

1 **Foliar functional and genetic variation in a keystone Hawaiian tree species estimated**
2 **through spectroscopy**

3 Seeley, M.^{1,2}, Stacy, E.A.³, Martin, R.E.^{1,2}, & Asner, G.P.^{1,2}

4 1. *Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI*
5 *96720, USA*

6 2. *School of Geographical Sciences and Urban Planning, Arizona State University, Tempe,*
7 *AZ 85281, USA*

8 3. *School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA*

Highlighted Student Paper Statement: *By quantifying the spectral variability of Metrosideros polymorpha, an endemic, keystone species of the Hawaiian Islands, we take the first step in using remote sensing to spatially map genetic varieties of this species and to more generally study the genetic basis of biodiversity.*

Declaration of Authorship: Author contributions are as follows. Original idea: MS; collecting and raising plants: ES; data collection and statistical analysis: MS; writing and editing the manuscript: MS, ES, GA, RM; results interpretation: ES, GA, MS, RM; chemistry conversion equations: RM. All authors reviewed several drafts and agreed with the final version.

9 **Abstract**

10 Imaging spectroscopy has the potential to map closely related plant taxa at landscape
11 scales. While spectral investigations at the leaf and canopy levels have revealed relationships
12 between phylogeny and reflectance, understanding how spectra differ across, and are inherited
13 from, genotypes of a single species has received less attention. We used a common-garden
14 population of four varieties of the keystone canopy tree, *Metrosideros polymorpha*, from Hawaii
15 Island and four F1-hybrid genotypes derived from controlled crosses to determine if reflectance
16 spectra discriminate sympatric, conspecific varieties of this species and their hybrids. With a
17 single exception, pairwise comparisons of leaf reflectance patterns successfully distinguished
18 varieties of *M. polymorpha* on Hawaii Island as well as populations of the same variety from
19 different islands. Further, spectral variability within a single variety from Hawaii Island and the
20 older island of Oahu was greater than that observed among the four varieties on Hawaii Island.
21 F1 hybrids most frequently displayed leaf spectral patterns intermediate to those of their parent
22 taxa. Spectral reflectance patterns distinguished each of two of the hybrid genotypes from one of
23 their parent varieties, indicating that classifying hybrids may be possible, particularly if sample
24 sizes are increased. This work quantifies a baseline in spectral variability for an endemic
25 Hawaiian tree species and advances the use of imaging spectroscopy in biodiversity studies at the
26 genetic level.

27

28 **Key Words**

29 Spectroscopy, plant evolution, leaf spectra, genetic diversity, Hawaii, *Metrosideros polymorpha*

30

31

32 **Introduction**

33 Genetic diversity of forests provides a foundation for resilience to climate change,
34 biological invasions, and other anthropogenic threats (Crutsinger et al., 2008; Schaberg et al.,
35 2008). High genetic diversity of overstory forest species has been linked to increased
36 productivity and fitness (Aravanopoulos & Zsuffa, 1998; Arcade et al., 1996; Jelinski, 1993;
37 Knowles & Grant, 1981; Mitton et al., 1981), a higher tolerance to pollutants (Bergmann &
38 Hosius, 1996; Müller-Starck, 1985; Oleksyn et al., 1994), and cascading trophic effects on
39 arthropod (Johnson et al., 2006) and fungal (Tang et al., 2022) biodiversity. As genetic diversity
40 is a basis for adaptation and enhanced resilience, it is vital to preserving forest ecosystems, yet
41 anthropogenic disturbances have resulted in significant declines in forest genetic diversity,
42 reducing the future resistance of affected species (Schaberg et al., 2008). While the 15th
43 Sustainable Development Goal of the United Nation includes aims to stop biodiversity loss,
44 including loss of genetic diversity (Le Blanc, 2015), the resources with which to quantify and
45 map genetic diversity are constrained because genetic analyses of forest species require extensive
46 field and lab work (Walters & Scholes, 2017).

47 Remote sensing, in particular imaging spectroscopy, has emerged as a powerful tool for
48 quantifying biodiversity at large spatial scales to understand drivers of biodiversity and inform
49 protection priorities (Asner et al., 2017; Féret & Asner, 2011). Imaging spectroscopy generates
50 high-spectral-resolution data spanning the visible to shortwave-infrared (SWIR; 400-2500 nm)
51 electromagnetic spectrum. Applied to vegetation, spectroscopy captures the molecular
52 constituents of leaves, mediated by leaf structure. Leaf traits such as leaf mass per area (LMA),
53 chlorophyll content, and secondary compounds, among others are an expression of adaptation of
54 a species to its environment (Ordoñez et al., 2009; I. J. Wright et al., 2004). While such

55 quantitative traits often have a substantial allelic basis (Hallgren et al., 2003; Marron &
56 Ceulemans, 2006) that is predominantly polygenic (Bourgaud et al., 2001; Orians et al., 2000),
57 heritability of leaf traits derived from spectroscopy has not been widely tested. Due to the
58 capability of spectroscopy to capture these traits, spectral variation tracks genetic variation
59 among and within forest stands (Blonder et al., 2020; Cavender-Bares et al., 2016; Deacon et al.,
60 2017; Madritch et al., 2014; Martin et al., 2007). According to the spectral variability hypothesis,
61 the variability of canopy reflectance spectra within an area is positively related to plant diversity
62 (Palmer et al., 2000, 2002). Consistent with this hypothesis, leaf-level spectroscopy has revealed
63 heritable spectral differences within and among species of *Quercus* (oak; Cavender-Bares et al.,
64 2016) and *Dryas* (an Arctic shrub; Stasinski et al., 2021) as well as within populations of
65 *Populus tremuloides* (aspen; Deacon et al., 2017) and *Metrosideros polymorpha* (ohia, Martin et
66 al., 2007). Ploidy levels and genetic varieties of *P. tremuloides* have been successfully classified
67 using canopy-level imaging spectroscopy (Blonder et al., 2020; Madritch et al., 2014). Further,
68 some studies have revealed patterns of leaf spectra consistent with phylogeographic variation
69 within species (e.g., *Quercus oleoides*, *Fagus sylvatica*—European beech—and *P. tremuloides*;
70 Cavender-Bares et al., 2016; Blonder et al., 2020; Czyż et al., 2020; Madritch et al., 2014) or
71 among species (e.g., Neotropical trees; McManus et al., 2016). To develop imaging spectroscopy
72 as a tool for characterizing genetic variation at the landscape level, we must first understand how
73 spectra vary within continuous forest stands, including variation among conspecific varieties and
74 their hybrids, especially at fine spatial and taxonomic scales. This gap in our understanding of
75 how spectroscopy captures functional variation challenges conservation agendas that seek to
76 include genetic diversity.

77 *Metrosideros polymorpha* Gaudich. (Myrtaceae) is an ideal model species for testing the
78 capacity of spectroscopy to characterize functional genetic variation of forest canopies at fine
79 spatial and taxonomic scales. This dominant tree species comprises a large number of
80 vegetatively distinct varieties and races distributed nonrandomly within continuous forests that
81 span environmental gradients and ecotones within the climatically variable Hawaiian Islands
82 (Dawson & Stemmermann, 1990; Stacy et al., 2020; Stacy & Sakishima, 2019; Treseder &
83 Vitousek, 2001). The many forms of *M. polymorpha*, along with the four other species of
84 Hawaiian *Metrosideros*, appear to derive from a single colonization of Hawaii by the genus ~2.6-
85 3.9 million years ago (Choi et al., 2021; Dupuis et al., 2019; Percy et al., 2008; S. D. Wright et
86 al., 2000). Diversification within this group is largely the result of adaptive radiation associated
87 with Hawaii's diverse abiotic conditions (Ekar et al., 2019; Izuno et al., 2022; Morrison & Stacy,
88 2014; Stacy et al., 2014, 2020; Stacy & Sakishima, 2019). On Hawaii Island, the youngest and
89 largest island in the chain, *Metrosideros* occurs continuously (barring deforestation) from sea
90 level to 2470 m above sea level wherever mean precipitation exceeds 50 cm annually
91 (Stemmermann & Ihssle, 1993). The *Metrosideros* community on Hawaii Island comprises just
92 four varieties of *M. polymorpha* associated with different environments: *M. polymorpha* var.
93 *incana* (new lava flows at low-to-middle elevations and dry areas), *M. polymorpha* var.
94 *glaberrima* (mature substrates at all but lowest and highest elevations), *M. polymorpha* var.
95 *polymorpha* (all substrates at high elevations), and *M. polymorpha* var. *newellii* (riparian zones;
96 Dawson & Stemmermann, 1990). All taxon pairs can be crossed to make F1 hybrids (Corn,
97 1979; Rhoades, 2012; Stacy et al., 2017), and hybridization between varieties occurs to varying
98 degrees where ranges overlap (Corn & Hiesey, 1973; Stacy et al., 2016). Thus, *M. polymorpha*
99 on Hawaii Island presents the opportunity to examine the utility of spectroscopy to discern very

100 closely related, co-occurring tree taxa and their hybrids and to examine the expression and
101 differentiability of leaf traits in the hybrids.

102 Here, we use a common-garden population of the four varieties of *M. polymorpha* on
103 Hawaii Island and their F1 hybrids derived from controlled crosses to address the following
104 questions: Do leaf-level reflectance spectra differentiate the four varieties of *M. polymorpha* on
105 Hawaii Island? Are patterns of spectral inheritance in F1 hybrids distinct and intermediate to
106 those of their parental varieties, as expected for highly polygenic traits? Finally, for a single
107 variety occurring on multiple islands, we ask: do the reflectance spectra differ between common-
108 garden trees from Hawaii Island and Oahu? We include a discussion of the spectral data in light
109 of evidence of differential adaptation of the four varieties to contrasting environments and to
110 islands of different ages.

111

112 **Methods**

113 *Common Garden Population*

114 The 54 reproductively mature trees used in this study were raised from seed at Panaewa
115 Farm, College of Agriculture, Forestry, and Natural Resources Management, University of
116 Hawaii Hilo, located 75 m above sea level on east Hawaii Island. Seeds were derived from
117 controlled crosses in natural populations on Hawaii Island and Oahu (Rhoades, 2012; Stacy et
118 al., 2017, unpub. data), supplemented by open-pollinated seeds, and all trees were maintained at
119 the farm for use in studies of life history traits and hybrid fertility (Stacy et al., unpub. data). The
120 8-to-14-year-old trees represented the four varieties of *M. polymorpha* on Hawaii Island
121 (hereafter designated glaberrima, incana, newellii, and polymorpha; Fig. SI 1), four inter-varietal
122 F1 hybrid genotypes from Hawaii Island, and a single variety (incana) from Oahu (Table 1).

