αγk)π2

and

κ3γ
kπ2 + (1− κ4γ

k)π3 ≤ (1− αγk)π3,

which can be simplified as α ≤ κ2 and α ≤ κ4 − π2

π3
κ3.

Given κ2 > 0, κ3 > 0, and κ4 > 0 according to our
assumption, we can always find appropriate π2 > 0 and
π3 > 0 to make α ∈ (0, 1) hold.

We next prove that the condition
∑∞

k=0 b̃
k < 0 a.s. of

Lemma 3 is also satisfied. Indeed, the condition can be met
because: (1) bk and ak are summable according to the assump-
tion of the theorem; and (2) F (x̄k) − F (θ∗), ∥xk − 1xk∥2R,
∥sk−vs̄k∥2C are all bounded almost surely due to the existence
of the limit in (16). Thus, all the conditions of Lemma 3 are
satisfied, and thus it follows that limk→∞ ∥xk

i − x̄k∥ = 0
and limk→∞ ∥ski − vis̄

k∥ = 0 hold almost surely. Moreover,
in view of the existence of the limit in (16) and the facts
that π1 > 0 and vk1 = F (x̄k) − F (θ∗), it follows that
limk→∞ F (x̄k) exists almost surely.
(b) Since

∑∞
k=0 λ

k∥∇F (x̄k)∥2 < ∞ holds almost surely
(see (17)), from

∑∞
k=0 λ

k = ∞, it follows that we have
lim inf

k→∞
∥∇F (x̄k)∥ = 0 almost surely.

Now, if the function F (·) has bounded level sets, then
the sequence {x̄k} is bounded almost surely since the limit
limk→∞ F (x̄k) exists almost surely (as shown in part (a)).
Thus, {x̄k} has accumulation points almost surely. Let {x̄ki}
be a sub-sequence such that limi→∞ ∥∇F (x̄ki)∥ = 0 holds
almost surely. Without loss of generality, we may assume
that {x̄ki} is almost surely convergent, for otherwise we
would choose a sub-sequence of {x̄ki}. Let limi→∞ x̄ki = x̂.
Then, by the continuity of the gradient ∇F (·), it follows that
∇F (x̂) = 0, implying that x̂ is an optimal point. Since F (·)
is continuous, we have limi→∞ F (x̄ki) = F (x̂) = F (θ∗). By
part (a), limk→∞ F (x̄k) exists almost surely, and thus we must
have limk→∞ F (x̄k) = F (θ∗) almost surely.

Finally, by part (a), we have limk→∞ ∥xk
i −x̄k∥2 = 0 almost

surely for every i. Thus, each {xk
i } has the same accumulation

points as the sequence {x̄k} almost surely, implying by the
continuity of the function F (·) that limk→∞ F (xk

i ) = F (θ∗)
holds almost surely for all i.

Remark 4. In Theorem 1(b), the bounded level set condition
can be replaced with any other condition ensuring that the
sequence {x̄k} is bounded almost surely.

Theorem 1 is critical for establishing convergence properties
of the gradient tracking-based distributed algorithm together
with suitable conditions on the information-sharing noise. We
make the following assumption on the noise:

Assumption 3. For every i ∈ [m], the noise sequences
{ζki } and {ξki } are zero-mean independent random variables,
and independent of {x0

i ; i ∈ [m]}. Also, for every k, the
noise collection {ζkj , ξkj ; j ∈ [m]} is independent. The noise



variances (σk
ζ,i)

2 = E
[
∥ζki ∥2

]
and (σk

ξ,i)
2 = E

[
∥ξki ∥2

]
and

the decaying factor γk are such that
∞∑
k=0

(γk)2 max
i∈[m]

(σk
ζ,i)

2 < ∞,
∞∑
k=0

(γk)2 max
j∈[m]

(σk
ξ,j)

2 < ∞.

(20)
The initial random vectors satisfy E

[
∥x0

i ∥2
]
< ∞, ∀i ∈ [m].

Remark 5. The condition (20) is satisfied, for example, when
sequences {(γk)2} and {(λk)2} are summable, and sequences
{σk

ζ,i} and {σk
ξ,i} are bounded for every i ∈ [m].

Theorem 2. Let Assumption 1, Assumption 2, and Assump-
tion 3 hold. If {γk} and {λk} satisfy

∑∞
k=0 γ

k = ∞,∑∞
k=0(γ

k)2 < ∞,
∑∞

k=0 λ
k = ∞,

∑∞
k=0

(λk)2

γk < ∞, and
limk→∞ λk/γk = 0, then the results of Theorem 1 hold for
Algorithm 1.

Proof. The goal is to establish the relationship in (14), with
the σ-field Fk = {xℓ

i , s
ℓ
i ; 0 ≤ ℓ ≤ k, i ∈ [m]}. To this end,

we divide the derivations into four steps: in Step I, Step II, and
Step III, we establish relations for ∥sk−vs̄k∥C , ∥xk−1x̄k∥R,
and E

[
F (x̄k)− F (θ∗)|Fk

]
for the iterates generated by the

proposed algorithm, respectively. In Step IV, we use them to
show that (14) of Theorem 1 holds.

