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We compute the internal modes of a nonspinning neutron star and its tidal metric perturbation in general
relativity, and determine the effect of relativistic corrections to the modes on mode coupling. Claims have
been made that a new hydrodynamic instability can occur in a neutron star in a binary neutron star system
triggered by the nonlinear coupling of the companion’s tidal field to pairs of p-modes and g-modes in it as
the binary inspirals toward merger. This “PG” instability may be significant since it can influence the
binary’s inspiral phase by extracting orbital energy, thereby potentially causing large deviations in their
gravitational waveforms from those predicted by theoretical models that do not account for it. This can
result in incorrect parameter estimation, at best, or mergers going undetected, at worst, owing to the use of
deficient waveform models. On the other hand, better modeling of this instability and its effect on binary
orbits can unravel a new phenomenon and shed light on stellar instabilities, via gravitational wave
observations. So far, all mode-tide coupling instability studies have been formulated in Newtonian
perturbation theory. Neutron stars are compact objects, so relativistic corrections might be important. We
present and test a new code to calculate the relativistic eigenmodes of nonrotating relativistic stars. We use
these relativistic tide and neutron star eigenmodes to compute the mode-tide coupling strength (MTCS) for
a few selected equations of state. The MTCS thus calculated can be at most tens of percent different from its
purely Newtonian value, but we confirm the dependencies on orbital separation and equation of state found
by Newtonian calculations. For some equations of state, the MTCS is very sensitive to the neutron star crust

region, demonstrating the importance of treating this region accurately.
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I. INTRODUCTION

Dozens of compact binary mergers, involving neutron
stars (NSs) and black holes (BHs), have been made using
the LIGO [1] and Virgo [2] gravitational wave (GW)
detectors [3,4]. These GW signals can be used to probe
physics involving relativistic high density matter in strong
gravity. One phenomenon proposed to occur in binaries
with at least one neutron star, and nearing merger, is the
tide-induced instability originating from the coupling of its
acoustic modes (or p-modes) and g-modes, where the latter
are associated with buoyancy arising from stratification in
the NS core. While mode-tide couplings, per se, have been
studied in numerical models of nonrelativistic binaries of
main sequence stars [5], which are far less dense than
NS matter, nevertheless no claims for the aforementioned
tide-induced instabilities have been made for such stars.
However, if such instabilities are found to occur in binary
neutron stars (BNSs), they will not only provide clues to
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the NS equation of state (EOS), but also have important
implications for merger waveforms and possible missed
detections if the instability-induced modulations cause
significant dephasing not accounted for by GW search
algorithms [6]. Such a detection would also have interest-
ing implications on binaries of main sequence stars.

The first studies of couplings between tides and internal
modes of neutron stars in a BNS considered the possible
importance of resonant coupling, which will occur during
inspiral when the orbital period comes into resonance with
neutron star g-modes [7-12]. Another possibility that has
generated great excitement is one where the three-mode
couplings can be strong even away from resonance, when the
two daughter modes have similar wave numbers [6,13—16].

Attempts to detect this instability via GW phase
deviation in the BNSs GW170817 and GW 190425 have
been made [17,18]. It was found that the observed signal is
consistent with the absence of this instability in that system.
This comparison also constrained the p-g amplitude for
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1.4 My neutron stars to less than a few tenths of the
theoretical maximum, and the p-g saturation frequency to
~70 Hz [17]. However, these studies, as well as some
notable alternative treatments [19], did not preclude the
possibility of this phenomenon occurring in the inspiral of
other binaries involving neutron stars.

Studies of the nonresonant coupling to date have been
nonrelativistic. The partial exception is the work of Zhou
and Zhang [20], who used Newtonian perturbation theory
on relativistic (Oppenheimer-Volkoff) neutron star equilib-
ria to study the static and dynamic coupling between tides
and g-modes. Using six plausible neutron star equations of
state, they find significant dependence of the instability
growth rate primarily on the Brunt-Viisild frequency and
secondarily on the neutron star compaction. However,
hybrid approaches of this sort are not necessarily more
accurate than purely Newtonian models, and in fact the
inconsistency between equilibrium and perturbation phys-
ics can sometimes lead to distinct errors of its own (see,
e.g., [21]). A consistently relativistic treatment is needed.

In this paper, we take a step toward this goal by treating
equilibria, tidal responses—both static and dynamic, and
g-mode eigenfunctions fully relativistically. Only the tidal
coupling integral remains nonrelativistic. Because we focus
only on the effect of relativity, we use the common
idealized treatment of neutron star microphysics, ignoring
possible effects of the neutron star crust or superfluidity.
We do, however, use several newer nuclear physics
equations of state. We closely follow the same approach
as the one pursued in Z&Z; i.e., we apply the relativistic
corrections only to the MTCS term, which is linear in the
tidal strength e for the shifted modal frequency. This term
includes only the coupling between the tide and the
g-modes. Therefore, it cannot be considered as a complete
calculation of the p-g instability, although it does involve
low-frequency higher order g modes that contribute to it. In
any case, the g mode—tide coupling may be more important
than the p-g instability [15].

This paper is organized as follows. In Sec. II we introduce
our relativistic corrections, and Tolman-Oppenheimer-
Volkoff (TOV) star setups with a brief comparison between
EOSs. The results and discussion are presented in Sec. III.
Section IV summarizes our conclusions. In Appendix A we
explain our numerical methods and present various test
results that were used to examine our code. The importance
of relativistic corrections to higher-order modes coupling is
discussed briefly in Appendix B.

We use units such that G = ¢ = My = 1, unless other-
wise specified. We convert to physical units when calcu-
lating observable quantities.

II. STAR SETUPS AND RELATIVISTIC
CORRECTIONS

In this paper our goal is to compute the mode-tide coupling
strength (MTCS) in a BNS system. This problem was

originally studied by Weinberg et al. (2012) [14] and
Venumadhav ef al. (2013) [15]. Here we follow the same
Newtonian approach to the mode coupling as that taken by
Zhou and Zhang (2018) (Z&Z) [20], mainly computing the
MTCS using Eq. (33) for static tides and Eqgs. (43)—(45) for
nonstatic tides from Z&Z, with new modifications to con-
sider certain relativistic effects. Specifically, (1) the eigen-
frequencies and eigenfunctions of the stellar modes are
computed relativistically; (2) the dynamical tidal displace-
ment due to the companion star is computed in the relativistic
formalism; (3) we employ all hydrodynamic variables in a
relativistically consistent way. This work is limited to the
special case where the masses of both stars are identical.

