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ABSTRACT

Generative Al, exemplified in ChatGPT, Dall-E 2, and Stable Diffu-
sion, are exciting new applications consuming growing quantities
of computing. We study the compute, energy, and carbon impacts
of generative Al inference. Using ChatGPT as an exemplar, we cre-
ate a workload model and compare request direction approaches
(Local, Balance, CarbonMin), assessing their power use and carbon
impacts.

Our workload model shows that for ChatGPT-like services, in-
ference dominates emissions, in one year producing 25x the carbon-
emissions of training GPT-3. The workload model characterizes user
experience, and experiments show that carbon emissions-aware
algorithms (CarbonMin) can both maintain user experience and
reduce carbon emissions dramatically (35%). We also consider a
future scenario (2035 workload and power grids), and show that
CarbonMin can reduce emissions by 56%. In both cases, the key is
intelligent direction of requests to locations with low-carbon power.
Combined with hardware technology advances, CarbonMin can
keep emissions increase to only 20% compared to 2022 levels for
55x greater workload. Finally we consider datacenter headroom
to increase effectiveness of shifting. With headroom, CarbonMin
reduces 2035 emissions by 71%.

CCS CONCEPTS

« Social and professional topics — Sustainability; « Comput-
ing methodologies — Artificial intelligence; « Applied com-
puting — Data centers.

KEYWORDS

Generative Al, Sustainability, Carbon emissions, Large language
models, Geographic shifting

*Authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HotCarbon 23, July 9, 2023, Boston, MA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0242-6/23/07.

https://doi.org/10.1145/3604930.3605705

Liuzixuan Lin®
University of Chicago
Chicago, IL, USA
Izixuan@uchicago.edu

Tristan Sharma*
University of Chicago
Chicago, IL, USA
tristansharma@uchicago.edu

Hai Nguyen”
University of Chicago
Chicago, IL, USA
ndhai@cs.uchicago.edu

Rajini Wijayawardana®
University of Chicago
Chicago, IL, USA
rajini@uchicago.edu

ACM Reference Format:

Andrew A. Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma,
and Rajini Wijayawardana. 2023. Reducing the Carbon Impact of Generative
Al Inference (today and in 2035). In 2nd Workshop on Sustainable Computer
Systems (HotCarbon ’23), July 9, 2023, Boston, MA, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3604930.3605705

1 INTRODUCTION

Generative Al for text (e.g. ChatGPT [43]), images (e.g. DALL-E
2 [44]), and other media has growing creative, informational, and
commercial applications. One representative application, ChatGPT,
leads the explosive growth of generative AL hitting 100 million
monthly active users in January 2023 as the fastest growing appli-
cation [23]. After OpenAl partnered with Microsoft, global tech
companies (Google, Meta, Baidu, Alibaba, etc.) have announced
a slew of generative Al applications [10, 12, 24, 47]. Many expect
that generative Al applications will proliferate in daily life and
commerce [25, 37].

Behind the intelligently generated content are large machine-
learning models. GPT-3 [14], the model used in ChatGPT today,
is a representative large language model (LLM) with 175 billion
parameters. The cycle of developing a generative Al model can
be divided into training and inference. Once trained, a model can
serve many user requests. Much previous work has focused on
the carbon impact of model training [13, 45, 49, 54, 58], and we
believe inference (operation) can also be problematic, particularly
with rapid user growth and integration into everyday applications.
For example, generative Al-backed search can cost 5 times more
compute per request [53], requiring billions of dollars of comput-
ing infrastructure [56], and increasing associated embodied and
operational carbon emissions.