Step I: Relationship for ∥sk − vs̄k∥C .
From (5), we have

s̄k+1 =
1T sk+1

m

=
1T

m

(
Cksk + γkξξξkw + λkgk

)
= s̄k + γk ξ̄kw + λkḡk,

(21)

which, in combination with the relationship
(
Ck − v1T

m

)
v =

0, leads to

sk+1 − vs̄k+1 = C̄k(sk − vs̄k) + γkΠvξξξ
k
w + λkΠvg

k,

where we used the relationship C̄k = Ck − v1T

m and defined
Πv = I − v1T

m for the sake of notational simplicity.
The preceding relationship further leads to∥∥sk+1 − vs̄k+1

∥∥2
C

=
∥∥C̄k(sk − vs̄k) + λkΠvg

k
∥∥2
C
+
∥∥∥γkΠvξξξ

k
w

∥∥∥2
C

+ 2
〈
C̄k(sk − vs̄k) + λkΠvg

k, γkΠvξξξ
k
w

〉
C

≤
(
∥C̄k∥C∥sk − vs̄k∥C + λk∥Πv∥C∥gk∥C

)2
+
∥∥∥γkΠvξξξ

k
w

∥∥∥2
C

+ 2
〈
C̄k(sk − vs̄k) + λkΠvg

k, γkΠvξξξ
k
w

〉
C
,

(22)

where ⟨·⟩C denotes the inner product induced2 by the norm
∥ · ∥C .

We further bound the first term on the right hand side of the
preceding inequality using the property ∥C̄k∥C = 1 − γkρc

2Since one can verify that ∥sk∥C = ∥C̃sk∥2 where C̃ is discussed in the
paragraph after Remark 3, we have the norm ∥·∥C satisfying the Parallelogram
law, implying that it has an associated inner product ⟨·, ·⟩C .

and the inequality (a + b)2 ≤ (1 + ϵ)a2 + (1 + ϵ−1)b2 valid
for any scalars a, b, and ϵ > 0 (by setting ϵ = 1

1−γkρc
−1 and

hence 1− ϵ−1 = 1
γkρc

):∥∥sk+1 − vs̄k+1
∥∥2
C

≤
(
(1− γkρc)∥sk − vs̄k∥C + λk∥Πv∥C∥gk∥C

)2
+
∥∥∥γkΠvξξξ

k
w

∥∥∥2
C

+ 2
〈
C̄k(sk − vs̄k) + λkΠvg

k, γkΠvξξξ
k
w

〉
C

≤ (1− γkρc)∥sk − vs̄k∥2C

+
(λk)2

γkρc
∥Πv∥2C∥gk∥2C +

∥∥∥γkΠvξξξ
k
w

∥∥∥2
C

+ 2
〈
C̄k(sk − vs̄k) + λkΠvg

k, γkΠvξξξ
k
w

〉
C
.

Taking the expectation (conditioned on Fk) on both sides
yields

E
[∥∥sk+1 − vs̄k+1

∥∥2
C
|Fk

]
≤ (1− γkρc)

∥∥sk − vs̄k
∥∥2
C

+
(λk)2

γkρc
∥Πv∥2C∥gk∥2C + (γk)2∥Πv∥2CE

[
∥ξξξkw∥2C

]
≤ (1− γkρc)

∥∥sk − vs̄k
∥∥2
C
+

(λk)2δ2C,2

γkρc
∥Πv∥2C∥gk∥22

+ (γk)2δ2C,2∥Πv∥2CE
[
∥ξξξkw∥22

]
= (1− γkρc)

∥∥sk − vs̄k
∥∥2
C
+

(λk)2δ2C,2

γkρc
∥Πv∥2C∥gk∥22

+ (γk)2δ2C,2∥Πv∥2C
∑
i,j

(Cijσ
k
ξ,j)

2,

(23)

where δC,2 is a constant such that ∥x∥C ≤ δC,2∥x∥2 for
all x. (In finite-dimensional vector spaces, all norms are
equivalent up to a proportionality constant, represented by δC,2

here.) Note that the inner-product term in the preceding step
disappears because the means of all ξki are zero according to
Assumption 3, and hence their linear combination ξξξkw also has
zero mean.

Next we proceed to bound the term ∥gk∥2 on the right hand
side of the preceding inequality.

Because every fi(·) is convex with Lipschitz continuous
gradient L according to Assumption 1, we always have the
following relation (see Theorem 2.1.5 in [45]):

fi(v) + ⟨∇fi(v), u− v⟩+ ∥∇fi(v)−∇fi(u)∥2

2L
≤ fi(u)

for any u, v ∈ Rd.
Letting v = θ∗ and u = x̄k in the preceding relation, we

obtain for all i

fi(θ
∗)+

〈
∇fi(θ

∗), x̄k − θ∗
〉
+
∥∇fi(θ

∗)−∇fi(x̄
k)∥2

2L
≤ fi(x̄

k)

and further

F (θ∗) +
〈
∇F (θ∗), x̄k − θ∗

〉
+

∑m
i=1 ∥∇fi(θ

∗)−∇fi(x̄
k)∥2

2mL
≤ F (x̄k).



Recalling ∇F (θ∗) = 0, we have

m∑
i=1

∥∇fi(θ
∗)−∇fi(x̄

k)∥2 ≤ 2mL(F (x̄k)− F (θ∗))

and further
m∑
i=1

∥∇fi(x̄
k)∥2

≤ 2
m∑
i=1

(
∥∇fi(θ

∗)−∇fi(x̄
k)∥2 + ∥∇fi(θ

∗)∥2
)

≤ 4mL(F (x̄k)− F (θ∗)) + 2
m∑
i=1

∥∇fi(θ
∗)∥2.

(24)

Therefore, we have

∥gk∥2 =
m∑
i=1

∥gki ∥2

≤ 2
m∑
i=1

(
∥gki −∇fi(x̄

k)∥2 + ∥∇fi(x̄
k)∥2

)
≤ 2L2

m∑
i=1

∥xk
i − x̄k∥2 + 8mL(F (x̄k)− F (θ∗))

+ 4
m∑
i=1

∥∇fi(θ
∗)∥2

= 2L2∥xk − 1x̄k∥22 + 8mL(F (x̄k)− F (θ∗))

+ 4

m∑
i=1

∥∇fi(θ
∗)∥2.

