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Using finite temperature strong coupling expansions for the SU(N) Hubbard Model, we calculate
the thermodynamic properties of the model in the infinite-U limit for arbitrary density 0 ≤ ρ ≤ 1
and all N . We express the ferromagnetic susceptibility of the model as a Curie term plus a ∆χ,
an excess susceptibility above the Curie-behavior. We show that, on a bipartite lattice, graph by
graph the contributions to ∆χ are non-negative in the limit that the hole density δ = 1 − ρ goes
to zero. By summing the contributions from all graphs consisting of closed loops we find that the
low hole-density ferromagnetic susceptibility diverges exponentially as exp∆/T as T → 0 in two
and higher dimensions. This demonstrates that Nagaoka-Thouless ferromagnetic state exists as a
thermodynamic state of matter at low enough density of holes and sufficiently low temperatures. The
constant ∆ scales with the SU(N) parameter N as 1/N implying that ferromagnetism is gradually
weakened with increasing N as the characteristic temperature scale for ferromagnetic order goes
down.

INTRODUCTION

The Hubbard model [1–3] is a central model for de-
scribing the behavior of electrons in solid state systems
and has had a huge impact in our understanding of con-
densed matter physics [4–6]. Strong correlations, arising
from the on-site repulsion in the Hubbard model, can
be used to understand many basic solid state phenom-
ena including metal-insulator transitions, antiferromag-
netism, superconductivity, spin-liquids and itinerant fer-
romagnetism.

Nagaoka-Thouless Ferromagnetism is a classic problem
in itinerant magnetism [7]. Nagaoka [8] and Thouless
[9] independently showed that when the Hubbard repul-
sion U is large enough, a single hole introduced into a
system with one-particle per site, polarizes the system
around the hole. There have been several variational
and numerical studies [10–14] of Nagaoka-Thouless ferro-
magnetism, especially in the ground state of the system.
At finite temperatures, rigorous mathematical arguments
have been made to show that magnetization in a field ex-
ceeds the pure paramagnetic value [15, 16] and Dynami-
cal Mean-Field Theory (DMFT) [17] was used to obtain
a phase diagram in the density-temperature plane.

The cold atomic gases in optical lattices provide a new
motivation for study of the Hubbard model [18–23]. In
these systems, it is possible to build an ensemble that is
well described by the Hubbard model and where the mi-
croscopic parameters such as U and t can be controlled
and a priori well understood. Furthermore, cold atomic
gases allow one to change the number of fermion species
from two to a larger N and thus study the Hubbard
model with SU(N) symmetry [24–29] for different values
of N .

Finite temperature strong-coupling expansion is a nat-
ural way to address the magnetic behavior of the Hub-

bard model at finite temperatures, at various hole densi-
ties, in the thermodynamic limit [30–32]. These expan-
sions can be developed in the grand canonical ensemble at
fixed fugacity ζ = expβµ in powers of βt, w = exp−βU ,
and 1/βU . After changing variables from fugacity to par-
ticle density ρ, one can obtain temperature dependent
thermodynamic properties at various densities. For U of
order or larger than the bandwidth they allow one to re-
late the thermodynamics of the Hubbard model at low
temperatures to a generalized Heisenberg or t-J model
[33–36]. The expansions simplify in the limit U → ∞,
in which case many terms can be set to zero and can
be used to study the problem of Nagaoka-Thouless fer-
romagnetism.