Our motivation is to study the significance of the
relativistic corrections. Therefore, we limit MTCS compu-
tations to a single case of g-mode with n = 32,1, =4 (i.e.,
a “g-mode, g-mode, tide coupling” or, equivalently, a
coupling of two g modes and the tide) for studying its
sensitivity to the EOS. We mostly focus on the dynamical
tides since the nonlinear mode-tide coupling is stronger by
up to a few orders of magnitude compared to static tides
and, hence, are expected to be more important for stability
and gravitational-wave observations (see Sec. 4.4 in Z&Z).
We also compute a few cases of static tide MTCS in order
to test our results against Z&Z.

A. TOV star and equations of state

We set up the background star by solving the TOV
equations (see, e.g., Eq. (5) in Z&Z). For each EOS, the
central density is chosen to set the total gravitational mass
to 1.4 M. The radii and central densities of TOV stars
with different EOS are shown in Table I.

The unperturbed metric is static and spherically sym-
metric and, therefore, may be written in the form

ds* = —e’dt* + e*dr* + r*(d6? + sin? 0d¢?), (1)

where the metric components are related to the fluid density
p(r) and pressure p(r) via Einstein’s equations

dv (m(r) +4zrip)
dr 7 r(r=2m(r)) ’ (2)
et =120 3)

TABLE I. The rest-mass central density p., radius of TOV
stars R, and core-crust boundary radius R, for Shen, DD2, and
SFHo equations of state are tabulated above. The central density
has been adjusted so that the star’s mass always equals 1.4 M.

EOS Poc (g/cmS) R (km) Ryoundary (km)
Shen 5.0 x 10 14.532 13.453
DD2 5.8 x 104 13.220 12.297
SFHo 8.5 x 10 11.901 11.174
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and m(r) is the mass interior to radius r

m(r) = Ar4ﬂr2pdr. (4)

We use three finite-temperature, composition-dependent
nuclear-theory based equations of state, all derived with
relativistic mean field (RMF) description of the nuclear
matter. They are publicly available in fairly high-resolution
tabulated form [22] at [23]. The electron fraction Y, of each
equilibrium star is determined by the beta-equilibrium
condition.

(1) Shen [24]: An RMF EOS that covers broad density
and temperature ranges (10° < p < 1052 g/cm?;
0 < T < 100 MeV). For our purpose, we extract
the table for the minimum temperature, i.e., 7 = 0.1.
Shen is our stiffest EOS, giving the radius of a
1.4 M neutron star to be Ry 4, = 14.53 km.

(2) DD2 [25]: An RMF with a density dependent nucleon-
meson coupling. DD2 has intermediate compactness
in our selection, and gives Ry 4 5, = 13.22 km.

(3) SFHo [26]: Another RMF using a covariant Walecka
model Lagrangian (ensuring causal sound speeds).
This is the softest EOS in our selection, which
makes Ry 4y, = 11.9 km.

While the above selection of EOSs is not exhaustive,
nevertheless it includes EOSs that are of varying stiffness
and are allowed by both the GW170817 observations
[27,28] and the maximum mass constraint arising from
pulsar observations [29].

Following the same criterion adopted by Z&Z and Lai
(1994) [8], the crust-core boundary is taken to be the radius
where the electron fraction Y, is at its minimum. This
criterion helps us to distinguish the core g-modes from
their crust counterparts. Furthermore, it is used to cut off
g-modes by setting the Brunt-Viisili frequency (V) to zero
outside of this radius. The electron fraction versus density is
shown in Fig. 2 for the EOS selection.

According to Z&Z, the Brunt-Viisild frequency plays an
important role in determining the strength of the nonlinear
coupling between g-modes and tides. This will be discussed
in more detail in the results section. Figure 1 compares the
buoyancy frequency of different equations of state, computed
with Eq. (27) from Z&Z. When computing this frequency,
we take numerical derivatives in the EOS table, which may
produce errors of a few percent, but is adequate for our
purposes. For much of the star’s body, these frequencies track
its compactness, with Shen as the highest, SFHo as the
lowest, and DD2 in the middle.

B. Relativistic perturbation equations

We follow the standard approach laid out in Thorne and
Campolattaro [30] for relativistic perturbation equations.
By adopting the notation of Lindblom and Detweiler
(1983) [31], the perturbed metric tensor is described as:

le+10 T T

— Shen

1e+08]

o let06[

N (s

10000

100

L L 1 L 1 L L
0 0.2 04 0.6 0.8 1
r/Rboundary
FIG. 1. The Brunt-Viisild frequencies plotted as functions of
the star’s radial coordinate r for Shen, DD2 and SFHo equations
of state.

ds* = —e*(1 + r'HyY,,e®)dt* — 2iwr ™ H Y, e dtdr
+e*(1 = r'HyY e dr?
+ 2 (1 = r'KY,,,e™") (d6? + sin® Od¢?), (5)

where the radial dependence of the metric perturbations is
characterized by H(, H, and K—all functions of the radial
coordinate r. The angular-coordinate dependence of the
perturbations is represented by spherical harmonics Y.
Also, the time dependence e’ of the perturbations is
characterized by mode angular frequency w.

The Lagrangian fluid displacement vector components in
a perturbed star are [32]:

&= rl—le—/l/ZWYlmeiwt’ (6)
dy .
59 _ _rl—2vd_émez(ut’ (7)
! dy,, .
S Ve 3
g rrsin? @ dg ’ (8)

where W and V are the two fluid perturbation functions.
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FIG. 2. The electron fraction versus density for Shen, DD2 and
SFHo.
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The perturbation functions are related as a consequence
of Einstein’s equations (see Eq. (5) from [33]):

{3m(r)+%(l+2)(l— 1)r—|—4zzr3p} H,

1
=8nrie™V/2y— [EZ(H— 1) (M +4znr3p) —w2r3e_(’1+">] H,

+ B(H—2)(Z— r—aw?rie™
—r‘le’l(m(r)+47zr3p)(3m(r)—r+4ﬂr3p)] K, 9)

where the perturbation function y is defined as
7= a)Z(p + p)e—u/ZV _ r—]p/e(u—l)/ZW

1
+ 500+ p)e2Hy (10)

and p and p are energy density and pressure of the
unperturbed star, respectively. A prime denotes the derivative
with respect to r, and m(r) is the local mass as defined
by Eq. (4).

C. Relativistic tidal displacement computation

The tidal displacement represents the response of a fluid
star to the external nonstatic tidal field, which couples
nonlinearly to the normal modes of neutron star and results
in frequency shift. The Newtonian tidal displacement is
computed by solving a system of four ODEs representing
the Newtonian perturbation equations including the tidal
field of the companion star as the source terms (see
Egs. (Cl) from Z&Z, and Egs. (A9-All) from
Weinberg et al. (2012) [5]).

