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We study the ground state and thermodynamic properties of the spin-half XXZ model, with an
Ising interaction Jz and a transverse exchange interaction Jx, on a pyrochlore tube obtained by
joining together elementary cubes in a one-dimensional array. Periodic boundary conditions in the
transverse directions ensure that the bulk of the system consists of corner-sharing tetrahedra, with
the same local geometry as the pyrochlore lattice. We use exact diagonalization, the density matrix
renormalization group (DMRG), and minimally entangled typical thermal states (METTS) methods
to study the system. When Jz is antiferromagnetic (Jz > 0) and Jx is ferromagnetic (Jx < 0), we
find a transition from a spin liquid to an XY ferromagnet, which has power-law correlations at
T = 0. For Jz < 0 and Jx > 0, spin-two excitations are found to have lower energy than spin-one
at the transition away from the fully polarized state, showing evidence for incipient spin-nematic
order. When both interactions are antiferromagnetic, we find a non-degenerate ground state with
no broken symmetries and a robust energy gap. The low energy spectra evolve smoothly from
predominantly Ising to predominantly XY interactions. In the spin-liquid regime of small |Jx|, we
study the confinement of monopole-anti-monopole pairs and find that the confinement length scale
is larger for Jx < 0 than for Jx > 0, although both length scales are very short. These results
are consistent with a local spin-liquid phase for the Heisenberg antiferromagnet with no broken
symmetries.

1. INTRODUCTION

Recent years have seen significant advancements in
computational techniques for quantum spin systems [1],
allowing for a better understanding of their ground
state phases including quantum spin liquids with long-
range entanglement [2]. The extension of the density
matrix renormalization group (DMRG) to cylinders of
increasing width has allowed substantial progress to be
made on two-dimensional quantum spin models such as
the kagome lattice Heisenberg antiferromagnets[3, 4].

The study of three-dimensional quantum spin models
are even more challenging as there are two transverse
directions making the area-law entanglement grow very
rapidly with increase in transverse dimensions.

The quantum XXZ model on the pyrochlore lattice
is a key model in the search for quantum spin liquid
phases [5–8]. The possibility that highly resonating
quantum ground states can arise from the manifold of
degenerate spin ice states, with exotic fractionalized
quasiparticles and emergent gauge fields, has motivated
many theoretical and experimental works [9–14]. Yet,
the ground state of perhaps the simplest such model, the
Heisenberg antiferromagnet on the pyrochlore lattice, is
not well established [8, 15–29], even as recent numerical
studies observed a possible inversion symmetry broken
ground state [19, 20].

In this paper we study the XXZ antiferromagnet on
a pyrochlore tube, shown in Fig. 1. Periodic boundary
conditions in the directions transverse to the tube imply
that, in terms of local coordination, the system is
the same as the pyrochlore lattice with corner sharing
tetrahedron. We know that dimensionality plays a

central role in the development of long-range order in
the system. Here, our primary goal is to understand
short-range behavior in the model, which is less sensitive
to dimensionality and could be indicative of presence of
short-range order in the full three-dimensional lattice as
well. We also study ways in which the low dimensionality
alters the long distance behavior.

Figure 1. A pyrochlore tube lattice with length L = 4 (cubic
unit cells) in the long direction. There are four tetrahedron in
each cube and the total number of sites N = 4× 4× L = 64.

The three primary phases of the model are shown in
Fig. 2. When the Ising coupling is antiferromagnetic
and the XX coupling Jx is ferromagnetic, our study
finds a transition from the spin liquid phase to the XY
ferromagnet as known for the pyrochlore lattice [30].
There are quantitative differences in both the location of
the transition point and the nature of the phases — long-
range order is replaced by power-law correlations due
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Figure 2. The upper panel shows the three primary ground
state regimes of the model as a function of φ defined by the
relations Jz = J cosφ, Jx = J sinφ: (i) Ising ferromagnet
(FM) also called all-in-all-out (AIAO) phase (see text), (ii)
XY ferromagnet and (iii) spin liquid. The nature of the spin
liquid phase and whether there are multiple phases within the
spin liquid region is a primary focus of our study. The lower
panels show the phases with |Jz| = 1.

to one-dimensionality. Finite temperature properties at
high and intermediate temperatures also agree between
our system and the fully three-dimensional one [30].
However, the low temperature thermodynamic properties
are clearly different, as would be expected with changing
dimensionality.

