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Key Points:

« Coarse-graining, which disentangles flow concurrently in scale and space, reveals hemi-
spheric asymmetry in mesoscale energy-per-area due to boundaries.

+ Coarse-graining spectra of the time-mean velocity show that most (up to 70%) of its
energy resides in ‘standing’ small-scale eddies < 500 km.

+ We estimate that ~ 25-50% of total geostrophic energy is at scales smaller than
100 km, and is un(der)-resolved by pre-SWOT satellite products.
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Abstract

We expand on a recent determination of the first global energy spectrum of the ocean’s
surface geostrophic circulation (Storer et al., 2022) using a coarse-graining (CG) method.
We compare spectra from CG to those from spherical harmonics by treating land in a
manner consistent with the boundary conditions. While the two methods yield qualitatively
consistent domain-averaged results, spherical harmonics spectra are too noisy at gyre-scales
(> 1000 km). More importantly, spherical harmonics are inherently global and cannot
provide local information connecting scales with currents geographically. CG shows that the
extra-tropics mesoscales (100-500 km) have a root-mean-square (rms) velocity of ~ 15 cm/s,
which increases to ~ 30-40 cm/s locally in the Gulf Stream and Kuroshio and to ~ 16—
28 cm/s in the ACC. There is notable hemispheric asymmetry in mesoscale energy-per-area,
which is higher in the north due to continental boundaries. We estimate that ~ 25-50% of
total geostrophic energy is at scales smaller than 100 km, and is un(der)-resolved by pre-
SWOT satellite products. Spectra of the time-mean circulation show that most of its energy
(up to 70%) resides in stationary eddies with characteristic scales smaller than (< 500 km).
This highlights the preponderance of ‘standing’ small-scale structures in the global ocean
due to the temporally coherent forcing by boundaries. By coarse-graining in space and
time, we compute the first spatio-temporal global spectrum of geostrophic circulation from
AVISO and NEMO. These spectra show that every length-scale evolves over a wide range
of time-scales with a consistent peak at ~ 200 km and ~ 2-3 weeks.

Plain Language Summary

Traditionally, ‘eddies’ are identified as time-varying features relative to a background
time-mean flow. As such, ‘mean’ does not imply large length-scale. Standing eddies or
meanders due to topography have little time-variation, but can have significant energy
at small length-scales that are unresolved and need to be parameterized in coarse climate
simulations. Similarly, ‘eddy’ or ‘time-varying’ do not imply small length-scale, such as large-
scale motions from Rossby waves or fluctuations of the Kuroshio. Another common method
is Fourier analysis in ‘representative’ ocean boxes that cannot capture the circulation’s
planetary scales. We overcome these limitations thanks to recent advances: (i) a method
for calculating spectra by coarse-graining, (ii) properly defining convolutions on the sphere,
which ‘blur’ oceanic flow in a way that preserves its underlying symmetries, opening the door
for global ‘wavelet’ analysis and, more generally, spatial coarse-graining, and (iii) FlowSieve:
an efficient parallel code. We employ coarse-graining in space-time to gain new insights into
the global oceanic circulation, including how much energy resides in its different spatial
structures and how they vary in time.

1 Introduction

Ocean circulation emerges from a suite of linear and nonlinear dynamical processes
that act over a broad range of spatial and temporal scales. The flow field is markedly
inhomogeneous and characterized by waves, instabilities, and turbulent eddies, each of which
are subject to a variety of energetic sources and sinks. The mesoscale defines a key band
of spatial scales where ocean flows are largely geostrophic and where kinetic energy peaks
(Wunsch, 2007; Storer et al., 2022). Correspondingly, it is widely recognized that flow at
the ocean mesoscales, and its response to changes in atmospheric forcing, are fundamental
to the large-scale circulation and central for regional and global transport of heat and
biogeochemical tracers (Ferrari & Wunsch, 2009).

However, significant gaps remain in our understanding of the mesoscale flows and their
role in ocean circulation and climate. In particular, from a numerical modeling perspective,
despite the ever-increasing ability to conduct simulations with mesoscale eddy-rich Ocean
General Circulation Model (OGCM), accurately resolving these scales in routine climate-
scale (order centuries and longer) simulations remains the exception rather than the norm
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(e.g. see Griffies et al., 2015). We are thus confronted with the need for mesoscale eddy
parameterizations for the foreseeable future (Pearson et al., 2017).

A central question of physical oceanography, and in particular the eddy parameteriza-
tion problem, concerns a characterization of flow features according to length-scale. This
question motivates the goal of this paper, which is to provide a length-scale decomposi-
tion of the global ocean geostrophic kinetic energy, and to study the seasonal variations of
this decomposition. This goal has previously been out of reach due to limitations of the
commonly used Fourier spectral methods, which are unsuited to global ocean analysis due
to the complex geometry of ocean basins. We thus make use of a Coarse-Graining (CG)
method that does not share the limitations of Fourier analysis. This paper serves to detail
the use of coarse-graining for the purpose of decomposing ocean kinetic energy, and in so
doing we uncover novel features of the ocean surface circulation as a function of length and
time scales.

1.1 Fourier methods for the ocean

It is common to quantify the spectral distribution in scale of ocean kinetic energy
via Fourier transforms computed either along transects or within regions (e.g., Fu and
Smith (1996); Chen et al. (2015); Rocha et al. (2016); Khatri et al. (2018); Callies and Wu
(2019)), as well as to perform time-decomposition of the flow into its frequency spectra (e.g.
O’Rourke et al. (2018); Arbic et al. (2012)). This approach has rendered great insights into
the length and time scales of oceanic motion and the cascade of energy through these scales
(Scott & Wang, 2005; Scott & Arbic, 2007; Schlésser & Eden, 2007; Capet et al., 2008; Xu
et al., 2011; Arbic et al., 2013, 2014). However, it has notable limitations for the ocean
where the spatial domain is generally not periodic, thus necessitating adjustments to the
data (e.g., by tapering) before applying Fourier transforms.

Methods to produce an artificially periodic dataset can introduce spurious gradients,
length-scales, and flow features not present in the original data (Sadek & Aluie, 2018). A
related limitation concerns the chosen region size, with this size introducing an artificial
upper length scale cutoff. In this manner, no scales are included that are larger than the
region size even if larger structures exist in the ocean. Furthermore, the data is typically
assumed to lie on a flat tangent plane to enable the use of Cartesian coordinates. However,
if the region becomes large enough to sample the earth’s curvature, then that puts into
question the use of the familiar Cartesian Fourier analysis of sines and cosines.

We have previously compared coarse-graining methods with traditional Fourier meth-
ods, and shown that where Fourier methods are valid, both methods agree (Storer et al.,
2022). An important advantage of coarse-graining is that it is not limited to an ocean box
and allows us to probe length-scales extending to the planet’s circumference. Moreover,
unlike Fourier analysis in box regions, which cannot account for the global energy in the
ocean, coarse-graining satisfies energy conservation (Sadek & Aluie, 2018) as we discuss
more below.

