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Abstract—In this paper, we propose iterative inner/outer
approximations based on a recent notion of block factor-width-
two matrices for solving semidefinite programs (SDPs). Our
inner/outer approximating algorithms generate a sequence of
upper/lower bounds of increasing accuracy for the optimal SDP
cost. The block partition in our algorithms offers flexibility
in terms of both numerical efficiency and solution quality,
which includes the approach of scaled diagonally dominance
(SDD) approximation as a special case. We discuss both the
theoretical results and numerical implementation in detail. Our
main theorems guarantee that the proposed iterative algorithms
generate monotonically decreasing upper and increasing lower
bounds. Extensive numerical results confirm our findings.

I. INTRODUCTION

Semidefinite programs (SDPs) are a class of convex opti-
mization problems over the positive semidefinite (PSD) cone.
The standard primal and dual SDPs are in the form of

(€, X)

<A77X> = biv
X e Sy,

* .
= min
P X

subject to i=1 m, (1a)

ey

* T
dr = I;l’aZX b'y
m
subject to  Z + ZAiyi =C,
i=1

ZeSh,

(1b)

where b € R™,C, Ay,..., A, € S" are the problem data,
S denotes the set of n x n PSD matrices (we also write
X = 0 to denote X € S" when the dimension is clear from
the context), and (-, ) denotes the standard inner product in
an approximate space. We assume the strong duality holds
for the primal and dual SDPs (1), i.e., p* = d*.
Semidefinite optimization (1a) and (1b) is a powerful com-
putational tool in control theory [1], combinatorial problems
[2], non-convex polynomial optimization [3], and many other
areas [4]. While interior-point methods can solve SDPs in
polynomial time to arbitrary accuracy in theory [4], they
are not scalable to address many large-scale problems of
practical interest [5], [6]. One main difficulty is due to the
need of storage, computation, and factorization of a large
matrix at each iteration of interior-point methods. Existing
general-purpose SDP solvers (including the state-of-the-art
solver MOSEK [7]) are limited to medium-scale problem
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instances (with n less than 1000 and m being a few hundreds
in (1)).

Overcoming the challenge of scalability has received much
attention [5], [6]. One class of approaches is to develop effi-
cient algorithms based on first-order methods. For instance,
a general conic solver based on alternating direction method
of multipliers (ADMM) was developed in [8], and a sparse
conic solver based on ADMM for SDPs with chordal sparsity
was developed in [9], [10]; see [5, Section 3] for a recent
overview. While first-order methods considerably speed up
the computational time at each iteration, achieving solutions
of high accuracy remains a central challenge and may
require unacceptable many iterations. Therefore, first-order
methods are mainly suitable for applications that only require
solutions of moderate accuracy.

Another class of approaches for efficiency improvement
is to (equivalently or approximately) decompose a large
PSD matrix into the sum of smaller PSD matrices that are
easier to handle [5]. Specifically, one can try to decompose
X = 22:1 Q;, where ; = 0 are nonzero only on a
certain (and, ideally, small) principal submatrix. When X
has a special chordal sparsity pattern, such a decomposition
is equivalent [5], [11], [12]. In general, the decomposition
above gives an inner approximation of the PSD cone S} . One
widely used strategy is so-called scaled-diagonally dominant
(SDD) matrices [13], where each ; only involves a 2 x 2
nonzero principal matrix that is equivalent to a second-order
cone constraint. Second-order cone programs (SOCPs) admit
much more efficient algorithms than SDPs. This scalability
feature is one main motivation in the recent studies [14]-
[20]. In particular, this idea has been extensively used in the
context of sum-of-squares optimization [14], [15]. While the
SDD approximation brings considerable computational effi-
ciency in solving (1), the solution might be very conservative
[15]. Several iterative methods have been further proposed
to improve solution quality, such as adding linear cuts or
second-order cuts [16]-[18], and basis pursuit searching [19],
[20]. These methods [16]-[20] solve a linear program (LP)
or a SOCP at each iteration, but may require many iterations
to get a reasonable good solution (if possible).

