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Abstract—By enabling multiple agents to cooperatively solve
a global optimization problem in the absence of a central
coordinator, decentralized stochastic optimization is gaining
increasing attention in areas as diverse as machine learning,
control, and sensor networks. Since the associated data usually
contain sensitive information, such as user locations and personal
identities, privacy protection has emerged as a crucial need in
the implementation of decentralized stochastic optimization. In
this paper, we propose a decentralized stochastic optimization
algorithm that is able to guarantee provable convergence ac-
curacy even in the presence of aggressive quantization errors
that are proportional to the amplitude of quantization inputs.
The result applies to both convex and non-convex objective
functions, and enables us to exploit aggressive quantization
schemes to obfuscate shared information, and hence enables
privacy protection without losing provable optimization accuracy.
In fact, by using a stochastic ternary quantization scheme,
which quantizes any value to three numerical levels, we achieve
quantization-based rigorous differential privacy in decentralized
stochastic optimization, which has not been reported before.
In combination with the presented quantization scheme, the
proposed algorithm ensures, for the first time, rigorous differ-
ential privacy in decentralized stochastic optimization without
losing provable convergence accuracy. Simulation results for a
distributed estimation problem as well as numerical experiments
for decentralized learning on a benchmark machine learning
dataset confirm the effectiveness of the proposed approach.

I. INTRODUCTION

Initially introduced in the 1980s in the context of par-
allel and distributed computation [1], [2], decentralized op-
timization is finding increasing applications. For example,
in sensor-network based acoustic-event localization, spatially
distributed sensors multilaterate the position of a target event
using individual sensors’ range measurements such as time-of-
arrival or signal-strength-profile measurements [3]. Because
the range measurements acquired by individual sensors are
noisy, decentralized optimization is commonly employed for
the network to cooperatively estimate the target position,
particularly when the network is mobile or formed in an
ad-hoc manner [3], [4]. Another example is the multi-robot
rendezvous problem, where robots with different battery levels
cooperatively determine a meeting time and place using decen-
tralized optimization to minimize the total energy expenditure
of the network [5]. In wide-area monitoring and control of
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power systems, decentralized optimization enables multiple
local control centers in a large power system network to
cooperatively estimate and further damp inter-area electro-
mechanical oscillations, which is vital for power system
stability [6]. In large-scale machine learning, decentralized
optimization algorithms are becoming an important solution
to parallelling both data and computation so as to handle the
enormous growth in data and model sizes [7].

In decentralized optimization, participating agents interleave
on-device computation and peer-to-peer communications to
cooperatively solve a network optimization problem. In recent
years, a particular type of decentralized optimization, i.e.,
decentralized stochastic optimization, in which participating
agents use noisy local gradients for optimization, is gaining
increased traction due to its superior performance in handling
large or noisy data sets. For example, in modern machine
learning applications on massive datasets, such stochastic
optimization methods are highly preferred because they allow
multiple devices to train a neural network model collectively
using local noisy gradients calculated from a small batch of
data points available to individual agents. Using a small batch
of data points yields a noisy estimation of the exact gradient,
but it is completely necessary because evaluating the precise
gradient using all available data can be extremely expensive
in computation or even practically infeasible. Furthermore,
in the era of Internet of things which connect massive low-
cost sensing and communication devices, the data fed to
optimization computations are usually subject to measurement
noises [8]. As deterministic (batch) optimization approaches
typically falter when dealing with noisy data [9], investigating
decentralized stochastic optimization algorithms becomes a
mandatory task.

Although centralized stochastic optimization algorithms can
date back to the 1950s [9], results on completely decentralized
stochastic optimization in the absence of any coordinator only
started to gain attention in the past decade. So far, plenty
of decentralized stochastic optimization algorithms have been
reported, both for convex objective functions (e.g., [10], [11],
[12], [13], [14], [15], [16], [17]) and non-convex objective
functions (e.g., [18], [19], [20], [21], [22], [23]). In these
decentralized stochastic optimization algorithms, because par-
ticipating agents only share gradients/model updates and do
not let raw data leave participants’ machines, these algorithms
were believed to be able to protect the privacy of participating
agents. However, recent studies tell a completely different
story: not only can an adversary reversely infer the properties
(e.g., membership associations) of the data used in optimiza-
tion [24], [25], an adversary can even precisely infer raw
data used in optimization from shared gradients (pixel-wise
accurate for images and token-wise matching for texts) [26].



These information leakages pose a severe threat to the privacy
of participating agents in decentralized stochastic optimization,
as the data involved in optimization computation often contain
sensitive information such as medical records and financial
transactions.

Compared with centralized optimization or distributed opti-
mization with a coordinator, privacy protection in completely
decentralized optimization is much more challenging due to
the lack of a trusted party. In fact, in decentralized stochastic
optimization, no participating agents are trustworthy as every
participating agent can use received messages to infer other
participating agents’ sensitive information. Recently, results
have been reported to address the privacy issue in decentralized
stochastic optimization. One approach is to employ secure
multi-party computation approaches such as homomorphic
encryption [27] or garbled circuit [28]. However, while al-
lowing exact computations, these approaches are very heavy
in computation/communication overhead, usually incurring a
runtime overhead of three to four orders of magnitude [29].
Furthermore, except our prior results [24], [30], most existing
homomorphic encryption based privacy approaches employ a
server (e.g., in [31], [32], [33]), which does not exist in com-
pletely decentralized optimization. Hardware based privacy
approaches such as trusted hardware enclaves have also been
reported [29]. However, similar to homomorphic encryption
based approaches, these approaches cannot be directly used to
prevent multiple data providers from inferring each others’
data during decentralized stochastic optimization. Another
commonly used approach to enable privacy in decentralized
optimization is differential privacy, which adds uncorrelated
noise to shared gradients/model updates (e.g., [34], [35], [36],
[37]). However, these uncorrelated-noise based approaches are
subject to a fundamental trade-off between enabled privacy and
optimization accuracy [38], i.e. a stronger privacy protection
requires a greater magnitude of uncorrelated noise, which
will unavoidably leads to a more intense reduction in opti-
mization accuracy. Recently, results were reported to enable
privacy by exploiting the structural properties of decentralized
optimization [39], [40], [41]. For example, the authors in
[40], [41] proposed to add a constant uncertain parameter
in projection or step sizes to enable privacy protection. The
authors of [42] proposed to judiciously construct spatially
correlated “structured” noise to cover gradient information
without compromising optimization accuracy. However, the
privacy protection enabled by these approaches is restricted:
projection based privacy depends on the size of the projection
set — a large projection set nullifies privacy protection whereas
a small projection set offers strong privacy protection but re-
quires a priori knowledge of the optimal solution; “structured”
noise based approaches require each agent to have a certain
number of neighbors whose shared messages are inaccessible
to the adversary. In fact, such a constraint on information ac-
cessible to the adversary is required in most existing accuracy-
maintaining privacy solutions to decentralized optimization.
For example, our studies in [24] show that even partially
homomorphic encryption based privacy approaches require the
adversary not to have access to all messages shared by a target
agent.