Spherical harmonics transforms are an extension of Fourier (spectral) methods to the
full globe, and are often used in atmospheric modeling (Satoh, 2004). Spherical harmonics
are basis functions that are defined over the entire sphere and are not restricted to the
ocean domain. For this reason, oceanographic analysis tends to employ spherical harmonics
less often than atmospheric science analysis, due to the presence of continental boundaries.
Ocean tide models are a notable exception, with tide models using spherical harmonics in
their computation of the self-attraction and loading effects (e.g. Hendershott (1972); Ray
(1998)). Ocean tide models often set ocean quantities such as sea surface height (SSH)
to zero over continents, which introduces some Gibbs ringing but this tends to be small
because the higher-order spherical harmonics leading to the Gibbs effects are subdominant,
weighted by small number (Arbic et al., 2004; Arbic, 2022). During early days of satellite
altimetry, there were attempts at utilising spherical harmonics to characterize the frequency-
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wavenumber spectrum of the ocean’s global circulation (Wunsch, 1991; Wunsch & Stammer,
1995). These studies analyzed SSH anomalies and chose nominal SSH values over land.
SSH over land was set to the time average of the zonal mean absolute sea surface height.
However, the authors were aware that their choice for land treatment was somewhat ad hoc,
without dynamical justification, as stated in Wunsch and Stammer (1995): “...we make
no claim that we have made the best possible choice.” It seems that usage of spherical
harmonics for analyzing the oceanic circulation was largely abandoned after these attempts
during the early days of satellite altimetry. In this paper, we revisit spherical harmonics
transform in section 3.5 and show that despite its important limitations, the method can
yield meaningful results if land is treated in a manner that is consistent with boundary
conditions of the ocean’s dynamics.

1.2 Eddy and mean flow decomposition: Reynolds averages

A traditional approach to extract ‘eddies’ from a flow uses time or ensemble averaging.
This approach is relatively simple operationally and is in accord with the common practice
in atmospheric and oceanic sciences of studying long-term climate means and fluctuations
relative to that mean. As part of this decomposition for turbulent flow, we typically utilize
the time averaging operator as a Reynolds averaging (RA) operator, whereby the average
of a fluctuating quantity vanishes (Vallis, 2017). The choice of Reynolds decomposition by
time averaging is largely based on practical considerations, with ensemble averages being
unavailable for most applications (although see (Uchida et al., 2021) for a recent example
with fine resolution regional ocean simulations).

Within the traditional decomposition, time-mean or ensemble-mean do not necessarily
imply a large length-scale flow as we shall discuss in this paper. For example, standing eddies
or stationary meanders due to topography (Youngs et al., 2017) have little temporal or
statistical fluctuations but can have spatial structure at length-scales @(100) km or smaller.
Similarly, within a Reynolds decomposition, ‘eddy’ does not necessarily imply small length-
scale. For example, a time averaging based decomposition would ascribe eddying motion
to large-scale Rossby waves (Kessler, 1990) or variations in the Kuroshio Current’s path
(Kawabe, 1995).

By construction, a Reynolds decomposition into a mean and an ‘eddy’ limits our ability
to analyze temporal variability, from intra-annual to inter-annual (Bryan et al., 2014; Griffies
et al., 2015), of the multiscale coupling and evolution of different length-scales, including
those that need to be resolved/predicted in global climate (coarse-grid) models. Therefore,
it offers limited guidance for coarse-resolution models and no control over the specific phys-
ical length which partitions oceanic flow into ‘large’ and ‘small’. In other words, the set of
length-scales constituting the large-scale flow cannot be varied/controlled to be consistent
with those length-scales resolved in a coarse climate simulation. In this sense, the tradi-
tional mean-eddy decomposition cannot help with on-going efforts to develop ‘scale-aware’
parameterizations (Ringler et al., 2013; Zanna et al., 2017; Pearson et al., 2017; Jansen et
al., 2019), including those using data-driven or machine learning approaches (Ryzhov et al.,
2020; Ross et al., 2023).

1.3 Empirical Orthogonal Functions

Empirical Orthogonal Functions (EOFs) offer yet another approach for decomposing
the oceanic flow by projecting onto orthogonal basis functions or ‘empirical modes’ that are
derived from the data itself. EOF is also known as Karhunen-Loeve decomposition, Principal
Component Analysis (PCA) or Proper Orthogonal Decomposition (POD) in other fields
(Kac & Siegert, 1947; Karhunen, 1947; Loeve, 1948), and was introduced to meteorology
by Lorenz (1956).
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EOF analysis is commonly used as a data reduction technique since it offers the most
efficient statistical compression of the data field (Thomson & Emery, 2001). This is because
the basis functions are derived from the statistical analysis of the data and do not necessarily
correspond to true dynamical modes, although they have yielded valuable insight into the
oceanic dynamics on climate scales (e.g. Trenberth, 1975; Di Lorenzo et al., 2008). The
limitation of EOFs stems from our lack in understanding of the dynamics governing the
basis functions. Moreover, it is difficult to associate EOFs with lengthscales or timescales
since each empirical mode lumps together variations over all frequency and wavenumber
bands. This approach muddles the interpretation of EOF spectra and their connection to
spectral slopes predicted by theory (Uchida et al., 2021).

1.4 Coarse-graining

In order to understand the multiscale nature of oceanic flows, while simultaneously
resolving them in space and in time, we use a ‘coarse-graining’ framework that is relatively
new in physical oceanography (Aluie et al., 2018; Busecke & Abernathey, 2019; Srinivasan et
al., 2019; Schubert et al., 2020; Rai et al., 2021; Barkan et al., 2021; Haigh et al., 2021; Khani
& Dawson, 2023; Loose et al., 2023; Khatri et al., 2023; Contreras et al., 2023). It is a very
general approach to decompose complex flows, with rigorous foundations initially developed
to model (Germano, 1992; Meneveau, 1994) and analyze (Eyink, 1995, 2005) turbulence.
Aluie (2017) provides a theoretical discussion of coarse-graining and its connection to other
methods in physics. Wavelet analysis, which has been recently used by Uchida et al. (2023)
to analyze quasigeostrophic turbulence, can be regarded as a special case of coarse-graining
by choosing the convolution kernel to be a wavelet (Sadek & Aluie, 2018). The approach
has been recently generalized to account for the spherical geometry of flow on Earth (Aluie,
2019), and applied to study the nonlinear cascade in the North Atlantic from an eddying
simulation (Aluie et al., 2018).

The coarse-graining framework is very useful from the standpoint of ocean subgrid scale
parameterizations (Fox-Kemper et al., 2011; Zanna et al., 2017; Khani et al., 2019; Jansen et
al., 2019; Haigh et al., 2020; Stanley et al., 2020; Grooms et al., 2021). Namely, it provides
a theoretical basis for constructing subgrid closures that faithfully reflect the dynamics at
unresolved scales. A primary objective in ocean modeling is practical: an accurate subgrid
parameterization that is numerically stable. Significant advances have been achieved in this
regard in the fluid dynamics and turbulence community (Piomelli et al., 1991; Buzzicotti
et al., 2018; Linkmann et al., 2018; Biferale et al., 2019; Di Leoni et al., 2020; Buzzicotti
& Clark Di Leoni, 2020), and the field of large-eddy simulation (LES) is well-established
(Meneveau & Katz, 2000).