Our main focus here is the case of antiferromagnetic
transverse couplings. This case is particularly
challenging because of the absence of quantum Monte
Carlo algorithms without a sign problem for this system
[30, 31]. Previous studies have proposed a number of
different types of order in the system including a variety
of quantum spin liquids [15, 18, 23] nematic quantum
spin-liquid [8], valence-bond order [27, 28], broken
symmetry between up and down pointing tetrahedron
[19, 20] and broken time-reversal symmetry. Thus, even

the question of short-range order in this system is far
from settled. In our study, we find a non-degenerate
ground state with no broken symmetries and a robust
energy gap for the Heisenberg antiferromagnet. Our
results support the development of short-range nematic
correlations near the Heisenberg limit, which persists
all the way to the XY limit (Jx → ∞). In the latter
case, such correlations can be seen by coming from the
ferromagnetic Ising side [8]. As in the 3D case, we find
that the lowest excitations in the ferromagnetic phase,
on approach to the transition, carry spin-two and not
spin-one, thus suggesting an incipient nematic order.

We also examine the confinement of monopole-
antimonopole pairs due to the quasi-one dimensionality
of the system in the spin ice phase at small transverse Jx.
We look at the lowest energy state in the Sz = 1 sector
in a system with periodic boundary conditions. This
forces at least two tetrahedra to not satisfy the ice rules.
In other words, they contain the monopole excitations.
For very small transverse couplings, there are only
two such tetrahedra. We examine the distribution
of distances between the monopole-antimonopole pairs.
We find that for ferromagnetic transverse coupling the
confinement length is larger than the confinement length
for the antiferromagnetic transverse coupling although
both length scales are quite short.

Another issue of interest is the persistence of a
finite temperature entropy plateaus in quantum systems,
where such plateaus must be rounded due to quantum
fluctuations [30, 32]. The minimally entangled typical
thermal states (METTS) algorithm is an extension of
DMRG that allows us to study the finite temperature
properties of the system [33, 34]. We obtain heat capacity
and entropy as a function of temperature. We find that
the plateau in the entropy at the well-known Pauling
value, a key signature of classical spin ice [9], is lost
as one moves away from the Ising limit. Ultimately,
our quasi-one dimensional system has a robust gap and
the temperature scale over which the entropy goes to
zero from its spin-ice value is much larger than in the
three-dimensional pyrochlore lattice. This reflects the
absence of a gapless photon mode in the quasi-one
dimensional system. It is also consistent with the view
that low temperature properties of the model are strongly
modified due to the altered dimensionality.

2. MODEL

The XXZ Hamiltonian on a pyrochlore lattice is given
by

H =
∑
〈i,j〉

JzS
z
i S

z
j + Jx(Sxi S

x
j + Syi S

y
j ) , (1)

where 〈i, j〉 denotes the nearest neighbours on the

pyrochlore lattice. ~Si = ~
2 ~σi (we set ~ = 1, and ~σi are

Pauli matrices) is the spin operator for site i. Jx and Jz
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Figure 3. Low-lying spectrum of an L = 2 periodic cluster
with 32 spins. The states are characterized by their Sz

quantum numbers. Three classes of ground-state regimes are
evident from the figure. A high-Sz ground-state phase in the
middle, which corresponds to an Ising ferromagnet, and two
Sz = 0 ground-state regimes on the sides ending at the highly
degenerate spin ice states at φ = 0 or 2π.

describe the coupling strength in the transverse (X,Y)
and Ising (Z) directions respectively. Both negative
(ferromagnetic) and positive (antiferromagnetic) Jz and
Jx will be considered in this work. To view the global
phase diagram it is useful to define

Jz = J cosφ, Jx = J sinφ, (2)

with J > 0. For studying energy and temperature
dependent properties, we set |Jz| = 1.