123 With two exceptions, all genotypes comprised trees derived from >1 site, or trees for which
124 parents were derived from >1 site in the case of F1 hybrids; the exceptions were individuals of
125 incana from Hawaii Island and Oahu that were derived from controlled field crosses at a single
126 site on each island. All trees were maintained within a 72'x35' coldframe until 2020 when some
127 Hawaii Island-derived trees were outplanted in a common garden adjacent to the coldframe. We
128 assessed the effect of this outplanting on leaf spectra by comparing greenhouse and common-
129 garden trees of incana-polymorpha F1 hybrids following the methods below and found no
130 significant differences. Thus, we determined that outplanting had negligible effects on the
131 spectra, and all samples were combined for analysis of spectra among genotypes.

132

133 *Leaf Measurements*

134 We measured leaf reflectance spectra on six trees from each of the nine genotypes
135 (treating incana from Hawaii Island and Oahu as separate genotypes). A minimum of 11 leaves
136 were collected from each plant, placed in zip lock bags, and stored on ice for transport to the
137 laboratory for analysis within four hours. We selected leaves from sunlit portions of the plant
138 with minimal discoloration (e.g. chlorosis) and sooty mold. Five representative leaves per tree
139 were selected and wiped clean with water and patted dry prior to spectral measurements. Spectral
140 measurements were collected using a leaf clip and field spectrometer at 1-nm intervals from 350
141 to 2500 nm (Analytical Spectra Devices Inc., Boulder, CO, USA). Spectra were calibrated using
142 a white reference and corrected using parabolic correction to optimize spectrometer
143 measurements (Hueni & Bialek, 2017). Parabolic correction was performed to correct for
144 differences in temperature sensitivity of sensors within the field spectrometer. A jump in the
145 spectra often occurs around 1000 nm due to the silicon-based sensors for the visible to near

146 infrared and can be corrected post hoc according to Hueni & Bialek (2017). Finally, brightness
147 normalization was applied to all spectral measurements, as it minimizes noise (Kruse et al.,
148 1993; Myneni et al., 1989). Reflectance values below 400 nm were removed, as wavelengths
149 between 350 and 400 nm have a low signal-to-noise ratio. Leaf spectra were averaged by plant.
150 Following spectral measurements of all leaves, leaf area was calculated using ImageJ from a leaf
151 scan collected with an EPSON scanner at 600 dots per square inch. Once dried for 72 hours at 65
152 degrees Celsius, leaves were weighed, and leaf mass per area (LMA) was quantified for each
153 plant.

154

155 *Analysis*

156 To assess whether leaf spectra can differentiate the varieties of *M. polymorpha* and their
157 hybrids, we used principal component analysis (PCA) and analysis of variance (ANOVA). Using
158 the *pca* function from the *scikit learn* python package (version 0.24.1; Virtanen et al., 2020),
159 which uses a covariance matrix for the eigen decomposition, we reduced the 2100 dimensions of
160 the reflectance data to the first 10 principal components (PC). PCA was applied separately to
161 different genotype groupings detailed below. For each of the first 10 PCs, we evaluated its
162 ability to separate the genotypes using an ANOVA according to the methods in Cavender-Bares
163 et al. (2016), followed by Tukey's pairwise HSD tests. These methods were performed in python
164 using the *statsmodels* package (version 0.12.2; Seabold & Perktold, 2010) to compare genotypes
165 separately for each of the following six groups: 1) Hawaii Island incana, glaberrima, newellii,
166 and polymorpha; 2) glaberrima-incana, glaberrima, and Hawaii Island incana; 3) incana-
167 polymorpha, Hawaii Island incana, and polymorpha; 4) newellii-polymorpha, newellii, and

168 polymorpha; 5) glaberrima-polymorpha, glaberrima, and polymorpha ; and 6) incana from Oahu
169 and Hawaii Island (Table 1).

170 While the PCA allowed us to determine if the spectra were differentiable, we used the
171 spectral similarity index (SSI; Eq. 1; Somers et al., 2009, 2012, 2015) to quantify spectral
172 overlap between varieties. The SSI calculates the spectral distance between populations i and j
173 for each wavelength:

174

175 Eq. 1.

$$176 SSI = \frac{|\bar{R}_{b,i} - \bar{R}_{b,j}|}{sd(R_{b,i}) + sd(R_{b,j})}$$

177

178 where R is the brightness-normalized reflectance for each group over n spectral bands. Rather
179 than performing pairwise comparisons, population j was represented by pooled reflectance data
180 from all varieties (including Oahu and Hawaii Island incana). In doing so, we estimated the
181 degree to which each variety diverged spectrally from all varieties. SSI has been used to estimate
182 species turnover (Somers et al., 2015) and as a means of determining which wavelengths
183 distinguish classes (Asner et al., 2018). Here we plotted SSI across the entire spectrum to
184 quantify the degree of separation, with higher SSI values indicating a higher degree of spectral
185 overlap, between spectra of the *M. polymorpha* varieties. Further, we calculated the mean SSI by
186 taking an average of 1/SSI across all bands (Eq. 2).

187

188 Eq. 2

$$189 mean\ SSI = \frac{1}{n} \sum_{b=0}^n \frac{sd(R_{b,i}) + sd(R_{b,j})}{|\bar{R}_{b,i} - \bar{R}_{b,j}|}$$

190

191 To understand within-variety variation, we calculated the mean spectra and coefficient of
192 variation (CV) for each variety across the spectra. The CV is a standardized measure of variation
193 that allows for visual comparison among samples across the full spectrum. Here, we use the CV
194 to visually assess regions of the spectrum that show the greatest variation within each genotype
195 of *M. polymorpha*. While this investigation is useful for visualizing diversity in terms of
196 reflectance between varieties, band-by-band assessments of CV are limited because spectra are
197 derived from broader features related to chemical interactions with light.

198 Lastly, we examined variation among genotypes in leaf traits derived from the reflectance
199 data. Leaf chemical traits were estimated from reflectance spectra using chemometric equations
200 specific to *M. polymorpha* developed by Asner et al. (2018). These spectral-chemical
201 relationships were determined using the partial least squares regression (PLSR) – prediction
202 residual error sum of squares (PRESS) method that has been used to develop universal
203 chemometric equations for broadleaf species (Asner et al., 2009, 2015; Asner & Martin, 2008).
204 As these methods approximate leaf traits, we use them as a means of comparing leaf traits
205 between groups rather than interpreting their absolute value. We estimated eight chemical traits
206 (Table SI 1) using the equations specific to *M. polymorpha*, including the photosynthetic
207 pigments chlorophylls a and b, the structural molecules lignin and cellulose, and the secondary
208 traits phenols and tannins. Chlorophylls a and b were summed and represented as chlorophyll
209 a+b. Further, nonstructural carbohydrates (NSC) like sugars and starch were estimated along
210 with total nitrogen (N) and total carbon (C). Leaf mass per unit area (LMA) was calculated using
211 leaf area and dry weights quantified from the collected leaves, described above. When discussing
212 leaf trait data, we refer to the chemical leaf traits estimated from the reflectance data as well as

213 the LMA calculated from leaves. Significance of differences in leaf traits between genotypes in
214 the groupings described above was quantified using ANOVA and Tukey HSD tests. All analyses
215 were done using python version 3.6.9.

216 In summary, we first used principal component analysis (PCA) to reduce this highly
217 dimensional dataset into fewer components that captured a larger proportion of the variance. We
218 then determined whether any of the components could separate the varieties as well as F1
219 hybrids from their parent varieties using ANOVA and Tukey HSD. To understand differences in
220 reflectance between and within the varieties, we used the spectral similarity index (SSI) and
221 compared their coefficient of variation (CV) and leaf traits.

222

223 **Results**

224 *Spectral Divergence Among Varieties*

225 PCAs of leaf spectra (Table 2) separated all varieties in pairwise comparison except
226 glaberrima and incana. Two PCs (PC1 and PC5) derived from the reflectance spectra
227 significantly differentiated the varieties ($p = 0.003$ for each; Table 2). In the pairwise
228 comparison, incana and newellii were separable in both PC1 and PC5. PC1 additionally
229 separated glaberrima and polymorpha as well as newellii and polymorpha. Glaberrima and
230 newellii as well as incana and polymorpha were differentiable in PC5. The only taxon pair that
231 was not separable in the first 10 PCs of the reflectance data was glaberrima and incana.

232 When visually comparing spectra of the four Hawaii Island varieties, the mean
233 brightness-normalized spectra vary most in the visible (400-700 nm) and shortwave infrared
234 (SWIR; 1500- 2500 nm) wavelength regions (Fig. 1a). According to the spectral separability
235 index (SSI), separation between the varieties occurred across the spectra (Fig. 1b), with

236 polymorpha having the greatest mean SSI (29; Table 3). Both polymorpha and Hawaii Island
237 incana were most distinct in the visible and parts of the infrared while glaberrima had the
238 greatest separability in the SWIR and infrared (Fig. 1b). Glaberrima and incana were similar in
239 their degree of spectral overlap with SSI values of 9 and 11, respectively (Table 3). Newellii,
240 which had the highest separability after ~1800 nm, had the lowest mean SSI (7; Fig. 1b; Table
241 3).

242 Among Hawaii Island varieties, incana had the least within-variety variation among the
243 spectra, while newellii and polymorpha displayed the most variation according to the CV (Fig.
244 1c). Within-variety variation was greatest in the visible and SWIR regions of the spectrum (Fig.
245 1c). The CV of newellii peaked in the visible region, where newellii had not only the greatest
246 within-variety variation but also the highest reflectance values. This result is also expressed in
247 the estimated chemical data (Fig. 2), where newellii had a greater variability relative to the other
248 varieties and lower values of chlorophyll a+b than polymorpha. While polymorpha likewise had
249 a high CV in the visible, this variety had the lowest reflectance in this region compared to the
250 other varieties, and this corresponded to high chlorophyll a+b. In the SWIR region, which is
251 influenced by many leaf traits, within-variety variation was greatest for polymorpha and newellii,
252 followed by glaberrima. Newellii had higher total N than all other varieties but lower LMA, total
253 phenols, and lignin than some other varieties. Polymorpha had lower cellulose than newellii and
254 higher LMA than glaberrima and newellii. Both polymorpha and glaberrima had a wide variation
255 in NSC, and polymorpha had high variation in LMA. Incana had low variation in all the leaf
256 traits except for tannins. Leaf traits were less useful than PCA for discriminating the varieties
257 (Fig. 2). Cellulose, chlorophyll a+b, lignin, phenols, total N, and LMA separated newellii from

258 all other varieties (Fig. 2). Beyond this, only polymorpha and glaberrima differed significantly in
259 leaf traits (chlorophyll a+b and LMA; Fig. 2).