Our use of coarse-graining supports the needs of parameterization, but our primary
objective is to characterize the fundamental dynamics of the flow at all length scales. Even
within the wider fluid dynamics community, much less work has been done in this regard, i.e.
using coarse-graining as a ‘probe’ of the fundamental scale-physics. For example, LES sub-
grid parameterization studies are seldom concerned with using coarse-graining to probe the
energy pathways across the entire range of scales, such as the cascade (Eyink, 1995; Eyink
& Aluie, 2009; Kelley & Ouellette, 2011; Aluie et al., 2012; Rivera et al., 2014; Buzzicotti
et al., 2018; Buzzicotti & Tauzin, 2021), forcing (Aluie, 2013; Rai et al., 2021; Zhao et al.,
2022), dissipation (Zhao & Aluie, 2018), or the range of coupling between different scales
(Eyink, 2005; Aluie & Eyink, 2009).

As an important case in point, despite LES having become a well established field in
fluid dynamics since the seminal works of Leonard (1974) and Germano (1992), the idea of
using coarse-graining in physical space to extract the energy content at different scales; i.e.,
the spectrum, was only recently established and demonstrated by Sadek and Aluie (2018).
This method is central to our calculation here of the spectrum for the oceanic general
circulation. A main advantage of coarse-graining is that it allows us to decompose different
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length scales in a flow, at any geographic location and any instant of time, without relying
on assumptions of homogeneity, isotropy or domain periodicity. This generality makes it
ideally suited for studying oceanic flows with complex continental boundaries over the entire
globe or in any particular regions of interest and at any time.

1.5 Key results and outline of this paper

In this paper we make use of the coarse-graining method on a satellite sea surface
product and an OGCM simulation. To directly compare the two products, we focus on
geostrophic components of the horizontal surface velocity as diagnosed from sea level. Here,
we highlight key novel results from this analysis. First, we show that spectra from coarse-
graining and spherical harmonics of the global circulation are consistent but the latter cannot
yield spatially local information. We show that the typical velocity of mesoscales is of the
order of 15 c¢m/s, but reaches 30-40 c¢m/s in western boundary currents (WBCs) and 16—
28 cm/s in the ACC. We find notable hemispheric asymmetry in mesoscale energy-per-area,
which is higher in the north. This asymmtery is compensated by the south having more
energy-per-area at gyre-scales, such that across all (resolved) scales, the two hemispheres
have comparable energy-per-area. From our spectra, we can estimate that ~ 25-50% of
total geostrophic energy is at scales smaller than 100 km, and is un(der)-resolved by pre-
SWOT satellite products. Spectra of the time-mean velocity show that most (up to 70%)
energy resides in ‘standing’ small-scale eddies < 500 km. This highlights the global preva-
lence of stationary eddies arising from boundary forcing, which is coherent in time and is
distinct from the baroclinic instability that is regarded as the main driver of mesoscales. By
coarse-graining in space and time, we compute the first spatio-temporal global spectrum of
geostrophic circulation from AVISO and NEMO. These spectra show that every length-scale
evolves over a wide range of time-scales with a consistent peak at ~ 200 km and = 3 weeks.

The paper is organized as follows. In Section 2, we present the data products used in
our analysis. In Section 3 we give details on the coarse-graining and the Reynolds averag-
ing methods used in this work and we present the comparison between CG and spherical
harmonics energy spectra. In Section 4 we discuss the main results from the CG analysis;
the 2D spatio-temporal energy spectrum of ocean surface circulation and spectra of the
time-mean and fluctuating (or ‘eddy’) components from Reynolds averaging. At the end
of Section 4 we compare the surface dynamics spatio-temporal decomposition from satellite
and numerical model data. In Section 5 we present our conclusions. Appendix A discusses
some technical choices we used when coarse-graining.

2 Satellite and numerical model data

We examine the horizontal geostrophic velocity of surface ocean currents from a global
numerical model simulation and from an analysis of satellite sea surface altimetry, focusing
on regions to the north and south of the tropics, [15°N — 90°N] and [15°S — 90°S]. We
avoid the tropics since our interest is with the geostrophic flows in the higher latitudes, and
only the surface geostrophic current is available from satellite altimetry. Details of the two
products are given in the following paragraphs, and both were publicly accessed through the
Copernicus Marine Environment Monitoring Service (CMEMS) webpage, https://marine
.copernicus.eu/services-portfolio/access-to-products/.

AVISO analysis of satellite altimetry Geostrophic currents are obtained from the
AVISO+ analysis of multi-mission satellite altimetry measurements for sea surface height
(SSH) (Pujol et al., 2016). We used the Level 4 (L4) post-processed dataset of daily-
averaged geostrophic velocity, gridded at a resolution of 0.25° x 0.25° and spanning from
January 2010 to October 2018. Post processing was performed by the Sea Level The-
matic Center (SL TAC) data processing system, which processes data from eleven al-
timeter missions. The product identifier of the AVISO dataset used in this work is
“SEALEVEL_GLO_PHY_L4_MY_008_047" (https://doi.org/10.48670/moi-00148).



268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

Numerical simulation We analyze 1-day averaged surface geostrophic currents from
the NEMO numerical modeling framework, which is coupled to the Met Office Unified
Model atmosphere component, and the Los Alamos sea ice model (CICE). The NEMO
dataset consists of weakly coupled ocean-atmosphere data assimilation and forecast sys-
tem, with data then published on a uniform 1/12° grid. We use daily-averaged data that
spans the four years from 2016 to 2019. More details about the coupled data assimila-
tion system used for the production of the NEMO dataset can be found in (Hewitt et al.,
2011; Lea et al., 2015). The specific product identifier of the NEMO dataset used here is
“GLOBAL_MULTIYEAR_PHY_001.030" (https://doi.org/10.48670/moi-00021).

3 Coarse-graining for the ocean

In this section, we discuss the coarse-graining framework and how it is used to partition
energy across length scales. We also discuss the traditional approach of decomposition
in spherical harmonics and the temporal-based Reynolds averaging, in which the flow is
decomposed into time-mean and fluctuating components.