In this paper, we propose to leverage aggressive quantiza-
tion effects to enable strong privacy protection in decentral-
ized stochastic optimization without compromising optimiza-
tion accuracy. More specifically, we propose a decentralized
stochastic optimization algorithm that can ensure provable
convergence accuracy under aggressive quantization effects.
This decentralized stochastic optimization algorithm allows us
to quantize any shared value to three numerical levels and
hence obfuscate exchanged messages without compromising
optimization accuracy. In fact, we rigorously prove that the
quantization scheme can enable a strict (0,J)—differential
privacy for participating agents’ gradient information, which
has not been reported in the literature. The ability to use
this aggressive quantization scheme also allows us to signif-
icantly reduce communication overhead without losing opti-
mization accuracy since each real-valued message becomes
representable with two bits after quantization.

The main contributions of the paper are as follows: 1)
We propose a completely decentralized stochastic optimization
algorithm that can maintain provable optimization accuracy in
the presence of aggressive quantization errors that can be pro-
portional to the norm of input values. This is different from ex-
isting results that require the quantization errors to be bounded
[43] or diminishing [44] with time. Furthermore, we obtain
provable convergence for both convex objective functions and
non-convex objective functions, which is different from [45]
which only addresses strongly convex objective functions; 2)
We propose to use a stochastic ternary quantization scheme
to achieve rigorous (0, ¢)—differential privacy, which has not
been reported in the literature. Note that (0, d)—differential
privacy is stronger than the commonly used (¢, 0)—differential
privacy; 3) By integrating with ternary quantization, our al-
gorithm achieves rigorous (0, )—differential privacy under
provable convergence accuracy. To the best of our knowledge,
this is the first time both rigorous (0, §)—differential privacy
and provable convergence accuracy are achieved simultane-
ously in decentralized stochastic optimization; 4) The ternary
quantization scheme also enables us to improve communi-
cation efficiency, which is crucial in scenarios where the
communication bandwidth is limited.

The paper is organized as follows: Sec. II provides the prob-
lem formulation. Sec. III presents the decentralized stochastic
optimization algorithm. Sec. IV proves converge of all agents
to the same stationary point in the presence of aggressive
quantization effects when the objective functions are non-
convex. Sec. V proves that the proposed algorithm guarantees
convergence of all agents to the optimal solution in the
presence of aggressive quantization effects when the objective
functions are convex. Sec. VI proves that a specific instanti-
ation of allowable quantization schemes can enable rigorous
(0, §)—differential privacy and, hence the proposed algorithm
can achieve rigorous (0, 0)—differential privacy with provable
convergence accuracy. Sec. VII gives simulation results as well
as numerical experiments on a benchmark machine learning
dataset to confirm the obtained results. Finally Sec. VIII
concludes the paper.

Notation: We use the symbol R to denote the set of real
numbers and R? the Euclidean space of dimension d. 1



denotes a column vector of appropriate dimension with all
entries equal to 1. A vector is viewed as a column vector,
unless otherwise stated. For a vector x, x; denotes its ith
element. AT denotes the transpose of matrix A and z7y
denotes the scalar product of two vectors x and y. We use

(-) to denote inner product and || - || to denote the standard
Euclidean norm ||z|| = vzTz. We use || - ||1 and | - oo

to denote the ¢; norm ||z||; = Zle |z;] and the o, norm
|2)loc = max(|z1],|z2|,--- ,|za|), respectively. A square
matrix A is said to be column-stochastic when its elements
in every column add up to one. A matrix A is said to be
doubly-stochastic when both A and A” are column-stochastic
matrices. We use P(.A) to denote the probability of an event
A and E [z] the expected value of a random variable .

II. PROBLEM FORMULATION

We consider a network of m agents solving the following
optimization problem cooperatively:

m

min = 3" (@), fi(@) £ Eeup, [Fi(n,6)] (1)
=1

z€RI M

where z € R? is the optimization variable common to all
agents but F; : RY x R — R is a local stochastic loss
function private to agent <. D; is the local distribution of data
samples. In practice, the distribution D; is usually unknown
and we only have access to n; realizations of it, denoted
by &i1,&.2, 5 &in,» Where & ; denotes the jth random data
sample of node i. Thus f;(x) in (1) is usually determined by
filz) = =370, Fi(x,& ;) which makes (1) the empirical
risk minimization problem.

Because of the randomness in F;(z,¢;), the gradient that
each agent ¢ can obtain is subject to noises. We denote the
gradient that agent ¢ obtains at iteration k for optimization as
g¥(z,&;), which will hereafter be abbreviated as g¥. We make
the following standard assumption about f;(-) and g%

Assumption 1. 1) All f;(-) are Lipschitz continuous with
Lipschitz gradients

||Vfl(l‘) - vfz(y)H < LH.%‘ - yHa Vo € Rdvy € Rd7

and (1) always has at least one optimal solution ¥, i.e.,
iy Vfi(a*) = 0;
2) All g¥ satisfy

EfimDi [gf] = Vﬁ(“’f)? Vi
E¢.op, [lof =V i(@)|’] <02 Vi,x

In order for the network of m agents to cooperatively
solve (1) in a decentralized manner, we assume that the m
agents interact on an undirected graph. The interaction can be
described by a weight matrix W. More specifically, if agent
1 and agent j can communicate and interact with each other,
then the (¢, j)th entry of W, i.e., w;;, is positive. Otherwise,
w;; is zero. The neighbor set \V; of agent ¢ is defined as the set
of agents satisfying {j|w;; > 0}. We define a diagonal matrix
D with the ith diagonal entry determined as d;; = ) jen; Wij-
So the matrix D — W will be the commonly referred graph
Laplacian matrix. To ensure that the network can cooperatively

solve (1), we make the following standard assumption about
the interaction:

Assumption 2. The interaction topology forms an undirected
connected network, i.e., the second smallest eigenvalue p of
the graph Laplacian matrix L, = D — W is positive.

In decentralized stochastic optimization, gradients are di-
rectly computed from raw data and hence embed sensitive
information. For example, in decentralized-optimization based
localization, disclosing the gradient of an agent amounts to
disclosing its position [24], [35]. In machine learning ap-
plications, gradients are directly calculated from and embed
information of sensitive training data [26]. Therefore, in this
paper, we define privacy as preventing agents’ gradients from
being inferable by adversaries.

We consider two potential adversaries in decentralized
stochastic optimization, which are the two most commonly
used models of attacks in privacy research [46]:

o Honest-but-curious attacks are attacks in which a partic-
ipating agent or multiple participating agents (colluding
or not) follows all protocol steps correctly but is curious
and collects all received intermediate data in an attempt to
learn the sensitive information about other participating
agents.

o Eavesdropping attacks are attacks in which an external
eavesdropper wiretaps all communication channels to
intercept exchanged messages so as to learn sensitive
information about sending agents.

An honest-but-curious adversary (e.g., agent ) has access
to the internal state z¥, which is unavailable to external
eavesdroppers. However, an eavesdropper has access to all
shared information in the network, whereas an honest-but-
curious agent can only access shared information that is
destined to it.

In this paper, we propose to leverage quantization effects
to enable differential privacy in decentralized stochastic opti-
mization. We adopt the definition of (¢, §)-differential privacy
following standard conventions [38]:

Definition 1. For a randomized function h(x), we say that it
is (¢, 0)-differentially private if for all subsets S of the image
set of the function h(z) and for all x,y with ||z —y|1 < 1,
we always have

P(h(z) € 8) < eP(h(y) € S) + 4.