The first few terms of the expansion suffice to give
an accurate numerical description of the thermodynamic
properties of the model at temperatures larger than the
hopping parameter t. And, as shown previously for the
SU(2) t-J model [37–39], series extrapolation methods al-
low one to go to much lower temperatures. But, a numer-
ical extrapolation is difficult to control reliably down to
T = 0. Here, we are interested in the entire temperature
range 0 < T < ∞. We show that, close to half filling, i.e.
in the limit δ = 1− ρ going to zero, the thermodynamic
uniform magnetic susceptibility can be computed all the
way to T → 0 by summing over the loop graphs in each
order of perturbation theory. This calculation provides
a lower bound for the susceptibility and leads to a func-
tion which diverges exponentially to infinity as exp∆/T
as the temperature goes to zero. This shows that, for
large enough U , the Nagaoka-Thouless ferromagnetic be-
havior is a thermodynamic phenomena at low density of
holes and low enough temperatures. These results are
true for any N > 1 of the SU(N) models [40] and in any
dimension greater than one. However, the constant ∆
scales as 1/N , that is the temperature scale for the tran-
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sition goes down as N increases. For the SU(2) case, our
results are in agreement with DMFT which also found
that the transition temperature goes to zero as δ → 0
[17].

MODEL AND METHODS

The SU(N) Hubbard model is defined by a Hamiltonian
H = H0 + V , where the unperturbed Hamiltonian H0 is
an on-site term:

H0 = U
∑
i

ni(ni − 1)

2
− µ

∑
i

ni − h
∑
i

(n1i −
ni

N
), (1)

with ni the total number operator for particles on site i
and µ is the chemical potential. The last term h is a spin-
polarizing field that lowers the energy when the particle
is in the first spin state n1i = 1 and raises it for all other
states and has an overall zero trace. The perturbation V
is the hopping term:

V = −t
∑
<i,j>

N∑
α=1

(C†
i,αCj,α + h.c.), (2)

where the sum < i, j > runs over nearest-neighbor pairs
of sites of a lattice and the sum over α runs over the
N species of Fermions. The total number of fermions
of each species is a constant of motion. Thus both the
chemical potential and field terms commute with the rest
of the Hamiltonian.
Using the formalism of thermodynamic perturbation

theory [30, 31],the logarithm of the grand partition func-
tion, per site, can be expended as

lnZ = ln z +
∞∑
r=1

∫ β

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τr−1

0

dτr

< Ṽ (τ1) . . . Ṽ (τr) >N

(3)

where z is the single-site partition function,

Ṽ = eτH0V e−τH0 , (4)

and,

< X >= Tr e−βH0X/Tr e−βH0 . (5)

In each order, the terms in the expansion can be ex-
pressed in terms of various graphs on the lattice as:

lnZ = ln z +
∑
G

LG z−Ns(βt)NbXG, (6)

In the expression, the graphG hasNs sites andNb bonds.
LG is the lattice constant of the graph defined as the
extensive part of the graph count, per lattice site. The
weight-factorXG is the reduced contribution of the graph

obtained from an evaluation of the traces which depends
on βt, βU , fugacity ζ, field h and N .
In the U → ∞ limit, no double occupancy is allowed

and the weight-factor for a graph with Ns-sites reduces
to

XG =

Ns−1∑
n=1

xG
n ζ

n. (7)

Here xG
n is a polynomial in the SU(N) parameter N of

order n.
From the partition function, the particle density (per

site) can be obtained via the relation

ρ = ζ
∂

∂ζ
lnZ. (8)

Thermodynamic quantities such as Internal energy per
site, e, and entropy per site, s, are obtained using the
relations

e = −(
∂

∂β
lnZ)ζ , (9)

and

s = −β(
∂

∂β
lnZ)ζ − ρ ln ζ + lnZ. (10)

The ferromagnetic susceptibility per site is defined by
the second derivative of lnZ with respect to the spin-
polarizing field h. It is given by

χ =
1

β

∂2

∂h2
lnZ (11)

The field term in the Hamiltonian is defined solely for
calculating the susceptibility. Otherwise, we will restrict
all calculations to h = 0.