In physical realizations of the model in rare-earth
pyrochlores, the spin-operators in Eq. 1 are defined in
a local coordinate system, where the positive z-direction
at a site points from the center of the neighboring
down tetrahedron to the center of the neighboring up
tetrahedron. Thus a ferromagnetic Ising order for our
model in the Sz direction corresponds to an All-In-All-
Out (AIAO) state in the global coordinate system (Also
shown in Fig. 2), where all spins point in for each up
tetrahedron and point out for each down tetrahedron or
vice-versa. In this paper, we will mostly use the local
coordinate system to describe the spin-state.

A pyrochlore tube lattice, consists of cubic unit cells
of a face centered cubic (FCC) lattice with a four-point
basis, joined along one direction. A tube of length L = 4
(in terms of the cubic unit) (N = 64 sites), is shown
in Fig. 1. We use periodic boundary condition (PBC)
in the transverse direction. In the DMRG and METTS
studies, mostly open boundary condition (OBC) in the
long direction is used to simplify the calculations.

A panoramic view of the phases of the model can be
obtained from looking at the low-lying states of a 32-
site periodic cluster as shown in Fig 3. Each state is
characterized by its conserved Sz quantum number. The

phase in the middle (near φ = π) corresponds to the
local-basis Ising ferromagnet or the all-in-all-out (AIAO)
phase. The phase to the right of this is a local XY
ferromagnet, which ends in a quantum spin liquid as we
approach the highly degenerate spin ice state at φ = 2π.
The phase to the left of the AIAO phase is the primary
focus of our investigation in this paper. It also ends in
a quantum spin-liquid phase as we approach the highly
degenerate spin ice state at φ = 0.

3. METHODOLOGY

The density matrix renormalization group (DMRG)
[35] has become the most powerful method for ground
state studies of 1D systems. Here we apply it to
a quasi-1D pyrochlore tube lattice. The important
condition behind the success of the method is area-law
entanglement and existence of a reduced state space
which can capture all the interesting physics.

DMRG in its modern form is based on a matrix
product state (MPS) ansatz which is variationally
optimized to converge to the desired ground state [1, 3,
4]. The ansatz is based on a Schmidt decomposition
of wave functions. For any bipartition of a system
into subsystems A and B, a wave function can be
expressed as |ψ〉 =

∑
iA,jB

MiA,jB |i〉A|j〉B where |i〉A
and |j〉B represent bases of states on subsystems A
and B. The matrix MiA,jB encodes the entanglement
between the subsystems. Within a matrix product
state approximation, one truncates the singular value
decomposition M = USV †, by either choosing a maximal
number of singular values (also referred to as the maximal
bond dimension D) or by choosing D such that the total
sum of squares of truncated singular values, or truncated
weight, is less than a cutoff ε. In our study, we typically
use a truncated weight cutoff of ε = 10−6. We have
checked the convergence of our results when decreasing
the cutoff ε.

We use another MPS-based technique, the minimally
entangled typical thermal states algorithm (METTS) [33,
34], to compute finite temperature quantities. Instead
of converting quantum problems into classical ones and
sampling both quantum and thermal fluctuations as
in a typical quantum Monte Carlo algorithm, METTS
provides a way to directly sample quantum states. It
begins with expressing the expectation value of an
observable O, at inverse temperature β as

〈O〉 =
1

ZTr(e−βHO)

=
1

Z
∑
i

〈i|e−βH/2Oe−βH/2|i〉 (3)

=
1

Z
∑
i

P (i)〈φ(i) |O|φ(i)〉 , (4)

where
∣∣φ(i)〉 = P (i)−1/2e−βH/2

∣∣ i〉, and P (i) =

〈i
∣∣e−βH ∣∣ i〉. Z is the partition function and |i〉 is
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any orthonormal basis set. Notice that the probability of
the quantum state |φ(i)〉, P (i), is real and non-negative.
Thus, the METTS algorithm is free of any Monte Carlo
sign problems as long as one can efficiently perform the
imaginary time evolution of each state, which is the case
for states of quasi-one-dimensional systems represented
as MPS. Since the computational cost of using MPS
increases rapidly as the entanglement entropy of a state
grows, a natural choice of the orthonormal basis |i〉 is
classical product states. The METTS algorithm allows
the construction of a sequence of product states by
collapsing the previous quantum state obtained after
the operation of e−βH/2 into a local basis. It guarantees
that quantum states are sampled efficiently and with the
desired distribution.