Definition 1 says that for two inputs x and y with /;-
norm difference no more than 1, a mechanism h(-) achieves
(e, 0)—differential privacy if it can ensure that the outputs
of the two inputs are different in probabilities by at most
€ and § specified on the right hand side of the above in-
equality. Clearly, a smaller ¢ > 0 or 6 > 0 means better
differential-privacy protection. In Sec. VI we will prove that a
specific quantization mechanism can enable (0, §)—differential
privacy protection for exchanged information. Note that under
a fixed value of ¢, (0, §)—differential privacy is stronger than
(e, §)—differential privacy for any € > 0.

Remark 1. In the original definition of differential privacy
in [38], [47], because the input space is discrete, i.e., x and



Algorithm 1: Quantization-enabled Privacy-preserving Decentral-
ized Stochastic Optimization

1) Public parameters: W, €®, AF 22 = 0 for all 4, the total number
of iterations ¢
2) For the ith agent, at iteration k
a) Determine local gradient g¥;
b) Determine quantized state Q(z¥) and send it to all agents
J €Ny
c) After receiving Q(z%) from all j € N;, update state as

ot =af + D wi(Q(a)) — Q(al)) — A gF
JEN;

3) end

y are strings, the distance between x and y is measured by
the number of positions at which the corresponding symbols
are different (Hamming distance). In our case, since the input
space is continuous, we use {1 norm to measure the distance
between two real vectors x and y. In fact, any £, norm defined
by llally = (a1 |? + 22?4+ |on|)'7 with p > 1 can
be used in the definition.

III. QUANTIZATION-ENABLED PRIVACY-PRESERVING
DECENTRALIZED OPTIMIZATION ALGORITHM

Before presenting our quantization-enabled privacy-
preserving approach for decentralized stochastic optimization,
we first discuss why conventional decentralized stochastic
optimization algorithms leak gradient information of
participating agents.

By assigning a copy z; of the decision variable x to each
agent ¢, and then imposing the requirement x; = z for all
1 < i < m, we can rewrite the optimization problem (1) in
the following form [48]:

1 m
min f(z) = — i(T;)) st. i =x2=---=2x
zeRmdf( ) m;fz( Z) 1 2 m
2
where z = [27,22 ... 2L]T. Conventional decentralized

optimization algorithms usually take the following form [7],
[20]:
ot = a4+ Y wy(af - af) —ng
JEN;

where x¥ denotes the optimization variable maintained by
agent ¢ at iteration k, and 7 denotes the optimization stepsize,
which should be no greater than % to ensure stability [20].
Because w;; has to be publicly known to establish conditions
in Assumption 2 in a decentralized manner [49] and agent %
shares ¥ with all its neighbors, an adversary can calculate
the gradient g¥ of any agent based on publicly known W and
7 if it has access to all information shared in the network.

Motivated by this observation, we propose the following
decentralized optimization algorithm which leverages quanti-
zation to enable privacy protection:

x?‘-&-l — xf +éF Z wy; (Q(x;?) _
JEN;

Q(xf)) - Gk/\kggc 3)

where \* and €* are publicly-known design parameters crucial
for ensuring provable convergence accuracy under aggressive
quantization effects, and their design will be elaborated on
later. Note that, although agent i has access to =¥, we still use a
quantized version of z¥ in the comparison term Q(x?)— Q(ak)
in (3). This is intuitive as when 2% and scf are the same, we
do not want the quantization operation to introduce an extra
non-zero input to the optimization process. In fact, as shown in
later derivations, this strategy will also simplify the evolution
of the average optimization variable across all agents.

In our proposed algorithm (3), at iteration k, every agent
i only shares quantized state z¥ (see details in Algorithm 1).
Therefore, even if an adversary has access to the quantized
state of an agent 7 as well as all information received by
agent ¢ (which are also quantized), the adversary still cannot
use the dynamics (3) to precisely infer the gradient of agent @
due to quantization induced errors. In fact, as will be proved
later, the proposed algorithm can have provable convergence
even in the presence of aggressive quantization schemes with
large quantization errors, which will enable us to achieve
strict (0, d)-differential privacy protection for all participating
agents. More specifically, we consider stochastic quantization
schemes satisfying the following Assumption:

Assumption 3. The quantizer Q(-) is unbiased and its vari-
ance is proportionally bounded by the input’s norm, i.e.,
E[Q()[z] = o and E[|Q(x) — a|2la] < Bllzl]? hold for
some constant 5 and any x. And the quantization on different
agents are independent of each other.

Remark 2. Note that the quantization schemes considered in
Assumption 3 are quite general and include the commonly
used error-bounded quantization schemes (in, e.g., [50], [51],
[43]) and error-diminishing quantization schemes (in, e.g.,
[52], [44]) as special cases.

Remark 3. Note that when the quantization scheme is de-
signed such that it only outputs the sign of the quantization
input (which still satisfies the conditions in Assumption 3),
the inter-agent coupling in the proposed algorithm looks
similar to the interaction in existing decentralized optimization
algorithms that use only the sign of relative states (see, [53],
[54]). However, there is a crucial difference between the two
in that the quantization scheme here can be implemented
by every participating agent without knowing anything about
its neighbors’ states, whereas the relative-state sign based
interaction (which arises in other contexts) requires an agent
to know (some) information about its neighbors’ states.

Augmenting the decision variables of all agents as z* =

[(@))T, (x5)T, -+ (2% )T]T, we can write the overall net-
work dynamics of the proposed decentralized optimization

algorithm as follows
xk-‘rl _ (Ak ® Id)xk _ Ek)\kgk _ Ek(Lw ® Id)Vk (4)

where L,, is the Laplacian matrix defined in Assumption 2,

Ak — (I _ ekL) c Rmxm

)

T m
g =[HT, ()", - (gE)T] e Rm,



Vk = [(viﬂ)Tv (’Ug)Ta k )T]T c Rmdxl7

s (Um,

vf = Q(xF) — 2k e RIX?

K3

Here ® denotes Kronecker product and I; denotes identity
matrix of dimension d.
It can be obtained that the evolution of the average opti-

m k
mization variable Z% = % follows
Ek s
—k+1 _ ~—k k k
T =7 +EZ Wij (Q(Ij)_Q(Iz))
i=1jeN;
mo ok
Y 219 ()
m
mo ok
m
which is independent of the quantization error. Note that

in the second equality, we used the fact that the net-
work is undirected, ie., w;; = wj;; from Assumption 2,
which leads to the annihilation of all coupling terms due
to w;; (Q(x;‘) — Q(xh)) + wy; (Q(aF) — Q(xf)) = 0. This
shows the benefit for agent i to use its quantized state z¥ in
the comparison term Q(xf) — Q(«F) on the right hand side
of (3).

Remark 4. From the above argument, it can be seen that
agents being able to update in a synchronized manner is key
to guaranteeing the average optimization variable T* to be
immune to aggressive quantization errors.

In the following two sections, we will show that the pro-
posed decentralized stochastic optimization algorithm still has
provable convergence accuracy under aggressive quantization
effects. More specifically, in Sec. IV, we will show that in
the non-convex case, the algorithm guarantees provable con-
vergence of all agents to the same stationary point; in Sec. V,
we will show that in the convex case, the algorithm guarantees
the convergence of all agents to the optimal solution.