(25)

Plugging (25) into (23) yields

E
[∥∥sk+1 − vs̄k+1

∥∥2
C
|Fk

]
≤ (1− γkρc)

∥∥sk − vs̄k
∥∥2
C

+
2L2(λk)2δ2C,2∥Πv∥2C

γkρc
∥xk − 1x̄k∥22

+
8mL(λk)2δ2C,2∥Πv∥2C

γkρc
(F (x̄k)− F (θ∗))

+
4(λk)2δ2C,2∥Πv∥2C

γkρc

m∑
i=1

∥∇fi(θ
∗)∥2

+ (γk)2δ2C,2∥Πv∥2C
∑
i,j

(Cijσ
k
ξ,j)

2.

(26)

Step II: Relationship for ∥xk − 1x̄k∥R.
From (5), we obtain

x̄k+1 =
uT

m
xk+1 =

uT

m
(Rkxk + γkζζζkw − U−1(sk+1 − sk))

= x̄k + γk ζ̄kw − 1T

m
(sk+1 − sk)

= x̄k + γk ζ̄kw − (s̄k+1 − s̄k)

= x̄k + γk ζ̄kw − γk ξ̄kw − λkḡk,
(27)

where we used uTU−1 = 1T in the second equality and (21)
in the last equality.

Combining (5) and (27) leads to

xk+1 − 1x̄k+1 =R̄k(xk − 1x̄k)−ΠU (s
k+1 − sk) + γkΠuζζζ

k
w,

(28)
where we used the relationship R̄k1x̄k = 0 and R̄k = Rk −
1uT

m , and defined Πu = I − 1uT

m , ΠU = U−1 − 11T

m for the
sake of notational simplicity.

From the first relationship in (5), we can obtain

sk+1 − sk = Cksk + γkξξξkw + λkgk − sk

= γkCsk + γkξξξkw + λkgk

= γkC(sk − vs̄k) + γkξξξkw + λkgk,

(29)

where we used Ck = I + γkC in the second equality and
Cv = 0 in the last equality.

Combining (28) and (29) yields

xk+1 − 1x̄k+1 =R̄k(xk − 1x̄k)− γkΠUC(sk − vs̄k)

− γkΠUξξξ
k
w − λkΠUg

k + γkΠuζζζ
k
w.

(30)

Taking the norm ∥ · ∥R on both sides of the preceding
relationship yields

∥xk+1 − 1x̄k+1∥2R
= ∥R̄k(xk − 1x̄k)− γkΠUC(sk − vs̄k)− λkΠUg

k∥2R
+ (γk)2∥Πuζζζ

k
w −ΠUξξξ

k
w∥2R

+ 2
〈
R̄k(xk − 1x̄k)− γkΠUC(sk − vs̄k)− λkΠUg

k,

γkΠuζζζ
k
w − γkΠUξξξ

k
w

〉
R

≤
(
∥R̄k∥R∥xk − 1x̄k∥R + γk∥ΠUC∥R∥sk − vs̄k∥R

+λk∥ΠU∥R∥gk∥R
)2

+ (γk)2∥Πuζζζ
k
w −ΠUξξξ

k
w∥2R

+ 2
〈
R̄k(xk − 1x̄k)− γkΠUC(sk − vs̄k)− λkΠUg

k,

γkΠuζζζ
k
w − γkΠUξξξ

k
w

〉
R
,

(31)
where ⟨·⟩R denotes the inner product induced3 by the norm
∥ · ∥R.

Using the relationship ∥R̄k∥R = 1−γkρR and the inequality
(a+b)2 ≤ (1+ϵ)a2+(1+ϵ−1)b2 valid for any scalars a, b, and
ϵ > 0 (by setting ϵ = 1

1−γkρR
−1 and hence 1−ϵ−1 = 1

γkρR
),

we can arrive at

∥xk+1 − 1x̄k+1∥2R ≤ (1− γkρR)∥xk − 1x̄k∥2R

+
2γk∥ΠUC∥2R

ρR
∥sk − vs̄k∥2R +

2(λk)2∥ΠU∥2R
γkρR

∥gk∥2R

+ (γk)2∥Πuζζζ
k
w −ΠUξξξ

k
w∥2R

+ 2
〈
R̄k(xk − 1x̄k)− γkΠUC(sk − vs̄k)− λkΠUg

k,

γkΠuζζζ
k
w − γkΠUξξξ

k
w

〉
R
.

(32)

3Since one can verify that ∥xk∥R = ∥R̃xk∥2 where R̃ is discussed in the
paragraph after Remark 3, we have the norm ∥·∥R satisfying the Parallelogram
law, implying that it has an associated inner product ⟨·, ·⟩R.



Taking the expectation (conditioned on Fk) on both sides
yields

E
[
∥xk+1 − 1x̄k+1∥2R|Fk

]
≤ (1− γkρR)∥xk − 1x̄k∥2R

+
2γk∥ΠUC∥2R

ρR
∥sk − vs̄k∥2R +

2(λk)2∥ΠU∥2R
γkρR

∥gk∥2R

+ 2(γk)2∥Πu∥2E
[
∥ζζζkw∥2R

]
+ 2(γk)2∥ΠU∥2RE

[
∥ξξξkw∥2R

]
≤ (1− γkρR)∥xk − 1x̄k∥2R +

2γk∥ΠUC∥2R
ρR

∥sk − vs̄k∥2R

+
2(λk)2∥ΠU∥2Rδ2R,2

γkρR
∥gk∥22

+ 2(γk)2∥Πu∥2Rδ2R,2

∑
i,j

(Rijσ
k
ζ,j)

2

+ 2(γk)2∥ΠU∥2Rδ2R,2

∑
i,j

(Cijσ
k
ξ,j)

2,

(33)
where δR,2 is a constant such that ∥x∥R ≤ δR,2∥x∥2 for all
x. (As mentioned earlier, in finite-dimensional vector spaces,
all norms are equivalent up to a proportionality constant,
represented here by δR,2.)

