
Reducing the Carbon Impact of Generative AI Inference (today
and in 2035)

Andrew A. Chien∗

University of Chicago &
Argonne National Laboratory

Chicago, IL, USA
achien@cs.uchicago.edu

Liuzixuan Lin∗

University of Chicago
Chicago, IL, USA

lzixuan@uchicago.edu

Hai Nguyen∗

University of Chicago
Chicago, IL, USA

ndhai@cs.uchicago.edu

Varsha Rao∗

University of Chicago
Chicago, IL, USA

varsharao@uchicago.edu

Tristan Sharma∗

University of Chicago
Chicago, IL, USA

tristansharma@uchicago.edu

Rajini Wijayawardana∗

University of Chicago
Chicago, IL, USA

rajini@uchicago.edu

ABSTRACT

Generative AI, exemplified in ChatGPT, Dall-E 2, and Stable Diffu-

sion, are exciting new applications consuming growing quantities

of computing. We study the compute, energy, and carbon impacts

of generative AI inference. Using ChatGPT as an exemplar, we cre-

ate a workload model and compare request direction approaches

(Local, Balance, CarbonMin), assessing their power use and carbon

impacts.

Our workload model shows that for ChatGPT-like services, in-

ference dominates emissions, in one year producing 25x the carbon-

emissions of training GPT-3. Theworkloadmodel characterizes user

experience, and experiments show that carbon emissions-aware

algorithms (CarbonMin) can both maintain user experience and

reduce carbon emissions dramatically (35%). We also consider a

future scenario (2035 workload and power grids), and show that

CarbonMin can reduce emissions by 56%. In both cases, the key is

intelligent direction of requests to locations with low-carbon power.

Combined with hardware technology advances, CarbonMin can

keep emissions increase to only 20% compared to 2022 levels for

55x greater workload. Finally we consider datacenter headroom

to increase effectiveness of shifting. With headroom, CarbonMin

reduces 2035 emissions by 71%.

CCS CONCEPTS

· Social and professional topics → Sustainability; · Comput-

ing methodologies → Artificial intelligence; · Applied com-

puting → Data centers.
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1 INTRODUCTION

Generative AI for text (e.g. ChatGPT [43]), images (e.g. DALL-E

2 [44]), and other media has growing creative, informational, and

commercial applications. One representative application, ChatGPT,

leads the explosive growth of generative AI, hitting 100 million

monthly active users in January 2023 as the fastest growing appli-

cation [23]. After OpenAI partnered with Microsoft, global tech

companies (Google, Meta, Baidu, Alibaba, etc.) have announced

a slew of generative AI applications [10, 12, 24, 47]. Many expect

that generative AI applications will proliferate in daily life and

commerce [25, 37].

Behind the intelligently generated content are large machine-

learning models. GPT-3 [14], the model used in ChatGPT today,

is a representative large language model (LLM) with 175 billion

parameters. The cycle of developing a generative AI model can

be divided into training and inference. Once trained, a model can

serve many user requests. Much previous work has focused on

the carbon impact of model training [13, 45, 49, 54, 58], and we

believe inference (operation) can also be problematic, particularly

with rapid user growth and integration into everyday applications.

For example, generative AI-backed search can cost 5 times more

compute per request [53], requiring billions of dollars of comput-

ing infrastructure [56], and increasing associated embodied and

operational carbon emissions.

The carbon impact of an application depends on its workload

characteristics, such as compute per request, latency requirement,

and location of users. Given its rising popularity and usage, we

use ChatGPT as exemplar for Generative AI. Thereby, we model

and characterize the compute, energy, and carbon emissions of

generative AI, and explore how to reduce its carbon impact. Specific

contributions include:

• A ChatGPT-like application with estimated use of 11 mil-

lion requests/hour produces emissions of 12.8k metric ton
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CO2/year, 25 times the emissions for training GPT-3. Infer-

ence is critical to environmental and power cost.

• We show that it’s possible to perform geographic shifting

on this user-responsive workload and maintain similar user

experience. Further, CarbonMin, an algorithm that directs

requests to low-carbon regions, reduces carbon emissions

by 35% in today’s power grids.