260

261 *Spectral Patterns in Hybrids*

262 The four F1 hybrid genotypes demonstrated different patterns of leaf reflectance relative
263 to their parental taxa. Spectral PC1 scores separated glaberrima and incana as well as glaberrima
264 and glaberrima-incana hybrids (Table 4). Mean spectra of glaberrima-incana F1s fell between the
265 mean spectra of their parent varieties but were closer to glaberrima in the visible and closer to
266 incana between approximately 2000 and 2500 nm (Fig. 3a). Overall, the shape of the CV across
267 the spectrum within glaberrima-incana F1s mirrored that of incana (Fig. SI 4a). None of the leaf
268 traits differed between the glaberrima-incana F1s and either of their parent varieties (Fig. 4a).

269 Variation in F1 leaf traits was often intermediate to or less than that of the parent varieties,
270 except for total C and LMA (Fig. 4a).

271 The incana-polymorpha F1 trees showed intermediate values for many of the leaf traits
272 and within-genotype spectral variation, though their mean spectra most often mirrored those of
273 polymorpha (Fig. 3b). Consistent with this trend, PC3 scores (but not PC1 or PC2 scores)
274 separated incana-polymorpha F1s from incana but not polymorpha (Fig. 3b; Table 4). Similar to
275 the glaberrima-incana F1s, spectral variation (CV) of incana-polymorpha most resembled that of
276 incana in shape but was often intermediate or closer to the other parent (here, polymorpha) in
277 magnitude (Fig. SI 4b). Both incana-polymorpha F1s and polymorpha had higher chlorophyll
278 a+b than incana (Fig. 4a). Many of the other leaf traits of the F1s displayed values intermediate
279 to those of the parent values, though the variation of the hybrid data was often greater than that
280 of either parent.

281 Mean spectral values of newellii-polymorpha F1s were intermediate in the visible,
282 closely followed polymorpha in the infrared and beyond ~1700 nm, and were lower than either
283 parent between 1500 and 1700 nm (Fig. 3c). Newellii and polymorpha was the only pair of
284 genotypes in the newellii-polymorpha group that was separable by any PC scores (Table 4). Leaf
285 trait data indicated that many of the F1 traits were intermediate to those of the parent varieties,
286 but within-F1 variation was lower than variation within either parent for lignin, NSC, and total C
287 (Fig. 4b). In contrast, tannin levels varied more among F1 trees than among trees of either parent.
288 Four of the leaf traits separated newellii and polymorpha, while total N, lignin, and LMA
289 separated newellii and newellii-polymorpha (Fig. 4b). Polymorpha and newellii-polymorpha F1s
290 did not differ in any of the leaf traits.

291 Mean spectra of glaberrima-polymorpha F1s largely fell between those of the parent
292 varieties, but more closely followed glaberrima in the visible and polymorpha in the SWIR (Fig.
293 3d). Only the parent varieties were differentiable using reflectance spectra (Table 4). Glaberrima-
294 polymorpha F1s had lower total C relative to polymorpha, though within-group variation of total
295 C was greater in the hybrid than either parent (Fig. 4b). LMA was the only leaf trait for which
296 glaberrima-polymorpha F1s were intermediate to the parents in both median value and within-
297 group variation. The glaberrima-polymorpha outlier values for tannins, lignin, and cellulose were
298 taken from the same plant (Fig. 4b).

299

300 *Comparing Populations across Islands*

301 Trees of incana from Oahu and Hawaii Island were compared to assess inter-island
302 divergence of leaf spectra (Fig. 1). Across the full spectrum, except in the infrared (~750 - 1700
303 nm), mean spectral reflectance of incana was greater for trees from Oahu than those from Hawaii

304 Island (Fig. 1a). The CV was similarly greater for Oahu trees across the spectra, and the shapes
305 of the CV were similar only in the visible (Fig. 1c). PC1 scores significantly differentiated leaf
306 spectra of incana from the different islands (p-value < 0.05), and Oahu incana, with an SSI of 4,
307 had the lowest SSI of all the varieties by nearly a factor of four (Fig. 1b; Table 3). Six of the leaf
308 chemical traits differed between islands (Fig. 2). Oahu incana had higher cellulose and total N
309 concentrations, but lower lignin, phenols, LMA, and tannins. Qualitative comparisons suggested
310 that within-group trait variation was greater for Oahu incana in cellulose, lignin, NSC, and
311 tannins.

312

313 **Discussion**

314 We measured the leaf spectra of several genotypes of a landscape-dominant tree species
315 and demonstrated separation of ecologically diverged varieties across the geographic scale of
316 east Hawaii Island. Leaf reflectance data successfully distinguished all but one pair of varieties
317 of *M. polymorpha* on Hawaii Island as well as populations of the same variety from different
318 islands. Spectral reflectance measures from four classes of F1 hybrids led to less successful
319 discrimination of intraspecific hybrids from their parental varieties, as expected. However, the
320 results suggest that reflectance spectra should be useful for the detection of *M. polymorpha*
321 hybrid zones using airborne imaging spectroscopy and that with increased sample size,
322 discrimination of individual F1 hybrids from parental taxa may be possible.

323

324 *Spectral Divergence Among Varieties*

325 Biodiversity estimates based on imaging spectroscopy, in accordance with the spectral
326 variability hypothesis, have been made across many landscapes (Féret & Asner, 2011; Schäfer et

327 al., 2016), but few studies have investigated how spectral variability captures intraspecific
328 variation at finer scales (Cavender-Bares et al., 2016; Czyż et al., 2023; McManus et al., 2016).
329 The current study demonstrates the potential of reflectance spectra to capture the genetic
330 variation within a single hyperdominant tree species. Cavender-Bares (2016) similarly
331 demonstrated separability of common-garden *Quercus oleoides* from populations across Central
332 America where gene flow was limited due to the geographic separation of populations. Here we
333 demonstrate spectral differentiation at scales much smaller than several hundred kilometers as
334 monodominant stands of different *M. polymorpha* variants can exist directly adjacent to one
335 another – a promising first step toward landscape-scale mapping of this species. Further, the leaf
336 reflectance and derived trait data may reflect the differential adaptation of the four varieties of *M.*
337 *polymorpha* to contrasting environmental niches in accordance with the spectral variability
338 hypothesis (Palmer et al., 2000, 2002), as is discussed below.

339 The spectral signatures of the four varieties of *M. polymorpha* on Hawaii Island were
340 separable in pairwise comparisons, except for those of the two successional varieties, *incana* and
341 *glaberrima*. Despite their distinct leaf phenotypes, pubescent *incana* and glabrous *glaberrima* are
342 the most weakly genetically differentiated pair of varieties on Hawaii Island (DeBoer & Stacy,
343 2013; Stacy et al., 2014) and Oahu (Stacy et al., 2020). Weak differentiation is consistent with
344 their likely multi-million-year history of alternating periods of isolation by selection on new
345 (*incana*) and old (*glaberrima*) lava flows and periods of hybridization on intermediate-aged flows
346 (Corn & Hiesey, 1973; Drake & Mueller-Dombois, 1993; Kitayama et al., 1997; Stacy et al.,
347 2017; Stacy & Sakishima, 2019). *Glaberrima* and *incana* were not differentiable when all four
348 varieties were included in the analysis; however, they were separable in the analysis comprising
349 just these varieties and their hybrids. This result suggests that classifying *glaberrima* and *incana*

350 using airborne imaging spectroscopy will be possible, but it may require the training of a
351 secondary classification model on these varieties alone. In addition to their lack of separability
352 via reflectance data, these varieties had a similar degree of spectral overlap (SSI) with the other
353 varieties. Notably, *incana* had the lowest CV of reflectance of any variety. This low variation
354 may be due to lower genetic variation among sampled *incana* due to purifying selection
355 (Cvijović et al., 2018) in the harsh abiotic environments of new lava flows or due to the narrow
356 sampling of *incana* for this study (i.e., from a single population) relative to the other varieties.

357 The spectral signatures and leaf traits recorded for *polymorpha* were consistent with
358 values expected for high-elevation plants. *Polymorpha* dominates forests above ~1400 m and
359 exhibits many traits associated with high-elevation plants, such as slow growth, compact form,
360 and highly pubescent leaves (Dawson & Stemmermann, 1990; Homeier et al., 2010; King et al.,
361 2013; Yang et al., 2008). The high LMA observed in *polymorpha* compared to the other varieties
362 is consistent with expectations, as thicker leaves are often associated with high-elevation plants
363 (Read et al., 2014). Lignin is associated with tensile strength (Trupiano et al., 2012; Zhang et al.,
364 2014), and high lignin in *polymorpha* may be an adaptation to the mechanical stress of wind at
365 high elevations (Zaborowska et al., 2023). High LMA and chlorophyll a+b in *polymorpha* are
366 consistent with the relatively higher total chlorophyll and lower leaf surface area observed in
367 common-garden trees of *M. polymorpha* derived from high-elevation, open-pollinated seeds
368 (Martin et al., 2007). High chlorophyll a+b in *polymorpha* may be related to leaf pubescence, as
369 pubescent *polymorpha* leaves self-shade to reduce damage to photosystems (Martin et al., 2007).
370 Low peak reflectance in the visible spectrum is supported by the high chlorophyll content and
371 suggests that *polymorpha* captures more light than the other varieties (Martin et al., 2007).

372 The CV of the reflectance spectra was high for polymorpha, which was unexpected given
373 the lower genetic variation of polymorpha relative to other varieties of *M. polymorpha* on Hawaii
374 Island (Stacy et al., 2014). Moreover, despite its high genetic differentiation relative to incana
375 and glaberrima (DeBoer & Stacy, 2013), polymorpha had the greatest spectral overlap with these
376 taxa. While lower trait variability at high elevations has been observed using imaging
377 spectroscopy data in Peru (Asner et al., 2016) and Hawaii (Seeley et al., *unpublished*),
378 polymorpha had high variability in its reflectance spectra. This appears to be due primarily to
379 high variation in NSC and LMA, which may be a result of growing plants adapted to high
380 elevations in low elevations or to sampling from young potted plants as opposed to full-grown
381 trees. Comparisons of high- versus low-elevation *M. polymorpha* *in situ* revealed lower CV of
382 canopy reflectance and trait variability at high elevations (Martin & Asner, 2009; Seeley et al.,
383 *unpublished*), supporting the conclusion that the greenhouse growing conditions affected
384 polymorpha.