IV. CONVERGENCE ANALYSIS IN THE NON-CONVEX CASE

In this section, we show that the proposed algorithm will
ensure convergence of all agents to the same stationary point
when the objective functions are non-convex, even under
aggressive quantization effects.

To this end, we first show that when € and A\* are chosen
appropriately, ||gF|| and E [||z*|*] will always be bounded,
which allows us to quantify the effects of quantization on the
optimization process (note that here the expectation is taken
with respect to the randomness in stochastic gradients and
quantization up until iteration k£ — 1). It is worth noting that
as the results are obtained irrespective of the convexity of
objective functions, they are applicable to the derivations in
the convex case in the next section, too.

Lemma 1. Under Assumption 1, the gradient || g¥|| is always
bounded by some constant G.

Proof. Under the conditions in Assumption 1, the result can
be easily obtained from [23] or Lemma 3.3 in [55]. O

Lemma 2. Under Assumption 1, Assumption 2, and As-
sumption 3, E [||z*||?] will always be bounded if the pos-
itive sequences € and \¥ satisfy Y7o, (€")? < oo and
Sore €8(\F)? < oo, where the expectation is taken with
respect to the randomness in stochastic gradients and quanti-
zation up until iteration k — 1.

Proof. The proof is given in Appendix B. O

Using Lemma 2, we can further obtain that the optimization
variables z¥ of different agents will converge to the average
optimization variable across all agents z*:

Lemma 3. Under the conditions in Lemma 2, the proposed
algorithm guarantees

lim E [[|z"F1 = 281°] =0
k— o0

where 7% £ 1,, ® 7% with 1,, denoting the m dimensional
column vector of 1s. More specifically, represent the decaying
rate of \* and €* as 0 < 8, < 1 and 0 < 65 < 1, respectively,
i.e., there exist some positive a1, as, and az such that M<

(agk"ﬁ and €* < (agkaﬁ hold, then we have
lim (14 k)°E [||l2F*! — 2F71)2] = 0
k—o00

Sor any 0 < 6 < min{241, d2}.

Proof. The proof is given in Appendix C. O

Based on these results, we can prove the following results
on the convergence of all agents to the same stationary point
where the gradients are zero:

Theorem 1. Under Assumptions 1, 2, and 3, when the
sequences €* and \* are selected such that the sequence ¢*\*
is not summable, but (¢*)? and ¢*(\*)? are summable, i.e.,

Zek)\k = 400, z:(ek)2 < 00, Z:ek(/\k)2 <oo  (6)
k=1 k=1 k=1

then the proposed algorithm will guarantee the following
results:

o NE || V4]

1m =

ZZ:O ek)\k )
m X k 2 (7)
Ei:o €ENE [HHZM ‘ ]
e ¢ E )k =0
o Ek:o ek

where the expectation is taken with respect to the randomness
in stochastic gradients and quantization up until iteration k —
1.

Proof. From the Lipschitz gradient condition in Assumption
1, we have

Llly —=|*

1) < @) + (V@) y — o) + S



for any 2 € R? and y € R? By plugging y = zF*! and
x = Z"* into the above inequality, we can have the following
relationship based on (5):

FEY < @) + <Vf<fk>, e

:

k\k 2211 gzk
" )
m 2
_ekak Dict gf

m

3

Taking expectation on both sides, we can obtain

E [f(.f?k+1)]

<E[f@")] +E [<Vf(wk)» —ekA’fZ%;gfﬂ

m g2
Hek/\kZil gf ]
€))

+ %E m
=E[f(z")] - NE [<Vf(xk)’ Z%gfﬂ

2
L(ek/\k)Q m L
E ||— A
+ 2m?2 ;gz
Using the equality 2(X,Y) = || X[+ |[Y|?> - | X = Y||%,

we arrive at the following relationship for the second term on
the right hand side of (9):

e [(msen 2525

e )
= JE[Ivs@h)’] HZVf()]
_1E[“Vf(xk)_m ] (10)
> B [|v)|)] HZW()]

m

zﬁhx—ﬁM

where we used the Lipschitz gradient assumption in As-
sumption 1 and the relationship ||y + y2 + -+ + ym||* <
m Y |ly:||? in the inequality.

For the third term on the right hand side of (9), we can
bound it using the result that g¥ is bounded by G obtained in
Lemma 1:

kyk
L( >\ H Zgz

A") i 2
EEN%M
=1

LG? (b \F)?
= 2

(11)
Plugging (10) and (11) into (9) leads to

E [f(#*)] < B [£(z)] - 3NE |7 ]

_;@@H2$ﬁﬂﬁ>j
e S TG
+LG2(;W€)2
or
ENE [[VS@)|] + ENE Hzgywm 2]
<2(E[f(z )] E[f(z"1)]) (13)

.
N Z]E (2% = k|| + L2 (Faky?

i=1
Iterating the above inequality from & = 0 to k =t yields

)

t

> (om [Josiah] + e || B D

k=0
<2(E[f(z°)] —E [f(@*)])

t L2 m
+ Y NN E[[la -
k=0 i=1

t
+) LGP (FNF)?

k=0

=£|]

(14)

ie.,

Sheo ¢ NE [|[V56H)|]
ZZ:O ek \E
o €FAE M Z:+f(r")

t
S o ek \k
2 B[] ~E[5G))
- ZZ:O ek \k
2 m _ 2
N ZZ:O Ek)‘k% Y E [ka - xf” }
ZZ o ek \k
Zk o LG ("X\F)?
Zk 0 EFAF
It can be verified that when €* and M\* are selected in
such a way that the conditions in (6) are satisfied, then the

conditions in Lemma 3 will also be satisfied, which means

that E [H:Tck — :v’?’ﬂ will be in the same order as (\*)2 or €.

This means that ef\F L2 5™ [Hi‘k - foQ} will be in the

same order as €¥(\*)? or (¢¥)2\¥, both of which are summable
according to the conditions in (6). Therefore, the second term
on the right hand side of (15) will converge to zero. Similarly,
we can prove that all other terms on the right hand side of

]

15)

k



(15) will converge to zero under the conditions in (6), which
completes the proof. O

Remark 5. Using the Stolz-Cesaro theorem, one can ob-
tain from (7) that the limit inferiors of K[|V f(z")|?]
and E[|V fi(z )|| 2| are zero as t tends to infinity, i.e.,
gimt—)oo [IV£@)IP] = 0 and lim, , E[|Vfi(=})[?] =

In fact, if we can specify the convergence rate of €* and \*,
we can further obtain the convergence rate of the algorithm:

Corollary 1. If the sequences €% and \¥ are selected in the

form OfA m and E m with ai, a9, and

as denoting some positive constants and positive exponents
01 and 6o satisfying 01 + 02 < 1, d9 > 0.5, and 261 + 55 >
1, then all conditions in (6) are satisfied and the proposed
algorithm will guarantee (7) under Assumptions 1, 2, and 3.
More specifically, the convergence rate of gradients satisfies

S ]
22:0 ek Nk
i L
ZZ:O ek Nk
2 (E [f(a"+)] ~ E [£(a*)])
ZZZO ek Nk

=0 (@)

where 6 = min{20;,d02} and the expectation is taken
with respect to the randomness in stochastic gradients and
quantization up until iteration k — 1.