The step which controls the efficiency and accuracy
of the METTS algorithm is the operation of e−βH/2

on each product state. This is first accomplished by
the time-evolving block decimation (TEBD) [36, 37]
algorithm for time-evolving MPS, which is controlled
and accurate and allows one to adaptively grow the
MPS bond dimension D. It is followed by the more
efficient two-site time dependent variational principle
(TDVP) [38, 39] algorithm (which scales as ND3d2β,
where N is the number of sites and d is the degrees of
freedom for the local site) to further increase the bond
dimension D and finally one-site TDVP for a fixed large
bond dimension, which is approximately twice as fast as
the two-site TDVP algorithm. The same approach was
recently used to study finite temperature properties of
the Hubbard model [40, 41]. More detailed discussions
of these algorithms can be found in the review [42]. All
simulations in this work use the ITensor library[43].

4. RESULTS FOR T = 0 PROPERTIES

In this section, we discuss DMRG results for ground
state properties of the model. We compute the ground
state energy, energy gap, bipartite entanglement entropy,
and a variety of correlation functions of relevance to the
different phases. For each set of Hamiltonian parameters,
we typically perform thirty DMRG sweeps across the
lattice. We set the maximum bond dimension to D =
2000 and the truncation error cutoff to ε = 10−6, the
latter setting the actual bond dimension used in the
calculations. By varying ε we have checked that our
results are well converged with respect to the truncation
error. We present results for different signs of Jz and Jx
in the subsections below.

A. Antiferromagnetic Jz and Ferromagnetic Jx:
Transition from a Spin Liquid to an XY Ferromagnet

For ferromagnetic Jx < 0 and antiferromagnetic Jz >
0, the phase at small |Jx| is a quantum spin-liquid which
must be separated from an XY Ferromagnetic phase at

Figure 4. Upper: Ferromagnetic structure factor in the x-
component as a function of coupling strength Jx for N =
64 and N = 96 systems for Jz > 0 and Jx < 0. Lower:
the logarithm of spin-spin correlations as a function of the
logarithm of site distance. A linear relationship for Jx = −0.2
and Jx = −0.5 indicates a power lower decay of spin-spin
correlations. N = 96 and N = 64 data are represented by
circle and diamond symbols respectively.

larger |Jx| by a phase transition. To study these phases
and the transition, we calculate the transverse spin-
spin correlation functions and structure factors SxxFM =
Sxx(q = 0), where

Sxx(q) =
1

N

∑
〈i,j〉

〈SixSjx〉eiq·(i−j), (5)

together with energy gap and entanglement entropy. The
ferromagnetic structure factor is plotted as a function
of coupling strength Jx in Fig. 4 (a). Results for two
lattice sizes N = 64 and N = 96 are shown in the
plot. SxxFM starts from a small value at Jx = 0 and
gradually increases as Jx becomes more negative. When
|Jx| < |Jc ∼ −0.2|, for different lattice sizes SxxFM curves
roughly overlap. In contrast, for |Jx| > |Jc|, there
is a significant increase in SxxFM as lattice size grows,
indicating development of longer range ferromagnetic
(FM) correlations in the transverse direction.

The lower panel in Fig. 4 shows the logarithm of
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Figure 5. Energy gap ∆ and entanglement entropy SA|B
vs. Jx for Jz > 0 and Jx < 0. In the power-law XY FM
phase |Jx| > 0.2, the extrapolated energy gap closes and the
entanglement entropy grows logarithmically with size. The
energy gap is finite and nearly size independent in the spin-
liquid phase.

spin-spin correlation ln(SxSx(r)) as a function of the
logarithm of the distance ln(r). For smaller Jx the plot
curves down showing exponential decay. For larger Jx,
the plot settles down to a linear relationship indicating
a power law decay of spin-spin correlations, as expected
for a quasi-1D lattice. We note that in 3D, there is a
transition to a long-range ferromagnetic XY phase at
Jx ≈ −0.104 [30].