Recently, a new block extension of SDD matrices, called
block factor-width-two matrices, has been introduced in [21],
[22], where @; = 0 involves a 2 x 2 block principal
matrix. This notion is built on block partitioned matrices,
and the block partition brings flexibility in terms of both
solution quality and numerical efficiency in solving (1), as
demonstrated extensively in [21], [22]. In this paper, we
further develop iterative inner/outer approximations based
on the new notion of block factor-width-two matrices. Our



iterative algorithms generalize the results in [19] to the case
of block factor-width-two matrices and include [19] as a
special case (cf. Algorithms 1-2). Our algorithms provide a
sequence of upper and lower bounds of increasing accuracy
on the optimal SDP cost p* = d* (cf. Propositions 1-2 and
Theorems 2-3). Numerical results on independent stable set
and random SDPs confirm the performance of our iterative
inner/outer approximations.

The rest of this paper is organized as follows. In Section
II, we review the SDD and block SDD matrices. The iterative
inner/outer approximations and their solution quality are
presented in Section III and Section IV. In Section V, we
present the numerical results. Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first give a brief overview of the existing
approximation strategies for the PSD cone S, including
(scaled-) diagonally dominant matrices [13] and their block
extensions [21]. These approximation strategies have shown
promising computational efficiency improvement to solve
(1a)-(1b), but may also suffer from conservatism in solution
quality [15], [21]. We then present the problem statement of
improving the approximation quality via iterative algorithms.

A. DD and SDD matrices

The class of (scaled-) diagonally dominant matrices is
defined as follows [13].

Definition 1: A symmetric matrix A = [a;;] € S" is
diagonally dominant (DD) if and only if
aiizzmzj\, i:1,2,...,n. (2)
J#i

Definition 2: A symmetric matrix A is scaled diagonally
dominant (SDD) if and only if there exists a diagonal matrix
D with positive entries such that DAD is DD.

We denote the set of of n x n DD matrices as DD,, and
the set of n x n SDD matrices as SDD,,. It is known that
the following inclusion holds (e.g., by Gershgorin’s circle
theorem) [13]

DD, € SDD,, CS".

An SDD matrix A has an equivalent characterization
as a factor-width-two matrix, i.e., A = VV7 where each
column of V' contains at most two non-zero elements [13].
Furthermore,

A€SDD, « A= Y E}M;E;;,with M;;€S%, (3)

1<i<j<n

where E;; € R?*™ with ith entry in row 1 and jth entry in
row 2 being 1 and other entries being zero. It is not difficult
to see that (2) can be written as a set of linear constraints and
(3) can be reformulated to a set of second-order constraints.
Thus approximating S by DD, (SDD, respectively) in
(1) becomes a linear program (second-order cone program,
respectively), for which very efficient algorithms exist [23].
This computational feature is one main motivation in the
recent studies [15], [19].

B. Block SDD matrices

The characterization in (3) only involves 2 x 2 PSD ma-
trices. A recent study has introduced a block extension to
bridge the gap between SDD,, and S’} [21]. The main idea is
to allow (3) use 2 x 2 block matrices. To introduce this block
extension, we need to define block-partitioned matrices.

Given a set of integers o = {ai,aq,...,q,} with
P La; = n, we say a matrix A € R™" is block-
partitioned by « if we can write A as
A A Atp
Az Az Azp
: : | @)
Apl Ap2 App

where A;; € R**% Vi, j = 1,2,...,p. Given a partition
a={a,a9, - ,ap}, we define a 0/1 index matrix E* as

EX=10 0 ... I, 0] € R* X", (35)

and another matrix

B = [5} e RlHa® i
J

It is clear that E;; in (3) is the same as Efj“ when a =
{1,1,...,1} (i.e., the trivial partition).

Definition 3 ([21]): A symmetric matrix A with partition
a = {a1,09, -, )} belongs to block factor-width-two
matrices, denoted as ]-'WZ,Q, if there exist X;; such that

p
A= S ETE

1<i<j<p

with X,;; € ST, (6)

We note that a matrix can be partitioned in different ways.
This flexibility in block factor-width-two matrices can be
used to build a converging hierarchy of approximations for
S [21, Theorem 2]. For example, three possible partitions
foral0x10 matrix are « = {1,1,...,1}, 5 ={2,2,2,2,2},
~v = {4,4, 2}, for which we have that [21]

SDDyg = FWyy C FWgy C FWLY,.

This inclusion relation is illustrated in Figure 1, which shows
the feasible set of x and y for which the 10 x 10 symmetric
matrix I19 +xA + yB (A and B are two random generated
10 x 10 symmetric matrices) belongs to PSD, F Wé%,
FWg's, and FWY%.