The carbon impact of an application depends on its workload
characteristics, such as compute per request, latency requirement,
and location of users. Given its rising popularity and usage, we
use ChatGPT as exemplar for Generative Al Thereby, we model
and characterize the compute, energy, and carbon emissions of
generative Al and explore how to reduce its carbon impact. Specific
contributions include:

e A ChatGPT-like application with estimated use of 11 mil-
lion requests/hour produces emissions of 12.8k metric ton
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COy/year, 25 times the emissions for training GPT-3. Infer-
ence is critical to environmental and power cost.

e We show that it’s possible to perform geographic shifting
on this user-responsive workload and maintain similar user
experience. Further, CarbonMin, an algorithm that directs
requests to low-carbon regions, reduces carbon emissions
by 35% in today’s power grids.

o Looking forward (2035), considering usage growth (55x) and
power grid decarbonization (3x lower average carbon inten-
sity), CarbonMin reduces emissions by 56%, but with usage
growth this results in 1.2x emissions vs 2022 levels. Benefit
is limited by datacenter capacity.

o Increasing datacenter headroom, enables CarbonMin to achieve
71% reduction for 1x headroom for 2035, a remarkable 73x
reduction in per-inference emissions.

2 PROBLEM

Generative Al has set record for fastest growing technology. Along
with its usage, its compute requirements and carbon emission are
growing too [35, 48].In order to understand the carbon impact of
generative model inference and find carbon reduction solutions,
the following research questions need to be answered:

e What is generative Al inference’s workload and user re-
sponse requirements?

e What is its carbon emissions impact today? and how might
it grow?

o Can inference serving be directed to reduce carbon impact
today? in the future?

3 APPROACH

Carbon impact of computing power consumption depends heavily
on where and when it happens, as grid carbon emissions are highly-
variable across power grids/locations and the course of hours, days,
weeks, and even seasons [2, 15, 17, 21, 33, 36, 57].

We propose to shift workload geographically to reduce carbon
emissions [27, 31, 34, 40, 41, 60, 62, 63], but this is only possible when
applications are flexible; more precisely latency-tolerant. Generally,
user-facing inference has been considered inflexible and thus not
suitable for shifting. Our study covers:

(1) Characterization of ChatGPT-like workloads’ load pattern,
predictability, and user-response requirements.

(2) Avariety of request direction algorithms, using the workload,
with focus on hardware utilization and carbon-emissions
reduction.

(3) Evaluation of request direction algorithm effectiveness and
ability to maintain user-responsiveness.

(4) A projection of these schemes in the future (2035 workloads
and power grids), and even future datacenter capacity (1x
headroom).

3.1 Characterizing Compute Load

We create a model of the ChatGPT workload and its service QoS. The
ChatGPT load is predominantly human-generated and therefore
follows a diurnal structure. Based on 1.6 billion visits in March 2023
[50], the assumption of 5 queries per visit produces 0.27 billions
requests/day (ChatGPT-RR in Table 1). We distribute this load over
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Workload Inference Cost | Training Cost | Inference/
Model (GPU-hrs) (GPU-hrs) Training
ChatGPT-RR | 55,966,667 2,236,467 25x
Google-RR 3,099,154,167 2,236,467 1386x

Table 1: Annual Compute for Inference and Model Training,
various workload models (A100 GPU-hrs).

8 exemplar cities, based on documented ChatGPT usage rates [50]
and national population, skewing for waking hours [28, 52]. Figure
1 shows resulting load, aligned with the US Pacific timezone. Note
that the load is dominated by USA (39%) and European Countries
(35%), reflecting their higher ChatGPT usage.

100
o) —— Total Load
5 us
£ 804 --- France
€ --- Germany
9] --- Netherlands
Q
v 60{-"" UK
o —— India
2 Japan
o 40
-1
c
o<
-
o 204 —
g | : o
g b _— o
0

\

I
{L,_@V 3,_00“0690“ O % ©f

[\ ®T AT @ O
Time (PST)

Figure 1: Present Load: Diurnal structure from waking hours,
weighted by ChatGPT use and population [28, 52]
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Figure 2: Future load based on Google visits [51] and diurnal
structure from waking hours

To project future load, we scale usage up to match Google search
request rates (88.6 billion/month), using 5 queries per visit [51]
(Google-RR in Table 1). Load increases significantly, but 24-hour
shape is similar (Figure 2).