In the relativistic approach, we need to compute the
perturbation of the metric and hydrodynamic functions
including the effects of the tidal field of the companion star.
For a relativistic perturbed star, the interior solution is
derived by solving a system of four coupled ODEs, namely:

H\ = —r"Y I+ 1 +2Me*r™! + dnrte(p — p))H,
+rle*(Hy+ K = 16z(p + p)V), (11)

1 1
K’ = }"_IH0+§Z(I+ l)r_lH] - <(l+ l)r_l —EI//>K

—8x(p + p)et?r-'w, (12)

W = =1+ 1)r 'W + re*? (y"p"e‘”/z;(

1
—l(l+1)r—2V+§H0+K>, (13)

1

1
Z==lr"y+(p+ p)e”/z{z (r‘l - Ez/)HO

1 1 1/3
+ {rwze_”-f—il(l—f—1)r‘1)H1+§<—z/—r‘1>K

2 2
1
- El(l + D/r 2V = rY4a(p + p)et?

1
+ @w2et 2 — 5 rz(r‘ze’mz/)’] W}, (14)

where y is the adiabatic index. We integrate Eqgs. (11) and
(12) for H; and K to solve for the metric perturbation, and
Egs. (13) and (14) for W and y to obtain the hydrodynamic
perturbation. Algebraic constraints [Eqgs. (9) and (10)] give
V and H.

The solutions must be regular at the origin have
vanishing perturbed pressure at the surface (y = 0). The
values for the metric perturbation functions H; and K at the
surface are given by the exterior solution described below.

The oscillations of the fluid and the metric are assumed to
be synchronous with the dynamical tidal field, which means
that @ depends on the angular frequency of the tidal field Q
through the relation @ = mQ, where m = 2 for the dynami-
cal tide. Q itself deviates from the orbital angular frequency
in Kepler’s law by higher-order post-Newtonian terms, as can
be seen in Eq. (9.25) of Ref. [34]. We evolve the perturbation
equations both outward from the origin » = 0 and inward
from the surface » = R, and use a shooting method to match
the solutions at a fitting radius » = R/2. The details of our
numerical scheme are given in the Appendix A.

For the exterior solution, we solve the Zerilli equation [35],

d2
(dr* + w? — V(r))Z =0 (15)
with the potential given by

_ 2(r—-2M)
vir) = r*(¢r + 3M)?

+3¢*Mr? + 9cM?r + IM?], (16)

[P+ 1)r

where ¢ = (I —1)(I+2)/2. We do so by matching the
Zerilli function to the asymptotic solution at large radii. The
asymptotic solution is taken to be the dynamical tidal field
from an orbiting mass around a Schwarzschild black hole,
calculated by Fang and Lovelace (2005) [36].

. ~2 ~
Z:B(l +43"’> [?3 L o Al 6 }

4 16 64 2567
—945-236in 85054 15436in 1
B = 17
[ 51207 614407 0(7"‘)} (17)

where B is defined as

083001-4



NONLINEAR MODE-TIDE COUPLING IN COALESCING BINARY ...

PHYS. REV. D 106, 083001 (2022)

aM* x(. 4in
B=—""\/=(1-22). 18
R (R AN

In these equations, n = 2Mw, 7 = r/2M, and r* is the
tortoise coordinate r* = r + 2M log(r/2M — 1), and A is
the binary separation.

The relation between the metric perturbation functions
(H4,K) and the Zerilli function are given by Eqs. (B1) and
(B2) of Ref. [36],

2 2 .
. ¢rc-—=3cMr—-3M iwdZ
H = - ~22 (19
! lwr2(r—2M)(gr—|—3M) rodr (19)
1r? +3cM 6M? 1 dZ
K:g(g+ )4r + 3¢Mr + 14Z )
r*(¢r+3M) r>dr*

Note that these equations are different from their counter-
parts in Ref. [36]—by factor of r'—to adopt them to the
notation of Lindblom and Detweiler [31] used for the
interior solution.

D. Estimate of errors due to the test-mass
approximation

Strictly speaking, the aysmptotic behavior of the per-
turbed metric solution calculated by Fang and Lovelace is
for the case where the perturbing object is an orbiting
secondary with mass <M. In comparison, the mass of the
secondary in our binary is the same as that of the primary.
While the two problems are not identical, the asymptotics
of the latter problem can be mapped to the first while
incurring an error in the tidal displacement of about 20%
or less for a neutron star mass under 2 M and a binary
separation of over 50 km. One way to check this assertion is
to compare the Fang and Lovelace (FL) asymptotics with
those of the comparable-mass binary studied by Poisson
and Corrigan (PC) [34], who computed the first order post-
Newtonian (1PN) correction terms of the tidally perturbed
metric of the primary. Both works study the perturbed
metric of the compact object of interest at a spacetime point
located at an areal radius b such that M < b < A. In this
limit, the metric of FL (which takes the companion to be a
test mass) deviates from the comparable-mass metric of
Ref. [34] by terms at 1PN and beyond.

The magnitude of the 1PN term found in PC can be
estimated for the type of maximum mass and minimum
separation discussed above. For close binary separations
MTCS magnitudes computed here will not be trustworthy.
All the same, the ensuing inaccurate phase distortions in
GWs from the binary will not impact its detectability owing
to the short time remaining before binary merger. In the
earlier part of the orbital phase the errors are smaller and
will impact orbital deviations less.

For estimating the error incurred in the metric arising
from approximating the secondary as a test-mass, consider

the spacetime point of interest to be somewhat away from
the surface of the primary star, of mass M = 2 M, say, at
b ~ 30 km. Also, the mass of the secondary in our case (for
the comparable-mass binary) is M, = M = 6 km, and the
closest binary separation studied here is A = 50 km. For
this scenario, the FL and PC metrics differ by
O(b>M,/A3) ~2.5%. This can be seen by comparing
Eq. (28) of FL with Eq. (5.3) of PC. While this departure
is small, the main error in our results on the tidal
displacement arises from approximating Q to be the
Keplerian orbital angular frequency. Relative to it, the
IPN correction in the tidal angular frequency can be
deduced from Eq. (9.25) of PC, and is

3/2
{3+ MM, } M :1.2.3\/@, (21)
(M + M,)?| A2 2 4 50V A3

which is ~#20% different from the 1PN corrected value for
that frequency. This can cause a similar difference in the
true value of the tidal displacement. Like the metric error,
this frequency error is much smaller at larger separations.

To understand the nature of our approximations, it is
helpful to remember that there are two compactions in a
binary neutron star system: the compaction of the individ-
ual stars M/R and the compaction of the binary itself
2M/A. Even at large separations, M /R is O(107"), and the
system is relativistic. Our formalism keeps terms that are
higher-order in M/R but drops terms that are post-
Newtonian in M/A, the latter only becoming large in
the very late inspiral when the effects we study are not
expected to be important.