]

(16)

_|_

Proof. The proof follows from the line of derivation in the
proof of Theorem 1. More specifically, under the conditions
of Theorem 1, the conditions of Lemma 3 will be satisfied
and we have the second term on the right hand side of (15)
converging to zero with a rate of no less than O (ﬁ) with
d = min{267, d5 }. Further note that the last term on the right
hand side of (15) converges to zero with a rate O ( - +1)52
with § = §; + do. Therefore, we have that the left hand side
of (16) will decay with a rate § = min{24;, d2} as defined in
the statement. [

V. CONVERGENCE ANALYSIS IN THE CONVEX CASE

In this section, we consider the case where the objective
functions are convex:

Assumption 4. The objective functions f;(-) are convex.

As the derivations of the results in Lemma 2 and Lemma 3
are independent of the convexity of f;(-), we still have the
same results in the convex case. Therefore, in the convex
case we can still have the same results obtained in Theorem
1. Moreover, we can prove that the convexity assumption in
Assumption 4 also enables us to characterize convergence in
function value to the optimal solution:

Theorem 2. Under Assumptions 1-4, when the positive se-
quences €* and \F are selected such that the sequence €*\*
is not summable, but (€*)? and €*(\*)? are summable, i.e.,

00, Z(e

k=1

<OOZ

200 (17)

oo
E o
k=1

then the proposed algorithm will guarantee the following

results:
o NE [[|V £

im =0,

t—o0 22:0 Ek)\k
18
S AE {HZW() ‘2] (18)
lim . ~0
t—o00 Zk:O Ek)\k

Moreover, if in addition, (ek)%)\k is also summable, i.e.,
Z;‘;l(ek)%)\k < 00, then the proposed algorithm will guar-

antee
t k\ k., .k
A
lim E | f 7216?06 | = f(z™)
t—00 § =0 Gk)\k

for any 1 < p < m. Note that all expectations are taken
with respect to the randomness in stochastic gradients and
quantization up until iteration k — 1.

19)

Proof. The derivation of the result in (18) is the same as
Theorem 1, so we only consider the derivation of the result in
(19). According to (5), we have the distance between z* and
the optimal solution x* evolving as follows

[”.’Ek+1 $*||2]
m 2
=FE k_ E@\kM ot
m
=E[||z* — 2*|]*] +E |||FAF === ZZ 190

_9FE |:<i'k —r* ek)\krzznl ’L>:|

) (20)
k
—]E[Hi:k—x*HQ}—l—E ekAkE;:lgi
m
_9E k:)\kZz l(gz) (‘I *I)
m
SEU|(E’C7‘%*H2}+(EI€>\’C)2G2

m

- o EEala) 0! =)

where (-) denotes inner product. Note that G is the upper
bound of gradients obtained in Lemma 1.

Using the convexity of f;(-), we have the following rela-
tionship for each summand of the last term on the right hand



side of (20):

E [(g5)" (z* — 2%)]
=E [(99)" (@} — 2" + 2" — 2})]
=E [(Vfi(a})" (af — 2" + 2" — 2})]
=E [(Vfi(af) (af —2")] + E[(Vfi(e})" (@ - 2})]
> E [fi(«}) — fi(z*)] - GE [|z* — 2} |]
=E [fi(=}) — fi(@") + fi(@") - fi(z")]
| :

> E [fi(z") - fi(z")] — 2GE [||z* — 2}|]

(21
where the first inequality used the convexity of f; and the last
inequality used the relationship f;(z¥) — f;(z%) > —G||z* —
x¥|| from Lemma 6 in the Appendix.

Plugging (21) into (20) yields

E [ij—&-l _ $*||2] <E [H‘fk _ x*”Q] 4 (ek)\k>2G2

_9ck\k Sy E[(fi(Z") — fi(z*))]
m
n 4€k)\kGZ;ilE [llz% — 2f ]
m

or

9ek \F S E(fi@®) = fila*)]

m
§ E [Ha_:k 7 :L'*||2] o) [Hi,k+1 7 1,*”2] +

T E [ = ab]
m

(22)

(ek)\k)ZGQ + 46kAk
Using the fact
i E[(fi(@) = fi(z"))]

m

we can rewrite (22) as
26" \FE [f(a’ck) - f(m*)}
< E [ij _ x*HQ] _E [ij+1 _ l‘*||2] +
S E B[z = ak]

m

(23)
(Ek)\k)QGQ + 46k)\k

Summing (23) from k = 0 to k = ¢ yields
t
2y NE[(f(z") - f(a7))]
k=0
_ E [(.f‘t—H _ .”[:*)2]
t
+ G2 Z(GkAk)Q
k=0

ZZ:O 2221 AR [”fk - fo]
m

<E[@ - %)
(24)
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Given that f(-) is a convex function, we always have

f ZZ:O ek \F TR < zt: PR f(zF)
ZZ:O ek Ak a k=0 ZZ:O kAP

which, in combination with (24), implies

Zt: GkAk.fk .
f( ZkZiOGk)\k >_f(1' )‘|

E[|l2° —=*|”] E[flz*"" —2*|?]
S T T
2my g €FAR 2my g €FAR
L O T[N
2m Y €F AR
Yo Yiey €ENVE [7* — 2f|]
m Y g eF AR
Next, we proceed to show that the right hand side of (25)
will converge to zero. Based on Lemma 2, we know that
E [||#% — 2*||] and E [[|z'T* — 2*||?] are bounded, so the first
two terms on the right hand side of (25) will converge to
zero under the assumption that ¢¥\* is not summable. The
assumption on summable (e\¥)? guarantees that the third
term on the right hand side of (25) will converge to zero.
Finally, according to Lemma 3, E [[|z% — z¥||] is of the order
of \¥ or (¢¥)2, so the last term on the right hand side of (25)
will also converge to zero when the sequences (¢¥)2, (€%)3 \F,
and €¥(\*)? are summable.
Further noting that all x’; will converge to each other and

hence to Z* according to Lemma 3, we obtain the statement
of Theorem 2. ]

E

(25)

+2G

In fact, if we can specify the convergence rate of €* and
AF, we can further obtain the convergence rate of all agents
to the optimal solution:

Corollary 2. If the sequences €* and \* are selected in the
form of \F = (a?’ka#)gl and €* = (W;ﬁ with aq, as, and
a3 denoting some positive constants and positive exponents
01 and 6o satisfying 01 + 6o < 1, 65 > 0.5, and 261 + 05 >
1, then all conditions in (17) are satisfied and the proposed
algorithm will guarantee (18) under Assumptions 1, 2, and 3.

More specifically, the convergence rate of gradients satisfies
Sho NE [ V)]
ZZ:O ek Ak
EZZ_OekAME[H2311Zﬁcﬁ»

ZZ:O b AR
2 (E [f@@"Y)] - E[f@°)])
22:0 ek AR

“o ()

where § = min{24y, 2}
If in addition, 6, and 6o satisfy 61 + %(52 > 1, then the
convergence rate of function values satisfies

ZII::O 6kAkxlI§ *
f ( ZZZOGk)\k > —f(.%' )‘|
P R I a1

2m 22:0 ek \k - (t+ 1)5(27)
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where § = min{61, 382} for any 1 < p < m. Note that
all expectations are taken with respect to the randomness in
stochastic gradients and quantization up until iteration k — 1.