In particular, we say a partition « is a finer partition of
B, denoted as o« C 3, if « can be formed by breaking some
blocks in £ (or equivalently, 5 can be formed by merging
some blocks in «); see a precise definition in [21, Definition
1]. We have the following theorem.

Theorem 1 ([21, Theorem 2]): Given {1,1,...,1} C
a T B C vy = {7} with 91 + 92 = n, we have a
converging hierarchy of inner and outer approximations

SDD,, C FWg o CFWj, CFWL, =81

= (FW5a)" C(FWp2)" C(FWa )" © (SDDy)
where (FWy, 5)* denotes the dual of FWVy 5.

« D



0.2

0.1

N

-0.2

-0.2 -0.1 0 0.1 0.2
X

[CJPSD [JFW)Y [JFW)% [IFW

Fig. 1: Feasible region of the set of x and y for which the 10 x 10
Lo + zA + yB belongs to PSD, FW, FWL,, and FWLY,,
where o = {1,1,...,1}, 8 ={2,2,2,2,2}, v = {4,4,2}.

C. Problem statement

In [19], we have seen significant numerical efficiency
improvements by approximating S" using DD, and SDD,,
for solving the SDP (1), but the solution quality can be unsat-
isfactory. As shown in Theorem 1, the block factor-width-two
matrices can improve the solution quality by using a coarser
partition 8 [21]. This leads to larger PSD constraints shown
in (6), potentially compromising the numerical efficiency.

In this work, we aim to develop iterative inner and outer
approximations for solving the SDP (1) and at each iteration
the partition « is fixed. In this way, we solve the SDP
(1) by solving smaller SDPs iteratively and maintaining the
scalability at each iteration. In particular, we will combine
the basis pursuit idea in [19] and the tight approximation
quality of block factor-width-two matrices in [21].

III. INNER APPROXIMATIONS OF THE PSD CONE

Given a partition a, we know FWg , C S} C (FW,, 5)".
Then, replacing S with FW[ , (or (FW, ,)*, respec-
tively) in (1) naturally gives an inner (outer, respectively) ap-
proximation for solving SDPs [21]. In this section, motivated
by the basis pursuit idea in [19], we introduce an iterative
algorithm for inner approximations of (1). Our algorithm
returns a sequence of upper bounds with increasing accuracy.

A. Inner Approximations

For the inner approximation, we start from replacing the
PSD constraint in (1a) by FWy, ,, leading to

Ul :=min (C,X)
X
subject to (A4;,X)=0b;, i=1,...,m, (8a)
X € FWg o, (8b)

which provides an upper bound for (la). Using the cyclic
property of the trace operator and (6), we have

(€, X) = Z (EQCER)T, Xut) -
1<k<I<p

This allows us to equivalently rewrite (8) into

Ul := min Cri, X

o 7= 10 > (Cu Xn)
1<k<i<p

subject to Z <Ai,kl,Xkl> =b,i=1,...,m, )]
1<k<lI<p

X € Sgeten, 1<k<l<p,

where Cj,; = Ek»alC(Egl)TﬂAi,kl = EglAi(E?l)T71 <k<
I <p,i=1,...,m. We can now use standard conic solvers
(such as SeDuMi [24] and MOSEK [7]) to solve (9). This
gives an upper bound

d* :p* < Uzlx (10)

The gap U} —p* may be large. By Theorem 1, using a coarser
partition o = 3 can reduce the gap Ub —p* <UL —p*, but
this leads to an SDP with a larger PSD constraint in (9).

We introduce another way to reduce the gap by solving a
sequence of SDPs in the form of (9) while keeping the same
partition «. In particular, given an n x n matrix V', we define
a family of cones

FWLL(V):={M €S | M=VTQV, Qe FW?: ,}. (11)

It is clear that W7 (V) = FW, , when V = I, and that
FWg 5(V) is an inner approximation of S? for any V.

When V' is fixed, linear optimization over FW¢ o(V)
amounts to solve an SDP in a similar form to (9). In
particular, at each iteration ¢, we replace W, , in (8) with
FWe 5(Vi), and get the following problem

UL = %gl > <ékl;Xkl>

1<k<I<p
subject to Z <Ai,kl;Xkl> =b,i=1,...,m (12)
1<k<I<p
XkZES(_T_k+al, 1<k<l<p,

where the problem data are

Cr = Epy (ViCV,") (ER)T,

. (13)
A = Ey (VAVT) (BT, 1<k<l<p.
We choose the sequence of matrices {V;} as
Vi=1, Vi = chol(X}), (14)

where chol(-) denotes a Cholesky factorization, and X} :=
S icher<y Vil (Bg) "X, EgV; is the optimal solution to
(12) at iteration ¢!. When choosing V7 = I at iteration 1,
problem (12) reduces to (9).