The energy gap ∆ and bipartite entanglement entropy
SA|B as a function of Jx are shown in the upper and
lower panels of Fig. 5 respectively. When |Jx| < 0.2,
the energy gap is only weakly size dependent, while for
|Jx| > 0.2, the gap decreases with lattice size and clearly
extrapolates to zero for |Jx| > 0.3 as expected in a power-
law XY ferromagnetic phase. The robust energy gap in
the spin-liquid phase is in contrast to the gapless photon
mode in the 3-dimensional system. In the power-law
ferromagnetic phase, the bipartite entanglement entropy,
when the system is divided into two equal halves, grows
logarithmically with system size and is consistent with a
conformally invariant behavior with central charge c = 1
(more details can be found in the Appendix). These
results are as expected for the power-law ferromagnetic
phase in one-dimension.

B. Antiferromagnetic Jz and Antiferromagnetic Jx

For positive (antiferromagnetic) Jx and Jz couplings,
we have measured spin-spin, dimer-dimer as well as
nematic correlation functions. All the correlation
functions show rapid exponential decay. We focus on
the nematic structure factor Snematic defined as

S1 =
1

Nb

∑
〈ij〉〈i′j′〉

〈(Sxi Sxj − Syi Syj )(Sxi′S
x
j′ − Syi′Syj′)〉 (6)

and

S2 =
1

Nb

∑
〈ij〉〈i′j′〉

〈(Sxi Syj + Syi S
x
j )(Sxi′S

y
j′ + Syi′S

x
j′)〉, (7)

where 〈ij〉 and 〈i′j′〉 denote the bonds of the pyrochlore
lattice. These two types of definitions are equivalent
and the results given by S1 and S2 are found to be
identical and shown in Fig. 6. A long range order is
not observed but a short range nematic order develops
near the Heisenberg limit and persists for Jx & 1. We
define the corresponding nematic correlation function
between two bonds with sites (i, j) and (i′j′) respectively,
as B(r) = 〈(Sxi Sxj − Syi S

y
j )(Sxi′S

x
j′ − Syi′S

y
j′)〉, where r

is the distance between the bond centers. The lower
panel shows that nematic correlations decay rapidly with
distance for all values of Jx. If one assumes a power-law
decay, the power will be very large (of order 10). It is
consistent with an exponential decay.

Fig. 7 shows the energy gap and entanglement entropy
of the system for various sizes. There is a robust energy
gap for all values of Jx. Although the entanglement
entropy increases with size of the system, it ultimately
saturates rather than continuing to increase. These
results are consistent with a gapped ground state with
a finite correlation length and no broken symmetries.

C. Ferromagnetic Jz and Antiferromagnetic Jx:
instability of the ferromagnetic state

In this section our primary goal is to study the
instability of the Ising ferromagnetic state as the
transverse coupling Jx is increased relative to Jz < 0.
As before we set |Jz| = 1. Since, the z-couplings are
unfrustrated, one needs to go well past Jx = 1 to see the
transition away from the fully polarized ferromagnetic
state. One-particle excitations around the ferromagnetic
state can be calculated analytically. Since, the Hilbert
space for two-particle states in an N -site cluster is only
of size N(N − 1)/2, relatively large system sizes can be
diagonalized exactly.

We study periodic clusters up to N = 128 spins.
The results for Sz = 1 and Sz = 2 excitations with
respect to the ferromagnetic ground state are nearly
size independent. As shown in Fig. 8, we find that the
spin-two excitations become lower in energy relative to
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Figure 6. Upper: Nematic structure factor Snematic as a
function of coupling strength Jx for N = 64 and N = 96
systems. Overlap of different lattice sizes curves imply that it
is a short-ranged order. Lower: the logarithm of bond-bond
nematic correlations as a function of the logarithm of bond
distance.The slopes are −13,−7.9,−6.8 for Jx = 0.2, 1.0, 10.0,
indicating correlation lengths are 0.08, 0.13, 0.15 in units of a
cubic unit cell respectively for these cases. Correlation length
in terms of nearest-neighbor distance are 0.21, 0.36 and 0.42.
N = 96 and N = 64 data are represented by circle and
diamond symbols respectively.

the spin-one excitations for Jx > 2.2. For Jx > 2.6,
the two-spins flipped state is lower in energy than the
ferromagnetic state.