We estimate the total compute of ChatGPT inference based on
averages of output word count (Table 1), for both ChatGPT-RR and
future Google-RR load scenarios. Inference cost is based on the
model in Section 4.1. For comparison we also include published
training cost estimates [32] for GPT-3 scaled for A100 GPUs. The
ratios for annual inference to model training cost are 25x and 1386x
respectively.
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Figure 3: Workload Characterization for ChatGPT
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Tokyo, Japan; Pune, India
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Table 2: Compute region locations span three continents.

Our study uses varied input prompts, captured from prompt en-
gineering examples and video tutorials on Youtube. Figure 3a shows
there is little correlation between prompt and output length, and
because compute for the GPT models, computation cost is propor-
tional to the number of output tokens (length). Thus, request cost
or latency is difficult to predict from the prompt, making intelligent
direction difficult.

3.2 Characterizing User Response
Requirements

We characterize user response requirements by measuring ChatGPT
response latency (request to full response) from global locations
(Figure 3b), finding that response latency is weakly correlated with
client location. Response latency is strongly correlated with output
complexity (and thus weakly correlated with request size in Figure
3a). For long responses, users may read before output is complete,
so we model the first 25 words latency, using the average latency
per word. Latency varies by location, but the overall average latency
is 3.14 seconds (Figure 3c). For reference, we show the suggested
WWW page load latency for good interactive experience [29]. From
the ChatGPT results, we conclude that response latency depends
on output complexity and varies by location.

4 EVALUATION
4.1 Resource and Carbon Emissions Model

Generative Al serving is done from N cloud regions, in distinct
geographies and powered by different power grids. We model for
N = 8locations [5] as in Table 2. Considering the average utilization
of production (inflexible) workloads [19, 55, 61], we assume an av-
erage of 30% resource capacity at each datacenter, to be exploitable
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Figure 4: Regional Renewable Fraction (RF) and Average Car-
bon Intensity (ACI): 2022 vs. 2035.

for serving ChatGPT inference (flexible load). This available re-
source capacity is denoted by Uy (¢) for region n. Shifting is limited
by resource availability, so we consider headroom capacity, Hy, to
increase shifting effectiveness[18].

For each compute region, we model the carbon emissions from
inference serving Cp(t) as the sum of operational carbon C,?p (1)
and embodied carbon Cﬁm(t). The operational carbon emissions
are calculated as the product of energy consumed Ej, (¢) for serving
the inference workload and the average carbon intensity ACI,(?).
We use hourly Average Carbon Intensity (ACI) values from RiPiT
[2] and Electricity Maps [36] (Figure 4).

We assume that each region uses Azure ND A100 v4-series in-
stances for serving inference requests. Since amount of served data
is small (a few hundreds of words) compared with the model size
(billions of weights), we assume that the physical instances” GPU
and CPU are the main sources of energy consumption. Therefore,
we calculate the energy consumed for serving inference requests as

En(t) =I,(t) - f - TDP - PUE (1)

where I, () is the number of requests processed in the compute re-
gion n. Our ChatGPT inference workload uses the diurnal model pre-
sented in Section 3 with an average latency of 21.7 seconds/request.
Using Azure ND A100 v4-series [11], we model TDP = 0.428 kW
per GPU (1/8 of 3.43 kW for the instance). Region power utilization
efficiency (PUE) is 1.1 [6]. f, the computation (GPU-seconds) per
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Figure 5: Evaluation Results (2022): CarbonMin and CarbonMin (Unlimited) consistently achieve lower Carbon emissions than
the average annual carbon emission (a) by serving ChatGPT requests at low-carbon regions (b) which determine the daily

emissions across seasons (c).

request is modeled conservatively as follows:
OI-IwW -WC

f== @
where OI = 0.35 is TFLOPS per inference assuming GPT-3 model
(around 175 billion weights) processed with BF16 operations. IW =
5 is the number of inferences per output word (assumed win-
dow/sampling of 5 for each output word), WC is the output word
count (measured average of 185 output words/request), and C = 156
TFLOPS is the GPU capacity assuming 50% efficiency [1], and yields
the average f = 2.07 GPU-sec/request.