385 Reflectance spectra for newellii were generally consistent with isolation of small
386 populations in separate riparian environments. Newellii is restricted to small, linear populations
387 along riparian corridors on east Hawaii Island (Dawson & Stemmermann 1990, Ekar et al. 2019).
388 The relatively strong genetic isolation of newellii from the other varieties (mean pairwise FST
389 between newellii populations and populations of all other varieties = 0.13; max = 0.25; pairwise
390 FST between glaberrima and polymorpha = [0.040, 0.137], incana and glaberrima = [0.029,
391 0.117], and incana and polymorpha = [0.051, 0.079] on young and old substrates, respectively;
392 (Stacy et al., 2014) likely explains the low degree of spectral overlap observed in the SSI.
393 Newellii populations are significantly diverged from each other due to genetic drift (Stacy et al.
394 2014), and individuals included in this study originated from different populations. Structural

395 flexibility reduces drag in water and is a common adaptation in plants contending with flowing
396 water (Dittrich et al., 2012). As lignin adds rigidity to foliage (dos Santos Abreu et al., 1999), the
397 low lignin observed in leaves of newellii is consistent with adaptation of this variety to high river
398 discharge events (Ekar et al. 2019) as well as the lignification suppression observed in the roots
399 of flood-stressed soybeans (Komatsu et al., 2010). The relatively high total N in newellii leaves
400 may indicate that newellii has higher protein concentration than the other varieties. While some
401 riparian plants use specialized proteins to withstand flooding events (Xue et al., 2020), this has
402 yet to be investigated in newellii. Further, reflectance of visible light was greatest for newellii,
403 which may be a means of photoprotection. Newelli leaves, like those of glaberrima which had
404 the second highest reflectance in the visible, are typically glabrous and therefore do not self-
405 shade via pubescence.

406

407 *Spectral Patterns in Hybrids*

408 Patterns of spectra and leaf traits varied across the four F1 genotypes. The glaberrima-
409 incana, incana-polymorpha, and newellii-polymorpha F1s largely showed levels intermediate to
410 those of the parent varieties, whereas the glaberrima-polymorpha F1s did not. Leaf traits of
411 glaberrima-polymorpha often ranged higher or lower than those for either parent, although few
412 of the differences were significant. Interestingly, these same patterns match those observed in the
413 phenotypes of 2-year-old seedlings of these same four F1 genotypes, which were intermediate
414 for all F1s except glaberrima-polymorpha (Stacy et al., 2016, unpub. data).

415 Phylogenetic signal in reflectance spectra has been demonstrated in multiple genera
416 (Blonder et al., 2020; Cavender-Bares et al., 2016; Czyż et al., 2020; Madritch et al., 2014;
417 McManus et al., 2016; Meireles et al., 2020). Here, we show inheritance patterns of reflectance

418 spectra in intraspecific F1 hybrids of *M. polymorpha*. Through this study, we hope to understand
419 the applicability of imaging spectroscopy in classifying hybrids in landscape-wide mapping
420 efforts. Of the four F1 genotypes included in this study, only glaberrima-incana and incana-
421 polymorpha were separable from one of the parent varieties using leaf spectra. In the case of
422 glaberrima-incana, spectra could distinguish the hybrid from glaberrima, whereas individual leaf
423 traits could not. For this hybrid and its parents, leaf traits were not distinct enough to
424 discriminate the genotypes. For the other F1 genotypes, at least one of the leaf traits differed
425 significantly between the hybrid and one parent variety. These results indicate that classifying
426 hybrids using airborne imaging spectroscopy may be possible with an increased sample size but
427 will likely require both PCA and leaf trait estimations from spectral data to capitalize on all the
428 information present in the data.

429

430 *Comparing Populations across Islands*

431 We assessed whether spectra of *M. polymorpha* var. *incana* from islands of differing ages
432 are differentiable and consistent with their contrasting environments. As found in other studies of
433 conspecific populations sampled across a broad spatial scale (Cavender-Bares et al., 2016;
434 Madritch et al., 2014), we found that the populations of incana from Hawaii Island and Oahu had
435 distinct spectral signatures. Further, the SSI indicated that Oahu incana were more distinct
436 spectrally than any of the Hawaii varieties. These results are consistent with a higher genetic
437 similarity of populations within islands than among islands (Choi et al., 2021; Percy et al., 2008;
438 Stacy & Sakishima, 2019). While the spectra of Oahu and Hawaii Island incana are separable,
439 they share a characteristic shape in the CV between 500 and 750 nm. This shape was also present
440 in all incana hybrids and includes a rounded peak around the red wavelengths as well as a sharp

441 peak at the red edge. As the red edge defines the inflection point between red and infrared and
442 has been linked to chlorophyll content, mesophyll structure, and leaf water content (Collins,
443 1978; Horler et al., 1983), it is likely that variability patterns for one or all of these traits are
444 present in incana and inherited by incana hybrids. Within-variety variation of leaf spectra was
445 greater for Oahu incana, which may be due to the weaker purifying selection there relative to that
446 on new lava flows on volcanically active Hawaii Island, the relatively narrow sampling of
447 Hawaii Island incana in this study, or simply the older age of Oahu. Oahu, being approximately 3
448 million years older than Hawaii Island, has more available nitrogen in its soils (Vitousek et al.,
449 1997), which results in greater trait variability (Asner et al., 2016; Ordoñez et al., 2009) and
450 therefore spectral variability (Seeley et al., *unpublished*).

451

452 Conclusion

453 Using the highly variable, landscape-dominant tree species, *M. polymorpha*, grown in a
454 common garden on Hawaii Island, we used leaf reflectance spectra and derived leaf traits to
455 distinguish four ecologically diverged varieties and their hybrids with varying degrees of
456 success. Further, we discussed the possible associations between the reflectance spectra and leaf
457 trait data with local adaptation of the four varieties to their respective environments. The
458 intersection of genetic analyses and geographical information systems (GIS) has been important
459 in informing biogeographical research and conservation decisions that seek to protect genetic
460 diversity (Koskela et al., 2013; Zonneveld et al., 2012); however, spatial genetic data of forests
461 are limited. This study demonstrates that reflectance spectra can discriminate genotypes of *M.*
462 *polymorpha*, suggesting that while the varieties and hybrids can be spatially mapped using
463 airborne imaging spectroscopy, further investigations are necessary to determine if the resolution

464 from canopy-level data will be stronger or weaker relative to leaf-level data (Jacquemoud et al.,
465 2009; Jacquemoud & Baret, 1990). As we plan for the use of imaging spectroscopy in
466 biodiversity studies, the *M. polymorpha* model system will help us incorporate genetic variation
467 rather than land-cover or morpho-taxonomic variation and pattern into conservation science and
468 management.

469 **Data Availability**

470 The datasets generated during and/or analysed during the current study will be made available on
471 Figshare upon acceptance of the manuscript.

472 **Acknowledgements**

473 This study was supported by NSF DEB0954274 and HRD-0833211 grants to ES and USDA
474 Forest Service 19-JV-11272136-020 grant and NASA SURP-2020-018 grant to GA. The authors
475 would like to thank Jake Rodrique and the College of Agriculture, Forestry, and Natural
476 Resources Management for logistic support and Morgan Rochelle and Alyssa Mathews for their
477 support while collecting leaves and taking spectral measurements. The authors would
478 additionally like to thank the reviewers for their thoughtful suggestions. Author contributions are
479 as follows. Original idea: MS; collecting and raising plants: ES; data collection and statistical
480 analysis: MS; writing and editing the manuscript: MS, ES, GA, RM; results interpretation: ES,
481 GA, MS, RM; chemistry conversion equations: RM. All authors reviewed several drafts and
482 agreed with the final version.

483 **Conflicts of Interest:** The authors declare no conflict of interest.

484 **References**

485 Aravanopoulos, F. A., & Zsuffa, L. (1998). Heterozygosity and biomass production in *Salix eriocephala*.
486 *Heredity*, 81(4), Article 4. <https://doi.org/10.1046/j.1365-2540.1998.00409.x>

487 Arcade, A., Faivre-Rampant, P., Le Guerroué, B., Pâques, L. E., & Prat, D. (1996). Heterozygosity and
488 hybrid performance in larch. *Theoretical and Applied Genetics*, 93(8), 1274–1281.
489 <https://doi.org/10.1007/BF00223460>

490 Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., & Vaughn, N. (2016). Large-scale climatic
491 and geophysical controls on the leaf economics spectrum. *Proceedings of the National Academy of
492 Sciences*, 113(28), E4043–E4051. <https://doi.org/10.1073/pnas.1604863113>

493 Asner, G. P., & Martin, R. E. (2008). Spectral and chemical analysis of tropical forests: Scaling from leaf
494 to canopy levels. *Remote Sensing of Environment*, 112(10), 3958–3970.
495 <https://doi.org/10.1016/j.rse.2008.07.003>

496 Asner, G. P., Martin, R. E., Anderson, C. B., & Knapp, D. E. (2015). Quantifying forest canopy traits:
497 Imaging spectroscopy versus field survey. *Remote Sensing of Environment*, 158, 15–27.
498 <https://doi.org/10.1016/j.rse.2014.11.011>

499 Asner, G. P., Martin, R. E., Ford, A. J., Metcalfe, D. J., & Liddell, M. J. (2009). Leaf chemical and
500 spectral diversity in Australian tropical forests. *Ecological Applications*, 19(1), 236–253.
501 <https://doi.org/10.1890/08-0023.1>

502 Asner, G. P., Martin, R. E., Keith, L. M., Heller, W. P., Hughes, M. A., Vaughn, N. R., Hughes, R. F., &
503 Balzotti, C. (2018). A Spectral Mapping Signature for the Rapid Ohia Death (ROD) Pathogen in
504 Hawaiian Forests. *Remote Sensing*, 10(3), Article 3. <https://doi.org/10.3390/rs10030404>

505 Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C. B., Sinca, F., Vaughn, N. R., &
506 Llactayo, W. (2017). Airborne laser-guided imaging spectroscopy to map forest trait diversity and
507 guide conservation. *Science*, 355(6323), 385–389. <https://doi.org/10.1126/science.aaj1987>

508 Bergmann, F., & Hosius, B. (1996). Effects of heavy metal polluted soils on the genetic structure of
509 norway spruce seedling populations. *Water, Air, and Soil Pollution*, 89(3), 363–373.
510 <https://doi.org/10.1007/BF00171642>

511 Blonder, B., Graae, B. J., Greer, B., Haagsma, M., Helsen, K., Kapás, R. E., Pai, H., Rieksta, J., Sapena,
512 D., Still, C. J., & Strimbeck, R. (2020). Remote sensing of ploidy level in quaking aspen (*Populus*
513 *tremuloides* Michx.). *Journal of Ecology*, 108(1), 175–188. <https://doi.org/10.1111/1365-2745.13296>

514 Bourgaud, F., Gravot, A., Milesi, S., & Gontier, E. (2001). Production of plant secondary metabolites: A
515 historical perspective. *Plant Science*, 161(5), 839–851. [https://doi.org/10.1016/S0168-9452\(01\)00490-3](https://doi.org/10.1016/S0168-9452(01)00490-3)

516 Cavender-Bares, J., Meireles, J. E., Couture, J. J., Kaproth, M. A., Kingdon, C. C., Singh, A., Serbin, S.
517 P., Center, A., Zuniga, E., Pilz, G., & Townsend, P. A. (2016). Associations of Leaf Spectra with
518 Genetic and Phylogenetic Variation in Oaks: Prospects for Remote Detection of Biodiversity.
519 *Remote Sensing*, 8(3), Article 3. <https://doi.org/10.3390/rs8030221>

520 Choi, J. Y., Dai, X., Alam, O., Peng, J. Z., Rughani, P., Hickey, S., Harrington, E., Juul, S., Ayroles, J. F.,
521 Purugganan, M. D., & Stacy, E. A. (2021). Ancestral polymorphisms shape the adaptive radiation
522 of Metrosideros across the Hawaiian Islands. *Proceedings of the National Academy of Sciences*,
523 118(37), e2023801118. <https://doi.org/10.1073/pnas.2023801118>

524 Collins, W. (1978). Remote Sensing of Crop Type and Maturity. *Photogrammetric Engineering and*
525 *Remote Sensing*, 44(1), 43–55.