• Looking forward (2035), considering usage growth (55x) and

power grid decarbonization (3x lower average carbon inten-

sity), CarbonMin reduces emissions by 56%, but with usage

growth this results in 1.2x emissions vs 2022 levels. Benefit

is limited by datacenter capacity.

• Increasing datacenter headroom, enablesCarbonMin to achieve

71% reduction for 1x headroom for 2035, a remarkable 73x

reduction in per-inference emissions.

2 PROBLEM

Generative AI has set record for fastest growing technology. Along

with its usage, its compute requirements and carbon emission are

growing too [35, 48].In order to understand the carbon impact of

generative model inference and find carbon reduction solutions,

the following research questions need to be answered:

• What is generative AI inference’s workload and user re-

sponse requirements?

• What is its carbon emissions impact today? and how might

it grow?

• Can inference serving be directed to reduce carbon impact

today? in the future?

3 APPROACH

Carbon impact of computing power consumption depends heavily

on where and when it happens, as grid carbon emissions are highly-

variable across power grids/locations and the course of hours, days,

weeks, and even seasons [2, 15, 17, 21, 33, 36, 57].

We propose to shift workload geographically to reduce carbon

emissions [27, 31, 34, 40, 41, 60, 62, 63], but this is only possiblewhen

applications are flexible; more precisely latency-tolerant. Generally,

user-facing inference has been considered inflexible and thus not

suitable for shifting. Our study covers:

(1) Characterization of ChatGPT-like workloads’ load pattern,

predictability, and user-response requirements.

(2) A variety of request direction algorithms, using theworkload,

with focus on hardware utilization and carbon-emissions

reduction.

(3) Evaluation of request direction algorithm effectiveness and

ability to maintain user-responsiveness.

(4) A projection of these schemes in the future (2035 workloads

and power grids), and even future datacenter capacity (1x

headroom).

3.1 Characterizing Compute Load

We create amodel of the ChatGPTworkload and its service QoS. The

ChatGPT load is predominantly human-generated and therefore

follows a diurnal structure. Based on 1.6 billion visits in March 2023

[50], the assumption of 5 queries per visit produces 0.27 billions

requests/day (ChatGPT-RR in Table 1). We distribute this load over

Workload

Model

Inference Cost

(GPU-hrs)

Training Cost

(GPU-hrs)

Inference/

Training

ChatGPT-RR 55,966,667 2,236,467 25x

Google-RR 3,099,154,167 2,236,467 1386x

Table 1: Annual Compute for Inference and Model Training,

various workload models (A100 GPU-hrs).

8 exemplar cities, based on documented ChatGPT usage rates [50]

and national population, skewing for waking hours [28, 52]. Figure

1 shows resulting load, aligned with the US Pacific timezone. Note

that the load is dominated by USA (39%) and European Countries

(35%), reflecting their higher ChatGPT usage.

Figure 1: Present Load: Diurnal structure from waking hours,

weighted by ChatGPT use and population [28, 52]

Figure 2: Future load based on Google visits [51] and diurnal

structure from waking hours

To project future load, we scale usage up to match Google search

request rates (88.6 billion/month), using 5 queries per visit [51]

(Google-RR in Table 1). Load increases significantly, but 24-hour

shape is similar (Figure 2).

We estimate the total compute of ChatGPT inference based on

averages of output word count (Table 1), for both ChatGPT-RR and

future Google-RR load scenarios. Inference cost is based on the

model in Section 4.1. For comparison we also include published

training cost estimates [32] for GPT-3 scaled for A100 GPUs. The

ratios for annual inference to model training cost are 25x and 1386x

respectively.
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(a) Input and output complexity by word

count; correlation coefficient is 0.01

(b) ChatGPT: Response latency vs output

word count for diverse geographic loca-

tion

(c) ChatGPT User Latency (secs) for first 25

words vs. location (Orange line within the box

plot is median and Green dashed line is aver-

age/mean)

Figure 3: Workload Characterization for ChatGPT

N. America California, US; Texas, US; Iowa, US

Europe London, UK; Frankfurt, DE;Ireland

Asia Tokyo, Japan; Pune, India

Table 2: Compute region locations span three continents.