Plugging (25) into (33) yields

E
[
∥xk+1 − 1x̄k+1∥2R|Fk

]
≤

(
1− γkρR +

4(λk)2L2∥ΠU∥2Rδ2R,2

γkρR

)
∥xk − 1x̄k∥2R

+
2γk∥ΠUC∥2R

ρR
∥sk − vs̄k∥2R

+
16mL(λk)2∥ΠU∥2Rδ2R,2

γkρR
(F (x̄k)− F (θ∗))

+
8(λk)2∥ΠU∥2Rδ2R,2

γkρR

m∑
i=1

∥∇fi(θ
∗)∥2

+ 2(γk)2∥Πu∥2Rδ2R,2

∑
i,j

(Rijσ
k
ζ,j)

2

+ 2(γk)2∥ΠU∥2Rδ2R,2

∑
i,j

(Cijσ
k
ξ,j)

2.

(34)
Step III: Relationship for F (x̄k)− F (θ∗).
Because F (·) is convex with Lipschitz continuous gradients,

we always have the following relation (see Theorem 2.1.5 in
[45]):

F (u) ≤ F (v) + ⟨∇F (v), u− v⟩+ L

2
∥v − u∥2

for any u, v ∈ Rd.
Letting u = x̄k+1 and v = x̄k in the preceding relation

yields

F (x̄k+1)

≤ F (x̄k) + ⟨∇F (x̄k), x̄k+1 − x̄k⟩+ L

2
∥x̄k+1 − x̄k∥2

≤ F (x̄k) + ⟨∇F (x̄k), γk ζ̄kw − γk ξ̄kw − λkḡk⟩

+
L

2
∥γk ζ̄kw − γk ξ̄kw − λkḡk∥2,

(35)

where in the second inequality we used the relation in (27).

Subtracting F (θ∗) on both sides of (35) and then taking the
expectation (conditioned on Fk) on both sides yield

E
[
F (x̄k+1)− F (θ∗)|Fk

]
≤ F (x̄k)− F (θ∗)− ⟨∇F (x̄k), λkḡk⟩

+
L

2
E
[
∥γk ζ̄kw − γk ξ̄kw − λkḡk∥2

]
≤ F (x̄k)− F (θ∗)− ⟨∇F (x̄k), λkḡk⟩

+
3L

2
(λk)2∥ḡk∥2 + 3L

2
(γk)2E

[
∥ζ̄kw∥2

]
+

3L

2
(γk)2E

[
∥ξ̄kw∥2

]
≤ F (x̄k)− F (θ∗)− ⟨∇F (x̄k), λkḡk⟩

+
3L

2
(λk)2∥ḡk∥2 + 3L

2
(γk)2

∑
i,j

(Rijσ
k
ζ,j)

2

+
3L

2
(γk)2

∑
i,j

(Cijσ
k
ξ,j)

2.

(36)

Next we bound the inner product term. Using the relationship
−⟨a, b⟩ = ∥a−b∥2−∥a∥2−∥b∥2

2 valid for any vectors a and b,
one obtains

− ⟨∇F (x̄k), λkḡk⟩

=
λk

2

(
∥∇F (x̄k)− ḡk∥2 − ∥∇F (x̄k)∥2 − ∥ḡk∥2

)
≤ λk

2

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(x̄
k)−∇fi(x

k
i ))

∥∥∥∥∥
2

− ∥∇F (x̄k)∥2

−∥ḡk∥2
)

≤ λkL2

2m

m∑
i=1

∥xk
i − x̄k∥2 − λk

2
∥∇F (x̄k)∥2 − λk

2
∥ḡk∥2

=
λkL2

2m
∥xk − 1x̄k∥22 −

λk

2
∥∇F (x̄k)∥2 − λk

2
∥ḡk∥2.

(37)
Plugging (37) into (36) leads to

E
[
F (x̄k+1)− F (θ∗)|Fk

]
≤ F (x̄k)− F (θ∗) +

λkL2

2m
∥xk − 1x̄k∥22 −

λk

2
∥∇F (x̄k)∥2

−
(
λk − 3L(λk)2

2

)
∥ḡk∥2 + 3L

2
(γk)2

∑
i,j

(Rijσ
k
ζ,j)

2

+
3L

2
(γk)2

∑
i,j

(Cijσ
k
ξ,j)

2.

(38)
Step IV: We combine Steps I-III and prove the theorem.
Defining

vk =
[
F (x̄k+1)− F (θ∗), ∥xk − 1x̄k∥2R, ∥sk − vs̄k∥2C

]T
,

we have the following relations from (26), (34), and (38):

E
[
vk+1|Fk

]
≤ (V k +Ak)vk −Hk

[ ∥∥∇F (x̄k)
∥∥2

∥ḡk∥2

]
+Bk,

(39)



where

V k =

 1
δ22,RλkL2

2m 0

0 1− γk
1ρR

2γk∥ΠUC∥2
Rδ2R,C

ρR

0 0 1− γk
2ρc

 ,

Ak =

 0 0 0
ak1 ak2 0
ak3 ak4 0

 ,

Hk =

 λk

2
λk−3L(λk)2

2
0 0
0 0

 , Bk =

 bk1
bk2
bk3

 ,

with

ak1 =
16mL(λk)2∥ΠU∥2Rδ2R,2

γkρR
,

ak2 =
4(λk)2L2∥ΠU∥2Rδ2R,2

γkρR
,

ak3 =
8mL(λk)2δ2C,2∥Πv∥2C

γkρc
,

ak4 =
2L2(λk)2δ2C,2δ

2
2,R∥Πv∥2C

γkρc
,

bk1 =
3L

2
(γk)2

∑
i,j

(Rijσ
k
ζ,j)

2 +
3L

2
(γk)2

∑
i,j

(Cijσ
k
ξ,j)

2,

bk2 =
8(λk)2∥ΠU∥2Rδ2R,2

γkρR

m∑
i=1

∥∇fi(θ
∗)∥2

+ 2(γk)2∥Πu∥2Rδ2R,2

∑
i,j

(Rijσ
k
ζ,j)

2

+ 2(γk)2∥ΠU∥2Rδ2R,2

∑
i,j

(Cijσ
k
ξ,j)

2,

bk3 =
4(λk)2δ2C,2∥Πv∥2C

γkρc

m∑
i=1

∥∇fi(θ
∗)∥2

+ (γk)2δ2C,2∥Πv∥2C
∑
i,j

(Cijσ
k
ξ,j)

2.