1
2

E. Relativistic eigenmodes

In order to compute the MTCS integral one needs to
derive the frequencies and Lagrangian displacement vec-
tors of the perturbed star for p-modes and g-modes. For our
particular studies, we are interested in high-order modes
coupled with the tides. Following Z&Z we use the Cowling
approximation, which provides enough accuracy at least for
high-order mode (high mode number) computations, but in
the relativistic formalism.

To derive the internal modes (p-modes and g-modes)
within the Cowling approximation, we solve the perturba-
tion equations for the radial component of the Lagrangian
displacement and Eulerian perturbation for pressure. In
other words, in the relativistic formalism and within the
Cowling approximation, we ignore the perturbations of the
metric, and the original four coupled ODEs, Eqs. (11)—(14),
reduce to two coupled ODEs considering only hydro-
dynamic perturbations. For this we refer to Lindblom
and Splinter (1990) [32] and Finn 1988) [37].

Adopting the same notation as Finn (1988) [37], we
define the new variables, the radial component of the
displacement vector in the orthonormal basis and redshifted
pressure perturbation, as follows:
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E = M2 = PEIW ()Y e, (22)
6P = e"/*8p, (23)

where §p is the Eulerian pressure perturbation. Also, we
used Eq. (6) above to replace &£". Note that the radial
dependence of & is captured purely by X, = r'"'W(r).
This quantity was studied by Z&Z in the Newtonian
computation. In comparison, our Fig. 3 shows the tidal
displacement, computed relativistically for different EOSs
at binary separation A = 70 km. This confirms the pre-
vious investigations for dynamical tides, such as of Maselli
et al. (2012) [38], that the deformation of a star due to the
external tidal field is larger for a stiffer EOS during late
inspiral. Moreover, in comparison to Z&Z relativistic
effects appear to reduce X,.

In terms of these new variables, and assuming e’ time
dependence, the perturbation equations become

~ 2 "~ [(I+1)e 1
ér/ — |:__p:| §r+ |:(_|—)622_:| e(i—lz)/Zép’ (24)
ropy (p+p)w’r’ pr

- P
SP) = p+p |:e(/1 y)/2w2 + e(l/ 2)/2
5P = o+ p) -

x<”/ / )]?Jrﬂ’ap. (25)

yp pt+p py

The eigenfrequency w, and eigenfunctions, P and &, are
derived by solving these equations numerically using the
shooting method, and applying the same boundary con-
ditions as in the Newtonian perturbation equations. Those
conditions require (a) the Lagrangian pressure perturbation
to vanish at the surface and (b) the regularity condition,

4
‘I
05 -—-- Shen e
— DD2 vl
—— SFHo S
04 % -
K4

,‘I
g /
- | K4 A

x 03 ‘/' o
- 7
K4 Pl

Rg e

02 L 7
L 4.',/’
o

0.1 e B

0 P i ! ! !
0 02 04 0.6 0.8 1

/R
FIG. 3. The relativistic tidal displacement for Shen, DD2 and

SFHo equations of state computed at A = 70 km binary sepa-
ration, for m = 2 nonstatic tide in a 1.4 M NS. The units of X,
here are the same as in Z&Z, namely, eRW,,, where R is the
radius of the star, ¢ is the tidal strength R3/A3, and W, are the
coefficients in the expansion of the tidal potential in terms of

spherical harmonics. In particular, Wy, = /37/10.

TABLE II. The Newtonian and relativistic eigenfrequencies
with the Cowling approximation, and MTCS evaluated for g-
mode n = 32, 1 = 4, for dynamical tides with binary separation
A =70 km. The Newtonian eigenfrequencies correspond to the
solution of the Newtonian perturbation equations with TOV
background stars in equilibrium.

EOS fg(N) (HZ) fg(R) (HZ) MTCS(N) MTCS(R)
Shen 36.06 27.505 0.08339 0.06616
DD2 14.15 11.352 0.05385 0.06404
SFHo 11.45 8.817 3.5891 1.6752

&, =1&, to hold at the center, with &, denoting the
component of the Lagrangian displacement vector trans-
verse to the radial direction [39].

The relativistic eigenfrequencies and radial component
of the displacement vector & derived for g-modes n = 32,
[ =4 for Shen, SFHo and DD2 equations of states are
shown in Table II and Fig. 4. In the Z&Z paper, the radial
and horizontal components of the Lagrangian displacement
vector of g-modes are called g, and g, respectively. For
convenience, we follow the same convention henceforth.
The relation between the displacement vector components
and the perturbation functions W and V are given in
Egs. (6)—(8). In the relativistic Cowling formalism the
horizontal component of the Lagrangian displacement is
related to the Eulerian pressure perturbation as follows:

:e”/2 op
rwﬁp—i—p’

Sh (26)

where o, is the g-mode frequency.

R boundary

FIG. 4. The radial displacement eigenfunction g, for the [ = 4,
n =32 g-mode with frequencies listed as fy) in Table II,
computed with our relativistic code in the Cowling approxima-
tion, for Shen, DD2 and SFHo EOSs. The eigenvectors are
normalized as @} [ d*xp|j|* = E, where Ey = M*/R.
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F. Mode-tide coupling strength

As is explained in Z&Z, the g-mode frequency shift due
to its nonlinear coupling to a p-mode and the tide can be
expressed as:

= 1 _Cl —C2—C3+O(€3>, (27)

) ||8N

LY

where @, is the g-mode’s original frequency and w_ is its
shifted frequency. The terms C;, C, and C; are defined as
follows:

C, = €<U§g + Z2Kagg)(,(ll>>, (28)

C, = 522(21(@9)(,(12) + 3Kabgg)(£,1))(§71)), (29)
a.b

2

a)
Cy=¢ 2_1?7 2
wy — o

(30)

2
1)
Upg+ Y _2Kapgla

Here, ¢ = R*/A3 is the tidal strength, ), is the p-mode
frequency, (1) is the response of the neutron star to the tide,
Kapgs Kapgg and Up, are the coupling strengths given by
Egs. (9) and (12) from Z&Z.

The “C;” term in Eq. (28), which has a linear depend-
ency on e, is termed as the mode-tide coupling strength
(MTCS) by Z&Z. This term is dominant for moderately
high-order modes coupled with the tide. We use the same
definition for MTCS and present our results in Sec. III. The
effects of the relativistic corrections on other terms with
nonlinear dependency on e for higher-order p and g-modes
are discussed briefly in the Appendix B.