The embodied emission is the total emissions of the Azure ND
A100 v4-series instances apportioned over service time T share of
the hardware overall lifetime LT (3 years) [26]:
aUgRuntIir;e I,(t) Ep )
where d is the fractional embodied emission of headroom’s addi-
tional hardware and Ep,,, is per-GPU emission calculated as 1/8 of
estimated per-instance emissions:

T
C™ (1) = 7= Epny = (Un(t) + d - Hp)

1
Epw = g(PF +Egpu +Ecpu + EDraM + Essp + Egpp) (4

where PF is IC packaging Carbon footprint while Egpyr, Ecpu,
Epram, Essp, and Egpp are GPU, CPU, memory, and storage
emissions, respectively. We estimate these emissions based on pre-
vious reports [26] and instance hardware specifications [1, 3, 11],
yielding Ep,,, = 318 kgCO; per GPU.

4.2 Request Direction Algorithms

When a compute region receives a user’s request, it can be processed
locally or sent to another compute region. The target region for
shifting must respect the capacity constraint:

Vensn i D Sin(t) - f < Up(t) + Hy &)
i#n
where sj, (t) is number of requests shifted from region i to n.
Requests are directed based on varied optimization criteria. We
evaluate three direction algorithms: (i) Local: requests are processed
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Figure 6: The QoS is maintained — Average latency of request
direction algorithms at varying output wordcounts, extend-
ing upto the P90 latency, remains the same.

at the region that they are received at; (ii) Balance: requests are
directed proportional to available region resources, producing equal
utilization at all sites; and (iii) CarbonMin: requests are directed to
the region with lowest carbon intensity, minimizing carbon emis-
sions. These three algorithms are subject to the capacity constraint.
We also consider (iv) CarbonMin (Unlimited) which eliminates
the capacity constraint. In all cases, the request latency is request
computation time plus round trip network latency. We model net-
work latency using the median round-trip network latency for each
pair of Azure’s regions [4].

4.3 Results: Today

Figure 5a shows hourly carbon emissions of ChatGPT (i.e., the
ChatGPT-RR workload) in 2022, normalized to the average carbon
emission of all regions, without additional headroom (i.e., H, = 0).
While Local and Balance remain close to average carbon emissions,
CarbonMin consistently reduces the emission by 35%. Eliminating
the capacity constraint yields 63% carbon reduction.

Figure 5b shows the distribution of requests by service site. Local
and Balance serve large fractions of requests at high-carbon sites.
In contrast, CarbonMin directs a higher fraction of requests to
lower emission locations (California, UK, Germany and Ireland).
CarbonMin (Unlimited), does even better by shifting most of load to
amuch greener location (UK). In Figure 5c, we consider the seasonal
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Figure 7: Evaluation Results (2035): CarbonMin keeps Carbon emission increasing by only 20% compared to 2022 despite 55x
growth in load (a) due to greener grids that make more low-carbon resources available for shifting (b) with greater variability

(c).

variation in CarbonMin benefit over the course of a day. Carbon
reduction is dominated by shifting to solar power generation in
California with greater benefit midday, but with varying degree
across seasons.

We analyze whether the request direction algorithms can main-
tain the expected inference QoS (previously characterized in Fig-
ure 3c). In Figure 6 (left), the average user-response latency of
25 words is only 1.46% larger than the baseline. The difference
is even smaller for 100 word and 300 word outputs (0.44% and
0.20% respectively). These small increases reflect the average Azure
region-region roundtrip latency for this workload distribution of
49 milliseconds. Average and P90 user-response latency for Carbon-
Min and CarbonMin(Unlimited) algorithms is essentially unchanged,
now and in 2035.