Proof. The statement for the convergence rate of gradients
follows Corollary 1. To arrive at the statement on the conver-
gence rate of the function value, one can follow the line of
derivation in the proof of Theorem 2. More specifically, under
the conditions of Theorem 2, we can obtain that in (25), the
numerators of the second and third terms on the right hand
side will decay with a rate of no less than @ (ﬁ) with

§ = min{2(8; + 62), 261 + b2, 01 + 362 }. We further note that
the denominator e¥\* decays with the rate of §; + d, and
hence that the left hand side of (27) decays with a rate of
§ = min{éy, 165} as in the statement of the theorem. O

VI. PRIVACY ANALYSIS

In this section, we show that our algorithm’s robustness
to aggressive quantization effects can be leveraged to en-
able rigorous differential privacy. More specifically, under a
ternary quantization scheme which quantizes any value to
three numerical levels, we will prove that our decentralized
optimization algorithm can enable rigorous differential privacy
without losing provable convergence accuracy. To the best of
our knowledge, this is the first time both strict differential
privacy and provable convergence accuracy are achieved in
decentralized stochastic optimization.

The ternary quantization scheme is defined as follows:

Definition 2. The ternary quantization scheme quantizes a
vector x = [x1, T2, ,24]T € R? as follows

Qx) = [q1, q2, -~

where  is a design parameter no less than the £, norm ||z
of x, sign represents the sign of a value, and b; (1 < 1 <
d) are independent binary variables following the Bernoulli
distribution

,qa],  qi = rsign(z;)b;, V1<i<d

il /7

1— |zl /r

{ P(b; =1lz) =

with P(-) denoting the probability distribution.

Such ternary quantization has been applied in distributed
stochastic optimization, in, e.g., [45], [56], [57]. However,
none of these results use quantization effects to achieve strict
differential privacy. Now we show that using the ternary
quantization, our decentralized stochastic optimization algo-
rithm can achieve (0, §)-differential privacy while maintaining
provable convergence accuracy:

Theorem 3. Under Assumptions 1,2 in the non-convex case, or
Assumptions 1,2,4 in the convex case, the ternary quantization
scheme defined in Definition 2 achieves (0, +)-differential
privacy for individual agents’ gradients in every iteration
while ensuring convergence.

Proof. It can be easily verified that the ternary quantization
scheme satisfies the conditions in Assumption 3. So the decen-
tralized optimization algorithm will have provable convergence
accuracy according to Theorem 1 and Theorem 2, and we only

need to prove that (0, %)-differential privacy can be obtained
for individual agents’ gradients under such a quantization
scheme.

From the proposed algorithm in (3), it can be seen that
for an individual agent i, its gradient g¥ can be viewed as a
function of all variables xf (1 £ ¢ £ m). Therefore, using
differential privacy’s robustness to post-processing operations
[38], if we can prove that the ternary quantization scheme can
enable (0, 1)-differential privacy for z¥, then we have that
the ternary quantization scheme can enable (0, %)-differential
privacy for individual agents’ gradients.

According to the mechanism of ternary quantization, it can
be obtained that depending on the sign of x¥, the quantized
value can have different distributions:

Plgi=rle) = lwl/r
P(¢; =0jz) = 1—|a|/r when z; >0
P(g; = —rlx) = 0

and
Plgi=rlz) = 0
P(g;=0|z) = 1—|z/r when z; <0
P = —rle) = |zl/r

Furthermore, given that the quantization of one element is

independent of that of other elements, i.e., the quantiza-
tion errors for different elements are independent of each
other, we can consider the per-step privacy of different el-
ements of x separately. Therefore, according to Definition
1, to prove that (0, I)-differential privacy is achieved, i.e.,
|P(g; € Sly;) — P(q; € S|z;)| < % forall S € {r,0,—r}
and all z, y with ||z — y||1 < 1, we divide the derivation into
two cases: 1) z; and y; are of the same sign, i.e., both z; and
y; are nonnegative or both x; and y; are negative; 2) x; and
y; are of different signs, i.e., either z; > 0, y; < 0 is true or
z; <0, y; >0 is true.

Case 1: x; and y; are of the same sign, i.e., both x; and y;
are nonnegative or both z; and y; are negative. Without loss
of generality, we assume that both x; and y; are nonnegative.
It can be easily verified that the same result can be obtained
if both z; and y; are negative.

Based on the mechanism of ternary quantization, it can be
obtained that

sup  |P(qi = rlz) — P(gi = r]y)|
[lz—yll1<1
~ swp il — lyil SHw—yngl’
lz—yll1<1 r r r
sup  [P(gi = 0[z) — P(q; = 0ly)|
lz—yll1<1
~ swp (T-Ifﬁl)-(?‘—lml)’S||ff—y|1§17
lz—yll1<1 r r r
sup  |P(q; = —r|v) — Pq: = —ly)|
lz—yll1<1
1
= sup [0-0]< -
lz—yll1<1 r

In a similar way, one can obtain the same relationship when
both x and y are negative.



Case 2: x; and y; are of different signs, i.e., either z; > 0,
y; < 0 is true or z; < 0, y; > 0 is true. Without loss of
generality, we assume that z; > 0, y; < 0 is true. It can be
easily verified that the same result can be obtained if z; < 0,
y; > 0 is true.

Under the constraint x; > 0 and y; < 0, it can be obtained
that |x;| < 1 and |y;| < 1 must hold for all z and y satisfying
|l — y|l1 < 1. Therefore, based on the mechanism of ternary
quantization, it can be obtained that

sup  |P(gi =r|z) — P(gi = rly)|
lz—y|l1 <1
= sup W—O’Sxi§17
lz—yll<1| T r r
sup  |P(g; = 0|z) — P(q; = 0|y)|
lz—y|l <1
— (r=lzl) = (r = Iyil)‘ <M=yl _ !
lz—yll1<1 r r r
sup  |P(gi = —r|z) — P(g; = —rly)|
lz—yll1<1
le—yll1<1 r r r

Summarizing the results in Case 1 and Case 2, we always
have (0, %)—differential privacy for the quantization input z¥
for every individual agent :. Further using the robustness of
differential privacy to post-processing operations [38] yields
that we have (0, %)—differential privacy for all agents’ gradi-
ents. O

Since in (e, §)-differential privacy, the strength of privacy
protection increases with a decrease in € and 9, the achieved
(0, 0)-differential privacy is stronger than commonly used
(e, §)-differential privacy. Furthermore, we can see that a larger
threshold value r reduces %, and hence will lead to a stronger
privacy protection. This is intuitive as a larger r will mean
a higher probability of no transmission under a given input
(since the value to be transmitted is 0). However, a larger r
will also slow down convergence, as illustrated in Fig. 2 in
the numerical simulation section.

Remark 6. From the derivation, it can be verified that the
same (0, %)-differential privacy can still be obtained when the
¢y norm in Definition 1 is replaced with any €, norm defined
by &l = (21 |7 + 22?4 -+ + |2 |?) /7 with p > 1.

Remark 7. From the derivation, it can also be seen that
the stochastic nature of the quantizer is crucial for enabling
differential privacy on shared messages.