III. MODE-TIDE COUPLING
STRENGTH RESULTS

A. Newtonian versus relativistic
equilibria (nonstatic tides)

Before applying the relativistic corrections on the MTCS
computation, we investigate how important relativistic
corrections are. For this purpose, we devise a test in which
the mode-tide coupling strength is computed for a
Newtonian star in hydrostatic equilibrium as the back-
ground (similar to the Lane-Emden model, but in general
form to take any equation of state), within a fully
Newtonian formalism. In order to observe the maximum
effect, we choose our softest EOS, SFHo, for this test. We
adjust the central density to have a 1.4 Mg star in our
Newtonian star model (equal to the gravitational mass of
our TOV models), and the gravitational potential is given
by the Poisson equation. We find that the eigenfrequency of
the g-mode (n = 32, 1 = 4) for this model is ~9.207 Hz.

100 7\_ # -+ TOV-Relativistic | |
E U +—+ TOV-Newtonian | 3

Sa. o—0o Pure Newtonian

MTCS

60 80 100 120
binary separation (km)

FIG. 5. MTCS versus binary separations computed for SFHo.
Comparing the pure Newtonian MTCS computed for a New-
tonian star with the hybrid methods: 1-TOV star and Newtonian
MTCS as given by Z&Z (the blue curve), 2-TOV star with
relativistic corrections for MTCS (the red curve).

The results of this test are displayed in Fig. 5. In this
figure, the “Pure Newtonian” curve presents the modes and
MTCS computed within the Newtonian formalism with a
Newtonian star as the background in equilibrium, while the
“TOV-Newtonian” curve shows MTCS for the hybrid
method used by Z&Z, i.e., Newtonian mode and MTCS
computation with a TOV star as the background, and finally
we have “TOV-Relativistic,” which presents our hybrid
method: the same TOV equilibrium, relativistic mode
calculation, and Newtonian MTCS computation. We use
Eqs. (43)-(45) for nonstatic tides from Z&Z for this
purpose.

The MTCS computed for the Newtonian star is larger by
about one order of magnitude comparing to the hybrid
cases with a TOV star. Therefore, for a pure Newtonian
model the nonlinear coupling instability can be triggered in
early inspiral even for a moderately high-order mode. This
also shows that the Z&Z’s hybrid method stands between
the pure Newtonian model and our hybrid method with the
relativistic corrections. However, this test suggests that
for more realistic and consistent results one should derive
the mode-tide coupling coefficient in a fully relativistic
formalism.

B. Nonstatic tides

We follow Z&Z’s computation for the dynamical tide in
Newtonian physics (see Egs. (43)—(45) in Z&Z), and redo
each calculation by including general relativistic correc-
tions. The MTCSs are computed for a wide range of binary
separations, 50-130 km, for the n = 32 and [, = 4 g-mode.

1. Relativistic effects

The relativistically-corrected MTCS values are compared
with the Newtonian MTCS in Figs. 6-8. Generally, the
relativistic corrections do not introduce dramatic changes in
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FIG. 6. The Newtonian and relativistic MTCS computed for
Shen EOS with different binary separation.
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FIG. 7. The Newtonian and relativistic MTCS computed for
SFHo EOS with different binary separation.

1B #* — DD2-Relativistic |
ENO +—+ DD2-Newtonian ]

SIS
F
p=
001
1 L 1 L 1 L 1
60 80 100 120
binary separation (km)
FIG. 8. The Newtonian and relativistic MTCS computed for

DD2 EOS with different binary separation.

the mode-tide coupling strength, especially for stiffer EOS.
For the Shen EOS, the relativistic corrections suppress the
nonlinear coupling strength by only 5%—10%. On the other
hand, the relativistic terms become more important for more

TABLE III. The Newtonian and relativistic instability thresh-
olds, Thresholdy) and Threshold ), respectively. These are the
binary separations where the MTCS reaches unity.

EOS Threshold ) km Threshold ) km
Shen 46.14 43.97
DD2 41.37 45.01
SFHo 87.38 75.77

compact stars (i.e., softer equations of states), as one would
expect: The coupling strength is suppressed by about 50%
for our softest EOS, namely, SFHo. DD2 appears to be an
exception, where the MTCS rises up to 40% after applying
relativistic corrections. As we will discuss below, the DD2
case is rather special, the MTCS being extremely sensitive to
the properties of the star near the surface. The MTCS for
DD2 models is found to be higher in the relativistic than in
the Newtonian case for all of the treatments of the neutron
star outer layers and surface that we have tried.

2. Mode coupling instability

Following the instability analysis by Z&Z, the shifted
modal frequency (due to the coupling with the tide)
becomes imaginary when the MTCS value exceeds 1,
which causes the mode to grow exponentially with growth
rate w,/MTCS — 1 by extracting energy from the orbital
motion (see Sec. 4.4, and Eq. (48) in Z&Z).

The binary separation at which the instability sets in is
shown in Table IIl for Newtonian and relativistically
corrected methods for the three EOSs. The suppressing
effects of the relativistic corrections for SFHo make the
mode-tide coupling (hydrodynamic) instability triggered
only later in the inspiral phase. Even though the relativistic
coupling is stronger for DD2, the MTCS still stays below 1
in our selected range of binary separations, as shown in
Fig. 9. In other words, for Shen and DD2, tidal disruption
or plunge may occur before the onset of mode-tide

100
L ©-—0 Shen
10 o—oDD2 | 3
i e B—-8 SFHo
- \'E.\
1¢
w0 E
O
E i
0.1 3
F :]
001 ~s :
: S oo E
, -
1 L 1 L 1 L 1
0.001 60 80 100 120

binary separation (km)

FIG. 9. The relativistic MTCS computed for Shen, DD2 and
SFHo with different binary separation.
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instability, at least for this particular g-mode and unless
more complete computations reveal a substantial increase
in the separation at which the instability sets in.

3. Surface issues and DD2

We found that the MTCS computation is very sensitive
to the boundary defined by the minimum of the electron
fraction (see Fig. 2). This is true for both static and
nonstatic tides. This feature has been illustrated clearly
in Fig. 10 of Z&Z, as well, in which one notices that the
largest contribution to the integral comes from the region
very near the surface. This issue is quite severe for the DD2
models we studied, where we observed high-frequency
oscillations and sharp features close to the boundary. This
boundary characteristic made our MTCS results unreason-
ably small at larger binary separation.

To investigate this issue more systematically, we carried
out a few tests: First, we tested the accuracy of our
numerical results by tightening the tolerance of the ODE
solver by an order of magnitude, and found that the results
remain unchanged. Second, we observed that the Brunt-
Viisdld frequency values change rapidly between grid
points close to the boundary. To study its impact, we
eliminated this feature by artificially smoothing N2, and as
aresult the MTCS plot followed the same slope as the other
equations of state when the binary separation is increased.
Therefore, we focused on the buoyancy frequency and
recomputed the MTCS with SFHo for several binary
separations to study how much the results from other
EOS depend on the smoothness of the buoyancy frequency.
We find that the MTCS values get altered only by less than
a percent with smoothed N?; so the extreme sensitivity to
the shape of N? vs r near the surface is not found to affect
every EOS.