Our study uses varied input prompts, captured from prompt en-

gineering examples and video tutorials on Youtube. Figure 3a shows

there is little correlation between prompt and output length, and

because compute for the GPT models, computation cost is propor-

tional to the number of output tokens (length). Thus, request cost

or latency is difficult to predict from the prompt, making intelligent

direction difficult.

3.2 Characterizing User Response
Requirements

We characterize user response requirements bymeasuring ChatGPT

response latency (request to full response) from global locations

(Figure 3b), finding that response latency is weakly correlated with

client location. Response latency is strongly correlated with output

complexity (and thus weakly correlated with request size in Figure

3a). For long responses, users may read before output is complete,

so we model the first 25 words latency, using the average latency

per word. Latency varies by location, but the overall average latency

is 3.14 seconds (Figure 3c). For reference, we show the suggested

WWWpage load latency for good interactive experience [29]. From

the ChatGPT results, we conclude that response latency depends

on output complexity and varies by location.

4 EVALUATION

4.1 Resource and Carbon Emissions Model

Generative AI serving is done from 𝑁 cloud regions, in distinct

geographies and powered by different power grids. We model for

𝑁 = 8 locations [5] as in Table 2. Considering the average utilization

of production (inflexible) workloads [19, 55, 61], we assume an av-

erage of 30% resource capacity at each datacenter, to be exploitable

Figure 4: Regional Renewable Fraction (RF) and Average Car-

bon Intensity (ACI): 2022 vs. 2035.

for serving ChatGPT inference (flexible load). This available re-

source capacity is denoted by𝑈𝑛 (𝑡) for region 𝑛. Shifting is limited

by resource availability, so we consider headroom capacity, 𝐻𝑛 , to

increase shifting effectiveness[18].

For each compute region, we model the carbon emissions from

inference serving 𝐶𝑛 (𝑡) as the sum of operational carbon 𝐶
𝑂𝑝
𝑛 (𝑡)

and embodied carbon 𝐶𝐸𝑚
𝑛 (𝑡). The operational carbon emissions

are calculated as the product of energy consumed 𝐸𝑛 (𝑡) for serving

the inference workload and the average carbon intensity 𝐴𝐶𝐼𝑛 (𝑡).

We use hourly Average Carbon Intensity (ACI) values from RiPiT

[2] and Electricity Maps [36] (Figure 4).

We assume that each region uses Azure ND A100 v4-series in-

stances for serving inference requests. Since amount of served data

is small (a few hundreds of words) compared with the model size

(billions of weights), we assume that the physical instances’ GPU

and CPU are the main sources of energy consumption. Therefore,

we calculate the energy consumed for serving inference requests as

𝐸𝑛 (𝑡) = 𝐼𝑛 (𝑡) · 𝑓 ·𝑇𝐷𝑃 · 𝑃𝑈𝐸 (1)

where 𝐼𝑛 (𝑡) is the number of requests processed in the compute re-

gion𝑛. Our ChatGPT inferenceworkload uses the diurnalmodel pre-

sented in Section 3 with an average latency of 21.7 seconds/request.

Using Azure ND A100 v4-series [11], we model 𝑇𝐷𝑃 = 0.428 kW

per GPU (1/8 of 3.43 kW for the instance). Region power utilization

efficiency (PUE) is 1.1 [6]. 𝑓 , the computation (GPU-seconds) per
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Figure 5: Evaluation Results (2022): CarbonMin and CarbonMin (Unlimited) consistently achieve lower Carbon emissions than

the average annual carbon emission (a) by serving ChatGPT requests at low-carbon regions (b) which determine the daily

emissions across seasons (c).

request is modeled conservatively as follows:

𝑓 =
𝑂𝐼 · 𝐼𝑊 ·𝑊𝐶

𝐶
(2)

where 𝑂𝐼 = 0.35 is TFLOPS per inference assuming GPT-3 model

(around 175 billion weights) processed with BF16 operations. 𝐼𝑊 =

5 is the number of inferences per output word (assumed win-

dow/sampling of 5 for each output word),𝑊𝐶 is the output word

count (measured average of 185 output words/request), and𝐶 = 156

TFLOPS is the GPU capacity assuming 50% efficiency [1], and yields

the average 𝑓 = 2.07 GPU-sec/request.

