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Abstract— First-order policy optimization has been widely
used in reinforcement learning. It guarantees to find the optimal
policy for the state-feedback linear quadratic regulator (LQR).
However, the performance of policy optimization remains unclear
for the linear quadratic Gaussian (LQG) control where the LQG
cost has spurious suboptimal stationary points. In this paper,
we introduce a novel perturbed policy gradient (PGD) method
to escape a large class of bad stationary points (including high-
order saddles). In particular, based on the specific structure of
LQG, we introduce a novel reparameterization procedure that
converts the iterate from a high-order saddle to a strict saddle,
from which standard random perturbations in PGD can escape
efficiently. We further characterize a class of high-order saddles
that can be escaped by our algorithm.

I. INTRODUCTION

In this paper, we revisit the linear quadratic Gaussian (LQG)
control, one of the most fundamental problems in control
theory, from a modern optimization view. In brief, we focus
on a continuous-time linear time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t) + w(t),

y(t) = Cx(t) + v(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state,
control input, and measurement (output) vector at time t,
respectively, and w(t), v(t) are white Gaussian noises with
intensity matrices W ⪰ 0 and V ≻ 0, respectively. The
goal is to design a controller (i.e., policy) based on partial
measurements y(t) to minimize a quadratic cost

J(u) := lim
T→∞

1

T
E

[︄∫︂ T

t=0

(︁
xTQx+ uTRu

)︁
dt

]︄
. (2)

A special case is the linear quadratic regulator (LQR) [1],
where we have direct access to the state x (i.e., y(t) =
x(t), v(t) = 0,∀t ∈ R in (1)). It is known that the optimal
policy for the LQR is in the form of static state feedback
u(t) = Kx(t), where K ∈ Rm×n is a constant matrix that
can be obtained by solving a Riccati equation [2]. On the
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other hand, when the state is not directly observed, the policy
that minimizes (2) is a dynamical controller of the form [3]

ξ̇(t) = AKξ(t) +BKy(t),

u(t) = CKξ(t),
(3)

where the optimal parameters K∗ := (A∗
K, B

∗
K, C

∗
K) can

be obtained by solving two Riccati equations [3], [4] (see
Section II-A). Algorithms for solving Riccati equations are
well-studied, including iterative algorithms [5], algebraic
solution methods [6], and semidefinite optimization [7]. All
these methods are model-based and explicitly rely on the
system model (1). Recently, policy gradient methods have
achieved impressive results for many challenging problems [8].
These methods directly optimize the quadratic cost (2) as a
function of the policy class K = (AK, BK, CK) via gradient
descent or its variants. They can be further made model-free,
bypassing an explicit estimation of the model (1). The flexi-
bility of model-free control has stimulated a growing interest
in investigating foundations of policy gradient methods for
classical control problems [9]–[20].

While it is guaranteed to obtain the optimal controller
for LQR or LQG via classical model-based methods, such
optimality guarantee is more difficult when using policy
gradient methods since the cost (2) is typically nonconvex
in the policy space. For LQR, recent work has shown that
although the LQR cost is nonconvex, it is gradient dominant
and coersive, and has a unique stationary point under very
mild conditions, rendering the convergence of policy gradient
to the globally optimal controller [9]–[12]. On the other
hand, the LQG cost is neither gradient dominant nor coersive,
and there may exist spurious saddle points [20], making it
challenging for policy gradient to find the optimal controller.

Saddle points do not always destroy the performance of
policy gradient methods. Suitable perturbed policy gradient
methods are able to escape strict saddle points whose
Hessian has at least one strictly negative eigenvalue [21]–[23].
However, it is shown in [20, Theorem 4.2] that the Hessian of
the LQG cost at a saddle point can even degenerate to zero.
We denote the saddle point whose Hessian does not give
escaping directions as a high-order saddle. Perturbed policy
gradient methods may thus get stuck and take an exponential
number of iterations to escape high-order saddles [21]–[23].

All the (strict or high-order) saddle points of LQG discussed
in [20] are due to a loss of controllability and/or observability
for the controller (AK, BK, CK) in (3) (i.e., non-minimal
controllers). Indeed, any stationary point corresponds to
a full-order minimal controller cannot be saddle and it



is instead globally optimal [20]. Further, many intrigue
landscape properties of LQG are brought by a classical
notion of similarity transformations that induces a symmetry
structure [20]. In this paper, we raise a natural question of
whether this induced symmetry structure allows us to reveal
more information about high-order saddles of LQG such that
suitable perturbed policy gradient methods can escape those
points. We provide a positive answer to this question.