Under Assumption 3, and the conditions that (γk)2

(λk)2

γk are summable in the theorem statement, it follows
that all entries of the matrix Bk are summable almost
surely. By defining b̂k as the maximum element of Bk,
we have Bk ≤ b̂k1. Therefore, E

[
F (x̄k)− F (θ∗)|Fk

]
,

E
[
∥xk − 1x̄k∥2R|Fk

]
, and E

[
∥sk − vs̄k∥2C |Fk

]
for the iter-

ates generated by the proposed algorithm satisfy the conditions
of Theorem 1 and, hence, the results of Theorem 1 hold.

Remark 6. The requirement on the decaying-factor γk and
stepsize λk in the statement of Theorem 2 can be satisfied,
for example, by setting γk = O( 1

ka ) and λk = O( 1
kb ) with

a, b ∈ R satisfying 0.5 < a < b ≤ 1 and 2b − a > 1. For
example, setting γk = c1

1+c2kι and λk = c3
1+c4k

will satisfy
the conditions for any exponent 0.5 < ι < 1, and positive
coefficients c1, c2, c3, and c4.

Remark 7. Using the relationship in (9) and the definitions
of s̄k, ξ̄k, and ḡk in (10) and (11), one can obtain

s̄k+1 − s̄k = γk ξ̄kw + λkḡk,

i.e., s̄k+1 − s̄k tracks the global gradient. Combined with the
proven result in Theorem 2 that all ski converge to each other,
and hence to the average s̄k of all ski , one can deduce that
sk+1
i − ski in (4) of the proposed Algorithm 1 indeed tracks

the global gradient.

V. ONLINE ESTIMATION OF THE LEFT EIGENVECTOR

In Algorithm 1, when the communication graph GR is not
balanced, a preprocessing approach can be used to estimate
the left eigenvector uT . In this section, inspired by the
online eigenvector estimation algorithm in [46], we propose
Algorithm 2 below, which allows individual agents to estimate
the left eigenvector uT locally on the fly while updating their
optimization iterations in a distributed manner:

Algorithm 2: Robust gradient-tracking based distributed
optimization with eigenvector estimation

Parameters: Stepsize λk and a decaying factor γk to suppress
information-sharing noise;
Every agent i maintains two states xk

i and ski , which are
initialized randomly with x0

i ∈ Rd and s0i ∈ Rd. Every agent
i also maintains an eigenvector-estimation parameter zki ∈ Rm

initialized with z0i = ei ∈ Rm where ei has the ith element
equal to one and all other elements equal to zero.
for k = 1, 2, · · · do

a) Agent i pushes ski to each agent l ∈ Nout
C,i , which will

be received as ski + ξki due to information-sharing noise.
And agent i pulls xk

j from each j ∈ Nin
R,i, which will be

received as xk
j + ζkj due to information-sharing noise. Here

the subscript R or C in neighbor sets indicates the neighbors
with respect to the graphs induced by these matrices. Agent
i also pulls zkj from each j ∈ Nin

R,i.
b) Agent i chooses γk > 0 satisfying 1 + γkRii > 0 and

1+ γkCii > 0 with Rii and Cii defined in (3). Then, agent
i updates its states as follows:

sk+1
i =(1 + γkCii)s

k
i + γk

∑
j∈Nin

C,i

Cij(s
k
j + ξkj )

+ λk∇fi(x
k
i ),

xk+1
i =(1 + γkRii)x

k
i + γk

∑
j∈Nin

R,i

Rij(x
k
j + ζkj )

− sk+1
i − ski
mzkii

,

zk+1
i =zki +

∑
j∈Nin

R,i

Rij(z
k
j − zki ),

(40)

where zkii denotes the ith element of zki .
c) end

In Algorithm 2, every agent uses the third update in (40)
to locally estimate the left eigenvector of I + γkR. (Note that
as discussed in Remark 3, the left eigenvector of I + γkR
is time-invariant and independent of γk. Also note that the
update obtains an estimated eigenvector with row sum equal to
one, and thus we scale the estimate by m to obtain uT whose



row sum is required to be m.) Therefore, every agent i can
use its local estimate zki of the left eigenvector, which avoids
using global information of uT in Algorithm 1. It is worth
noting that since zki does not contain sensitive information,
there is no need to add information-sharing noise to them to
enable differential privacy. Moreover, the dimension of zki is
equal to the size of the network m. Thus, even in the case
where the communication channel is noisy or coarse quanti-
zation is used for s-iterates and x-iterates, special effort (e.g.,
error-correction coding [47] or high-precision quantization)
can be exploited to ensure that shared zki messages are not
contaminated by noises. Note that such special effort may
not be feasible for the sharing of optimization variables (s-
iterates and x-iterates) since the dimension of optimization
variables can scale up to hundreds of millions in deep learning
applications [22], which makes the cost for error-correction
coding or high-precision quantization prohibitively high.

Next, we prove that Algorithm 2 can still ensure almost sure
convergence of all agents to an optimal solution. To this end,
we first characterize the estimation error of the eigenvector
estimator:

Lemma 4. Under Assumption 2, the iterates zki in (40),
after scaled by m, converge to the left eigenvector uT =
[u1, u2, · · · , um]

T of I + γkR with a geometric rate, i.e.,
there exist C > 0 and p ∈ (0, 1) satisfying the following
inequality for any i ∈ [m] and k ≥ 0:∣∣∣∣ 1

mzkii
− 1

ui

∣∣∣∣ ≤ Cpk, (41)

where zkii denotes the ith element of zki .