526 Corn, C. A. (1979). *Variation in Hawaiian Metrosideros*. [Ph.D., University of Hawai'i at Manoa].
527 <https://www.proquest.com/docview/302913798/citation/51D6E6521A78400DPQ/1>

528 Corn, C. A., & Hiesey, W. M. (1973). Altitudinal Variation in Hawaiian Metrosideros. *American Journal*
529 *of Botany*, 60(10), 991–1002. <https://doi.org/10.2307/2441513>

532 Crutsinger, G. M., Souza, L., & Sanders, N. J. (2008). Intraspecific diversity and dominant genotypes
533 resist plant invasions. *Ecology Letters*, 11(1), 16–23. <https://doi.org/10.1111/j.1461-0248.2007.01118.x>

534

535 Cvijović, I., Good, B. H., & Desai, M. M. (2018). The Effect of Strong Purifying Selection on Genetic
536 Diversity. *Genetics*, 209(4), 1235–1278. <https://doi.org/10.1534/genetics.118.301058>

537 Czyż, E. A., Guillén Escribà, C., Wulf, H., Tedder, A., Schuman, M. C., Schneider, F. D., & Schaeppman,
538 M. E. (2020). Intraspecific genetic variation of a *Fagus sylvatica* population in a temperate forest
539 derived from airborne imaging spectroscopy time series. *Ecology and Evolution*, 10(14), 7419–
540 7430. <https://doi.org/10.1002/ece3.6469>

541 Czyż, E. A., Schmid, B., Hueni, A., Eppinga, M. B., Schuman, M. C., Schneider, F. D., Guillén-Escribà,
542 C., & Schaeppman, M. E. (2023). Genetic constraints on temporal variation of airborne reflectance
543 spectra and their uncertainties over a temperate forest. *Remote Sensing of Environment*, 284,
544 113338. <https://doi.org/10.1016/j.rse.2022.113338>

545 Dawson, J., & Stemmermann, L. (1990). Metrosideros (Gaud). In *Manual of the Flowering Plants of*
546 *Hawai'i* (pp. 964–970). Univ. Hawai'i Press.

547 Deacon, N. J., Grossman, J. J., Schweiger, A. K., Armour, I., & Cavender-Bares, J. (2017). Genetic,
548 morphological, and spectral characterization of relictual Niobrara River hybrid aspens (*Populus ×*
549 *smithii*). *American Journal of Botany*, 104(12), 1878–1890. <https://doi.org/10.3732/ajb.1700268>

550 DeBoer, N., & Stacy, E. A. (2013). Divergence within and among 3 Varieties of the Endemic Tree, ‘Ōhi'a
551 Lehua (*Metrosideros polymorpha*) on the Eastern Slope of Hawai'i Island. *Journal of Heredity*,
552 104(4), 449–458.

553 Dittrich, A., Aberle, J., & Schoneboom, T. (2012). Drag forces and flow resistance of flexible riparian
554 vegetation. In *Environmental Fluid Mechanics*. CRC Press.

555 dos Santos Abreu, H., Nascimento, A. M. do, & Maria, M. A. (1999). Lignin Structure and Wood
556 Properties. *Wood and Fiber Science*, 31(4), 426–433.

557 Drake, D. R., & Mueller-Dombois, D. (1993). Population Development of Rain Forest Trees on a
558 Chronosequence of Hawaiian Lava Flows. *Ecology*, 74(4), 1012–1019.
559 <https://doi.org/10.2307/1940471>

560 Dupuis, J. R., Pillon, Y., Sakishima, T., Gemmill, C. E. C., Chamala, S., Barbazuk, W. B., Geib, S. M., &
561 Stacy, E. A. (2019). Targeted amplicon sequencing of 40 nuclear genes supports a single
562 introduction and rapid radiation of Hawaiian Metrosideros (Myrtaceae). *Plant Systematics and*
563 *Evolution*, 305(10), 961–974. <https://doi.org/10.1007/s00606-019-01615-0>

564 Ekar, J. M., Price, D. K., Johnson, M. A., & Stacy, E. A. (2019). Varieties of the highly dispersible and
565 hypervariable tree, Metrosideros polymorpha, differ in response to mechanical stress and light
566 across a sharp ecotone. *American Journal of Botany*, 106(8), 1106–1115.
567 <https://doi.org/10.1002/ajb2.1331>

568 Féret, J.-B., & Asner, G. P. (2011). Spectroscopic classification of tropical forest species using radiative
569 transfer modeling. *Remote Sensing of Environment*, 115(9), 2415–2422.
570 <https://doi.org/10.1016/j.rse.2011.05.004>

571 Hallgren, P., Ikonen, A., Hjältén, J., & Roininen, H. (2003). Inheritance Patterns of Phenolics in F1, F2,
572 and Back-Cross Hybrids of Willows: Implications for Herbivore Responses to Hybrid Plants.
573 *Journal of Chemical Ecology*, 29(5), 1143–1158. <https://doi.org/10.1023/A:1023829506473>

574 Homeier, J., Breckle, S.-W., Günter, S., Rollenbeck, R. T., & Leuschner, C. (2010). Tree Diversity,
575 Forest Structure and Productivity along Altitudinal and Topographical Gradients in a Species-
576 Rich Ecuadorian Montane Rain Forest. *Biotropica*, 42(2), 140–148.
577 <https://doi.org/10.1111/j.1744-7429.2009.00547.x>

578 Horler, D. N. H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. *International*
579 *Journal of Remote Sensing*, 4(2), 273–288. <https://doi.org/10.1080/01431168308948546>

580 Hueni, A., & Bialek, A. (2017). Cause, Effect, and Correction of Field Spectroradiometer Interchannel
581 Radiometric Steps. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote*
582 *Sensing*, 10(4), 1542–1551. <https://doi.org/10.1109/JSTARS.2016.2625043>

583 Izuno, A., Onoda, Y., Amada, G., Kobayashi, K., Mukai, M., Isagi, Y., & Shimizu, K. K. (2022).

584 Demography and selection analysis of the incipient adaptive radiation of a Hawaiian woody
585 species. *PLoS Genetics*, 18(1).

586 <https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009987>

587 Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. *Remote*
588 *Sensing of Environment*, 34(2), 75–91. [https://doi.org/10.1016/0034-4257\(90\)90100-Z](https://doi.org/10.1016/0034-4257(90)90100-Z)

589 Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner, G. P., François, C., &
590 Ustin, S. L. (2009). PROSPECT+SAIL models: A review of use for vegetation characterization.
591 *Remote Sensing of Environment*, 113, S56–S66. <https://doi.org/10.1016/j.rse.2008.01.026>

592 Jelinski, D. E. (1993). Associations between Environmental Heterogeneity, Heterozygosity, and Growth
593 Rates of *Populus tremuloides* in a Cordilleran Landscape. *Arctic and Alpine Research*, 25(3),
594 183–188. <https://doi.org/10.2307/1551811>

595 Johnson, M. T. J., Lajeunesse, M. J., & Agrawal, A. A. (2006). Additive and interactive effects of plant
596 genotypic diversity on arthropod communities and plant fitness. *Ecology Letters*, 9(1), 24–34.
597 <https://doi.org/10.1111/j.1461-0248.2005.00833.x>

598 King, G. M., Gugerli, F., Fonti, P., & Frank, D. C. (2013). Tree growth response along an elevational
599 gradient: Climate or genetics? *Oecologia*, 173(4), 1587–1600. <https://doi.org/10.1007/s00442-013-2696-6>

600

601 Kitayama, K., Pattison, R., Cordell, S., Webb, D., & Mueller-dombois, D. (1997). Ecological and Genetic
602 Implications of Foliar Polymorphism in *Metrosideros polymorpha* Gaud. (Myrtaceae) in a Habitat
603 Matrix on Mauna Loa, Hawaii. *Annals of Botany*, 80(4), 491–497.
604 <https://doi.org/10.1006/anbo.1996.0473>

605 Knowles, P., & Grant, M. C. (1981). Genetic Patterns Associated with Growth Variability in Ponderosa
606 Pine. *American Journal of Botany*, 68(7), 942–946. <https://doi.org/10.2307/2443225>

607 Komatsu, S., Kobayashi, Y., Nishizawa, K., Nanjo, Y., & Furukawa, K. (2010). Comparative proteomics
608 analysis of differentially expressed proteins in soybean cell wall during flooding stress. *Amino
609 Acids*, 39(5), 1435–1449. <https://doi.org/10.1007/s00726-010-0608-1>

610 Koskela, J., Lefèvre, F., Schueler, S., Kraigher, H., Olrik, D. C., Hubert, J., Longauer, R., Bozzano, M.,
611 Yrjänä, L., Alizoti, P., Rotach, P., Vietto, L., Bordács, S., Myking, T., Eysteinsson, T.,
612 Souvannavong, O., Fady, B., De Cuyper, B., Heinze, B., ... Ditlevsen, B. (2013). Translating
613 conservation genetics into management: Pan-European minimum requirements for dynamic
614 conservation units of forest tree genetic diversity. *Biological Conservation*, 157, 39–49.
615 <https://doi.org/10.1016/j.biocon.2012.07.023>

616 Kruse, F. A., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., & Goetz, A. F. H. (1993). The Spectral
617 Image Processing System (SIPS) Interactive Visualization and Analysis of Imaging Spectrometer
618 Data. *Remote Sensing of Environment*, 44, 145–163.

619 Le Blanc, D. (2015). *Global Sustainable Development Report 2015*.

620 Madritch, M. D., Kingdon, C. C., Singh, A., Mock, K. E., Lindroth, R. L., & Townsend, P. A. (2014).
621 Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales.
622 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 369(1643).
623 <https://doi.org/10.1098/rstb.2013.0194>

624 Marron, N., & Ceulemans, R. (2006). Genetic variation of leaf traits related to productivity in a *Populus
625 deltoïdes* × *Populus nigra* family. *Canadian Journal of Forest Research*, 36(2), 390–400.
626 <https://doi.org/10.1139/X05-245>

627 Martin, R. E., & Asner, G. P. (2009). Leaf Chemical and Optical Properties of *Metrosideros polymorpha*
628 across Environmental Gradients in Hawaii. *Biotropica*, 41(3), 292–301.