For further examination, we computed MTCS using
buoyancy frequencies that are smoothed in different ways,
i.e., the smoothed value of N? for each grid point is given
by taking average over a different number of grid points
from the left and right sides, which makes the N2 curve
slightly different near the boundary. This time the MTCS
changed by 5%-10%, proving that for DD2, the MTCS
depends not only on the smoothness of N2, but also on the
shape of the buoyancy curve at the boundary. As a final test,
we increased the number of the grid points in the original
DD2 EOS table by a factor of 5 to increase the accuracy of
the numerical derivatives used in the buoyancy frequency
computation. Here the results remain almost equal to the
original results with nonsmoothed N2.

In conclusion, the MTCS is very sensitive to the shape
and smoothness of N? near the surface for a neutron star
modeled with the DD2 EOS. This should be considered as a
physical feature of this EOS, since we have confirmed that
the sensitivity is not mitigated by increasing the accuracy
of the numerical integration of the eigenmode equations. It
indicates that, for this EOS, the MTCS is quite sensitive to

behavior near the surface. This motivates future studies on
handling this region carefully, particularly accounting for
the crust, assuming it persists in this part of the late inspiral.

4. Resonant couplings

When computing the MTCS, we observed that at certain
binary separations the tidal displacement amplitude
becomes extraordinarily large—about an order of magni-
tude higher than the amplitude at neighboring separations.
This appears as distinguishable peaks in the MTCS plots, as
shown in Fig. 6 for our Shen case. Z&Z observed similar
peaks in their computations. Further investigation proves
that this feature is caused by the linear resonant coupling of
the dynamical tide with the / = 2 g-modes (see Weinberg
et al. (2012) [5]). In other words, whenever the orbital
frequency matches any of / = 2 g-mode’s frequencies they
couple linearly to the dynamical tide, and this makes the
terms with the tidal displacement dominant in the nonlinear
MTCS computation. For instance, in Fig. 6, the sharp peak
for the Newtonian result at ~65 km matches with the [ = 2,
n =15 g-mode.

Resonant couplings in binary neutron stars have been
studied in great detail [8,40]. The very high amplitude of
the tidal displacement is partly an artifact of ignoring the
inspiral during the calculation of eigenmodes. In reality, the
star will only be resonantly excited for a finite time. (See,
e.g., Ref. [8] for an amplitude calculation that accounts for
the inspiral.)

Obviously, one expects to see similar peaks for other
cases. However the spacing we chose for the binary
separations is not tight enough to capture all the possible
resonant peaks. We also found that some of the resonant
peaks occurring at some binary separations, such as r =
102 km and r~ 113 km in Fig. 6, are smaller and less
noticeable.

5. EOS comparison

Our studies confirm Z&Z’s conclusion on the depend-
ence of MTCS on the EOS, which continues to hold even
after applying the relativistic corrections. Similarly, our
results confirm that the stiffness of the EOS and the
buoyancy frequency affect the MTCS simultaneously
(compare our Fig. 9 with Fig. 12 from Z&Z). For instance,
the MTCS for SFHo is bigger than the other two EOS by an
order of magnitude. This is similar to Z&Z’s results for
Sly4 compared to their other EOS. It is clear that the EOS
with the smallest buoyancy frequency yields the strongest
mode-tide couplings. However, the number of EOSs in our
study is not large enough to support more general and
detailed conclusions regarding EOS effects.

C. Static tides

The computations of MTCS for static tides have been
performed in Z&Z for different EOS using a novel

083001-9



HOSSEIN NOURI, BOSE, DUEZ, and DAS

PHYS. REV. D 106, 083001 (2022)

TABLE IV. The Newtonian and relativistic MTCS for static
tide evaluated for g-mode n = 32, | = 4, with binary separations
A =100 km and A = 2R.

EOS Binary Separation MTCS ) MTCS g
Shen 100 km 2.58 x 1074 2.82x 1074
DD2 100 km 3.49 x 1074 4.18 x 107*
SFHo 100 km 3.12x 1074 3.35x 1074
Shen 2R 0.2466 0.2621
DD2 2R 0.2955 0.3901
SFHo 2R 1.07 1.19

technique called the volume preserving transformation
(VPT) introduced by Venumadhav et al. [15]. This trans-
formation maps a tidally deformed star into a radially
stretched spherical star of equal volume. Here we follow the
same approach and compute our Newtonian MTCS using
Eq. (33) from Z&Z. However, for our relativistic correc-
tions for MTCS, we only consider the relativistic internal
modes and we leave the tidal displacement Newtonian to be
able to use the same VPT technique. This computation is
only done to examine how effective the relativistic correc-
tions are for the static tide MTCS.

The MTCS computed for the static tide confirms the
main results in Z&Z. As it has been claimed in
Venumadhav et al. [15], the four-mode coupling cancels
the three-mode coupling for the static tide, and makes the
mode-tide coupling instability unimportant for this case.
Our results for Shen, DD2 and SFHo show that relativistic
correction applied on the g-mode computation increase the
mode-tide coupling strength only by ten to thirty percent
relative to that in the Newtonian case. However, the MTCS
is still too small (MTCS « 1.0) to trigger the instability
even when the neutron stars are extremely close (i.e., about
35 km apart) before the merger. The MTCS values for static
tide are shown in Table IV for different EOS, for two
different binary separations: (a) A = 100 km, (b) A = 2R
(when the stars are touching). Obviously the A = 2R cases
are not realistic, since the neutron stars would be disrupted
earlier due to the tidal forces.

IV. CONCLUSION

In this paper, we have studied the importance of
relativistic corrections in the nonlinear mode-tide coupling
in neutron star binary systems. The background stars in the
binary systems are assumed to be relativistic and identical.
We have found the MTCS for both static and nonstatic tides
both in pure Newtonian physics and with modes and tides
computed in general relativity. We perform this comparison
for a collection of three three-nuclear-fluid tabulated
EOS at minimum temperature and for a range of binary
separations. We mainly focus on nonstatic tides because of
their importance in the instability analysis.

Although we calculate dynamical tides and stellar
eigenmodes in general relativity, the MTCS integral is still
in the Newtonian formalism, originally derived by Weinberg
et al. (2012) [5]. Thus, even our relativistic treatment is not
fully relativistic. Nevertheless, it provides a strong indica-
tion of how important relativistic effects will be for a given
binary separation and neutron star compaction.