SINGLE-SITE TERM AND SERIES EXPANSIONS

In the limit of U → ∞ the single-site partition function
to order h2 becomes z = z0 + h2z1, where,

z0 = 1 +Nζ (12)

and

z1 =
β2ζ

2

N − 1

N
(13)

For all calculations other than the susceptibility, we can
set h = 0. In zeroth order the particle density is given
by

ρ0 =
Nζ

1 +Nζ
. (14)
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The zeroth order susceptibility per site is given by

χ =
2

β

z1
z0

= (
N − 1

N2
)βρ. (15)

This is a Curie law as no double occupancy means we
have local moments at all temperatures.
We will define excess susceptibility, over and above the

Curie-law as

χ = C
ρ

T
+∆χ, (16)

with Curie constant C equal to N−1

N2 . Note that in this
equation the density is the full density not the bare den-
sity obtained in zeroth order. Our goal is to calculate
∆χ.
In our studies, we will restrict ourselves to bipartite

lattices. All the graphs that contribute to the zero-field
partition function on a bipartite lattice to eighth order
together with their weights for arbitrary N are given in
Supplementary materials.

FIG. 1: Two classes of graphs that contribute to the suscepti-
bility expansion. (a) Tree graphs, with no closed loops. Every
bond must be doubled in order to have a non-zero trace con-
tribution. In the single hole sector, each fermion moves back
and forth as the holes moves around the graph. Every spin can
be independently of any spin species. Such graphs only con-
tribute to the Curie-law and do not contribute to the excess
susceptibility at all. (b) Graphs consisting of closed loops. In
the single hole sector, as the hole traverses the loop, each spin
moves to its neighboring position. In order to have a non-zero
trace contribution, all fermions must be of the same species.
Thus these graphs have a maximum relative contribution to
the excess susceptibility.

Near one-particle per site all properties can be ex-
panded in powers of the hole density δ0, given by

δ0 = 1− ρ0 =
1

1 +Nζ
=

1

z0
, (17)

For the Nagaoka-Thouless problem, we are interested in
the limit δ = 1−ρ going to zero. Thus, we will keep terms
linear in δ0 and drop all terms proportional to higher
powers of δ0. These linear in δ0 terms come from exactly

one hole in each cluster. We should note that this does
not mean we are looking at a single hole in the ther-
modynamic system. Our formalism implies that we are
studying the limit of low hole density as similar behavior
will be happening independently all over the system.
In the large U limit, the weight of a graph XG is a

polynomial in ζ of order Ns − 1 , where Ns is number of
sites in the cluster. The restriction to lowest power of δ0
reduces the weight factor for a graph to:

XG = xGζ
Ns−1. (18)

The coefficients xG, which depend on N and the field h,
turn out to be always positive as can be seen from the
explicit calculations to eighth order in the supplementary
materials. These terms correspond either to a single hole
moving back and forth on a tree like graph with no closed
loops or a single hole moving in closed loops. In both
cases they are positive. We will see that this will lead us
to the result that the contribution to excess susceptibility
from every graph is non-negative. This means that even
a partial summation of graphs is a lower bound on the
excess susceptibility.
In this limit, the relation between the full density func-

tion and fugacity becomes

ρ = ρ0 +
∑
G

LG(βt)
Nb(Ns − 1−Nsρ0)

xGζ
Ns−1

zNs

0

(19)

The excess susceptibility is given by

∆χ =
∑
G

LG (βt)Nb(C1G − C2G), (20)

where

C1G =
1

β

∂2

∂h2
(
XG

zNs
), (21)

and

C2G = (Ns − 1−Nsρ0)
C

T

XG

zNs
. (22)

For tree graphs, with no closed loops (see Fig. 1), the
coefficient xG in zero field is proportional to NNs−1. This
reflects the fact that in the absence of closed loops ev-
ery spin can independently be of any species. For these
graphs the contribution to excess susceptibility vanishes
identically. Physically this is a reflection of the fact that
susceptibility of independent spins is already contained
in the Curie law. Thus, we only need to consider those
weights where the power of N in a graph with Ns sites
is less than Ns − 1. In all these terms at least some of
the spins are constrained to be of the same species. Even
the smallest such constraint can be shown to lead to a
positive contribution to the susceptibility.
At the other extreme are those terms where zero-field

xG scales linearly with N . This implies that every spin



4

in the graph must be of the same species to contribute to
a non-zero trace. An example is a graph consisting of a
single closed loop (See Fig. 1). It must have this behavior.
As a hole traverses around the loop, every Fermion in the
loop moves to its neighboring position and hence must be
of the same species as its neighbor to contribute to the
trace. These graphs contribute maximally to the excess
susceptibility. It can be shown that for a single loop of
length l the zero-field weight-factor is