B. Monotonically decreasing upper bounds

The choice of the matrices V;; as the factorization of X}
in (14) leads to a sequence of monotonically decreasing cost
values in (12). We have the following proposition.

Proposition 1: Given any partition «, solving (12) with
matrices {V;} in (14) leads to

Ui >U2 >...> U, > U > pr
Proof: Upon choosing V; 1 = chol(X}), we naturally
have X; =V, x I x Viy1. Since I € FW,, ,, we have
X! € FWy 2(Vig1). It means that the optimal solution X/
at iteration ¢ is in the feasible region of the SDP at iteration
t + 1. Thus, we have Uf, > U%L ]

When X/ is positive definite, we have a strictly decreasing
cost value, as summarized in the following theorem.

'We assume that the first iteration is feasible. This guarantees the
feasibility of the rest of iterations.



Algorithm 1: Inner-approximations using FWy, ,

Input: SDP data A;,C € S, b € R™, block partition
«, and maximum iteration ¢,
Output: Upper bound U,
Initialize t = 1; V; = I;
while ¢ < t,,x do
Solve (12) to get U%, and X[, 1 <k <1 <p;
Set U, = U%;
Compute
Virr = chol (2 <z, Vi (BR) X0 B V);
Update Cy, A; 31 as (13); Set t =t + 1;

end
return U,

Theorem 2: Given any partition ¢, let X; be an optimal
solution of (12) at iterate ¢. If X is positive definite and
Ut > p*, then Uf, > UL > p*.

Proof: Let X™* and p* be the optimal solution and cost
value of (1). We construct a point

X = (1= NX/+ X", (15)

with some A € (0, 1). We will prove there exists a A € (0,1)
such that X in (15) is feasible for (12) at iteration ¢ + 1.
Therefore, we complete the proof by observing

UL <(C,X) = (1-N(C,X;) + \C, X*) < UL,

where we used the fact that (C, X*) = p* < U! = (C, X}).

To prove X is feasible at iteration t+1 for some A € (0, 1),
we need to show X satisfies 1) the linear constraint (8a), 2)
the conic constraint (8b) with W, 5(Vi41). First, it is clear
that both X} and X* satisty (8a), i.e.,

<A7,X;> = <AL,X*> = bi, 1= 1,...,m.
Then, we have Vi =1,...,m,
(A, X) = (As, (1 = )X 4+ 2X7*)
= (1= M)(As, X7) + XAy, X7) = bi.

Since X} = V,1, V41 and X/ is positive definite, V;1 must
be invertible. We let

X = (V) XV

Then, for small enough A > 0, the matrix (1—)\)I+)\5(t+1 €
FW, . Hence, from (15), we have

X =V (1= NI+ AX11)Vipr € FWVE5(Viga).

This completes the proof. [ ]

Our proof is inspired by [19, Theorem 3.1], and we
generalize it to any block partition «, including the iterative
algorithm based on SDD matrices [19, Section 4] as a special
case. The key idea is to make sure the optimal solution of
the previous iteration is a feasible point in the next iteration.
Thus, instead of the Cholesky decomposition, we can use
other choices, such as spectral decomposition X; = PDPT.

Algorithm 1 lists the overall procedure of the proposed
iterative inner approximations for solving (1). We use a
simple example to illustrate our algorithm.

DD SDD FWY,
0.2 /o0 /o2 /
0.1 0.1 0.1
[ > =
0 0 0
-0.1 -0.1 -0.1+
-0.2 -0.2 -0.2
-0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2
X X X
[ 1PSD [ IFirst iteration [ 1Second iteration

Fig. 2: Feasible regions of inner approximations of (16) in Algo-
rithm 1 using DD, SDD, and FWy, 5 with o = {2,2,2,2,2}.
The red arrows denote the decreasing direction of the cost value.

TABLE I: Cost values of inner approximations in Algorithm 1
for solving (16). We used DD, SDD, and FWg o with a =
{2,2,2,2,2}. The optimal cost of (16) is —0.298.