629 Martin, R. E., Asner, G. P., & Sack, L. (2007). Genetic variation in leaf pigment, optical and
630 photosynthetic function among diverse phenotypes of *Metrosideros polymorpha* grown in a
631 common garden. *Oecologia*, 151(3), 387–400. <https://doi.org/10.1007/s00442-006-0604-z>

632 McManus, K. M., Asner, G. P., Martin, R. E., Dexter, K. G., Kress, W. J., & Field, C. B. (2016).

633 Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies. *Remote Sensing*,
634 8(3), Article 3. <https://doi.org/10.3390/rs8030196>

635 Meireles, J. E., Cavender-Bares, J., Townsend, P. A., Ustin, S., Gamon, J. A., Schweiger, A. K.,
636 Schaeppman, M. E., Asner, G. P., Martin, R. E., Singh, A., Schrodlt, F., Chlus, A., & O'Meara, B.
637 C. (2020). Leaf reflectance spectra capture the evolutionary history of seed plants. *New
638 Phytologist*, 228(2), 485–493. <https://doi.org/10.1111/nph.16771>

639 Mitton, J. B., Knowles, P., Sturgeon, K. B., Linhart, Y. B., & Davis, M. (1981). *Associations Between
640 Heterozygosity and Growth Rate Variables In Three Western Forest Trees*. 8.

641 Morrison, K. R., & Stacy, E. A. (2014). Intraspecific divergence and evolution of a life-history trade-off
642 along a successional gradient in Hawaii's Metrosideros polymorpha. *Journal of Evolutionary
643 Biology*, 27(6), 1192–1204. <https://doi.org/10.1111/jeb.12393>

644 Müller-Starck, G. (1985). Genetic differences between "tolerant" and "sensitive" beeches (*Fagus sylvatica*
645 L.) in an environmentally stressed adult forest stand. *Silvae Genetica*, 34(6), 241–246.

646 Myneni, R. B., Ross, J., & Asrar, G. (1989). A review on the theory of photon transport in leaf canopies.
647 *Agricultural and Forest Meteorology*, 45(1–2), 1–153. [1923\(89\)90002-6](https://doi.org/10.1016/0168-
648 1923(89)90002-6)

649 Oleksyn, J., Prus-Glowacki, W., Giertych, M., & Reich, P. B. (1994). Relation between genetic diversity
650 and pollution impact in a 1912 experiment with East European *Pinussylvestris* provenances.
651 *Canadian Journal of Forest Research*, 24(12), 2390–2394. <https://doi.org/10.1139/x94-308>

652 Ordoñez, J. C., Van Bodegom, P. M., Witte, J.-P. M., Wright, I. J., Reich, P. B., & Aerts, R. (2009). A
653 global study of relationships between leaf traits, climate and soil measures of nutrient fertility.
654 *Global Ecology and Biogeography*, 18(2), 137–149. [8238.2008.00441.x](https://doi.org/10.1111/j.1466-
655 8238.2008.00441.x)

656 Orians, C. M., Griffiths, M. E., Roche, B. M., & Fritz, R. S. (2000). Phenolic glycosides and condensed
657 tannins in *Salix sericea*, *S. eriocephala* and their F1 hybrids: Not all hybrids are created equal.

658 *Biochemical Systematics and Ecology*, 28(7), 619–632. [https://doi.org/10.1016/S0305-1978\(99\)00101-5](https://doi.org/10.1016/S0305-1978(99)00101-5)

659

660 Palmer, M. W., Earls, P. G., Hoagland, B. W., White, P. S., & Wohlgemuth, T. (2002). Quantitative tools
661 for perfecting species lists. *Environmetrics*, 13(2), 121–137. <https://doi.org/10.1002/env.516>

662 Palmer, M. W., Wohlgemuth, T., Earls, P., Arevalo, J. R., & Thompson, S. (2000). Opportunities for
663 long-term ecological research at the Tallgrass Prairie Preserve, Oklahoma. *Proceedings of the*
664 *ILTER Regional Workshop: Cooperation in Long Term Ecological Research in Central and*
665 *Eastern Europe, Budapest, Hungary*, 22.

666 Percy, D. M., Garver, A. M., Wagner, W. L., James, H. F., Cunningham, C. W., Miller, S. E., &
667 Fleischer, R. C. (2008). Progressive island colonization and ancient origin of Hawaiian
668 *Metrosideros* (Myrtaceae). *Proceedings of the Royal Society B: Biological Sciences*, 275(1642),
669 1479–1490. <https://doi.org/10.1098/rspb.2008.0191>

670 Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N. J. (2014). Convergent effects
671 of elevation on functional leaf traits within and among species. *Functional Ecology*, 28(1), 37–45.
672 <https://doi.org/10.1111/1365-2435.12162>

673 Rhoades, A. M. (2012). *The evolution of reproductive barriers within an endemic Hawaiian tree species*
674 (*Metrosideros polymorpha*) *across environmental extremes* [M.S., University of Hawai'i at Hilo].
675 <https://www.proquest.com/docview/1269522622/abstract/9FA75DDFEF6B4830PQ/1>

676 Schaberg, P. G., DeHayes, D. H., Hawley, G. J., & Nijensohn, S. E. (2008). Anthropogenic alterations of
677 genetic diversity within tree populations: Implications for forest ecosystem resilience. *Forest*
678 *Ecology and Management*, 256(5), 855–862. <https://doi.org/10.1016/j.foreco.2008.06.038>

679 Schäfer, E., Heiskanen, J., Heikinheimo, V., & Pellikka, P. (2016). Mapping tree species diversity of a
680 tropical montane forest by unsupervised clustering of airborne imaging spectroscopy data.
681 *Ecological Indicators*, 64, 49–58. <https://doi.org/10.1016/j.ecolind.2015.12.026>

682 Seabold, S., & Perktold, J. (2010). *statsmodels: Econometric and statistical modeling with python*. 9th
683 Python in Science Conference.

684 Seeley, M., Martin, R., Vaughn, N., Thompson, D. R., Dai, J., & Asner, G. P. (in review). *Quantifying the*
685 *spectral variation of Metrosideros polymorpha canopies across environmental gradients.*

686 Seeley, M., Martin, Vaughn, N. R., Dai, J., & Asner, G. P. (in review). *Quantifying the variation in*
687 *reflectance spectra of Metrosideros polymorpha canopies across environmental gradients.*

688 Somers, B., Asner, G. P., Martin, R. E., Anderson, C. B., Knapp, D. E., Wright, S. J., & Van De
689 Kerchove, R. (2015). Mesoscale assessment of changes in tropical tree species richness across a
690 bioclimatic gradient in Panama using airborne imaging spectroscopy. *Remote Sensing of*
691 *Environment*, 167, 111–120. <https://doi.org/10.1016/j.rse.2015.04.016>

692 Somers, B., Delalieux, S., Stuckens, J., Verstraeten, W. W., & Coppin, P. (2009). A weighted linear
693 spectral mixture analysis approach to address endmember variability in agricultural production
694 systems. *International Journal of Remote Sensing*, 30(1), 139–147.
695 <https://doi.org/10.1080/01431160802304625>

696 Somers, B., Zortea, M., Plaza, A., & Asner, G. P. (2012). Automated Extraction of Image-Based
697 Endmember Bundles for Improved Spectral Unmixing. *IEEE Journal of Selected Topics in*
698 *Applied Earth Observations and Remote Sensing*, 5(2), 396–408.
699 <https://doi.org/10.1109/JSTARS.2011.2181340>

700 Stacy, E. A., Ekar, J. M., & Sakishima, T. (n.d.). [*Metrosideros polymorpha* controlled crossess on Oahu
701 and Hawaii Island] [Unpublished data].

702 Stacy, E. A., Johansen, J. B., Sakishima, T., & Price, D. K. (2016). Genetic analysis of an ephemeral
703 intraspecific hybrid zone in the hypervariable tree, *Metrosideros polymorpha* , on Hawai‘i Island.
704 *Heredity*, 117(3), Article 3. <https://doi.org/10.1038/hdy.2016.40>

705 Stacy, E. A., Johansen, J. B., Sakishima, T., Price, D. K., & Pillon, Y. (2014). Incipient radiation within
706 the dominant Hawaiian tree *Metrosideros polymorpha*. *Heredity*, 113(4), 334–342.
707 <https://doi.org/10.1038/hdy.2014.47>

708 Stacy, E. A., Paritosh, B., Johnson, M. A., & Price, D. K. (2017). Incipient ecological speciation between
709 successional varieties of a dominant tree involves intrinsic postzygotic isolating barriers. *Ecology*
710 and *Evolution*, 7(8), 2501–2512. <https://doi.org/10.1002/ece3.2867>

711 Stacy, E. A., & Sakishima, T. (2019). Phylogeography of the highly dispersible landscape-dominant
712 woody species complex, Metrosideros, in Hawaii. *Journal of Biogeography*, 46(10), 2215–2231.
713 <https://doi.org/10.1111/jbi.13650>

714 Stacy, E. A., Sakishima, T., Tharp, H., & Snow, N. (2020). Isolation of Metrosideros ('Ohi'a) Taxa on
715 O'ahu Increases with Elevation and Extreme Environments. *Journal of Heredity*, 111(1), 16.

716 Stasinski, L., White, D. M., Nelson, P. R., Ree, R. H., & Meireles, J. E. (2021). Reading light: Leaf
717 spectra capture fine-scale diversity of closely related, hybridizing arctic shrubs. *New Phytologist*,
718 232(6), 2283–2294. <https://doi.org/10.1111/nph.17731>

719 Stemmermann, L., & Ihssle, T. (1993). Replacement of Metrosideros polymorpha, 'Ohi'a, in Hawaiian
720 Dry Forest Succession. *Biotropica*, 25(1), 36–45. <https://doi.org/10.2307/2388977>

721 Tang, T., Zhang, N., Bongers, F. J., Staab, M., Schuldt, A., Fornoff, F., Lin, H., Cavender-Bares, J., Hipp,
722 A. L., Li, S., Liang, Y., Han, B., Klein, A.-M., Bruelheide, H., Durka, W., Schmid, B., Ma, K., &
723 Liu, X. (2022). Tree species and genetic diversity increase productivity via functional diversity
724 and trophic feedbacks. *eLife*, 11, e78703. <https://doi.org/10.7554/eLife.78703>

725 Treseder, K. K., & Vitousek, P. M. (2001). Effects of Soil Nutrient Availability on Investment in
726 Acquisition of N and P in Hawaiian Rain Forests. *Ecology*, 82(4), 946–954.
727 [https://doi.org/10.1890/0012-9658\(2001\)082\[0946:EOSNAO\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2)

728 Trupiano, D., Di Iorio, A., Montagnoli, A., Lasserre, B., Rocco, M., Grosso, A., Scaloni, A., Marra, M.,
729 Chiatante, D., & Scippa, G. S. (2012). Involvement of lignin and hormones in the response of
730 woody poplar taproots to mechanical stress. *Physiologia Plantarum*, 146(1), 39–52.
731 <https://doi.org/10.1111/j.1399-3054.2012.01601.x>

732 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
733 Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,

734 Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., ... Vázquez-Baeza, Y. (2020).