In particular, we first show that any stationary point
after model reduction remains to be stationary. This gives a
classification of the stationary points: all bad (suboptimal or
saddle) stationary points after model reduction become lower-
order and form new stationary points with the same LQG cost.
We then reveal an intriguing transfer function G(s) at any
stationary point (AK, BK, CK): 1) if (AK, BK, CK) is globally
optimal, the function G(s) is identically zero, ∀s ∈ C; 2) if
G(s) is not identically zero, we can perturb (AK, BK, CK) to
get a new stationary point with the same LQG cost, which is
a strict saddle with probability one. Standard perturbed policy
gradient (PGD) methods [21], [22] can thus escape this new
strict saddle. We emphasize that our PGD method include
perturbations on two parts: 1) a novel structural perturbation
on the stationary point (AK, BK, CK); 2) a standard random
perturbation on gradients [22]. This combination enables
escaping a large class of bad stationary points (including
high-order saddles) in LQG problems.

The rest of this paper is organized as follows. We present
the problem statement in Section II. Our main results on
characterizing stationary points and Hessians are presented
in Section III. Section IV shows empirical performance of
our perturbed policy gradient method. We conclude the paper
in Section V. Technical proofs and auxiliary computations
are postponed to our report [24].

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Review of LQG control

The classical LQG control problem is defined as

min
u(t)

J(u)

subject to (1),
(4)

where J(u) is defined in (2) with Q ⪰ 0 and R ≻ 0. In (4),
the input u(t) depends on all past observation y(τ) with
τ < t. We make the following standard assumption.

Assumption 1. (A,B) and (A,W 1/2) are controllable, and
(C,A) and (Q1/2, A) are observable.

The optimal solution to (4) is a dynamical controller in
the form of (3), in which ξ(t) ∈ Rq is the controller internal
state, and AK ∈ Rq×q, BK ∈ Rq×p, CK ∈ Rm×q specify
the dynamics of the controller. While q can be any positive
number, one does not have to use q > n and the optimal
controller has q = n, given by algebraic Riccati equations
(AREs) [3, Thm. 14.7]. Precisely, let P, S be the unique
positive semidefinite solutions to the following AREs

AP + PAT − PCTV −1CP +W = 0,

ATS + SA− SBR−1BTS +Q = 0.
(5)

Then, the parameters of an optimal controller to (4) are

A⋆
K = A−BM − LC, B⋆

K = L, C⋆
K = −M (6)

where L = PCTV −1, M = R−1BTS. The optimal solution
(A⋆

K, B
⋆
K, C

⋆
K) is not unique in the state-space domain. Any

similarity transformation leads to another equivalent optimal
controller (they correspond to the same transfer function in
the frequency domain).

B. Problem Statement

In this paper, we embrace the spirit of [9]–[12], [20] and
view the LQG problem (4) from a modern optimization
perspective. We consider the policy class (AK, BK, CK) in (3),
and the closed-loop matrix becomes

Acl :=

[︃
A BCK

BKC AK

]︃
∈ R(n+q)×(n+q). (7)

The set of internally stabilizing policies [3, Chapter 13] is

Cq :=
{︃
K=

[︃
0 CK

BK AK

]︃
∈ R(m+q)×(p+q)

⃓⃓⃓⃓
(7) is stable

}︃
.

Let Jq(K) : Cq → R denote the corresponding LQG cost (2)
for each stabilizing policy in Cq. It is known [20, Lemmas
2.3 & 2.4] that this function Jq(K) is real analytic on Cq and
admits efficient computation.

Lemma 1. Fix q ∈ N such that Cq ̸= ∅. Given K ∈ Cq, we
have

Jq(K) = tr (Qcl,KXK) = tr (Wcl,KYK) , (8)

where XK and YK are the unique positive semidefinite
solutions to the following Lyapunov equations

AclXK +XKA
T
cl +Wcl,K = 0, (9a)

AT
clYK + YKAcl +Qcl,K = 0, (9b)

where Acl is defined in (7) and

Qcl,K :=

[︃
Q 0
0 CT

KRCK

]︃
, Wcl,K :=

[︃
W 0
0 BKV BT

K

]︃
.