Proof. From [46], we know that there exist C1 > 0 and
p ∈ (0, 1) such that

∣∣mzkii − ui

∣∣ ≤ C1p
k holds under the

given conditions. According to [46], we also know that ui and
zkii are strictly positive numbers. Therefore, using the relation∣∣∣ 1
mzk

ii

− 1
ui

∣∣∣ = |mzk
ii−ui|

mzk
iiui

, we know that there exist C > 0

such that (41) holds.

Based on Lemma 4, we can prove the almost sure conver-
gence of all agents to an optimal solution following the line
of reasoning of Theorem 2:

Theorem 3. Let Assumption 1, Assumption 2, and Assump-
tion 3 hold. If {γk} and {λk} satisfy

∑∞
k=0 γ

k = ∞,∑∞
k=0(γ

k)2 < ∞,
∑∞

k=0 λ
k = ∞,

∑∞
k=0

(λk)2

γk < ∞, and
limk→∞ λk/γk = 0, then the results of Theorem 1 hold for
Algorithm 2.

Proof. The proof follows the derivation of Theorem 2. Since
the eigenvalue estimation process does not affect the dy-
namics of ski , the relation for ∥sk − vs̄k∥C in Step I of
Theorem 2 still holds for Algorithm 2. Thus, we only need
to show that we can establish relations for ∥xk − 1x̄k∥R and
E
[
F (x̄k)− F (θ∗)|Fk

]
that are similar to those in Theorem

2.
Similar to (27), denoting U as diag(u1, u2, · · · , um) and

Zk as diag(mzk11, mzk22, · · · ,mzkmm), with zkii denoting the

ith element of zki , we can obtain the following relationship for
the x-iterates in Algorithm 2:

x̄k+1

=
uT

m
xk+1 =

uT

m
(Rkxk + γkζζζkw − (Zk)−1(sk+1 − sk))

=
uT

m

(
Rkxk + γkζζζkw −

(
U−1+(Zk)−1−U−1

)
(sk+1 − sk)

)
=x̄k + γk ζ̄kw − 1T

m
(sk+1 − sk)

− uT ((Zk)−1 − U−1)

m
(sk+1 − sk)).

(42)
Hence, following the line of reasoning in the proof of

Theorem 2, we can obtain

xk+1 − 1x̄k+1 =R̄k(xk − 1x̄k)− γkΠUC(sk − vs̄k)

− γkΠUξξξ
k
w − λkΠUg

k + γkΠuζζζ
k
w

+ γkΠe
U (s

k − vs̄k) + γkΠe
Uξξξ

k
w + λkΠe

Ug
k,

(43)
where Πe

U = (I − 1uT

m )((Zk)−1 − U−1) and we have used
the relationship in (29) in the last equality.

In (43), the last three terms on the right hand side corre-
spond to the influence of introducing the eigenvector estimator.
Given that the elements of (Zk)−1 − U−1 diminish with a
geometric rate according to Lemma 4, we deduce that the co-
efficient sequences for these terms are all summable, and hence
they will only introduce terms with summable coefficients in
the relationship for ∥xk − 1x̄k∥R, which will not affect the
almost sure convergence. The same reasoning applies to the
dynamics of x̄k+1 − x̄k. More specifically, compared with
Algorithm 1, Algorithm 2’s eigenvector estimator (the last
item on the right hand side of (42)) introduces three extra
terms γk uT ((Zk)−1−U−1)

m C(sk − vs̄k), γk uT ((Zk)−1−U−1)
m ξξξkw,

and λk uT ((Zk)−1−U−1)
m gk according to (29). From Lemma 4,

we know that their coefficients all decrease with a geometric
rate and hence are all summable. Therefore, these three extra
terms only introduce items that have summable coefficient
sequences in the relationship for F (x̄k) − F (θ∗), which will
not affect the almost sure convergence.

In summary, we have that introducing the eigenvector esti-
mator adds terms with summable coefficient sequences in the
final inequality in (39), and hence will not affect the almost
sure convergence results in Theorem 2. Therefore, we can still
prove that the iterates generated by Algorithm 2 satisfy the
conditions of Theorem 1 and, hence, the results of Theorem
1 hold for Algorithm 2.

VI. EXTENSION TO DISTRIBUTED STOCHASTIC GRADIENT
METHODS

In many distributed optimization applications, individual
agents do not have access to the precise gradient and hence
have to use noisy local gradients for optimization. For ex-
ample, in modern machine learning on massive datasets,
evaluating the precise gradient using all available data can
be extremely expensive in computation or even practically
infeasible. So individual agents usually only compute inexact



estimates of the true gradients using a portion of the data points
available to them [24]. Furthermore, in the era of Internet of
Things, which connect massive low-cost sensing and commu-
nication devices, the data fed to optimization computations are
usually subject to measurement noises [48]. In this section,
we prove that the proposed algorithm can ensure all agents’
almost sure convergence to an optimal solution even when the
gradients are noisy.

As in most existing results on stochastic gradient methods,
we make the following standard assumption on the stochas-
ticity of individual agents’ local gradients:

Assumption 4. Every individual agent’s local gradient gki is
an unbiased estimate of the true gradient ∇fi(x

k
i ) and has

bounded variance, i.e.,

E
[
gki
]
= ∇fi(x

k
i ), ∀i

E
[
∥gki −∇fi(x)∥2

]
≤ σ2, ∀i, x

where σ is some positive constant.