735 SciPy 1.0: Fundamental algorithms for scientific computing in Python. *Nature Methods*, 17(3),
736 261–272. <https://doi.org/10.1038/s41592-019-0686-2>

737 Vitousek, P. M., Chadwick, O., Crews, T. E., Fownes, J., Hendricks, D. M., & Herbert, D. (1997). Soil
738 and ecosystem development across the Hawaiian Islands. *GSA Today*, 7(9), 1–8.

739 Walters, M., & Scholes, R. J. (Eds.). (2017). *The GEO Handbook on Biodiversity Observation Networks*.
740 Springer International Publishing. <https://doi.org/10.1007/978-3-319-27288-7>

741 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J.,
742 Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J.,
743 Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., ... Villar, R. (2004). The worldwide leaf
744 economics spectrum. *Nature*, 428(6985), Article 6985. <https://doi.org/10.1038/nature02403>

745 Wright, S. D., Yong, C. G., Dawson, J. W., Whittaker, D. J., & Gardener, R. C. (2000). Riding the ice age
746 El Niño? Pacific biogeography and evolution of Metrosideros subg. Metrosideros (Myrtaceae)
747 inferred from nuclear ribosomal DNA. *PNAS*, 97(8), 4118–4123.
748 <https://doi.org/10.1073/pnas.050351197>

749 Xue, Y., Gao, Y., Liu, C., & Liu, S. (2020). A styrene antioxidant NFA from riparian endophytic fungi
750 enhances flooding tolerance in *Arabidopsis*. *Journal of Plant Interactions*, 15(1), 111–116.
751 <https://doi.org/10.1080/17429145.2020.1761467>

752 Yang, Y., Körner, C., & Sun, H. (2008). The Ecological Significance of Pubescence in *Saussurea*
753 Medusa, a High-Elevation Himalayan “Woolly Plant.” *Arctic, Antarctic, and Alpine Research*,
754 40(1), 250–255. [https://doi.org/10.1657/1523-0430\(07-009\)\[YANG\]2.0.CO;2](https://doi.org/10.1657/1523-0430(07-009)[YANG]2.0.CO;2)

755 Zaborowska, J., Perry, A., Cavers, S., & Wachowiak, W. M. (2023). Evolutionary targets of gene
756 expression divergence in a complex of closely related pine species. *Journal of Systematics and
757 Evolution*, 61(1), 198–212. <https://doi.org/10.1111/jse.12896>

758 Zhang, C.-B., Chen, L.-H., & Jiang, J. (2014). Why fine tree roots are stronger than thicker roots: The
759 role of cellulose and lignin in relation to slope stability. *Geomorphology*, 206, 196–202.
760 <https://doi.org/10.1016/j.geomorph.2013.09.024>

761 Zonneveld, M. van, Scheldeman, X., Escribano, P., Viruel, M. A., Damme, P. V., Garcia, W., Tapia, C.,
762 Romero, J., Sigueñas, M., & Hormaza, J. I. (2012). Mapping Genetic Diversity of Cherimoya
763 (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant
764 Genetic Resources. *PLOS ONE*, 7(1), e29845. <https://doi.org/10.1371/journal.pone.0029845>

765

766 **Tables**

767 **Table 1:** *M. polymorpha* varieties and F1 hybrids used in this study. Varieties are not
 768 highlighted, while hybrids are highlighted. Island of origin is noted, though all individuals were
 769 grown in a greenhouse/common garden on Hawaii Island. Groupings used to assess separability
 770 with principal component analysis and analysis of variance are noted in columns three through
 771 eight with “X” denoting membership in each grouping. Six plants per variety/F1 hybrid were
 772 included in each grouping.

Island	Variety/F ₁ hybrid	Hawaii Island Varieties	GI Hybrid	IP Hybrid	NP Hybrid	GP Hybrid	Inter-island
Hawaii	glaberrima	X	X			X	
	incana	X	X	X			X
	newellii	X			X		
	polymorpha	X		X	X	X	
	glaberrima-incana		X				
	incana-polymorpha			X			
	newellii-polymorpha				X		
	glaberrima-polymorpha					X	
Oahu	incana						X

773

774 **Table 2:** Results showing the statistical separability of *M. polymorpha* varieties using spectra.
 775 Pairwise Tukey results of significant PC axes according to the ANOVA are displayed. ANOVA
 776 p-value is presented in column one. The genotypes being compared in the pairwise Tukey are
 777 listed in columns two and three. Following this, their mean difference, adjusted p-value (P-adj),
 778 and their lower and upper bounds are presented. The second to last column (Reject H₀) indicates
 779 whether the null hypothesis that the two genotypes do not differ along the listed PC is rejected.
 780 Variety pairs differentiable according to Tukey's tests are highlighted. See Fig. SI 3 for data
 781 plotted in PC space and PC loadings across VSWIR spectra.

ANOVA p-value	Genotype 1	Genotype 2	Mean Difference	P-adj	Lower	Upper	Reject H ₀
Principal Component 1							
p-value = 0.003	glaberrima	incana	-3.5	0.109	-7.6	0.6	FALSE
	glaberrima	newellii	0.7	0.9	-3.4	4.8	FALSE
	glaberrima	polymorpha	-4.7	0.020	-8.8	-0.6	TRUE
	incana	newellii	4.2	0.044	0.1	8.3	TRUE
	incana	polymorpha	-1.2	0.825	-5.3	2.9	FALSE
	newellii	polymorpha	-5.4	0.007	-9.5	-1.3	TRUE
Principal Component 5							
p-value = 0.003	glaberrima	incana	-0.1	0.9	-0.6	0.4	FALSE
	glaberrima	newellii	0.6	0.018	0.1	1.1	TRUE
	glaberrima	polymorpha	0.4	0.112	-0.1	0.9	FALSE
	incana	newellii	0.7	0.006	0.2	1.1	TRUE
	incana	polymorpha	0.5	0.043	0.0	1.0	TRUE
	newellii	polymorpha	-0.2	0.789	-0.7	0.3	FALSE

782

783 **Table 3:** Within-variety spectral similarity of samples on Hawaii Island and Oahu. Results of mean
784 spectral similarity index (SSI) calculated according to Equation 2. For each spectral channel, the summed
785 standard deviation was divided by the difference between means. These results were summed across the
786 VSWIR spectra and divided by the total number of channels. SSI denotes spectral similarity of the mean
787 spectra and spectral variance between the indicated variety and all varieties on Hawaii Island (and Oahu).
788 Lower values indicate less spectral overlap.

Island	Variety	SSI
Hawaii	glaberrima	9
	incana	11
	newellii	7
	polymorpha	29
Oahu	incana	4

789

790

791 **Table 4:** Results showing the statistical separation of *M. polymorpha* F1 hybrids and their parent
 792 varieties. Each grouping had only one significant principal component (PC) according to
 793 ANOVA. The results of the Tukey's pairwise test for these PCs are shown. For each genotype
 794 pairing (columns two and three), their mean difference, adjusted p-value (P-adj), and lower and
 795 upper bounds are presented. The final column indicates whether the null hypothesis that the
 796 genotype pairings do not differ is rejected. See Fig. SI 5 for samples plotted in PC space.

ANOVA p-value	Genotype 1	Genotype 2	Mean Difference	P-adj	Lower	Upper	Reject H ₀
glaberrima-incana Principal Component 1							
p-value = 0.001	glaberrima	glaberrima-incana	-2.9	0.047	-5.9	0.0	TRUE
	glaberrima	incana	-5.2	0.001	-8.1	-2.3	TRUE
	incana	glaberrima-incana	-2.2	0.150	-5.1	0.7	FALSE
incana-polymorpha Principal Component 3							
p-value = 0.03	incana	incana-polymorpha	1.4	0.0363	0.1	2.7	TRUE
	incana	polymorpha	1.2	0.0791	-0.1	2.5	FALSE
	polymorpha	incana-polymorpha	-0.2	0.9	-1.5	1.1	FALSE
newellii-polymorpha Principal Component 1							
p-value = 0.03	newellii	newellii-polymorpha	-3.1	0.2101	-7.7	1.4	FALSE
	newellii	polymorpha	-5.4	0.0202	-10.0	-0.8	TRUE
	polymorpha	newellii-polymorpha	-2.3	0.4263	-6.9	2.3	FALSE
glaberrima-polymorpha Principal Component 1							
p-value = 0.01	glaberrima	glaberrima-polymorpha	3.1	0.102	-0.5	6.8	FALSE
	glaberrima	polymorpha	4.9	0.01	1.2	8.5	TRUE

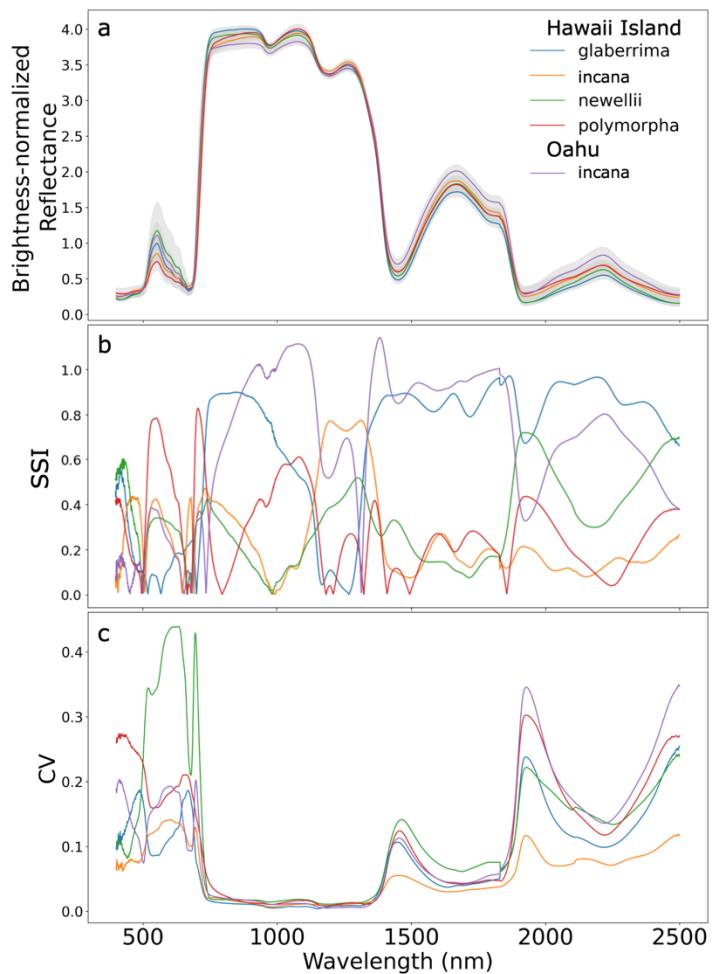
	polymorpha	glaberrima- polymorpha	1.7	0.452	-1.9	5.4	FALSE
--	------------	---------------------------	-----	-------	------	-----	-------

797

798 **Figures**

799 **Figure 1:** (a) Mean brightness-normalized reflectance (represented as a percentage) and (b)
800 coefficient of variation (CV) of reflectance values for the four *M. polymorpha* Hawaii Island
801 varieties and Oahu incana. See Fig. SI 2 for reflectance prior to brightness-normalization. (c)
802 Spectral separability of all Hawaii Island and Oahu genotypes. Spectral separability was
803 calculated for each wavelength (Eq. 1). Higher values indicate less spectral overlap. See Table 3
804 for average SSI values.