Lemma 1 works for stabilizing controllers of any order
q. In this paper, we are mainly interested in characterizing
the full-order case Cn. Now, given the state dimension n,
we can formulate the LQG problem (4) into a constrained
optimization problem

min
K

Jn(K)

subject to K ∈ Cn.
(10)

An important notion of dynamical controllers is minimality:
a controller (AK, BK, CK) is minimal if (AK, BK) is control-
lable and (CK, AK) is observable. As revealed in [20], the
optimization landscape of (10) is more complicated than
that of LQR: 1) the feasible region Cn can have at most
two disconnected components; 2) the cost function Jn(K)
is not coersive and not gradient dominant, and it can have
suboptimal saddle points [20, Theorem 4.2]. Two nice features
are 1) all sub-optimal saddle points correspond to non-minimal



controllers and 2) all stationary points that correspond to min-
imal controllers in Cn are globally optimal [20, Theorem 4.3].

Naive policy gradient methods can thus get stuck around
sub-optimal saddle points. In this paper, we aim to provide
further landscape characterizations of (10) and introduce a
perturbed policy gradient method to escape bad stationary
points of (10). In particular, we first show that any stationary
point of the LQG problem (10) after model reduction remain
to be stationary, and then characterize the second-order
behavior of Jn(K) on a non-minimal stationary point. This
motivates the design of our perturbed policy gradient method.

III. STATIONARY POINTS AND THEIR HESSIANS

The LQG problem (4) has an inherent symmetry structure
induced by the notion of similarity transformation. Let GLq

denote the set of q × q invertible matrices. Given q ≥ 1
such that Cq ̸= ∅, the following map Tq : GLq × Cq → Cq
represents similarity transformations

Tq(T,K) :=

[︃
Im 0
0 T

]︃ [︃
0 CK

BK AK

]︃ [︃
Ip 0
0 T

]︃−1

=

[︃
0 CKT

−1

TBK TAKT
−1

]︃
.

(11)

It is well-known that similarity transformations do not change
the behavior of dynamical controllers and thus the LQG
cost (2) is invariant with respect to Tq(T,K), i.e., we have
Jq(K) = Jq(Tq(T,K)) ,∀K ∈ Cq, T ∈ GLq .

A. Classification of stationary points

The symmetry via similarity transformations brings rich
and complicated landscape properties. Here, we show that the
underlying symmetry also allows a classification of stationary
points of LQG (4). The lemma below gives an explicit
relationship among the gradients of Jq(K) at K and Tq (T,K).

Lemma 2 ( [20, Lemma 4.3]). Let K =

[︃
0 CK

BK AK

]︃
∈ Cq.

For any T ∈ GLq , we have

∇Jq|Tq(T,K) =

[︃
Im 0
0 T−T

]︃
· ∇Jq|K ·

[︃
Ip 0
0 TT

]︃
. (12)

As expected, a direct consequence of Lemma 2 is that a
stationary point K of Jq remains to be stationary over Cq
after any similarity transformation. We can further derive a
classification of the stationary points of Jn over the set of
full-order controllers Cn.

Theorem 1. Let K =

[︃
0 CK

BK AK

]︃
∈ Cn be a stationary point

of LQG (4), and let K̂ =

[︃
0 ĈK

B̂K ÂK

]︃
∈ Cq be a minimal

realization of K, where q ≤ n is the order of its minimal
realization. Then, the following dynamical controller with
any stable matrix Λ ∈ R(n−q)×(n−q)

K̃ =

⎡⎣ 0 ĈK 0

B̂K ÂK 0
0 0 Λ

⎤⎦ ∈ Cn (13)

is a stationary point of (4). If q = n (i.e. K itself is minimal),
then K is globally optimal.

The fact of K̃ (13) being stationary of Jn(K) seems to be
expected, since K̃ and K correspond to the same transfer
function in the frequency domain and K is in a higher
dimensional space Cn than Cq. The technical proof is not
difficult, which combines the classical Kalman decomposition
with Lemma 2 and a result [20, Theorem 4.1]. We provide the
details in [24, Appendix A]. The second part that K is globally
optimal if q = n has been proved in [20, Theorem 4.3].