3.1 Basics of coarse-graining on the sphere

For any scalar field, F'(x), we can calculate its coarse-grained (or low-pass filtered)
version, Fy(x), by convolving F'(x) with a normalized filter kernel Gy (r),

Fy(x) = Go+ F(x) (1)

where *, in the context of this work, is convolution on the sphere (Aluie, 2019), x is geo-
graphic location on the globe, and the kernel Gy(x) can be any non-negative function that
is spatially localized (i.e. it goes to zero fairly rapidly as x — £o0). The parameter ¢
is a length-scale related to the kernel’s ‘width’. We use the notation (---), to denote a
coarse-grained field. The kernel is area normalized for all ¢, so that

/Gg(x) ds =1, (2)

where dS is the area element on the sphere. Correspondingly, the convolution (1) may
be interpreted as an average of the function F' within a region of diameter ¢ centered at
location x. By construction, at each point in space, x, the coarse-grained field, Fy(x),
contains information about the scale £.

The above formalism holds for coarse-graining scalar fields. To coarse-grain a vector
field on a sphere generally requires more work (Aluie, 2019). However, since we are con-
cerned only with the surface geostrophic velocity, u(x,t), in this work, it greatly simplifies
our analysis. We assume the geostrophic velocity is non-divergent on the two-dimensional
spherical surface, so that it is related to the geostrophic stream-function v via

u=eé.xVi, (3)

with &, the radial unit vector in spherical coordinates, v =ng/f, g is the gravitational
acceleration, 7 the free sea surface height (SSH), and the Coriolis parameter, f = 2Q sin(¢),
is a function of latitude ¢, where €2 is Earth’s spin rate.

Aluie (2019) showed that for non-divergent vector fields such as in eq. (3), coarse-
graining u is equivalent to coarse-graining each of its Cartesian components. We there-
fore transform the vector from spherical (u,,ux,uq) to planetary Cartesian coordinates
(Uugz, Uy, u,) via:

Uy = Uy cOS(A) cos(@) — uy sin(X) — ug cos(A) sin(¢)
Uy = Uy sin(A) cos(¢) + ux cos(A) — uy sin(A) sin(¢g) (4)
Uz = uysin(¢) + ug cos(P)
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Figure 1. Illustration of [blue arrows] Cartesian velocity basis vectors and [red arrows]
spherical velocity basis vectors at selected latitude/longitude points. A basic property of spherical
coordinates is that the spherical basis vectors point in different directions at different locations,
unlike the Cartesian basis vectors, which always point in the same direction. When the velocity
field is laterally non-divergent (or toroidal) on the spherical surface, using a Cartesian representation
of the velocity field allows us to avoid complications from Christoffel symbols (Aluie, 2019). Note
that for general (toroidal + poloidal) velocity fields involving overturning, surface divergence, and

up/downwelling, the complete coarse-graining formalism of Aluie (2019) is necessary.

where A, ¢ are longitude and latitude, respectively, and uy, ug are the zonal and meridional
velocity components, respectively. The radial velocity component, u,. = 0 for the geostrophic
flow. The conversion to Cartesian velocity components is necessary since the basis vectors for
spherical velocities depend on space, while the Cartesian velocity basis vectors are spatially
independent. Figure 1 illustrates the spatial dependence of the velocity basis vectors. We
apply the spherical convolution operation in eq. (1) to each of ug, u,, u, as scalar fields to
obtain the corresponding coarse-grained fields g, Uy, U, then retrieve the coarse-grained
velocity, Uy in spherical coordinates via

coarse radial flow = % cos(\) cos(¢) + u, sin(A) cos(¢) + @, sin(¢) =0
coarse zonal flow = —u; sin(\) + @, cos(A) (5)

coarse meridional flow = — cos(\) sin(¢) — @, sin(\) sin(¢) + @, cos(9).

That the ‘coarse-grained radial flow’ (i.e. ‘vertical’ flow, parallel to gravity) vanishes is
not obvious and was proved in Aluie (2019) and demonstrated numerically in Aluie and
Teeraratkul (2023). We emphasize that the coarse-graining algorithm we just described is
valid only for non-divergent vectors such as u in eq. (3). Significant errors can arise for a
general flow field (Aluie & Teeraratkul, 2023), where the complete coarse-graining formalism
of Aluie (2019) is necessary.

We use the coarse-graining kernel

0= 2 (1 (10 (22 1)), ®

which is essentially a top-hat kernel (Pope, 2001) with graded edges. We use geodesic dis-
tance, v(x), between any location x = (A, ¢) on Earth’s surface relative to location (Ag, ¢o)
where coarse-graining is being performed, which we calculate using

Y(x) = Rgaren Arccos [sin(qﬁ) sin(¢o) + cos(¢) cos(dpg) cos(A — )\0)} . (7)

with Rg.., = 6371 km for Earth’s radius. In eq. (6), A is a normalization factor, evaluated
numerically, to ensure G area integrates to unity as per equation (2). In general, we are not
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restricted to this choice of kernel; however, we use it because of its well-defined characteristic
width ¢. Indeed, a convolution with G, in equation (6) is a spatial analogue to an ¢-day
running time-average (e.g., see Section 4.4).

3.1.1 Reflected hemispheres

A basic complication that can arise when considering very large filter scales is that the
filter may become incongruous with studying a smaller sub-domain. In this work, we are
primarily concerned with the extra-tropical hemispheres: [-90°N, —15°N] and [15°N, 90°N].
However, at very large length scales information from the equatorial band and opposing
hemisphere can become introduced through an expanded filter kernel. To resolve this issue,
a ‘reflected hemispheres’ approach is used, wherein one hemisphere is reflected and copied
onto the other hemisphere, essentially producing a world with two north, or two south
hemispheres. This is the same methodology used in our previous work (Storer et al., 2022).

It is worth noting that the reflected hemispheres and equatorial masking would not be
necessary in a context where non-geostrophic velocities are considered and a global power
spectrum is desired. They are used here because we wish to disentangle the power spectra
of the geostrophic flow in the North and South.

3.2 Partitioning the geostrophic kinetic energy

From the coarse-grained horizontal geostrophic velocity field, Ty (x,t), following equa-
tion (1) as prescribed in (Aluie, 2019), we partition kinetic energy (KE) into different sets
of length-scales:

£ = %|u(x,t)|2 (bare KE) (8)
E = %|ﬁg(x, t)|? (coarse KE) (9)
Eco = 5 (GO — fae(x, 1)) (fine KE), (10)

The “bare KE” in equation (8) is the KE per unit mass (m?/s?) of the original geostrophic
flow that includes all scales; “coarse KE” in equation (9) represents energy of the coarse-
grained geostrophic flow at length-scales larger than ¢; and “fine KE” in equation (10)
accounts for geostrophic energy at scales smaller than ¢, which we discuss more in the
following two paragraphs. Partitioning geostrophic energy across scales is not trivial since
one needs to ensure that such quantities are physically valid in the sense described by
Germano (1992) and Vreman et al. (1994). In particular, it is important to ensure that the
partitioned kinetic energy is (i) positive semi-definite (> 0) at every x and every time, and
(ii) that summing the partitions yields the total energy.