DD SDD FW2,
Iter Cost Gap Cost Gap Cost Gap
1 —0.148 50.3% —0.176 40.9% —0.232 22.2%
2 —0.236 20.8% —0.277 7.04% —0.298 0
Example 1: Consider an SDP of the form
min —z -y
&Y (16)

subject to I+ zA+yB =0,

where A and B are two 10 x 10 matrices with each entry
randomly generated. We consider inner approximations by
DD, SDD and FW!? with o = {2,2,2,2,2}. The results
are shown in Figure 2. The blue part in Figure 2 shows
the feasible region of (16). We then replace the semidefinite
constraint by DD, SDD and ]-"W}X?Q. Orange and green
parts in Figure 2 show the feasible regions in iterations 1 and
2 of Algorithm 1. It is clear that the feasible region moves
towards the direction where the cost decreases. As shown
in Table T (also in Figure 2), our algorithm using FWy ,
achieves the optimal cost at the second iteration, while the
results from DD/SDD approximations [19] are still far away
from the optimal cost. (]

IV. OUTER APPROXIMATIONS OF THE PSD CONE

The inner approximation in (8) provides an upper bound
of the SDPs (1). Here, we introduce an outer approximation
for the same problem (la), which provides a lower bound.
Therefore, the optimal cost of (1) can be bounded above and
below simultaneously.

A. Outer approximations

Consider the relationship FWg , C St C (FW,,)"
Replacing PSD cone S} by the dual cone (FWy, 5)* gives
an outer approximation of (la), i.e.,

Le (C, X)
<A27X> = bi7
X € (FWgao)"

‘= min
X

subject to i=1,... (17)



We have L), < d* = p*. Note that the dual cone (FW,, 5)*
admits a decomposition as [21]

(FWio)' = {X 8" |BuX(BR)T e st

(18)
1<k<l< p}.
Therefore, problem (17) can be rewritten as:
Ll =min (C,X)
X
subject to  (A;, X) = b;, i=1,...,m, (19)

ExRX(Ey)T e ST 1<k<l<p.

The gap p* — L. might be large. Similar to inner approxi-
mations, we aim to solve a sequence of outer approximations
in the following form

(€, X)
EXViXVIERT e STt 1<k <1<p,

L! = min
X

subject to i=1,...,m,

which is parameterized by V; € R™*™. However, we cannot
generate the matrix V;4; by Cholesky decomposition of
the optimal solution X; of (20), since it is not positive
semidefinite. To resolve this, motivated by [19], we look into
the dual problem of (20), which is

L! =max b'

Yy X Y
subject to C — ZyiAi = Z V,I(ES) " X B4V,
i=1 1<k<I<p

Xp €SP, 1<k<I<p. (21)

For the optimal solution y** of (21) at iteration ¢, the matrix
c-r yf’*Ai is guaranteed to be positive semidefinite.
Then, we choose a sequence of matrices {V;} for (21) as

Vi=1, Vi1 =chol (C — ny*AZ> , (22)

i=1

where y'* is the optimal solution of (21) at iteration .

B. Monotonically increasing lower bounds

The lower bounds from the sequence of outer approxima-
tions defined in (21) and (22) are monotonically increasing,
as proved in the following result.

Proposition 2: Given any partition «, solving (21) with
matrices {V;} in (22) leads to

Ll <12<.. <L <Lift<a* =p~

The proof is not difficult, and is also similar to Proposi-
tion 1. Details can be found in our technical report [25]. Sim-
ilar to Theorem 2, when C' — 3" | y!™* A, is strictly positive
definite, we have a strictly increasing cost, as summarized in
the following theorem.

Theorem 3: Given any partition a, let {y/™*, X7} be an
optimal solution of (21) at iterate ¢. If C' — 31" | yi™* A; is
strictly positive definite and L{, < d*, then L!, < L5 < d*.

The proof is similar to Theorem 2. Due to page limit,
please refer to our technical report [25] for a detailed proof.

Algorithm 2: Outer-approximations using FW,, ,

Input: SDP data A;,C € S, b € R™, block partition
«, and maximum iteration ¢,

Output: Lower bound L,

Initialize t = 1;V, = I;

while ¢ < t,,x do
Solve (21) to get LY, and y"*; Set L, = LY;
Compute Vi1 = chol(C' — 327 yi* Ay);
Sett =1+ 1;

end

return L,

TABLE II: Cost values of iteratively outer approximation (16)
using DD, SDD, and FWyg, 5. The optimal cost value of (16)
is —0.298.