The transition away from the ferromagnetic state
happens a bit earlier. In Fig. 9 we show the lowest energy
of states with different Sz quantum numbers relative
to the Ising ferromagnetic state for different values of
Jx. This calculation is for the 32-site cluster. The
ground state switches from the Ising ferromagnetic state
to the singlet state at Jz ≈ 2.3. As one goes into
the singlet ground state, a strong odd-even behavior
persists as a function of spin. These results are indicative
of a nematic state, where elementary excitations have
a spin-two character. This behavior persists as Jx
is further increased. Nematic states at the transition
between ferromagnetic and antiferromagnetic states have
been previously observed on an extended kagome lattice

Figure 7. Energy gap ∆ and entanglement entropy SA|B v.s.
Jx for Jx > 0 and Jz > 0. A robust energy gap is observed for
all Jx values and entanglement entropy saturates ultimately
when lattice size increases.

Figure 8. Excitation energy ∆ for Sz = 1 and Sz = 2
excitations from the ferromagnetic state for Jz < 0 and
Jx > 0. The results are essentially size independent and were
checked up to 128-site periodic cluster.

Heisenberg model [44].

One of the most noticeable aspects of the 32-
site cluster spectra in Fig. 3 is the smooth behavior
across the Heisenberg model point of the Hamiltonian
(φ = π/4). It strongly suggests that as one goes from
the predominantly Ising coupling to the predominantly
XY coupling, the ground state phase does not change.
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0 4 8 12 16
Sz

−6

−4

−2

0

2
∆
/J φ/π = 0.56

φ/π = 0.58

φ/π = 0.60

φ/π = 0.62

φ/π = 0.64

φ/π = 0.66

Figure 9. Lowest energy states, relative to the ferromagnetic
state, in different Sz sectors for the 32-site periodic cluster.
Close to the transition at φ/π ≈ 0.61 we observe an even-odd
effect, indicative of nematic order.

It argues against any special state or an increased
degeneracy at the Heisenberg point. To the extent
this behavior is representative of the 3D system, it
argues against many proposed ground states for the
Heisenberg model including dimerization, long-range
nematic, broken inversion or time reversal symmetry.
One possibility is that this behavior arises due to
quasi-one dimensionality and the resulting confinement
discussed in the next section. The short-range correlated
quantum spin-liquid phase is mostly featureless.

5. CONFINEMENT OF
MONOPOLE-ANTIMONOPOLE PAIRS

In this section we examine the confinement of
monopole-antimonopole pairs due to quasi one-
dimensionality of the system. To do this we perform
DMRG simulations on a 192-site clusters with periodic
boundary conditions in all directions. We consider the
Sz = 1 sector, which guarantees that at least one pair of
monopole-antimonopole pairs must be present in each
classical configuration. We collapse many independent
classical Ising configurations |ψ′〉 from the ground state

|ψ0〉 obtained by DMRG with probability |〈ψ′ |ψ0〉|2.
Sampling from the desired distribution is nontrivial.
An MPS based algorithm makes it realizable and a
detailed discussion of the algorithm can be found in
[34, 45] The location of monopole-antimonopole pair and
their distance is recorded. In this way the probability
distribution function associated with their separation is
constructed and by plotting it against the logarithm of
the separation, the confinement length is obtained.