While it is clear that & > 0 in equation (9), this property is not obvious for £ in
equation (10). Moreover, it may not be obvious why £, should represent energy at scales
smaller than ¢. Vreman et al. (1994) showed that €., > 0 if Gy > 0, whereas £.; can
be negative if the coarse-graining kernel G, is not positive semi-definite. A proof using
convexity of the square function, (...)?2, illustrates why the first term |u(x,t)[?, in eq.
(10) has an overbar rather than defining fine KE as (|u(x, t)|? — [u(x,t)|?)/2. The proof
from Sadek and Aluie (2018) is as follows. When using Gy > 0, coarse-graining (...),
is a local averaging operation. From Jensen’s inequality (Lieb & Loss, 2001), we know
that [F(u)], > F(u,) for any convex operation, F. Since F(u) = [u|? is convex, we are
guaranteed that [u(x,t)|? > [w(x, t)|? and, therefore, E<, > 0 if the kernel G¢(r) > 0, which
is the case for our study (see equation (6)).

Regarding condition (ii) on the sum of energy partitions, Aluie (2019) proved that (for
a normalized Gy) the coarse-graining operation on the sphere in equation (1) preserves the
spatial average of any field, {F,(x)} = {F(x)}, where {...} = (Area)~! [dS(...). There-
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fore, we have {|u|§} = {|u|2} This property guarantees that the sum of coarse KE and
fine KE yields the total kinetic energy after integrating in space and in the absence of land,

{€} ={&} +{&E«}- (11)

Eq. (11) justifies our interpretation of ., as energy at scales smaller than ¢, since it is
the difference between bare and coarse kinetic energy, on average, while also being positive
locally.

3.3 Treatment of land-sea boundaries

In the above decomposition of energy, a choice has to be made in the presence of land.
Storer et al. (2022) provides some discussion on the subject, while here we discuss three
possibilities, along with their pros and cons, in more detail.

Deformed kernel

The ‘deformed kernel’ approach is realized by coarse-graining ocean points near land
with a kernel that is deformed or masked to avoid overlapping with land points. Such a
deformed kernel must be renormalized to yield an average over just ocean points rather than
the whole sphere. The main advantage of this approach is that it treats land as a well-defined
boundary that is separate from the ocean regardless of the coarse-graining length-scale. It
is also familiar to ocean modelers who routinely mask values over land and do not include
such masked values when performing area averages.

However, the deformed kernel has disadvantages that motivate against its use for coarse-
graining ocean flows. First, a kernel that is inhomogeneous (i.e. changes shape depending
on geographic location) does not conserve domain averages, including the kinetic energy of
the flow. The reason for this failed conservation is detailed in Appendix A and demonstrated
in Figure 2 (blue plot). This figure shows how a kernel that is deformed (via masking) to
exclude land does not yield 100% of the total energy, i.e., it does not satisfy equation (11).
As a result, it can yield total energy that is either less than 100% (e.g., over scales larger
than 500 km in Figure 2) or greater than 100% (e.g., between 100 km and 400 km in Figure
2).

For some purposes, the total energy values in Figure 2 are fairly close to 100% (devi-
ations less than 1%) so one might argue that the deformed kernel is suitable in practice.
Nonetheless, a more basic reason to avoid deformed kernels is that such inhomogeneous
kernels (which also include averaging values at adjacent grid-cells or block-averaging on the
sphere) do not commute with spatial derivatives. Consequently, the coarse-grained field
resulting from a deformed kernel is not guaranteed to satisfy fundamental flow properties
exhibited by the unaveraged flow, such as non-divergence, geostrophy, and the vorticity
present at various scales. These considerations are further detailed in Aluie et al. (2018)
and Aluie (2019).

Fixed kernel

The ‘fixed kernel’; also used in Figure 2, is homogeneous so that it preserves its shape
at all locations. When coarse-graining ocean points near land such that the kernel overlaps
land points, we treat land points in a manner consistent with the boundary conditions
between land and ocean. For example, if we are coarse-graining the velocity, we treat land
as water with zero velocity, which is consistent with the formulation of OGCM where land
is often treated as a region of zero velocity. Furthermore, we include these zero land values
as part of the coarse-graining operation.

This choice may seem unnatural since we are including unphysical values within the
coarse-graining operation. However, it is helpful to think of coarse-graining as an opera-
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tion analogous to removing one’s eyeglasses, rendering an image fuzzy and boundaries less
well-defined. When coarse-graining at a scale ¢, the precise boundary between land and
ocean becomes blurred at that scale and its precise location becomes less certain. The
coarse-grained velocity, Ty, can be nonzero within a distance ¢/2 beyond the continental
boundary over land. Forfeiting exact spatial localization in order to gain scale information
is theoretically inevitable due to the uncertainty principle, which prevents the simultane-
ous localization of data in physical-space and in scale-space (Stein & Weiss, 1971; Sogge,
2008). The main advantage of the “Fixed Kernel” choice is ensuring that coarse-graining
and spatial derivatives commute so that it preserves the fundamental physical properties
(symmetries) of the flow. Further discussion of these issues can be found in Aluie et al.
(2018) and Aluie (2019).

Fixed kernel with or without land

After coarse-graining the velocity field with a fixed kernel, we show in Figure 2 the level
of energy conservation if we include or exclude land points from the final tally of kinetic
energy. We call these, respectively, the ‘fixed kernel w/ land’ and ‘fixed kernel w/o land’.
The latter (orange line) highlights how coarse-graining smears energy onto land (within ¢/2
distance inland) such that if we exclude land from the final tally, we find some leakage of
energy onto land, which increases as the coarse-graining scale ¢ increases. We find energy
leakage of the order of 1% at coarse-graining scales < 100 km, = 4% for scales < 500 km,
and up to 12% at scales of order 2000 km. However, if we choose to include land in our final
tally, we are guaranteed to conserve 100% of the energy by satisfying equation (11), thus
ensuring that the energy budget is fully closed. After all, in an ocean model on a discrete
grid, the land boundary is only expected to be accurate within a Ax distance from any
estimate of the truth, where Az is analogous to our coarse-graining scale /.

£ (km)
2000 1000 500 200 100 50 20 10
100—’:':&&_—_._;' —0—0—0—0—0—0l9—0—0—o oo
.
—
& g6+
=
< 94
v
(i 92 |- —o— Deforming Kernel
S o0k Fixed Kernel (w/o land)
= —e— TFixed Kernel (w/ land)
88 1 R N B | 1 I
1073 10~2 10t
ke (km™1)

Figure 2. Percentage of total energy recovered by summing the fine and coarse KE terms
in equation (11) obtained by coarse-graining over the full ocean surface as a function of the filter
scale, ko = 1/£. The three lines correspond to the three approaches described in section 3.3, namely,
filtering with a fixed kernel shape and excluding/including land (orange/green lines) when tallying
the total energy. We also coarse-grain with a deformable filter kernel to exclude the filter overlapping

land regions (blue line).

What we use here

While we have implemented all three approaches to coarse-graining, unless otherwise
stated in this work, we choose the fixed kernel w/ land by including land regions that have
non-zero velocity (again, as realized through leakage from nearby ocean values). Storer et
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al. (2022) showed that deformed and fixed kernels yield qualitatively consistent results for
spectra. We avoid coarse-graining with a deformed kernel to remain consistent with previous
work (Aluie et al., 2018) and with forthcoming studies where we apply coarse-graining to
the dynamical equations where commuting with spatial derivatives is essential.