Theorem 1 shows all stationary points that correspond to
non-minimal controllers admit a standard parameterization
as we defined in (13), which splits the controller state
ξ ∈ Rn into 1) the controllable/observable (associated
with ÂK, B̂K, ĈK blocks) part and 2) non-controllable/non-
observable (associated with Λ) part. Furthermore, Theorem 1
indicates that all bad stationary points of (4) after model
reduction are in the same form of (13). Thus, policy gradient
methods only need to escape those bad saddle points of the
form (13). This motivates our results in the next section.

Remark 1 (Non-minimal globally optimal controllers). A non-
minimal controller in the form of (13) might still be globally
optimal; See Example 2 below. This happens when the so-
lutions (A⋆

K, B
⋆
K, C

⋆
K) from the Riccati equations (5) is not

minimal, i.e. (A⋆
K, B

⋆
K) is uncontrollable or (C⋆

K, A
⋆
K) is unob-

servable or both. We conjecture that a random LQG instance
should have (A⋆

K, B
⋆
K, C

⋆
K) (6) being minimal with probability

one. An exact characterization is left for future work. □

B. Hessian of stationary points

Once a policy gradient method reaches a stationary point,
if the stationary point corresponds to a minimal controller, it
has found a globally optimal solution to (4). If the stationary
point does not correspond to a minimal controller, we can
bring it into the form of (13), for which we have the following
characterization of its hessian.

Theorem 2. Consider a stationary point of Jn(K) over Cn
of the form

K̃ =

⎡⎣ 0 ĈK 0

B̂K ÂK 0
0 0 Λ

⎤⎦ ∈ Cn, (14)

with ÂK ∈ Rq×q, B̂K ∈ Rq×p, ĈK ∈ Rm×q, stable Λ ∈
R(n−q)×(n−q) and q ≤ n. Let Xop ∈ Sn+q

+ and Yop ∈
Sn+q
+ be the unique positive semidefinite solutions to the

Lyapunov equations (9a) and (9b) with K̂=

[︃
0 ĈK

B̂K ÂK

]︃
∈ Cq,

respectively. Define a transfer function of size p×m

G(s) := Ccl(sI −AT
cl
)−1Bcl. (15)

where A
cl

is defined in (7) with the K̂ above, and Ccl :=

C̄Xop + V B̄
T
K, Bcl := YopB̄ + C̄

T
KR, with

C̄=
[︁
C 0

]︁
∈Rp×(n+q), B̄=

[︃
B
0

]︃
∈R(n+q)×m, (16)



C̄K=
[︁
0 ĈK

]︁
∈Rm×(n+q), B̄K=

[︃
0

B̂K

]︃
∈R(n+q)×p.

The following statements hold.
1) If K̃ in (14) is globally optimal in Cn, then the function

G(s) in (15) is identically zero ∀s ∈ C.
2) If G(s) in (15) is not a zero function, then K̃ is a strict

saddle point (the Hessian of Jn(K) at K̃ is indefinite)
with probability one when randomly choosing a stable
and symmetric Λ ∈ Sn−q .

3) Let Z be the set of zeros of G(s), i.e., Z =
{s ∈ C | G(s) = 0} . Given a stable and symmetric
Λ ∈ Sn−q, let eig(−Λ) denote the set of (distinct)
eigenvalues of −Λ. If eig(−Λ) ⊈ Z , then the Hessian
of Jn(K) at K̃ is indefinite.

Proof. Statements 1) and 2) are direct consequences of
Statement 3). We give simple arguments below.

3)⇒ 1): If K̃ in (14) is globally optimal in Cn, then the
Hessian of Jn(K) at K̃ must be positive semidefinite. If G(s)
is not identically zero, then its zero set Z is a set of finite
points due to the fundamental theorem of algebra1. Then,
there exists a symmetric Λ ∈ Sn−q such that eig(−Λ) ⊈ Z ,
and thus its Hessian at K̃ is indefinite. This is contradicted
with K̃ being globally optimal.

3)⇒ 2): If G(s) is not an identically zero function, then
its zero set Z is a set of finite points. When choosing a stable
and symmetric Λ ∈ Sn−q randomly, we have eig(−Λ) ⊈ Z
holds with probability one. Thus, K̃ is a strict saddle point
with probability one.