XG =
2l

l!
N ζl−1 (23)

The excess susceptibility contribution from this graph
can be shown to be

C

T

(βt)l

l!
2l(l− 1)(l − 2)N

ζl−1

zl
0

. (24)

Expressing this in terms of ρ0 gives

C

T

(βt)l

l!
2l(l− 1)(l − 2)

ρl−1

0
δ0

NNs−2
. (25)

It is well known that for large l, the number of polygons
of even length l embedded in a bipartite lattice scale as
[41]

pl = Aµl
p la−3, (26)

where the constant µp called the connectivity constant
is known approximately for most lattices [42]. Ignoring
the weak dependence on the exponent a which will only
affect the prefactor, the contributions of polygons can be
summed to obtain an excess susceptibility of

∆χ ∝ N2
δ0
ρ0

C

T
exp

∆

T
, (27)

with ∆ =
tρ0µp

N
. Ignoring the slowly varying prefactor,

this shows that the excess susceptibility diverges expo-
nentially as T → 0. We believe the primary role of the
additional terms not included in this summation is to
decorate these graphs and renormalize the bare density
ρ0 to the full density ρ.
This result provides a lower bound to the magnetic sus-

ceptibility and implies that the Nagaoka-Thouless ferro-
magnet is a thermodynamic phase of matter for low hole
density and low enough temperatures. The characteristic
temperature scale at which the susceptibility becomes ex-
ponentially large is inversely proportional to the SU(N)
parameter N . Thus, the tendency for ferromagnetism
gradually weakens with increase in N . These results are
in agreement with the earlier dynamical mean-field the-
ory results for the SU(2) case in that the ferromagnetic
phase boundary was found to go to zero temperature
as the hole density goes to zero [17]. They are also in
agreement with mathematical arguments that show the
existence of finite magnetization in a field that exceeds
the paramagnetic value at any temperature [16].

The extension of these results to finite U/t and finite
hole doping can be done numerically as was done for
the SU(2) t-J models some time ago [37–39, 43]. Those
studies show that at small enough J/t and close to half
filling the peak in the magnetic susceptibility shifts to
q = 0. However, from a small number of terms in the
expansion it is more difficult to rigorously establish the
divergence of the susceptibility.

DISCUSSIONS AND CONCLUSIONS

In this paper we have used finite temperature strong
coupling expansions for the Hubbard model to revisit the
problem of Nagaoka-Thouless ferromagnetism at large U
and small hole doping near one-particle per site. We have
shown that the ferromagnetic susceptibility of the sys-
tem diverges exponentially as exp∆/T as T → 0. Thus
at sufficiently low temperatures, the system must turn
ferromagnetic.

While the Hubbard model is an approximate model for
solid state systems, it can be a well characterized and ac-
curate model in cold atomic gases in optical lattices. Fur-
thermore, in these systems, the Hubbard parameters can
be tuned by lasers and the number of fermion species can
be made larger than 2 and the system can have SU(N)
symmetry. We have shown that Nagaoka-Thouless fer-
romagnetism is present for all N and is only weakened
gradually with increase in N. Fundamentally, this ferro-
magnetism arises from the fact that as a hole traverses
a closed loop, non-zero trace arises only if all the spins
belong to the same species. This combined with positive
trace on loops of bipartite lattices implies an exponen-
tially divergent susceptibility as T → 0.

We hope our work would stimulate further experi-
mental search for Nagaoka-Thouless ferromagnetism and
measurements of the temperature dependence of the sus-
ceptibility at low hole densities in solid state and cold
atom systems.
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