3.4 The filtering spectrum

Sadek and Aluie (2018) showed how coarse-graining can be used to extract the energy
content at different length scales. They do so by partitioning the velocity into discrete length
scale bands rather than the two sets (coarse KE and fine KE) in equations (9) and (10). The
resulting quantity is called the filtering spectrum. The filtering spectrum is distinct from
the traditional Fourier spectrum, with coarse-graining offering a way to measure energy
distributions without relying on a Fourier transform, thus avoiding the limitations noted in
Section 1.1.

The filtering spectrum is obtained by differentiating in scale the coarse KE
— d d
E = — =—0*— 12
(k) = 7 {0} = —C 5 &2}, (12

where ky = 1/¢ is the ‘filtering wavenumber’. Sadek and Aluie (2018) showed that the
filtering spectrum satisfies energy conservation and that E(kg,t) > 0 when using certain
types of kernels (e.g., concave) of which the top-hat kernel is an example. Moreover, Sadek
and Aluie (2018) identified the conditions on Gy for E(ks,t) to be meaningful in the sense
that its scaling agrees with that of the traditional Fourier spectrum (when a Fourier analysis
is possible, such as in periodic domains). Below, we shall sometimes refer to & as the
‘cumulative spectrum’ following Sadek and Aluie (2018) since it accounts for all energy at
scales larger than ¢. In contrast, F(ky,t), is the spectral energy density at a specific scale .

3.5 Comparison with Spherical Harmonics

Our previous results on spectra using CG in Storer et al. (2022) provide justification for
using spherical harmonics on the global ocean and a guide for treating land in a manner that
is consistent with boundary conditions. For the ocean velocity, the boundary conditions are
zero normal velocity (no flow through) and zero tangential velocity (no-slip). Therefore,
when using spherical harmonics, we set land to have zero velocity values, similar to what
we do with the CG method.

Figure 3 compares spectra from CG to those from spherical harmonics. It uses a single
daily average of the AVISO data with spherical harmonics, coarse-grained with a deforming
kernel, and coarse-grained with a fixed kernel including land regions. The spherical harmonic
analysis was performed using PySHTools (Wieczorek & Meschede, 2018) on the AVISO data
with reflected hemispheres.

The two CG methods yield qualitatively consistent domain-averaged results, such as the
broad mesoscale peak, the NH gyre peak, and the ACC peak. Small deviations between the
deformable and fixed kernels are only visible on the larger scales, where the deformable filter
is not expected to conserve total energy. Given these results, we focus on the comparison
between the fixed kernel CG and the spherical harmonic spectra. In this case, both spectra
integrate to the same total energy. However, the spherical harmonics spectra are too noisy
at gyre-scales (> 1000 km). At these large length-scales (low modes), spherical harmonics
spectra have poor scale resolution because the eigenmodes are spaced far apart; in integer
multiples of the fundamental mode. It is particularly noticeable around the ACC peak at
¢ ~ 10* km. This limitation is shared by Fourier methods in a Cartesian box. This is not a
limitation for the CG method of computing spectra since it conserves energy without relying
on the orthogonality structure of an eigenbasis in the strict sense (Sadek & Aluie, 2018).
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Figure 3. Power Spectra with Spherical Harmonics and Coarse-Graining Power

spectra computed using spherical harmonics (solid lines), coarse-graining with a deforming kernel
(dashed lines), and coarse-graining with a fixed kernel with land (dotted lines). Reflected hemi-
spheres were used to obtain spectra for NH and SH separately. Note that these spectra were
obtained by masking out only a thin strip [2°S,2°N] and integrating over the domain to allow
for the application of spherical harmonic transforms, unlike those of Figure 8 and (Storer et al.,
2022) that only integrated over latitudes outside of [15°S, 15°N], explaining the discrepancy in peak

locations.

A main disadvantage of spherical harmonics is that they are inherently global and can-
not provide local information connecting scales with currents geographically. This becomes
apparent in spatial maps, such as those in Figure 4. In coarse-graining, non-zero current
velocities only intrude a distance of ¢/2 inland from the coast, as evidenced by the thin
band of dark colours inside the yellow contour lines (coastlines). Moreover, the band within
the yellow contour is dark, which reinforces that very little energy is distributed over land.
Even at a 1000 km filter scale, the majority of land retains identically zero velocity, indi-
cated by white. In contrast, even at a small filter scale, spherical harmonics generate beams
of spectral ringing that extend deep into land regions, with non-trivial magnitudes. Worse
still, at a 1000 km filter, the spherical harmonic filtering fills the global ocean with zonal
bands, even in the more quiescent open oceans. These ringing features are not present under
a coarse-graining approach with an appropriately chosen kernel.

In addition, there are practical considerations in regards to comparing coarse-graining
with spherical harmonics. Like traditional Fourier methods, spherical harmonics require the
input data to conform to fairly strict structures: uniform lat/lon grids, specific resolution
aspect ratios, etc. In contrast, coarse-graining is grid agnostic. That is, while the imple-
mentation details are different, coarse-graining applies just as well to a uniform lat/lon grid
as to a generalized non-uniform triangularization grid. While FlowSieve (Storer & Aluie,
2023), the coarse-graining package used in this work, at present only accepts rectangular
(but non-uniform) lat/lon grids, that is a limitation imposed by the current implementation,
and not by the underlying methodology.

3.6 Reynolds averaging

We close this section by reviewing basic properties of Reynolds averaging (RA) as
realized by time averages.
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Figure 4. Filtering Maps with Spherical Harmonics and Coarse-Graining Speed
of the large-scale AVISO surface currents obtained by [left, AC] spherical harmonics and [right,
BD] coarse-graining. Velocity fields are filtered at [top, AB] 250 km and [bottom, CD] 1000 km.
Colour maps show velocity magnitude on a logarithmic scale, with white indicating identically
zero values. Yellow contours indicate land boundaries in the unfiltered data. Note how filtering
with spherical harmonics, even at 250 km, yields non-zero flow over all continents and prominent
ringing patterns. This is due to the inherently global nature of spherical harmonics, which makes

it challenging to infer spatially local information at different scales.
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Basics of Reynolds averaging

Time averaging separates the flow into a time-average/‘mean’ and a fluctuating/‘eddy’
as given by (Pope, 2001)

(u)(x) = ;,/t:(H_T u(x, t)dt, (13)
w'(x,t) = u(x,t) — (u)(x), (14)

where (u) is the mean component, u’ the eddy component, and T represents the entire time
record and not just a time window. Two key properties of the Reynolds decomposition are

((w)) = (u) and (') =0, (15)

so that the mean of a mean returns the mean (idempotent property) while the mean of the
eddy is zero. The resulting mean and eddy kinetic energy components are respectively given
by