4.4 Results: 2035

We evaluate the potential carbon impact of ChatGPT in the future
(2035), focusing the overall outcome of grid decarbonization (more
renewables so more low-carbon periods) and potential huge load
growth. To model future grid ACI, we obtained detailed genera-
tion history, and scaled up wind and solar power generation to
match public renewable fraction (RF) policy goals [22, 39, 42, 46] or
where such was not available, we used a linear extrapolation [8, 9]
(Figure 4). More formally, wind and solar generation are scaled by
(2035 RF/2022 RF) and non-renewable generation is scaled down
by [(1 — 2035 RF)/(1 — 2022 RF)], producing a 2-3x lower average
carbon intensity (ACI) in 2035 for most regions. We project Chat-
GPT load based on today’s Google search activity (i.e., Google-RR)
as discussed in Section 3. Compute resources are scaled up to match
the higher usage, and we model hardware energy efficiency im-
provements of 10x by 2035, an optimistic view of industry progress
[30, 38].

Figure 7a presents ChatGPT carbon emissions in 2035, normal-
ized to the annual global average in 2022. Increased renewable
power and advanced computing technology produce a net 2.6x
increase (dashed line), despite 55x load increase. With the boom in
Generative Al [16], the situation is now far different than recent
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Figure 8: Annual Carbon Emissions normalized to 2035 using
CarbonMin varying headroom capacity (CarbonMin + Nx
Headroom (d%)); N is the increased capacity and d is the
embodied emission factor)

reports [45]. In Figure 7b, we see how each algorithm distributes
requests; CarbonMin effectively selects Germany, UK, California,
and Ireland, reducing carbon emissions to 1.2x compared to 2022
levels. However, capacity constraints limit benefits. With unlimited
capacity, load distribution changes drastically with 88% load in
Germany, which aims 100% renewables by 2035.

Figure 7c shows seasonal variation in carbon emissions within a
day, using the CarbonMin algorithm. The higher levels of renewable
generation in 2035 cause greater variability. We see carbon emis-
sions decrease earlier in the day, due to attractive European regions.
Note that in Spring (blue line), ACI can actually be negative (when
CAISO exports surplus solar generation to other grids).

We consider adding headroom with used computers [20] (see
Figure 8), for several scenarios. Because they are used, the head-
room computers can have lower embodied emissions (10%, 50%) vs.
the primary resources. With 1x headroom emissions reduction in-
creases from 56% to 71%. Further headroom (2x) gives little benefit.
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The sensitivity to embodied emissions is illustrated by the 50% em-
bodied case, where adding 1x headroom yields no benefit. Careful
headroom design is needed to maximize load-shifting benefits.

In 2035, the grids are projected to have dramatically higher re-
newable fraction, lowering their overall annual Average Carbon
Intensity by 2-3x. However, the Google-RR load posits a 55-fold
increase. So, grid improvements, technology improvements contain
the carbon emissions increase to 2.6-fold. Using CarbonMin can fur-
ther reduce the increased carbon emissions to only 1.2x compared
to 2022 levels. In short, carbon optimal request routing algorithms
can be an important way to reduce emissions.

5 SUMMARY AND FUTURE

We have estimated the carbon cost of serving a generative Al model,
showing that its emissions can be reduced with intelligent request
direction algorithms, tied to power grid carbon information. More
importantly, this optimization is possible with user-response laten-
cies. In the future, the benefits of this approach are even greater.
Future research directions include broader characterization of
generative Al workloads, new datacenter design for sustainability
such as 100% power supply from renewables [7, 59] and adding
headroom capacity [18], and updated studies as the growth struc-
ture of generative Al and power grid decarbonization develops.
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