DD SDD FWa .2
Iter Cost Gap Cost Gap Cost Gap
1 —0.499 67.5% —0.469 57.4% —0.401 34.6%
11 —0.443 48.7% —0.350 17.5% —0.298 O

Remark 1 (Solving outer approximations): Unlike the in-
ner approximations (12), the outer approximations (20) and
(21) are not in the standard form of SDPs. Thus they
cannot be solved directly using standard conic solvers. In
our implementation, we apply the idea in [26] and transform
(21) into the following primal form of SDPs

min —b"
Y, Xkt Y
subject to Z V(BT X EQV, + Z%Ai =C,
1<k<I<p i=1

Xy €S 1<k <1<p, (23)

which is ready to be solved using standard conic solvers.
We note that the size of PSD constraints has been reduced
in (23), but the number of equality constraints is n2. Thus,
solving (21) might not be as efficient as solving (12). O
Our iterative outer approximations for solving (1) is listed
in Algorithm 2. We use SDP (16) to illustrate our algorithm.
Example 2: The feasible regions in the first and 11th it-
erations are shown in Figure 3. In particular, the blue part
shows the feasible region of (16). We then replace the PSD
constraint by (DD)*, (SDD)* and (.7-'1/\/232)*. Orange and
green regions are the feasible regions in iterations 1 and 11.
It is clear that the feasible region moves towards the direction
where the cost increases. As shown in Table II (also in Figure
3), our algorithm using FWY, , achieves the optimal cost
at iteration 11, while the results from DD/SDD approxima-
tions [19] are still far away from the optimal cost. U
Figure 4 shows the convergence of the upper and lower
bounds of SDP (16) from Algorithm 1 and 2. In this case, the
convergence using FW,, , is much faster than the DD/SDD
strategies [15], [19].
Remark 2 (Role of partition «): In our Algorithms 1-2,
the choice of partition « brings flexibility in balancing
the computational efficiency and solution quality at each
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Fig. 3: Feasible regions of outer approximations in Algorithm 2 by
DD, SDD, and FWy, » with a = {2,2,2,2,2}. The red arrow
denotes the increasing direction of the cost value.
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Fig. 4: Inner/Outer approximations of SDP (16) using DD, SDD,
and FW3 , with a = {2,...,2}.

iteration. Choosing a suitable partition might be problem
dependent; we refer interested readers to [21] for more
discussions. Here, we highlight that 1) a coarser partition
normally leads to faster convergence in Algorithms 1-2, as
shown in our extensive numerical experiments in Section
V; 2) a coarser partition also leads to a smaller number
p in (21) and (12). The latter fact is important in con-
structing the problem in each iteration, especially for large-
scale cases. For example, when n = 2000, if we use the
SDD matrices for inner/outer approximations [15], [19], the
number of small blocks is (*%°) = 1999000 which is
too large to even construct the problem instances (21) and
(12). We indeed failed to construct such problems in our
experiments in Section V-B. Instead, for o = {10,...,10}
(8 = {20,...,20}, respectively), the number of blocks is
reduced to (2(2)0) = 19900 ((1(2)0) = 4950, respectively), for
which efficient constructions exist.

V. NUMERICAL RESULTS

We have implemented our algorithm in MATLAB, and
the source code is available in https://github.com/
soc-ucsd/Iterative_SDPfw. In this section, we present
computational results of Algorithms 1-2 on two classes
of SDPs: independent stable set and randomly generated
SDPs. More numerical results can be found in our technical
report [25]. Our experiments were carried out in MATLAB
R2021a on a Windows PC with 2.6 GHz speed and 24 GB
RAM. All the SDP instances at each iteration of Algorithms
1-2 were solved by MOSEK [7].

Cost

1 2 3 4 5 6 7 8 9
Iteration

Fig. 5: Inner/Outer approximations of Lovdsz theta number (25)
by different partitions: v = {2,...,2}, and 8 = {5,...,5}.

10 11

TABLE III: Success rate of upper bounds of ¥(G) in (25) for
140 instances of 30-nodes Erdos-Renyi graphs using Algorithm 2,
where a = {2,...,2} and 5 = {5,...,5}.