Remark 8. Note that the proposed algorithm can guarantee
the privacy of all participating agents even when an adversary
has access to all shared messages in the network. This is
in distinct difference from existing accuracy-friendly privacy
solutions (in, e.g., [39], [40], [41], [42] for decentralized
deterministic convex optimization) that will fail to protect
privacy when an adversary has access to all shared messages
in the network.

Remark 9. Note that an adversary can obtain the information
that the quantizer input is no larger than r.

Remark 10. Theorem 3 provides privacy guarantee for one
quantization operation, i.e., one iteration. The cumulative
privacy loss (budget) increases roughly at a rate of T
for T iterations, according to the composition theorem for
differential privacy [58].

Remark 11. The proposed results are significantly different
from [59]. First, we consider the fully decentralized scenario
with no servers, whereas [59] addresses the scenario with a
server-client architecture, whose convergence analysis is fun-
damentally different from the server-free decentralized case.
Moreover, the privacy mechanism in [59] still falls within the
conventional noise-injecting framework for differential privacy
since it considers quantization and privacy separately ([59]
uses a dedicated noise mechanism to generate noise and then
injects the noise on the quantization output, although binomial
noise is used instead of commonly used Gaussian noise),
whereas the approach in this paper exploits the quantization
error directly to achieve privacy and hence avoids any dedi-
cated noise-injection mechanism.

Under the ternary quantization scheme, any transmitted
value is represented as a ternary vector with three possible
values {—r,0,7}. So to transmit a value, instead of transmit-
ting 32-bits, which is the typical number of bits to represent
a value in modern computing devices, we could instead only
transmit much fewer bits in addition to the threshold value.
So theoretically ternary quantization can reduce the traffic by
a factor of % = 20.18x. Therefore, our decentralized
optimization alzgorithm with ternary quantization can have
communication efficiency, strict (0, §)-differential privacy, as
well as provable convergence accuracy simultaneously. To the
best of our knowledge, this is the first decentralized optimiza-
tion algorithm able to achieve these three goals simultaneously.

VII. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our algo-
rithm using numerical experiments. We will consider both the
convex objective-function case and the non-convex objective-
function case.

A. Convex case

For the case of convex objective functions, we consider
a canonical decentralized estimation problem where a sensor
network of m sensors collectively estimate an unknown pa-
rameter # € R which can be formulated as an empirical
risk minimization problem. More specifically, we assume that
each sensor ¢ has n; noisy measurements of the parameter
Zij = Mﬂ + Wi fOI'j = {1,27 ,ni} where Ml € RSXd
is the measurement matrix of agent ¢ and w;; is measurement
noise associated with measurement z;;. Then the estimation
of the parameter # can be solved using the decentralized
optimization problem formulated in (1), with each f;(0) given
by

1 &
fi(0) = — Z llzij — Mib||* + r;|0]|

L

where r; is a non-negative regularization parameter.



Fig. 1. The interaction topology of the network.
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Fig. 2. Comparison of convergence performance under different thresholds of
the quantization scheme. Here the optimization error is defined as ||2* —z*||.

We assume that the network consists of five agents inter-
acting on a graph depicted in Fig. 1. The dimension s was set
to 3 and the dimension d was set to 2. n; was set to 100 for
all 7. w;; were assumed to be uniformly distributed in [0, 1].
To evaluate the performance of our proposed decentralized
stochastic optimization algorithm, we set \¥ = W
and ¢ = W It can be verified that the parameters
satisfy the conditions required in Theorem 2 and Corollary 2.
The evolution of the estimation error averaged over 100 runs
is illustrated in Fig. 2, where we show the results under three
different threshold values of the quantization scheme. It can be
seen that a larger threshold tends to bring a larger overshoot
in the optimization process.

B. Non-convex case

We use the decentralized training of a convolutional neural
network (CNN) to evaluate the performance of our proposed
decentralized stochastic optimization algorithm in non-convex
optimization. More specially, we consider five agents interact-
ing on a topology depicted in Fig. 1. The agents collaboratively
train a CNN using the MNIST data set [60], which is a large
benchmark database of handwritten digits widely used for
training and testing in the field of machine learning [61].
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Fig. 3. Comparison of CNN training/validation performance between our
algorithm and the conventional decentralized stochastic optimization algorithm
in [20].

Each agent has a local copy of the CNN. The CNN has
2 convolutional layers with 32 filters, and then two more
convolutional layers with 64 filters each followed by a dense
layer with 512 units. Each agent has access to a portion of the
MNIST data set, which was further divided into two subsets
for training and validation, respectively. We set the optimiza-
tion parameters as \¥ = m and €F = OOOTR T
For the adopted CNN model, the dimension of gradient, d,
is equal to 1,676,266. It can be verified that the parameters
satisfy the conditions required in Theorem 1 and Corollary
1. The evolution of the training and validation accuracies
averaged over 100 runs are illustrated by the solid and dashed
black lines in Fig. 3. To compare the convergence performance
of our algorithm with the conventional decentralized stochastic
optimization algorithm, we also implemented the decentralized
stochastic optimization algorithm in [20] to train the same
CNN under the same quantization scheme, whose average
training and validation accuracies over 100 runs are repre-
sented by the solid and dashed blue lines in Fig. 3. It can be
seen that the proposed algorithm has a faster converging rate
as well as better training/validation accuracy in the presence
of quantization effects.

To show that the proposed algorithm can indeed protect the
privacy of participating agents, we also implemented a privacy
attacker which tries to infer the raw image of participating
agents using received information. The attacker implements
the DLG attack model proposed in [26], which is the most
powerful inference algorithm reported to date in terms of
reconstructing exact raw data from shared gradients/model
updates. The attacker was assumed to be able to eavesdrop
all messages shared among the agents. Fig. 4 shows that the
attacker could effectively recover the original training image
from shared model updates in the conventional stochastic opti-
mization algorithm in [20] that does not take privacy protection
into consideration. However, under the proposed algorithm and
quantization effects, the attacher failed to infer the original



Evolution of DLG attacker inference result under existing decentralized stochastic optimization algorithm
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Fig. 4. Comparison of DLG attacher’s inference results under existing
decentralized stochastic optimization algorithm in [20] and our algorithm.
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Fig. 5. Comparison of DLG attacher’s inference errors under existing
decentralized stochastic optimization algorithm in [20] and our algorithm.

training image through information shared in the network. This
is also corroborated by the attacker’s inference performance
measured by the mean-square error (MSE) between the in-
ference result and the original image. More specifically, as
illustrated in Fig. 5, the attacker eventually inferred the raw
image accurately as its estimation error converged to zero.
However, the proposed approach successfully thwarted the
attacker as attacker’s estimation error was always large.

VIII. CONCLUSIONS

The paper has presented a decentralized stochastic optimiza-
tion algorithm that is robust to aggressive quantization effects,
which enables the exploitation of aggressive quantization
effects to obfuscate shared information and hence enables
privacy protection in decentralized stochastic optimization
without losing provable convergence accuracy. Based on this
result, this paper, for the first time, proposes and achieves
ternary-quantization based rigorous (0, §)-differential privacy
without losing provable convergence accuracy in decentralized
stochastic optimization. The results are applicable in both the
convex optimization case and the non-convex optimization

case. The ternary quantization scheme also leads to signif-
icant reduction in communication overhead. Our approach
appears to be the first to achieve rigorous differential privacy,
communication efficiency, and provable convergence accuracy
simultaneously in decentralized stochastic optimization. Both
simulation results for a convex decentralized optimization
problem and numerical experimental results for machine learn-
ing on a benchmark image dataset confirm the effectiveness
of the proposed approach.