1

MEKE(x) = 5 |(w)*(x), (16)

EKE@J):%hﬂ%xw. (17)

Notice that the sum of mean and eddy kinetic energy is not equal to the total kinetic energy.
Rather, there is an extra cross term, u’ - (u), needed to close the budget. However, the cross
term is not positive definite and it has a zero time average, (u’-u) = 0. Following a RA
decomposition, the total energy can be written as

E(x,t) = EKE(x,t) + MEE(x) + % (W' - (W) (x, ). (18)

Key differences between Reynolds averaging and coarse-graining

A key difference between coarse-graining and Reynolds-averaging is that within RA,
applying the averaging operation twice on any field yields the same result whereas that
property does not hold for coarse-graining with non-projector kernels, which produce dif-
ferent filtering results when operating multiple times on the same field (Buzzicotti et al.,
2018):

((F)) = (F) whereas f;éf, (19)

where () denotes time (or Reynolds) averaging and = denotes coarse-graining. Another
important difference is that a Reynolds average does not provide a control to adjust the
partition between the ‘mean’ and ‘eddy’ components. That is, a Reynolds decomposition is
not a scale decomposition and this point is illustrated in section 4.4. Consequently, the time-
mean or ensemble-mean flow is not synonymous with large-scale flow, nor does a Reynolds
eddy fluctuation directly correspond to a characteristic fine-scale.

To help understand the above points, we emphasize the distinction between time-scale
and decorrelation-time for a particular flow feature. While it is generally true that larger
(smaller) scales have slower (faster) time-scale dynamics, it is not always true that their
decorrelation-time follows this relation. As an example, consider stationary eddies, such as
the Mann eddy in the North Atlantic. Such eddies have a small spatial-scale (relative to
the gyre or basin) but are persistent in time. As a result, even if the timescale (~ ¢/u) for a
structure is small when it is associated with the relatively fast dynamics of eddying flows, it
can be highly correlated (or even stationary) in time, so that its contribution to the M KFE
is not completely removed by a time-average. We show this behavior in sections 4.4 and
4.5.
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4 Analysis results

In this section we present results of the coarse-graining analysis along with a comparison
with Reynolds averaging based on time averages. In the second part of this section we
present results from coarse-graining in both space and time as a means to characterize the
time-scales associated with different length-scales.

4.1 Coarse-graining the surface geostrophic flow from AVISO

We split the geostrophic kinetic energy from AVISO into its fine and coarse-grained
components following equations (9) and (10). For a qualitative appreciation of this de-
composition, Figure 5 displays maps of the kinetic energy just over the Atlantic using two
different filter scales, £ = 100 km in the top row and ¢ = 400 km in the bottom row. From
left to right, panels in Figure 5 show the total kinetic energy, £, the coarse energy, &, and
the fine energy, £.¢. The fine scale kinetic energy, £, represents kinetic energy at scales
less than ¢, as represented (or projected) on a grid of resolution Az ~ ¢. Notably, as seen in
Figure 5, £.¢ does not have small scale features, which results since there is a filter applied
to both terms in equation (10) defining £.y. This definition ensures that £, is positive
semi-definite at each point in space and time.

100 10°
107!
1071
1072
1072
8 8
[ V] [V
~J 0~
mk\.') ml\?
10-3
—1072
1074
—10~1
10-° —10°

Figure 5. Maps of the coarse-grained decomposition of kinetic energy from a single day of the
AVISO analysis at two different filter scales, £ = 100 km (top) and ¢ = 400 km (bottom). Here
the bare KE, £(x,t), is compared with coarse KE, £(x,t), and fine KE, £<¢(x,t). The right-most

column shows the fine scale term defined by equation (20), which can yield negative values.

Visualization of fine kinetic energy, €.y, is still useful to identify the regions where
structures smaller than the filter scale are dominant in the ocean. Even so, one may wish
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to view the alternative quantity
1 —
&—& =3 (lubx,tF - [mx.0), (20)

which is shown in the right-most column of Figure 5. This quantity reveals more fine scale
features since only the second term on the right hand side is filtered. However, as discussed
in Section 3.1, the energy difference, £ — £, can be negative locally in space, and so it does
not serve our purposes for decomposing the energy into non-negative terms.

4.2 Reynolds averaging decomposition

Here, and in subsequent subsections, we show that the time-mean flow consists of an
entire range of length scales with substantial contributions from the mesoscale. Figure 6
shows the mean-fluctuation decomposition following the Reynolds averaging approach. The
maps are focused on the Atlantic region to help reveal details and we show just those
obtained from AVISO. The time mean is obtained by averaging the velocity over the whole

[¢8/ 7w

—1073
—1072
—107t

—10°

E(x,t) MKE(x) EKE(x,t)

Figure 6. Decomposition of geostrophic kinetic energy from AVISO for the Atlantic basin
from a time averaging (Reynolds) decomposition. Left panel: total energy, £(x,t) at a single
day. Left middle panel: 9-year time mean, M K F(x). Right middle panel: fluctuating eddy term,
EKE(x,t). Right panel: the cross term required to recover the total geostrophic energy as defined

in equation (18).

time series available, spanning nine years. From left to right we show the total energy at
a single day, the time mean energy, M K F(x), the fluctuating eddy term, EKE(x,t), and
the cross term, (u’ - (u))/2.

Having used a relatively long time series for averaging, the mean energy in Figure 6 is
rather depleted away from major current systems, so that the Gulf Stream and the Antarctic
Circumpolar Current are quite pronounced relative to the gyre interiors. We appreciate
from this figure that the mean flow retains a substantial contribution from structures with
a variety of sizes. In the same way, the ‘eddy’ (or temporally fluctuating) flow in Figure 6
contains most of the small scale fluctuations but also a substantial contribution from large-
scale structures. The cross term shown on the right panel of Figure 6 has strong fluctuations
around zero, which make its contribution almost (but not exactly) zero after a spatial-
average. The blending of length scales revealed by these figures reflects the inability of time
averaging to decompose the kinetic energy according to length-scales.
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To further investigate the role of the three Reynolds average energy terms, Figure 7
shows their temporal variability in both hemispheres. In the first row, we see that EKE
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Energy [1072m? /s?]

Figure 7. Top panel: Time-series of total geostrophic kinetic energy, {€(x)} (¢) (blue), and the
fluctuating component, { EKE(x)} (t) (orange), in the North (solid line) and South (dashed line)
from the AVISO analysis. Vertical grid lines indicate the start of each quarter-year (01Jan, 01Apr,
01Jul, 010ct). Bottom panel: Time-series of the cross term (blue) and kinetic energy of the 9-year
mean, {MKE(x)} (orange), in the North (solid line) and South (dashed line). EKE constitutes
a substantial portion of the total energy and with an almost indistinguishable temporal variation.
Here, we show only 6.5 years of the full 9-year record. Plots shown use a 4-day sampling frequency,

but averages are based on a 1-day sampling of the 9-year record.

constitutes a substantial portion of the total energy £ (80%) and their temporal evolution
is almost indistinguishable. Both EK E and £ tend to peak during the spring-summer. The
bottom row of Figure 7 shows M KFE, which is independent of time, and the cross term,
which has a zero average. These two quantities are much less energetic, with the mean term
~ 20% of the total and the cross term fluctuates about its zero average without a clear
seasonal signal.