Iteration ¢ SDD  FWgaa FWios
1 0% 0% 0%
3 0% 5.7% 36.4%
5 20% 36.4% 86.4%
7 35.7% 79.3% 95.7%

A. The maximum stable set problem

The maximum stable set problem is a classical combina-
torial problem, which aims to find the stability number of
a graph. A stable set of a undirected graph G = (V,€) is
a set of nodes of G such that there are no edges between
them. The maximum stable number of G, denoted as «(G),
is the size of maximum stable set. However, testing whether
a «(G) is greater than an integer k is well-known to be NP-
complete [27]. This problem can be formulated as

a(G) = max sz
o= (24)
subject to z; € {0,1}, i=1,2,...,n,

Tilyj :0, V(l,j) eé.

A well-known SDP-based upper bound, introduced in [28],
can be computed by

#(G) = myx (7, X)
subject to (I, X) =1, 25)
Xij = 07 V(l,j) € 57
X -0,

where J is an all-one matrix and I is the identity matrix.
The cost of (25) is called Lovasz theta number, denoted as
9(G), which provides an upper bound ¥(G) > «(G). We
now apply Algorithms 1 and 2 to get a sequence of upper
and lower bounds on Lovdsz theta number.

We first generated a Erdbs-Renyi graph of 30 nodes with
edge probability 0.2, and then applied Algorithms 1 and
2 using three different partitions: SDD (trivial partition),
a=4{2,...,2}, and 8 = {5,...,5}. As shown in Figure
5, a coarser partition [ leads to the fastest convergence
for both inner and outer approximation in this case. To
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TABLE IV: Computational results of 6 different large-scale SDPs
using Algorithm 1 with « = {10,...,10} and 8 = {20,...,20}.
f1 denotes the cost value of the first iteration. f3o denotes the
cost value after 30 minutes. The time consumption (in seconds) for
solving the original SDP is listed in the last column.

FWa .2 FW5 2 PSD
n fi f30 Gap fi f30 Gap Time
1500 5.63e6 4.76e6 0.03 5.20e6 4.76e6 0.03 603
2000 3.33e6 2.86e6 0.10 3.09e6 2.86e6 0.05 1201
2500 6.11e6 5.29¢6 0.07 5.70e6 5.29¢6 0.05 2893
3000 1.81e7 1.32e7 0.79 1.57e7 1.32e7 0.79 5508
3500 8.96e6 7.08¢6 0.10 8.02¢6 7.07e6 0.08 7369
4000 9.52e6 6.89e¢6 0.15 8.21e6 6.89e¢6 0.11 10689
4500 2.05e7 1.70e7 0.08 1.88e7 1.69e7 0.06 16989

give a more quantitative comparison, we further generated
140 instances of 30-node Erdbs—Renyi graphs with edge
probability from 0.2 to 0.8. We use Algorithm 2 to compute
the upper bound of ¥(G). When the upper bound is within
99% suboptimality to ¥(G), we consider it as a success. Table
IIT lists the success rate at different iterations of Algorithm 2.
As expected, a coarser partition 3 gives much higher sucess
rates compared to SDD approximation [19]. Specifically, in
the seventh iteration, ]-"VVZ,2 obtains 95.7% success rate,
while SDD only has 35.7% success rate.

B. Random SDPs

Our final experiment is to show the scalability of the
inner approximations in Algorithm 1. We generated seven
random large-scale SDPs with PSD constraints of 1500,
2000, 2500, 3000, 3500, 4000, and 4500. The number of
linear constraints is fixed as m = 10. We approximate the
PSD cone using two different partitions « = {10,...,10}
and 8 = {20,...,20}. As discussed in Remark 2, we failed
to use SDD approximation in this large-scale experiment.

We ran Algorithm 1 for 30 minutes and then compare
the solution quality. The optimality gap is computed by
|m| x 100%, where p* is the optimal cost value of
original SDP, and f30 is the obtained upper bound after
running 30 minutes. The results are listed in Table IV. Our
proposed method shows promising efficiency and accuracy.
For example, when n = 4500 and m = 10, Algorithm 1 with
partition 3 obtained a solution with 99.9% optimality in 30
minutes, while original SDP took over 4.5 hours to solve.

VI. CONCLUSIONS

In this paper, we have introduced the iterative inner/outer
approximations for solving SDPs (cf. Algorithm 1-2), and
analyzed their solution quality (cf. Propositions 1-2 and
Theorems 2-3). Numerical results on stable set and random
SDPs have shown promising accuracy and computational
scalability when proper partitions were used. Future work
includes analyzing the convergence of (or modified) Algo-
rithm 1-2 (some recent results appeared in [20]). Developing
other types of iterative algorithms based on block factor-
width matrices will also be interesting.
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