The paper assumes smooth gradients and does not consider
potential constraints between optimization variables, as, for
example, in [62]. In the future, we plan to extend the results
to more general non-smooth and constrained decentralized
optimization problems.
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APPENDIX
A. Some preliminary results

Lemma 4. [63] Let {v*} be a non-negative sequence satis-
fying the following relationship for all k > 0:

oF < (1+ ak)vk +w” (28)

where sequences ak >0 and w* >0 satisfy ZEOZO ak < o0
and Y32, wh < oo, respectively. Then the sequence {v*} will
converge to a finite value v > 0.

Lemma 5. [64], [23] Let {v*} be a non-negative sequence
which satisfies the following relationship for all k > 0:

oM< (1 = Pk 4 b (29)

with sequences v > 0 and v%§ > 0 satisfying

Cq k Co k
— < <1 — < <1
Cok+ 0 =1 =0 Gk e 2
for some C; >0, Cy >0, C3>0,0<v <1, and v1 < 7.
Then limy, o0 (k+1)700* = 0 holds for all 0 < o < Yo — 1.

Lemma 6. [65] Suppose h : RY — R is a convex function
with gradient bounded by G. Then we have

|h(y) — h(z)| < Glly — |
for any z,y € R?

B. Proof of Lemma 2

According to Lemma 4 in the Appendix, to prove that
E [||z*||?] is bounded, we only need to prove that under the
conditions in Lemma 2, it satisfies the inequality in (28) in
the Appendix.

For the convenience of analysis, we first define the aug-
mented versions of x* and Z*:

* A

(30)



where 1,,, denotes an m dimensional column vector with all
entries equal to 1.

Using the inequality (z +y)? < 222+ 2y2, which holds for
any x,y € R, we can obtain

a*|? = |2 — 2" + 2 — 2" 4+ 2%
< (Ili"’“ — & 4 2b = 2|+ [|8¥])?
<2l|zk — & 4 2 — 282 + 2@ (31)
<2()| 3" — & + ||l=* — 27)) + 2] &7
<4|l@F — %) + 4llz* — 27| + 2/|2*)?

Because z* is a constant, we will prove the boundedness of
E [[|z*]|?] by proving that E [||z% — *||? + [|z* — z¥|]?] is
bounded. Our derivation will follow three steps: in Step I and
Step I, we study the respective evolution of E [||z% — 2*||?]
and E [||z* — Z"||?] under our proposed algorithm in (3);
in Step III, we show that E [||z% — &*[|2 + ||z% — 2¥||?] is
bounded by combining the relationship obtained in Step I and
Step II.

Step I: We first consider E [||z¥ — £*[|], which is equal to
mE [[|z% — *||?] according to the definition in (30).

From (5), we have

||i‘k+1—$*||2: jk— * k)\kZz 192
m
St N .
<<||.’fk—1'*||+ Ek>\k: i=1J1 >
m
Using the inequality (z + ¢)? < (14 v)z? + (1 + 1)y%,

which holds for any x,y € R and v > 0, we can obtain the
following relationship from (32) by setting v to (€*)?

||1,k+1 *”2 < (1 + (Ek)Q) Hi,k o ‘T*Hz
1 k kZz 1gz
# (1 ) =
= (1 + (ﬁk)z) ij — || (33)
(( kAk )\k szbl f ?
§(1+(e )Hm — 2|
+ ((ek/\k)Q + (/\k)Q) G2

where we used the result that the gradient is bounded by G
from Lemma 1.

Step II: We next consider E [[|z* — 2*||?]. From (4) and
(5), we can obtain the dynamics of 2* — Z* based on the fact
Akzk — k-

.’Ek+1 7k+1 (Ak ® Id)(JJ _ .%k) _ Ek)\k(M ® Id)gk
+ € (Lw X Id)V
(34)
where M = (I — %) and the other parameters are given in
(4). Therefore, we have

H k+1

= (A" ® 1) (2* — &%) —
+ [l (Lo ® 1)V |*+
2 ((A* @ I)(a* — %) — AR (M @ 1) g"

¢k+1||2

FN(M ® La)g"|?

(35)

L€ (Ly ® I)VF)

i.e.,
E [ka+1 _ ik—HHﬂ
=E [|[(A* @ L) (z* — 2*) — M (M @ 12)g"|]]  (36)
+E [||*(Lw @ 1a)VF¥|?]

where we used the fact that V* is uncorrelated noise with
expectation equal to zero.

It can be verified that the following relationship holds

I(A" ® La) (2 — &*) — N (M @ Ia)g"|
< (A" @ Ig) (2" — Z%)| + [| " A" (M @ Ta)g"|
< (1= ép)lla® — 2| + || "M (M @ La)g" |
< (1= )™ — 2¥|| + A"l g

where the second inequality used the doubly-stochastic prop-
erty of A* and Lemma 4.4 of [64] with p the second largest
eigenvalue of L., and the third inequality used the fact
|[M]|| = 1. Therefore, we have

I(A* ® Iq) (2" - &%) —
ol

<A +v)(1—Fp)?at -2

XM @ L)t |
1
()N g

based on the inequality (z +y)? < (1 +v)z? + (1 + 2)¢2,
which holds for any z,y € R and v > 0. Setting v as €*p, we
further have

(A* & L)(a* - &%) -
< (14 p)(1—€*p)*|a*
=(1- ()01 - p)|=

(1 ) (N2 P

EN(M @ 1a)g"|I?

. 1
=P+ (1 + %)(6’“/\'“)2\\9'“”2

k _aﬁijZ

k )\k 2
n ”) 14|12
p
+ 6k()\k)2) G2
p
37

Note that there always exists a § > 0 such that
E[[|[V¥]?] < Bll«*||> holds under Assumption 3, we can
combine (36) and (37) to obtain

< (1—dp)let — 2+ ((N)Q
< (1— o)t — 2+ ((éu’“)?

E [”xk-‘rl _ %k+1||2]

< (1= e*p)E[|la* — 2]
k(\k
+ <(€k/\k>2_|_ € ()‘ ) )GQ + (ek)QﬁE “|.73k||2]
P
(38)



Step III: Finally, combining (31), (33), and (38) yields

E [kaJrl o f}k+1||2 + ||1—7k+1 o 17*”2]
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Because the second and third terms on the right hand side
of the above inequality are summable under the conditions in
Lemma 2, according to Lemma 4 in the Appendix, we have
that I [[|#*+ — 257112 + |28 — 2*||?] will converge to a
finite value. Further using (31) and the fact that z* is a finite
vector, we have that E [||z*||?] is always bounded.

C. Proof of Lemma 3

Noting that E [||z*||?] is bounded from Lemma 2, we al-
ways have the following inequality for some > 0 according
to (38):

E [ka-i-l _ ik-i—lHQ} < (1 _ Ekp)E “|$k _ ‘%k”2]

+ ((ek)\k)Q + W) G? + (€")°BQ
’ (40)

where () is some constant representing an upper bound of
E [||z*[?]. Then the lemma can be directly obtained by
applying Lemma 5 in Appendix A.
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