The proof of Statement 3) exploits the bilinear property of
the Hessian and the non-controllable/non-observable property
to identify a two-by-two hessian block[︃

Hess K̃(∆
(1),∆(1)) Hess K̃(∆

(1),∆(2))
Hess K̃(∆

(1),∆(2)) Hess K̃(∆
(2),∆(2))

]︃
∈ S2

in which the diagonal entries are always zero. Using the
Hessian calculation in [20, Lemma 4.3], we then prove that if
eig(−Λ) ⊈ Z , then the off-diagonal entries are non-zero. The
Hessian of Jn(·) at K̃ is thus indefinite. Details are presented
in our extended report [24, Appendix B].

Our Theorem 2 includes the recent result [20, Theorem
4.2] as a special case in which the authors only consider a
zero controller K = 0. Our main proof in [24, Appendix B],
however, is motivated by that in [20, Theorem 4.2] with more
complicated and careful calculations.

If the transfer function G(s) is not identically zero, then
K̃ in (14) is a strict saddle point with probability one when
randomly choosing Λ. Thus, we can apply the perturbed
policy gradient method for “escaping saddle” [22], so that
the policy gradient iterations do not get stuck around these
sub-optimal saddle points. We note that when G(s) is not
identically zero, K̃ in (14) may still have a zero Hessian (i.e.,
high-order saddle) if Λ is chosen such that eig(−Λ) ⊆ Z;
an explicit example is given Example 3 below. Therefore,
our proposed perturbed policy gradient method for the LQG

1Every non-zero, single-variable, degree n polynomial with complex
coefficients has, counted with multiplicity, exactly n complex roots.

problem (4) includes perturbations on Λ as well as on the
gradients. More details are given in Section IV.

Remark 2 (Sufficiency of G(s) ≡ 0 for global optimality
and its interpretation). Theorem 2 holds with q = n, so
G(s) ≡ 0,∀s ∈ C is also true when K comes from the Riccati
equations. In this case, we expect that G(s) in (15) should
have a nice control-theoretic interpretation. It is interesting
to further investigate whether G(s) ≡ 0,∀s ∈ C is sufficient
(or some other suitable conditions are needed) to certify the
global optimality of K̃. □

Example 1. We first consider the famous Doyle’s LQG
example [25], which has system matrices

A =

[︃
1 1
0 1

]︃
, B =

[︃
0
1

]︃
, C =

[︁
1 0

]︁
,

and performance weights

W = 5

[︃
1 1
1 1

]︃
, V = 1, Q = 5

[︃
1 1
1 1

]︃
, R = 1.

The globally optimal LQG controller from (6) is

A⋆
K =

[︃
−4 1
−10 −4

]︃
, B̂K =

[︃
5
5

]︃
, ĈK =

[︁
−5 −5

]︁
.

The Hessian J2(K) at K⋆ =

[︄
0 ĈK

B̂K A⋆
K

]︄
∈ C2 is positive

semidefinite and has eigenvalues λ1 = 8.1111 × 105, λ2 =
6133.9, λ3 = 131.2, λ4 = 6.36, λ5 = · · · = λ8 = 0 (see
[24, Appendix C] for details). Four zero eigenvalues are
expected due to the symmetry induced by the similarity
transformation [20, Lemma 4.6]. We further compute the
matrices in (16) (their values can be found in [24, Appendix
C]), and we have

(C̄Xop + V B̄
T
K)(sI −AT

cl
)−1YopB̄

=
−12.5s3 − 604.2s2 − 1712.5s− 566.7

s4 + 6s3 + 11s2 + 6s+ 1
,

and
(C̄Xop + V B̄

T
K)(sI −AT

cl
)−1C̄

T
KR

=
12.5s3 + 604.2s2 + 1712.5s+ 566.7

s4 + 6s3 + 11s2 + 6s+ 1
.

Thus, we have

G(s)=(C̄Xop + V B̄
T
K)(sI −AT

cl
)−1(YopB̄ + C̄

T
KR) ≡ 0.

This result that G(s) being identically zero is expected
from Theorem 2 since K⋆ is globally optimal. □

We then consider [20, Example 7] for which the globally
optimal LQG controller is non-minimal in Cn.

Example 2. Consider an LQG instance with matrices

A =

[︃
0 −1
1 0

]︃
, B =

[︃
1
0

]︃
, C =

[︁
1 −1

]︁
and performance weights

W =

[︃
1 −1
−1 16

]︃
, V = 1, Q =

[︃
4 0
0 0

]︃
, R = 1.