The embodied emission is the total emissions of the Azure ND

A100 v4-series instances apportioned over service time 𝑇 share of

the hardware overall lifetime 𝐿𝑇 (3 years) [26]:

𝐶𝐸𝑚
𝑛 (𝑡) =

𝑇

𝐿𝑇
𝐸ℎ𝑤 = (𝑈𝑛 (𝑡) + 𝑑 · 𝐻𝑛)

𝑎𝑣𝑔𝑅𝑢𝑛𝑡𝑖𝑚𝑒 · 𝐼𝑛 (𝑡)

𝐿𝑇
𝐸ℎ𝑤 (3)

where 𝑑 is the fractional embodied emission of headroom’s addi-

tional hardware and 𝐸ℎ𝑤 is per-GPU emission calculated as 1/8 of

estimated per-instance emissions:

𝐸ℎ𝑤 =
1

8
(𝑃𝐹 + 𝐸𝐺𝑃𝑈 + 𝐸𝐶𝑃𝑈 + 𝐸𝐷𝑅𝐴𝑀 + 𝐸𝑆𝑆𝐷 + 𝐸𝐻𝐷𝐷 ) (4)

where 𝑃𝐹 is IC packaging Carbon footprint while 𝐸𝐺𝑃𝑈 , 𝐸𝐶𝑃𝑈 ,

𝐸𝐷𝑅𝐴𝑀 , 𝐸𝑆𝑆𝐷 , and 𝐸𝐻𝐷𝐷 are GPU, CPU, memory, and storage

emissions, respectively. We estimate these emissions based on pre-

vious reports [26] and instance hardware specifications [1, 3, 11],

yielding 𝐸ℎ𝑤 = 318 kgCO2 per GPU.

4.2 Request Direction Algorithms

When a compute region receives a user’s request, it can be processed

locally or sent to another compute region. The target region for

shifting must respect the capacity constraint:

∀𝑡,𝑛≤𝑁 :

∑︁

𝑖≠𝑛

𝑠𝑖𝑛 (𝑡) · 𝑓 ≤ 𝑈𝑛 (𝑡) + 𝐻𝑛 (5)

where 𝑠𝑖𝑛 (𝑡) is number of requests shifted from region 𝑖 to 𝑛.

Requests are directed based on varied optimization criteria. We

evaluate three direction algorithms: (i) Local: requests are processed
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Figure 6: The QoS is maintained ś Average latency of request

direction algorithms at varying output wordcounts, extend-

ing upto the P90 latency, remains the same.

at the region that they are received at; (ii) Balance: requests are

directed proportional to available region resources, producing equal

utilization at all sites; and (iii) CarbonMin: requests are directed to

the region with lowest carbon intensity, minimizing carbon emis-

sions. These three algorithms are subject to the capacity constraint.

We also consider (iv) CarbonMin (Unlimited) which eliminates

the capacity constraint. In all cases, the request latency is request

computation time plus round trip network latency. We model net-

work latency using the median round-trip network latency for each

pair of Azure’s regions [4].

4.3 Results: Today

Figure 5a shows hourly carbon emissions of ChatGPT (i.e., the

ChatGPT-RR workload) in 2022, normalized to the average carbon

emission of all regions, without additional headroom (i.e., 𝐻𝑛 = 0).

While Local and Balance remain close to average carbon emissions,

CarbonMin consistently reduces the emission by 35%. Eliminating

the capacity constraint yields 63% carbon reduction.

Figure 5b shows the distribution of requests by service site. Local

and Balance serve large fractions of requests at high-carbon sites.

In contrast, CarbonMin directs a higher fraction of requests to

lower emission locations (California, UK, Germany and Ireland).

CarbonMin (Unlimited), does even better by shifting most of load to

a much greener location (UK). In Figure 5c, we consider the seasonal
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Figure 7: Evaluation Results (2035): CarbonMin keeps Carbon emission increasing by only 20% compared to 2022 despite 55x

growth in load (a) due to greener grids that make more low-carbon resources available for shifting (b) with greater variability

(c).

variation in CarbonMin benefit over the course of a day. Carbon

reduction is dominated by shifting to solar power generation in

California with greater benefit midday, but with varying degree

across seasons.