Our results show the relativistic corrections for nonstatic
tides make a small difference in the MTCS values for the
stiffest EOS, but more significant changes (up to 60%) for a
soft EOS such as SFHo. We have also investigated a few
cases for static tides with the relativistic corrections, and
they all show that the couplings are still too weak to be
important for the instability analysis. We also confirmed
7&7’s argument on the dependence of the coupling
strength on the EOS (i.e., EOSs with smaller buoyancy
frequency have stronger couplings). We also observed that
the accuracy of our computations is sensitive to the outer
boundary of the MTCS integral (especially for DD2).

The following arguments are needed to be considered in
future studies of the nonlinear mode-tide couplings for a
better accuracy, (1) To compute a fully relativistic MTCS,
one needs to derive the coupling coefficient in a relativistic
formalism. (2) The core of a cold neutron star is expected to
be superfluid, and based on superfluid models with finite
temperature, the bouyancy frequency is predicted to be
much smaller than normal fluids (see Gusakov & Kantor
(2012) [41]). This assumption can lead to significantly
stronger couplings, since our results and similar studies
show the MTCS is highly dependent on the buoyancy
frequency. (3) We found that the MTCS is highly sensitive
to the location of the boundary and the computed quantities
at the boundary, such as buoyancy frequency. Future
studies will need a better treatment for the core-crust
boundary, and also utilize more realistic models (e.g., solid
crusts for neutron stars). (4) For a complete set of studies,
specifically to investigate the p-g instability, one needs to
consider extremely higher-order g-modes coupled with
dynamical tide and all p-modes for different equations of
state, including all the terms with nonlinear dependency on
¢ for shifted mode’s calculations in Eq. (27).
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APPENDIX A: NUMERICAL METHODS
AND TESTS

1. Shooting method with fitting point

We numerically integrate Eqgs. (11)—(14), for dynamical
tidal displacement, and we integrate Egs. (24) and (25) for
eigenmodes. We solve these systems of ODEs by applying
the boundary conditions at the center and surface of the
star using a shooting method. The boundary conditions are
discussed in Secs. I C and I E. We integrate the equations
outward from the center and inward from the surface to a
fitting point in the middle of the star. A multidimensional
root finder is used to match the solutions at this point. In
particular, we find the roots for W and H, at the center,
and W at the surface for the tidal displacement. For the
eigenmodes on the other hand, the root finder gives us the
frequency and &, at the surface. We use several routines
from numerical recipes [42] including the 4th order Runge-
Kutta ODE solver and Broyden’s multidimensional root
finder.

2. Tests: Newtonian and relativistic eigenmodes
with the Cowling approximation

To compute the stellar oscillation eigenmodes in rela-
tivistic and Newtonian limits, both with the Cowling
approximation, we developed our own code (the results
are given in Sec. I E).

To derive the eigenmodes, we solve the linear perturba-
tion equations with the Cowling approximation, namely,
Egs. (24) and (25). We start with an initial guess to bracket
the f-mode frequency. From the literature we know that the
f-mode frequencies for neutron stars are of the order of a
few kHz. With some trial-and-error, we find the f-mode
frequency with zero nodes along the radius of the star. The
code automatically adjusts the brackets for higher frequen-
cies to generate results for p-modes, and lower frequencies
for g-modes. A separate routine counts the number of the
nodes along the radius of the star for each eigenfunction
output by the ODE solver to determine the radial number of
the mode. We continue running the code till we find the
desired n (radial number) eigenmodes.

These codes were successfully tested by computing the
eigenfrequencies and eigenfunctions of a series of Lane-
Emden stars (Robe 1968) [43] for the Newtonian code, and
TOV models (Font et al. 1999) [44] for the relativistic code.
All these models have polytropic equations of state with
polytropic index n = 2 for the Newtonian comparison and
n = 1 for the relativistic comparison. Tables V and VI show
the eigenfrequencies computed with our codes against the
result from [43,44]. Our results agree with theirs up
to ~0.1%.

TABLE V. The eigenfrequencies of a Lane-Emden star, with
polytropic EOS, and polytrope index n =2,y =14+ 1/n=5/3
and / = 2. The unit of @? is TPavg, Where p,,, is the average
density. The unit of @ conforms to that used by Robe-1968. Note
that Robe-1968 did not list the frequency of g,.

Mode ®?* (Newtonian code) ®?* (Robe-1968)
p6 157.7 157.8

p5 119.7 119.8

p4 86.75 86.77

p3 58.84 58.85

p2 36.02 36.02

pl 18.39 18.39

f 6.080 6.074

gl 0.7772 0.7761

22 0.4025 -

a3 0.2479 0.2473

g4 0.1686 0.1682

g5 0.1224 0.1220

g6 0.09296 0.09265
TABLE VI. The eigenfrequencies of a TOV star, within the

Cowling approximation, and with polytropic EOS, polytrope
index n = 1, k = 100 and py,. = 0.00128, in the polytropic EOS:

P=xpy".

Mode Relativistic Cowling (kHz)  Font et al. (1999) (kHz)
f 1.8825 1.8843

pl 4.1060 4.1099

p2 6.0298 6.0351

p3 7.8670 7.8733

p4 9.6663 9.6740

3. Tests: Relativistic fundamental mode with
space-time perturbations for a single NS

To test our solutions for relativistic perturbation equa-
tions without the Cowling approximation (which is used to
derive the tidal displacement in Sec. II C), we have carried
out the following tests: (1) computing the f-mode frequen-
cies of a few perturbed TOV models and comparing them
with the literature to test our code in deriving the funda-
mental modes without tides. (2) computing the tidal Love
number for static tides, and comparing the numerical
exterior solution with the known analytical solution, which
is explained in the next section.

For the first set of tests, we reproduced the results
from Chirenti et al. (2012) [45] and (2015) [46] for a
perturbed single neutron star. We solve the coupled ODEs
Egs. (11)—(14) for interior as it is explained in Sec. IIC.

The solution outside of the star is derived from the Zerilli
Eq. (15), by applying the outgoing wave as the boundary
condition at infinity (see Eqs. (A35)—(A38) from Lindblom
and Detweiler (1983) [31]).

The eigenfunctions H;, K, W and y for the interior
solutions and the Zerilli function for the exterior solution
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FIG. 10. The hydrodynamic and metric perturbation functions
inside the star, for a polytrope model with I" = 2.
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FIG. 11. Metric perturbations outside the star, given in terms of
the Zerilli function Z and its derivative.

are shown in Figs. 10 and 11 for a polytropic TOV star with
polytropic index = 1, and polytropic constant x = 100.
These results are in good agreement with Figs. 1 and 3 from
Chirenti et al. (2012) [45]. The f-modes frequency we
derive for this polytrope model is 1.5711 kHz, which if off
by only 20.51% comparing with [45]. The f-mode frequen-
cies for neutron stars with LS220 EOS and different masses

TABLE VII. The f-mode frequency of a TOV star within the
full relativistic formalism for LS220 at several neutron star
masses. For comparison we also list the corresponding values
from Chirenti et al. [45] in the right most column.