The globally optimal controller from (6) is given by

A⋆
K =

[︃
−3 0
5 −4

]︃
, B⋆

K =

[︃
1
−4

]︃
, C⋆

K =
[︁
−2 0

]︁
.

It is easy to verify that (C∗
K, A

∗
K) is not observable. The

Hessian of J2(K) at K⋆ ∈ C2 is positive semidefinite
with eigenvalues as λ1 = 581.5529, λ2 = 7.1879, λ3 =
0.2592, λ4 = · · · = λ8 = 0. (See [24, Appendix C] for
details). Four zero eigenvalues are expected, due to the
symmetry by similarity transformations, and the other zero
is caused by the unobservablility of (C∗

K, A
∗
K). Consider two

reduced-order controllers

K1 =

[︃
0 −2
1 −3

]︃
∈ C1, K2 =

[︃
0 0.5

−4 −3

]︃
∈ C1,

both of which are globally optimal. Thus, the following two
full-order controllers

K̃1 =

⎡⎣ 0 −2 0

1 −3 0
0 0 Λ

⎤⎦ , K̃2 =

⎡⎣ 0 0.5 0

−4 −3 0
0 0 Λ

⎤⎦ ,

are globally optimal as well. From Theorem 2, we expect
G(s) ≡ 0 for both K̃1 and K̃2. For both of them, we can
compute (details are in Appendix D) that

(C̄Xop + V B̄
T
K)(sI −AT

cl
)−1YopB̄ =

26.5s+ 56.5

(s+ 1)2

(C̄Xop + V B̄
T
K)(sI −AT

cl
)−1C̄

T
KR = −26.5s+ 56.5

(s+ 1)2
.

Thus, we have the expected result from Theorem 2 that
G(s) = (C̄Xop + V B̄

T
K)(sI − AT

cl
)−1(YopB̄ + C̄

T
KR) ≡ 0.

Finally, we consider an LQG problem with a high-order
saddle point. This high-order saddle point is predicted in
Theorem 2 and [20, Theorem 4.2].

Example 3. Consider an LQG instance with an open-loop
stable system, in which the problem data are

A =

[︃
−0.5 0
0.5 −1

]︃
, B =

[︃
−1
1

]︃
, C =

[︃
−1

6

11

12

]︃
,

with weight matrices W = Q = I2, V = R = 1. Since this
example is open-loop stable, [20, Theorem 4.2] guarantees

that K̃ =

[︃
0 0

0 Λ

]︃
∈ C2 with any stable Λ ∈ R2×2 is

a stationary point. At this controller, we can compute that

the transfer function in (15) is G(s) =
5(2s− 1)

108(2s2 + 3s+ 1)
.

The zero set Z = {0.5} contains a single value. For any
stable Λ with eig(−Λ) ⊈ Z , the Hessian is indefinite by
Theorem 2. For instance, with Λ = −diag(0.5, 0.1), the
Hessian is indefinite with eigenvalues λ1 = 0.0561, λ2 =
−0.0561, λi = 0, i = 3, . . . , 8 (see [24, Appendix C] for
details). However, we can check that if Λ = −0.5I2, (i.e.
AK = −0.5I2, BK = 0, CK = 0), its Hessian is degenerated
to zero, implying that it is a high-order saddle. Our proposed
perturbed gradient descent algorithm in the next section can
escape this type of high-order saddles efficiently.

Algorithm 1 Perturbed policy gradient

Require: 1) Loss J(K) with its gradient. 2) Thresholds gth,
ι. 3) Constant T , τ , step size η. 4) Function λHan,min(K)
that returns the minimum Hankel singular value of the
stable part in K. 5) Function reduce_order(K) that finds
the approximate order of K.

1: Set t = 0, tperturb = −τ − 1 and initialize a stabilizing
controller K0.

2: while t ≤ T do
3: if ∥∇J(Kt)∥ ≤ gth and λHan,min(Kt) ≥ ι then
4: output K
5: else if ∥∇J(Kt)∥ ≤ gth and λHan,min(Kt) ≤ ι and

t− tperturb > τ then
6: K̂t, qt ← reduce_order(Kt) where qt is the order

after model reduction;
7: Λt ← λIn−qt with λ < 0 randomly selected;
8: Kt ← diag(K̂t,Λt) as in (14) (Theorem 2);
9: Kt ← Kt + ξt with ξt uniformly sampled from

BKt
(r);

10: tperturb ← t;
11: end if
12: Kt+1 ← Kt − η∇J(Kt);
13: t← t+ 1;
14: end while

IV. PERTURBED POLICY GRADIENT METHOD

Inspired by Theorems 1 and 2, we introduce a novel
perturbed policy gradient method that combines a structural
perturbation on Λ in (14) with a standard perturbation on
gradients [21], [22]. Numerical results confirm that our
perturbed policy gradient method can escape high-order
saddles efficiently.