We find for antiferromagnetic Jx coupling Jx = +0.01,
the probability P of separation between monopole-

Figure 10. (a)(b)Probability of monopole-antimonopole pair
separations P v.s. pair separations r (c)(d)logarithm of the
probability ln(P ) v.s. separation r

antimonopole pairs decreases exponentially as the
separation r increases. The probability almost vanishes
when r > 2. We also get a linear relationship between the
logarithm of the probability ln(P ) and pairs separation
r in the lower panels. The fitting curves are ln(P ) =
−2.2r + 1.2 for Jx = +0.01 and ln(P ) = −0.93r + 0.83
for Jx = −0.01, suggesting that the correlation lengths
are 1/2.2 ≈ 0.45 and 1/0.93 ≈ 1.08 in units of the
length of a unit cube respectively. In other words, for
ferromagnetic Jx the confinement distance is longer than
for antiferromagnetic Jx.

6. FINITE TEMPERATURE PROPERTIES

In this section we study the finite temperature
properties of the model using the METTS method.
This allows us to show that basic thermodynamic
properties such as internal energy, heat capacity and
entropy at intermediate and high temperatures are not
much affected by the dimensionality of the system.
On the other hand, the low temperature properties
can be qualitatively different. We are also interested
in studying the rounding of entropy plateaus due to
quantum fluctuations [30–32].

We first present results for an antiferromagnetic Jz and
a ferromagnetic Jx. We fix Jz = 1.0 and vary Jx. A
range of values are considered. In Fi.g. 11, we show plots
of the thermodynamic properties for Jx = −1/11,−0.2.
The parameter Jx = −1/11 is close to the transition to
the XY ferromagnetic phase in the 3D pyrochlore lattice
and there is quantum Monte Carlo data available in the
literature [30] to compare with. In the figure, Energy E
as a function of temperature T are shown for two different
lattice sizes N = 64(square points), N = 96 (solid lines).
Heat capacity C and Entropy S are obtained by using the
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formula C(T ) = dE
dT and S(T ) = S(Tmax) −

∫ Tmax

T
C
T dT

respectively. We assume S(T = 0.01, Jx = −0.2) = 0 and
S(T = 0.01, Jx = 1.0) = 0 since the system is gapped at
these Jx values. For negative Jx entropy S(Tmax, Jx)
is assumed to be equal to S(Tmax, Jx = −0.2) and for
positive Jx, S(Tmax, Jx) is determined by S(Tmax, Jx =
1.0).

For Jx = −1/11, when cooling the system from high
temperatures, entropy decreases from ln 2 gradually and
forms a plateau near the Pauling entropy Sp = 1

2 ln 3
2

in the region 10−2 < T < 10−1. A comparison
with previous QMC data on the 3D pyrochlore lattice
(red triangle curve) is shown. At high T there
is good agreement, which is consistent with the
general expectation that only local coordination dictates
the high-temperature behavior. However, the low
temperature behavior is quite different and the drop in
entropy to zero and a second heat capacity peak occurs
at a much higher temperature around T ∼ 0.02 in the
quasi-1D system. By Jx = −0.2, there are no signs of
an entropy plateau in the data and the entropy rapidly
drops to zero at an even higher temperature.

In Fig. 12, the results are shown for the case of Jx
positive. Again, we have studied a range of Jx values. We
show results for Jx = 0, 0.1, 0.3 and 1.0. We can compare
with the numerical linked cluster expansion (NLC) data
[17] for the 3D pyrochlore lattice in the literature at Jx =
1.0. Once again there is very good agreement at high
temperatures. However, they deviate below the peak in
the NLC data at T ≈ 0.5. In the quasi-1D system, the
high temperature peak in the heat capacity merges with
and becomes a shoulder for the low temperature peak at
T ≈ 0.2J . However, well before Jx = 1.0 the entropy
plateau is washed out. By Jx = 0.3, there is only a very
slight hint of a shoulder in the entropy.