Mass (M) f (kHz) f (kHz) (as in Ref. [45])
2.053 2.465 2.452
1.788 1.984 1.969
1.525 1.782 1.777
1.273 1.618 1.628

are presented in Table VII for comparison with Chirenti
et al. (2015) [46].

4. Test: Metric perturbation for static tides

We compare our numerical exterior solution with the
analytical solution given by Eq. (21) from Ref. [47]. We
study the static tides for this test and, therefore, set @ = 0 in
our equations. For exterior, we use the Zerilli equation
integrator from Sec. IIC to find the Zerilli function to
derive K and H| by matching to the asymptotic solution at
large radii given by [47] Eq. (21). We use these perturbation
functions to derive H at the surface using Eq. (9). H is
used in Eq. (23) from [47] to compute the tidal Love
number. It is worth mentioning that the definitions of H,,
and K in Hinderer (2008) [47] are different by factor of r/
from those in Detweiler and Lindblom (1985) [33].
Figure 12 compares the numerical and analytical exterior
solutions for H, function, and shows good agreement
between the two.

APPENDIX B: RELATIVISTIC CORRECTIONS
FOR HIGHER-ORDER MODES

The problem of the nonlinear three-mode coupling has
been studied by Weinberg et al. [5] in a binary system for
an arbitrary parent mode and a pair of daughter modes.
However, for a neutron star binary system, only the
couplings between the dynamical tidal field (parent mode)
and higher-order daughter modes are strong enough to
introduce the instability and leave measurable imprints in
gravitational waves from the inspiral phase [16]. In
addition, for a complete studies of the p-g instability for
higher-order modes, it is necessary to include the four-
mode coupling terms, as well as three-mode coupling terms
with nonlinear dependency on the tidal strength (as proven
by Venumadhav et al. [15] and mentioned in Sec. Il F). In
this appendix, we try to investigate the effects of the
relativistic corrections only on the three-mode coupling
term for higher-order modes, and only for one particular

9

— = Analytical

— Numerical

. I . I . I . I .
0 100 200 300 400 500
T

FIG. 12. H; metric perturbation function out side the star
comparing the analytical and numerical solutions.
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TABLE VIII. The frequencies of high-order p-modes and
g-modes computed in the Cowling approximation for TOV model
with SFHo EOS, used for the coupling strengths computations.
The subscript on the mode type is the radial mode number r; for
all cases, [, =4 = [, above.

Mode fw) (Hz) fw Hz)
o 4.0987 3.1193
Po7 337.87 x 103 205.5 x 10

case of a p and g-mode pair. We postpone the complete
calculations to the future studies.

To investigate how large the mode-coupling strength is
for such cases, and how much difference appears by
applying the relativistic corrections, we consider two cases;
First, the nonlinear coupling between dynamical tide and
n =94 g-mode, and second, the nonlinear coupling of
dynamical tide and a pair of n = 97 p-mode and n = 94
g-mode. These two modes have similar wavelengths in
the NS interior and a correspondingly significant overlap
of eigenfunctions, (see Fig. 3 from [5] illustrating an
overlapping p-mode and g-mode pair. Here we perform
two types of comparisons between the Newtonian and
relativistic results: (a) the coupling between the g-mode and
the tide, which is linear on the tidal strength, and (b) the
three-mode coupling between the tide, a g-mode, and a
p-mode, which is quadratic in the tidal strength. The former
is the same MTCS value that we calculated for the results
Sec. III, while the latter is a new series of calculations done
only for high-order mode cases. Our studies for this part are
limited to the SFHo EOS to investigate the maximum likely
effect of the relativistic terms. The Newtonian and relativ-
istic frequencies of the selected p-mode and g-mode in the
Cowling approximation are presented in Table VIII.

Referring to Eq. (27), the first comparison is done for the
“Cy” term (or equivalently MTCS). We call it the “linear”
term, because of the linearity in tidal strength €; see
Eq. (28). The second comparison is done only for the “C3”
term, which is the order of > [see Eq. (30)], so we label it as
the “nonlinear” term. Similar to the linear term, the non-
linear term contains the homogeneous and inhomogeneous
parts, which are derived from Egs. (A55)-(A62) and
Eq. (A72) from [5] (see Sec. 4.2 in Z&Z for more details).
As it is mentioned in Z&Z the nonlinear terms are expected
to become dominant for higher-order mode-tide couplings
in frequency shift calculations.

The comparison between the Newtonian and relativistic
coupling strength, for linear and nonlinear terms, for high-
order modes is presented in Fig. 13. We, again, observe
that our relativistic corrections cause suppressing effects,
though the changes are very small. This shows that for
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FIG. 13. The Newtonian and relativistic coupling strength
computed for the linear (C;) and the nonlinear (C;) terms for
the tide, p97 and g94 modes, (lp = lg = 4), with the SFHo EOS.
Here, p97 and g94 denote the p-mode of order n =97 and
g-mode of order n = 94, respectively.

high-order modes, the mode structure and coupling are
more local and less affected by space-time curvature.

At this point, it is interesting to note the changes of
the linear term (MTCS) at higher-order modes. For this
purpose one can compare the MTCS for SFHO, g32 case in
Fig. 9 with the linear term (MTCS) for g94 case with the
same equation of state in Fig. 13. These results show that
the MTCS does not change significantly as we go to the
higher-order modes. In fact, this particular case shows that
the MTCS decreases slightly for a relatively higher-order
g-mode, with n = 94 nodes.

It is important to mention that we observe sensitivity of
the linear term to the surface region for the tide-g94 case in
Fig. 13. Similar to our DD2 case with tide-g32, the MTCS
starts decreasing significantly as one goes to larger binary
separations. This feature can be eliminated partially by
applying a smoothed Brunt-Viisild frequency. Since in this
paper our focus is on studying the relativistic effects on
MTCS, we postpone further investigation of these boun-
dary issues to future studies.

In Fig. 13, a peak is visible for the Newtonian linear term
due to the mode-tide resonant coupling, similar to the
Shen’s MTCS in Fig. 6. However the peak is not observed
for the Newtonian nonlinear term at the same binary
separation because our selected high-order p-mode and
g-mode pair cannot satisfy the condition for the three-mode
resonant coupling: w;, + @, ~ @,.

Finally, it is worth mentioning that although our analysis
is not complete in the calculation of the frequency shift for
higher-order modes, nevertheless it shows that the relativ-
istic corrections do not create a significant difference for C1
and C3 terms. Therefore, the Newtonian approach can be
considered accurate enough for such cases.
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