We analyze whether the request direction algorithms can main-

tain the expected inference QoS (previously characterized in Fig-

ure 3c). In Figure 6 (left), the average user-response latency of

25 words is only 1.46% larger than the baseline. The difference

is even smaller for 100 word and 300 word outputs (0.44% and

0.20% respectively). These small increases reflect the average Azure

region-region roundtrip latency for this workload distribution of

49 milliseconds. Average and P90 user-response latency for Carbon-

Min and CarbonMin(Unlimited) algorithms is essentially unchanged,

now and in 2035.

4.4 Results: 2035

We evaluate the potential carbon impact of ChatGPT in the future

(2035), focusing the overall outcome of grid decarbonization (more

renewables so more low-carbon periods) and potential huge load

growth. To model future grid ACI, we obtained detailed genera-

tion history, and scaled up wind and solar power generation to

match public renewable fraction (RF) policy goals [22, 39, 42, 46] or

where such was not available, we used a linear extrapolation [8, 9]

(Figure 4). More formally, wind and solar generation are scaled by

(2035 𝑅𝐹/2022 𝑅𝐹 ) and non-renewable generation is scaled down

by [(1 − 2035 𝑅𝐹 )/(1 − 2022 𝑅𝐹 )], producing a 2ś3x lower average

carbon intensity (ACI) in 2035 for most regions. We project Chat-

GPT load based on today’s Google search activity (i.e., Google-RR)

as discussed in Section 3. Compute resources are scaled up to match

the higher usage, and we model hardware energy efficiency im-

provements of 10x by 2035, an optimistic view of industry progress

[30, 38].

Figure 7a presents ChatGPT carbon emissions in 2035, normal-

ized to the annual global average in 2022. Increased renewable

power and advanced computing technology produce a net 2.6x

increase (dashed line), despite 55x load increase. With the boom in

Generative AI [16], the situation is now far different than recent
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Figure 8: Annual Carbon Emissions normalized to 2035 using

CarbonMin varying headroom capacity (CarbonMin + Nx

Headroom (d%)); N is the increased capacity and d is the

embodied emission factor)

reports [45]. In Figure 7b, we see how each algorithm distributes

requests; CarbonMin effectively selects Germany, UK, California,

and Ireland, reducing carbon emissions to 1.2x compared to 2022

levels. However, capacity constraints limit benefits. With unlimited

capacity, load distribution changes drastically with 88% load in

Germany, which aims 100% renewables by 2035.

Figure 7c shows seasonal variation in carbon emissions within a

day, using the CarbonMin algorithm. The higher levels of renewable

generation in 2035 cause greater variability. We see carbon emis-

sions decrease earlier in the day, due to attractive European regions.

Note that in Spring (blue line), ACI can actually be negative (when

CAISO exports surplus solar generation to other grids).

We consider adding headroom with used computers [20] (see

Figure 8), for several scenarios. Because they are used, the head-

room computers can have lower embodied emissions (10%, 50%) vs.

the primary resources. With 1x headroom emissions reduction in-

creases from 56% to 71%. Further headroom (2x) gives little benefit.
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The sensitivity to embodied emissions is illustrated by the 50% em-

bodied case, where adding 1x headroom yields no benefit. Careful

headroom design is needed to maximize load-shifting benefits.

In 2035, the grids are projected to have dramatically higher re-

newable fraction, lowering their overall annual Average Carbon

Intensity by 2-3x. However, the Google-RR load posits a 55-fold

increase. So, grid improvements, technology improvements contain

the carbon emissions increase to 2.6-fold. Using CarbonMin can fur-

ther reduce the increased carbon emissions to only 1.2x compared

to 2022 levels. In short, carbon optimal request routing algorithms

can be an important way to reduce emissions.

5 SUMMARY AND FUTURE

We have estimated the carbon cost of serving a generative AI model,

showing that its emissions can be reduced with intelligent request

direction algorithms, tied to power grid carbon information. More

importantly, this optimization is possible with user-response laten-

cies. In the future, the benefits of this approach are even greater.

Future research directions include broader characterization of

generative AI workloads, new datacenter design for sustainability

such as 100% power supply from renewables [7, 59] and adding

headroom capacity [18], and updated studies as the growth struc-

ture of generative AI and power grid decarbonization develops.
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