7. DISCUSSION AND CONCLUSIONS

In this work we have studied the spin-half XXZ
model on a pyrochlore tube. It is a model of corner
sharing tetrahedra formed by joining fcc cubic cells of a
pyrochlore lattice along one direction. Locally, the model
has the geometry of the pyrochlore lattice and indeed
high temperature thermodynamic properties are found
to be in agreement with studies of the latter [8, 17, 30].
The low temperature properties are affected by the quasi-
one dimensionality of the model. Our main findings
are: (i) With antiferromagnetic Ising and ferromagnetic
XY coupling, there is a transition from the spin ice
phase to an XY ferromagnetic phase, where the latter
has power-law spin correlations as expected from the
dimensionality of the system. (ii) When both couplings
are antiferromagnetic, there is a unique ground state with
an energy gap in the system. (iii) As the parameters
change from the Ising to the Heisenberg limit, short
range nematic correlations develop. These correlations
are nearly unchanged from the XY to the Heisenberg

Figure 11. Energy, heat capacity and entropy per site E as
a function of temperature T for fixed Jz = 1 and several
different spin X and Y coupling strength Jx = 0,−1/11,−0.2.
Different lattice sizes N = 64 (square point) and N = 96
(solid lines) are shown in all the panels. The red triangular
QMC data points for the 3D pyrochlore lattice are obtained
from [30].

limit. No evidence for any long-range order of any type
including nematic order is found. (iv) The low-energy
spectrum evolves smoothly from the predominantly Ising
to the predominantly XY couplings and the ground state
of the Heisenberg model is essentially featureless. (v) For
ferromagnetic Ising and antiferromagnetic XY couplings,
the transition away from the fully polarized ground
state is preceded by spin-two excitations becoming lower
in energy than spin-one. This is further support for
development of local nematic correlations in the system
[8]. (vi) The disordered spin ice phases for both signs
of the XY coupling are gapped and there is no gapless
photon mode in the quasi-1D system. (vii) Monopole-
antimonopole pairs are confined with a confinement
length which is short, especially for antiferromagnetic
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Figure 12. Energy, heat capacity and entropy per site E as
a function of temperature T for fixed Jz = 1 and several
different spin X and Y coupling strength Jx = 0, 0.1, 0.3, 1.0.
Different lattice sizes N = 64 (square point) and N = 96
(solid lines) are shown in all the panels. NLC Data [17] for the
Heisenberg antiferromagnet (Jx = 1.0) for the 3D pyrochlore
lattice is shown by blue triangles.

transverse coupling. (viii) The plateau in entropy
that exists in the purely Ising model is rounded with
the addition of transverse terms. Comparison with
a previous quantum Monte Carlo study of a three-
dimensional system shows that the rounding is more
abrupt in the quasi-1D system, where the entropy is
released at a relatively higher temperature.

Computational studies of highly frustrated three-
dimensional spin system remains a major challenge,
especially when the system has a sign problem within
quantum Monte Carlo simulations. Here we studied a
simplified model making it finite in extent along two
directions and much longer in the third. The DMRG

technique can treat very long systems in one direction
but only a small extent in the other two. This has allowed
us to perform an unbiased study of the ground state and
thermodynamic properties with high accuracy for tube
geometries. One expects the short-range order found in
this study, such as nematic correlations, to reflect the
behavior of the full three dimensional pyrochlore system
as well. Our results are consistent with a local quantum
spin-liquid for the Heisenberg antiferromagnet, with
only very short-range correlations and entanglement.
However, the extent to which this may relate to long-
range correlations/entanglement in the 3D pyrochlore
lattice remains an open question that deserves further
attention.
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Appendix

In this Appendix we plot the bipartite entanglement
entropy SA|B , when the system is divided into two equal
halves, as a function of the logarithm of lattice size ln(N )
for power-law ferromagnetic phase Jx = −0.5, Jz = 1.
The slope of the fitting curve is c/6 ∼ 0.153, consistent
with a conformally invariant behavior with central charge
c = 1.

y=0.15311x+0.69231

Figure S1. Bipartite entanglement entropy SA|B as a function
of the logarithm of lattice size ln(N ) for XY ferromagnetic
phase Jx = −0.5, Jz = 1. The slope of the fitting curve
indicates central charge c ∼ 1
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U. Schollwöck, and C. Hubig, Time-evolution methods
for matrix-product states, Annals of Physics 411, 167998
(2019).

[43] M. Fishman, S. R. White, and E. M. Stoudenmire, The
ITensor software library for tensor network calculations
(2020), arXiv:2007.14822.
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