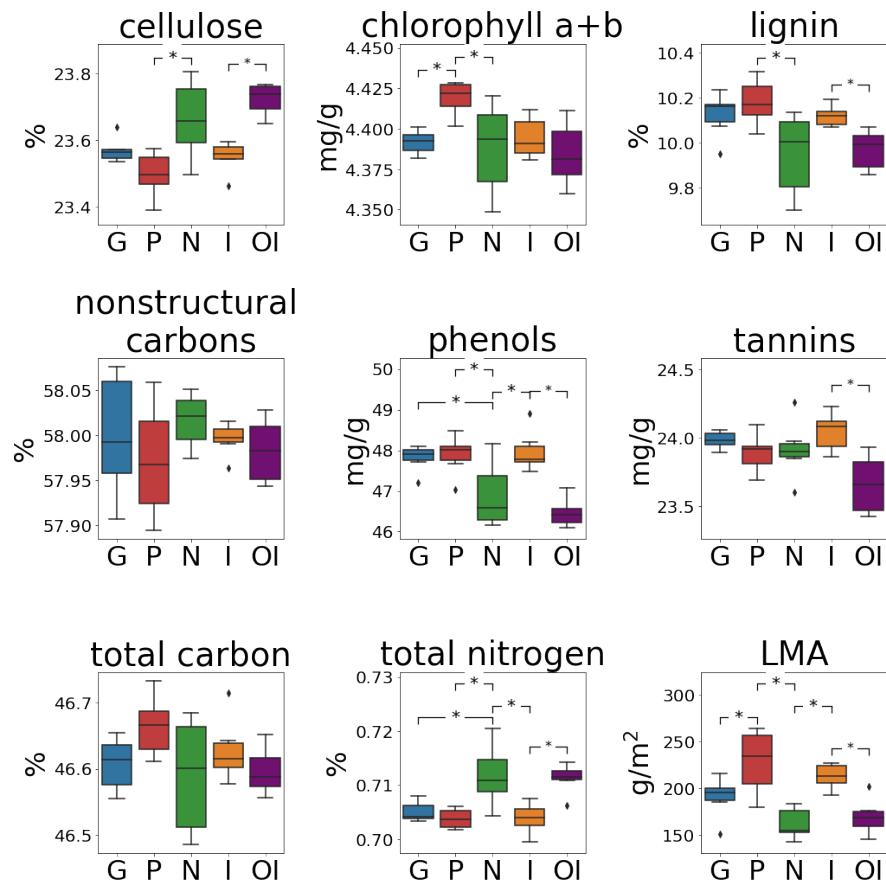
805 **Figure 2:** Boxplots of leaf traits for the Hawaii Island varieties glaberrima (G), polymorpha (P),
806 newellii (N), and incana (I) as well as Oahu incana (OI). Hawaii Island varieties with traits that
807 differed at a significance of $p < 0.05$ as determined by ANOVA and Tukey HSD are noted with
808 an asterisk. Incana from Hawaii Island and Oahu were also compared using ANOVA, and
809 significant differences are likewise noted with an asterisk. Boxplots denote quartile ranges, with
810 the lower and upper bounds of the box indicating the 25th and 75th percentile. Middle lines in the
811 box represent the median of the data, and the whiskers end at the group minimum and maximum.
812 Outliers are shown as points.


813 **Figure 3:** Mean brightness-normalized reflectance (represented as a percentage) of a) the F1
814 hybrids glaberrima-incana (GI) and its parents, glaberrima (G) and incana (I); b) the hybrid
815 incana-polymorpha (IP) and its parents, incana (I) and polymorpha (P); the hybrid newellii-
816 polymorpha (NP) and its parents, newellii (N) and polymorpha (P); d) the hybrid glaberrima-
817 polymorpha (GP) and its parents, glaberrima (G) and polymorpha (P). See supplementary
818 information Figure SI 4 for CV of F1 hybrids.

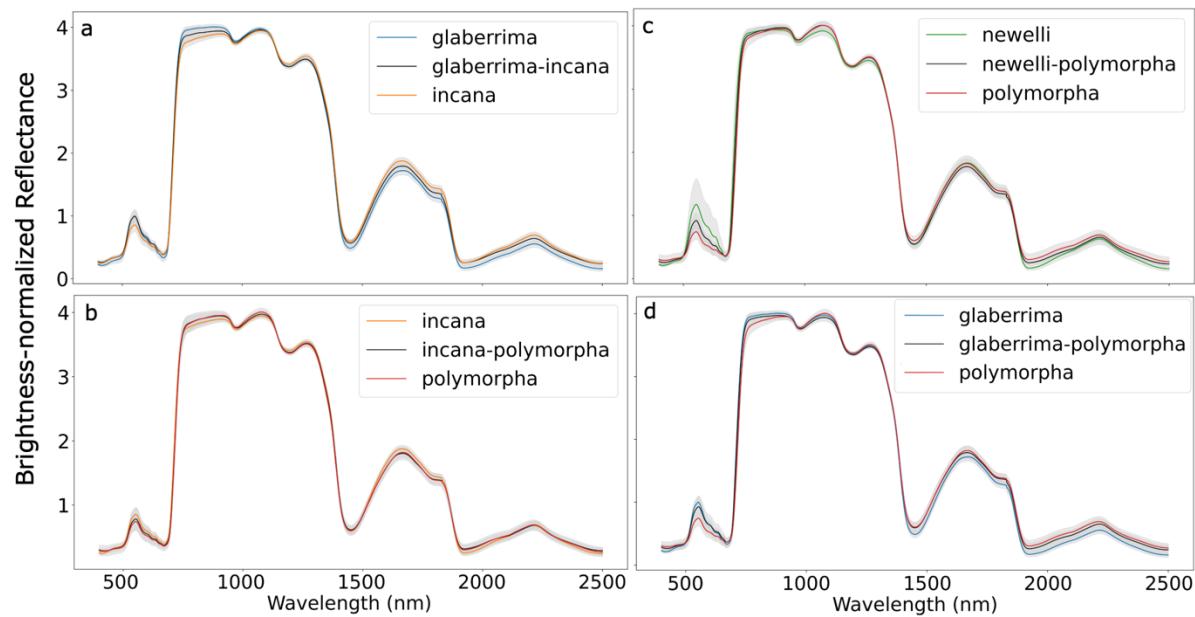
819 **Figure 4:** Boxplots of nine leaf traits for all F1 hybrids measured and their parents. The left
820 figure (a) represents glaberrima (G), the F1 hybrid glaberrima-incana (GI), incana (I), the hybrid

821 incana-polymorpha (IP), and polymorpha (P). The right figure (b) displays newellii (N), the
822 hybrid newellii-polymorpha (NP), polymorpha (P), the hybrid glaberrima-polymorpha (GP), and
823 glaberrima (G). Genotypes with traits that differed at a significance of $p < 0.05$ as determined by
824 ANOVA and Tukey HSD are noted with an asterisk. Only groups of the F1 hybrid and their
825 parents (Table 1) were compared using ANOVA and Tukey HSD. None of the traits differed
826 significantly among GI, I, and G according to ANOVA.

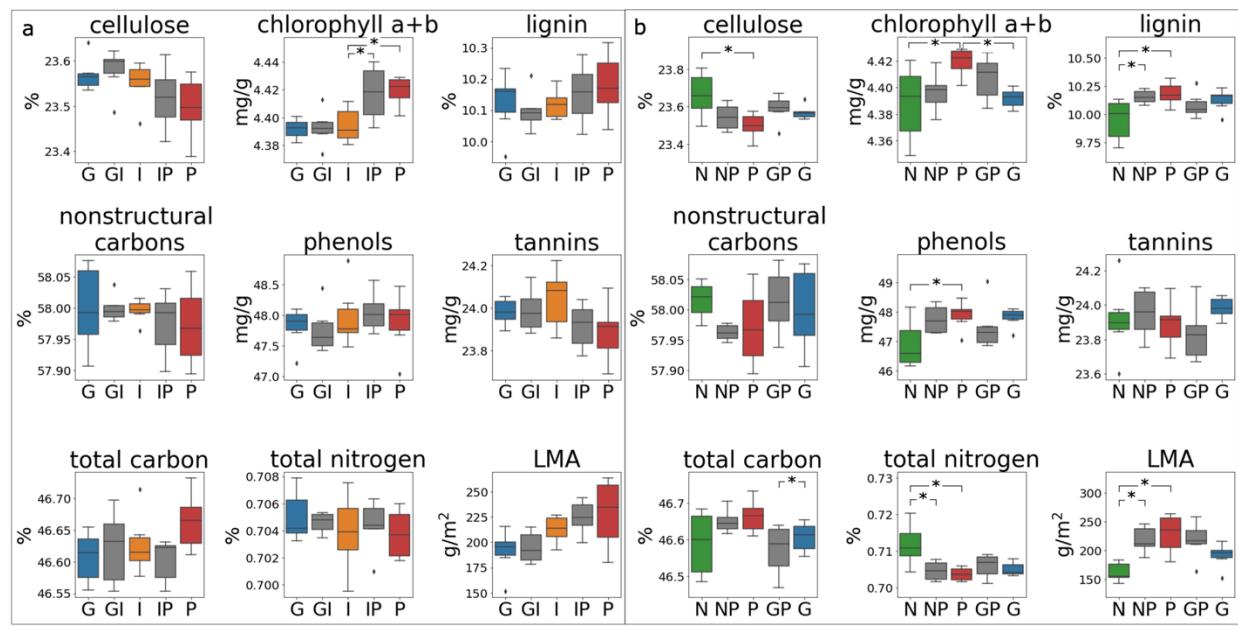
827


828 **Figure 1**

829


830 **Figure 2**

831


832

833 **Figure 3**

834

835 **Figure 4**

836