Our method combines the standard perturbed gradient
descent [22, Algorithm 2] with an additional oracle of random
structural perturbation on Λ. Our perturbed policy gradient
descent is listed in Algorithm 1. We note that Algorithm 1 is
a prototype algorithm in the sense that some quantities (e.g.,
model reduction, gradient and Hessian Lipschitz constants,
step size) of the LQG problem require more investigation.
Convergence conditions and further quantitative analysis of
our algorithm are also left for future work. Algorithm 1 can
escape a large class of (but not all) high-order saddles at
which G(s) in (15) is not identically zero. When Algorithm 1
terminates, it is likely to produce an approximately global
minimum or return a point at which the transfer function
G(s) in (15) is close to zero (quantitative analysis is left for
future work as well). In the later case, the point may not
be globally optimal, and this is related to the sufficiency of
G(s) ≡ 0 for global optimality in Remark 2.

We implement Algorithm 1, and consider Example 3 for
numerical comparison with three other algorithms: 1) Vanilla
policy gradient; 2) Standard perturbed policy gradient [22]
(with no perturbation on dynamics Λ, i.e., no Lines 6-8
in Algorithm 1); 3) Perturb the dynamics Λ but with no
perturbation on gradients (i.e., no Line 9 in Algorithm 1.).

The globally optimal controller from (6) for the LQG



Fig. 1: Comparison of different perturbed and Vanilla policy gradient
(PG) methods: Our Algorithm 1, Vanilla GD, standard PGD in [22]
(with no perturbation on dynamics Λ), and PGD with perturbation
on dynamics Λ only. These algorithms all start from the same point
(17) near a high-order saddle, and applied fixed step-size gradient
descent iterations. Left: suboptimality J(Kt)−J⋆

J⋆ ; Right: norm of
gradients ∥∇J(Kt)∥.

instance in Example 3 is

A⋆
K=

[︃
−1.10 0.13
1.19 −1.64

]︃
, B̂K=

[︃
0.11
0.45

]︃
, ĈK=[0.62−0.22] .

To illustrate the performance of different algorithms, we
initialize the controller at

AK,0=−0.5I2, BK,0=

[︃
0

0.01

]︃
, CK,0=

[︁
0,−0.01

]︁
. (17)

As discussed in Example 3, this initial point is close to a
high-order saddle AK = −0.5I2, BK = 0, CK = 0. We add a
perturbation (on dynamics Λ, gradients, or both) to the first
iteration and run gradient descent with an fixed step size.

The results are shown in Figure 1: the left sub-figure shows
the suboptimality gap, and the right one shows the norm of
gradients at each iteration. Our Algorithm 1 implements both
perturbations: 1) identifying an one-dimensional Λ as in the
standard form (14) and change it randomly, and 2) randomly
perturb all variables with a small quantity 0.01. As shown in
Figure 1, our Algorithm 1 can escape this high-order saddle
faster than the other three algorithms, including the standard
PGD in [22] (no perturbation on dynamics Λ was applied).

V. CONCLUSIONS

We have proposed a novel PGD algorithm (cf. Algorithm 1)
to escape high-order saddles of LQG. Our PGD algorithm
combines the inherent structure of LQG control with standard
perturbation on gradients. We have shown the structure of all
stationary points after model reduction (cf. Theorem 1). We
have also introduced a reparameterization procedure with an
intriguing transfer function G(s) at any stationary point (cf.
Theorem 2). If G(s) ̸≡ 0, we can certify that the high-order
saddle can be made as a strict saddle by the reparameterization.
Numerical simulations confirmed that Algorithm 1 combining
the reparameterization with random perturbation on gradients
can accelerate the speed of escaping high-order saddles.
Ongoing and future directions include quantitative analysis
of Algorithm 1. We are also interested in the sufficiency

of G(s) ≡ 0 (or other conditions are needed) for global
optimality of LQG (see Remark 2).
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