Theorem 4. Let Assumptions 1-4 hold. If {γk} and {λk}
satisfy

∑∞
k=0 γ

k = ∞,
∑∞

k=0(γ
k)2 < ∞,

∑∞
k=0 λ

k = ∞,∑∞
k=0

(λk)2

γk < ∞, and limk→∞ λk/γk = 0, then the results
of Theorem 1 hold for the proposed Algorithm 1 and Algorithm
2 even when individual agents have access to only stochastic
estimates of their true gradients.

Proof. We use Algorithm 1 as an example to prove the results.
Similar derivations apply to Algorithm 2 as well.

The goal is still to establish the relationship in (14), with
the σ-field Fk = {xℓ

i , s
ℓ
i ; 0 ≤ ℓ ≤ k, i ∈ [m]}. To this

end, we organize the derivations into four steps: in Step I,
Step II, and Step III, we establish respectively relations for
∥sk − vs̄k∥C , ∥xk − 1x̄k∥R, and E

[
F (x̄k)− F (θ∗)|Fk

]
for

the iterates generated by the proposed algorithm. In Step IV,
we use them to show that (14) of Theorem 1 holds.

Step I: Relationship for ∥sk − vs̄k∥C .
Since the noise on gradients can be grouped into the noise

term ξki , following the same procedure as in Theorem 2, we
can obtain a relation similar to (26):

E
[∥∥sk+1 − vs̄k+1

∥∥2
C
|Fk

]
≤ (1− γkρc)

∥∥sk − vs̄k
∥∥2
C

+
2L2(λk)2δ2C,2∥Πv∥2C

γkρc
∥xk − 1x̄k∥22

+
8mL(λk)2δ2C,2∥Πv∥2C

γkρc
(F (x̄k)− F (θ∗))

+
4(λk)2δ2C,2∥Πv∥2C

γkρc

m∑
i=1

∥∇fi(θ
∗)∥2

+ (γk)2δ2C,2∥Πv∥2C
∑
i,j

(Cijσ
k
ξ,j)

2

+m2(λk)2δ2C,2∥Πv∥2Cσ2,

(44)

where the last term corresponds to the influence caused by the
stochasticity in local gradients.

Step II: Relationship for ∥xk − 1x̄k∥R.
Still following the derivations in Theorem 2, we have that

the stochasticity in local gradients will affect the term ∥gk∥2R

in (32). More specifically, after taking conditional expectation,
∥gk∥2R will become ∥gk∥2R + m2δ2R,2σ

2, and hence (34)
becomes

E
[
∥xk+1 − 1x̄k+1∥2R|Fk

]
≤

(
1− γkρR +

4(λk)2L2∥ΠU∥2Rδ2R,2

γkρR

)
∥xk − 1x̄k∥2R

+
2γk∥ΠUC∥2R

ρR
∥sk − vs̄k∥2R

+
16mL(λk)2∥ΠU∥2Rδ2R,2

γkρR
(F (x̄k)− F (θ∗))

+
8(λk)2∥ΠU∥2Rδ2R,2

γkρR

m∑
i=1

∥∇fi(θ
∗)∥2

+
2m2(λk)2∥ΠU∥2Rδ2R,2

γkρR
σ2

+ 2(γk)2∥Πu∥2Rδ2R,2

∑
i,j

(Rijσ
k
ζ,j)

2

+ 2(γk)2∥ΠU∥2Rδ2R,2

∑
i,j

(Cijσ
k
ξ,j)

2.

(45)
Step III: Relationship for F (x̄k)− F (θ∗).
Following the derivations in Theorem 2, we have that the

stochasticity in local gradients affects ḡk, which will be subject
to noise with variance σ2. More specifically, we have that (38)
becomes

E
[
F (x̄k+1)− F (θ∗)|Fk

]
≤ F (x̄k)− F (θ∗) +

λkL2

2m
∥xk − 1x̄k∥22 −

λk

2
∥∇F (x̄k)∥2

−
(
λk − 3L(λk)2

2

)
∥ḡk∥2 + 3L

2
(λk)2σ2

+
3L

2
(γk)2

∑
i,j

(Rijσ
k
ζ,j)

2 +
3L

2
(γk)2

∑
i,j

(Cijσ
k
ξ,j)

2.

(46)
Step IV: We combine Steps I-III and prove the theorem,

which involves arguments exactly the same as in the proof of
Theorem 2. In fact, following the derivation in Theorem 2, we
can obtain that the stochasticity of gradients will only affect
the matrix Bk in (39), which will still be summable. Therefore,
we can arrive at the same conclusion as in Theorem 2 even
when local gradients are stochastic.

VII. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the proposed
distributed optimization algorithm within the context of a
distributed estimation problem.

We consider a canonical distributed estimation problem
where a network of m sensors collectively estimate an un-
known parameter θ ∈ Rd. More specifically, we assume that
each sensor i has a noisy measurement of the parameter,
zi = Miθ+wi, where Mi ∈ Rs×d is the measurement matrix
of agent i and wi is Gaussian measurement noise of unit vari-
ance. Then the maximum likelihood estimation of parameter
θ can be solved using the optimization problem formulated as



(1), with each fi(θ) given as fi(θ) = ∥zi −Miθ∥2 + ς∥θ∥2,
where ς is a regularization parameter [9].

In the numerical experiments, we set the number of agents
(sensors) to m = 100 and adopt a random interaction graph. To
ensure that the random interaction graph is strongly connected,
we first arrange the 100 agents on a ring and then add
a directed link between any two nonadjacent nodes with
probability 0.3. In the evaluation, we set s = 3 and d = 2.
To evaluate the performance of the proposed algorithms, we
inject Gaussian based information-sharing noise ζki and ξki
on all shared xk

i and ski , respectively. Both ζki and ξki have
mean 0 and standard deviation σk

ζ,i = σk
ξ,i = 0.8. We set

the stepsize λk and diminishing sequence γk as λk = 0.02
1+0.1k

and γk = 1
1+0.1k0.6 , respectively, which satisfy the conditions

in Theorem 2. We run our Algorithm 1 and Algorithm 2 for
100 times and calculate the average as well as the variance
of the optimization error

∑m
i=1 ∥xk

i − θ∗∥ as a function of
the iteration index k. The result for Algorithm 1 is given by
the black curve and error bars in Fig. 1, and the result for
Algorithm 2 is given by the cyan curve and error bars in
Fig. 1. For comparison, we also run the conventional Push-
Pull algorithm in [18] (which uses a constant stepsize and
no decaying factor), the robust gradient-tracking algorithm
proposed in [38] (which uses a constant stepsize and can avoid
noise accumulation under constant inter-agent coupling), and
our recent result in [39] (which combines the conventional
Push-Pull with decaying factors). The stepsize for the conven-
tional Push-Pull method in [18] and the algorithm in [38] is
set to a constant value λk = 0.02, and the decaying factor and
stepsize for [39] is set the same as ours (note that [39] uses
two decaying factors, and we set one of them equal to our
decaying factor and the other one is selected according to the
requirement therein). For all these three algorithms, we run the
experiments for 100 times under the same information-sharing
noise. The evolution of the average optimization errors and
variances for the three algorithms are depicted by the curves
and error bars in orange, magenta, and blue, respectively, in
Fig. 1. It is clear that the proposed algorithms have both
faster convergence speeds and better optimization accuracies
compared with existing results. Furthermore, it can be seen
that the variance of the optimization error for the conventional
Push-Pull algorithm in [18] indeed grows with time, which
corroborates the accumulation of information-sharing noise
in conventional gradient-tracking based algorithms. It is also
worth noting that for the approach in [38] with a constant
stepsize, although the theoretical analysis therein establishes
that the expected optimization error converges linearly to a
steady-state value, the actual optimization error may decrease
with a slower rate.

VIII. CONCLUSIONS

The robustness of distributed optimization algorithms
against information-sharing noise is becoming increasingly
important due to the prevalence of channel noise, the ex-
istence of quantization errors, and the demand for data
perturbation/randomization for privacy protection. However,
gradient-tracking based distributed optimization, which is
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Fig. 1. Comparison of the proposed algorithms with the conventional Push-
Pull algorithm in [18], the algorithm in [38] that can avoid noise accumulation
when coupling matrices are constant, and the algorithm in [39] that combines
conventional Push-Pull with decaying factors.

gaining increased traction due to its applicability to general
directed graphs and fast convergence speed, is vulnerable
to information-sharing noise. In fact, in existing algorithms,
information-sharing noise accumulates on the global gradient
estimate and its variance will even grow to infinity when
the noise is persistent. We have proposed a new gradient-
tracking based approach which can avoid information-sharing
noise from accumulating in the global-gradient estimate. The
approach is applicable even when the inter-agent interaction is
time-varying, enabling the incorporation of a decaying factor
to gradually eliminate the influence of information-sharing
noise, even when the noise is persistent. We have proved that
with an appropriately chosen decaying factor, the proposed
approach can guarantee all agents’ almost sure convergence
to an optimal solution for general convex objective functions
with Lipschitz gradients, even in the presence of persistent
information-sharing noise. The approach is also applicable
when local gradients are subject to bounded noises as well,
which is common in machine learning applications. Numerical
simulation results confirm that in the presence of information-
sharing noise, the proposed approach has better optimization
accuracy compared with existing counterparts.

We should note that a limitation of our approach is that it
assumes time-invariant coupling topology. We plan to explore
relaxation of this assumption in future work. Moreover, in
future work, we also plan to study whether decaying factors
can be incorporated into non-gradient based distributed opti-
mization algorithms to enable robustness against information-
sharing noise.
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[37] Yongqiang Wang and Tamer Başar. Quantization enabled privacy
protection in decentralized stochastic optimization. IEEE Transactions
on Automatic Control, 2022.

[38] Shi Pu. A robust gradient tracking method for distributed optimization
over directed networks. In 59th IEEE Conference on Decision and Con-
trol, extended version available at https://arxiv.org/pdf/2003.13980.pdf,
pages 2335–2341. IEEE, 2020.

[39] Yongqiang Wang and Angelia Nedić. Tailoring gradient
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Tamer Başar (S’71-M’73-SM’79-F’83-LF’13) has
been with the University of Illinois Urbana-
Champaign since 1981, where he is currently Swan-
lund Endowed Chair Emeritus and Center for Ad-
vanced Study (CAS) Professor Emeritus of Elec-
trical and Computer Engineering, with also affil-
iations with the Coordinated Science Laboratory,
Information Trust Institute, and Mechanical Science
and Engineering. At Illinois, he has also served
as Director of CAS (2014-2020), Interim Dean of
Engineering (2018), and Interim Director of the

Beckman Institute (2008-2010). He received B.S.E.E. from Robert College,
Istanbul, and M.S., M.Phil, and Ph.D. from Yale University, from which
he received in 2021 the Wilbur Cross Medal. He is a member of the US
National Academy of Engineering, and Fellow of IEEE, IFAC, and SIAM.
He has served as presidents of IEEE CSS (Control Systems Society), ISDG
(International Society of Dynamic Games), and AACC (American Automatic
Control Council). He has received several awards and recognitions over
the years, including the highest awards of IEEE CSS, IFAC, AACC, and
ISDG, the IEEE Control Systems Award, and a number of international
honorary doctorates and professorships. He has around 1000 publications
in systems, control, communications, optimization, networks, and dynamic
games, including books on non-cooperative dynamic game theory, robust con-
trol, network security, wireless and communication networks, and stochastic
networked control. He was the Editor-in-Chief of Automatica between 2004
and 2014, and is currently editor of several book series. His current research
interests include stochastic teams, games, and networks; multi-agent systems
and learning; data-driven distributed optimization; epidemics modeling and
control over networks; security and trust; energy systems; and cyber-physical
systems.