4.3 The filtering spectrum

In Figure 8 we show the cumulative large-scale energy for the north and south hemi-
spheres as obtained from equation (12) for AVISO and NEMO, as well as the filtering
spectra for the Reynolds-decomposed components of NEMO: full time signal, £(x,t), time
mean, M KE(x), and time varying, EKFE(x,t). In the top panel we show the cumulative
area-averaged energy spectra, &, as a function of coarse-graining scale. In the centre and
bottom panels, we show the filtering spectrum (c.f. equation (12)), in lin-log and log-log
scale respectively.

Cumulative Energy Spectra At the large k, (small £) end of the cumulative spectra, we
see that all four datasets converge. That is, for both NEMO and AVISO, the area-averaged
energy density is ~ 2 x 1072m?/s? (corresponding to an RMS velocity of ~ 20 cm/s), for
either hemisphere. At gyre-scales, SH has noticeably higher energy density than NH. This
asymmetry is balanced by an opposing asymmetry over the mesoscales, where NH has
higher KE density, which is more readily detectable in the filtering spectra. The NH-SH
asymmetry can be attributed to basin geometry and continental boundaries. The NH ocean
basins are land-constrained relative to the SH, which has more room for a larger-scale flow,
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namely the ACC, to develop and intensify. We shall see in Table 1 below that most of the
hemispheric asymmetry resides in the stationary time-mean flow. The stronger (energy-per-
area) mesoscale flow in the NH is stationary and is most probably due to the time-invariant
forcing exerted by continental boundaries. This can explain our observation in Fig. 8 (middle
panel) that NH mesoscales are more intense than in the SH.

Filtering Spectra  The full time filtering spectra in Fig. 8 have been previously reported
in Storer et al. (2022). Here, we extend previous results by incorporating CG spectra of
the time-mean and time-varying Reynolds averaging components. As might be expected,
the time-mean velocity peaks spectrally at large scales (¢ > 10 km), while the time-varying
component peaks over the mesoscales. This may misleadingly suggest that time-averaging
produces a scale separation to a good approximation. However, as will be shown later in this
subsection, the mesoscale energy (area under the spectrum plot) accounts for a majority of
the time-mean energy. Therefore, as we are going to show, the time-mean flow is dominated
by stationary small-scales structures < 500 km in size. The length-scale at which spectra of
the time-varying and time-mean velocity cross is slightly larger than 500 km.

Proportion of Energy in Mesoscales In Table 1 we present the kinetic energy of the
Reynolds averaging components partitioned at 500 km for the NEMO dataset. There are
three primary conclusions that can be drawn from Table 1. 1) While mesoscales are domi-
nated by time-varying flow, the majority of the time-mean energy is also in the mesoscales.
2) The geostrophic time-varying flow is nearly entirely mesoscale, with only a few percent-
age points in larger scales. It is important to recall, however, that this analysis excludes
ageostrophic motions, such as the Ekman flow. 3) While the full and time-varying velocities
are generally consistent between hemispheres, the time-mean velocity shows strong asym-
metry. Specifically, time-mean mesoscales are stronger in NH, while time-mean gyre-scales
are stronger in SH. A likely contributor to the latter is the ACC. In the NH, there is stronger
stationary forcing at the mesoscales relative to the SH due to more restrictive continental
boundaries. Nearly identical results are found from the Reynolds averaging decomposition
applied over the 9-year AVISO dataset, shown in Appendix B.

Full Velocity | Time-Mean | Time-Varying
£ < 500 km [10~?m?/s?] NH 2.1 0.36 1.7
SH 2.0 0.25 1.8
£ > 500 km [10~2m?/s?] NH 0.20 0.15 0.06
SH 0.22 0.19 0.04
¢ < 500 km [% of Total] |~ 91 71 97

Table 1.

Mesoscale Energy for Reynolds’ Components The area-mean kinetic energy

partitioned at 500 km for each hemisphere (equivalent to the top panel of Fig. 8), for the three
Reynolds’ components: full £(x,t), time-mean M K F(x), and time-varying velocity EK FE(x,t).
Presented values are the median (50" percentile) in time from the NEMO dataset. The percentages
in the bottom row are the amount of energy at scales smaller than 500 km with repsect to the total

energy in all scales, restricted to each hemisphere and time-component.

RMS Velocity in Major Currents By integrating the filtering spectrum over a scale
band, we can obtain the total KE for the chosen scale band and, subsequently, the RMS
velocity for that range of spatial scales. Table 2 presents these RMS velocity magnitudes
from NEMO for a selection of geographic regions: NH, SH, ACC, Gulf Stream, and Kuroshio,
both within the mesoscale (100-500 km) and gyre-scale (> 103 km) scale-bands. The region
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definitions are included in Appendix C. Note that mesoscales are stronger in NH than SH,
while gyre-scales are stronger in SH.

Region Mesoscales (100-500 km) Gyre-scales (> 103 km)
Block Region | KE Masked | Block Region | KE Masked
South of Tropics 15.0 — 5.3 —
ACC 16.4 28.1 7.0 9.7
North of Tropics 15.5 — 4.3 —
Gulf Stream 32.7 42.2 7.8 8.7
Kuroshio 26.5 40.0 8.1 10.1

Table 2.

magnitude [cm/s] for selected regions using both Block and KE-masked definitions, see Appendix

RMS Current Speed [cm/s] in Select Regions The area-mean RMS velocity

C. Note that there is no KE-masked variant of the NH and SH regions. Reported values are for the
time median (50" percentile). Presented values are from the NEMO dataset, and are all rounded

to one decimal point.

Extrapolating to Smaller Scales Both NEMO and AVISO datasets agree well on the
spectral energy density of the mesoscales, down to ~ 100 km, where resolution effects begin
to cause deviations (Amores et al., 2018; Ballarotta et al., 2019).

Knowing the energy contained at 100 km, we can analytically integrate the total en-
ergy that would be contained below 100 km, assuming two different theoretically plausible
slopes, namely k[s and /4;[5/ % These power-laws are interesting because they are the theo-
retical predictions for the spectrum of an ideal turbulent flow in two and three dimensions
respectively. Even though the ocean is far from being an ideal flow, this exercise can give
a ‘back-of-the-envelope’ estimate of the energy content of the small scales. If we let S10oxm
denote the spectral energy density for £ = 100 km, and assume a spectral scaling of k=<
spanning all scales smaller than 100 km, then we can compute the total amount of energy
in scales smaller than 100 km as

10" 1
lim Sl()Okm10_5ak_adk =

n—oo ke=10—5 o — 1

S100km 1077, (21)

or, alternatively, to only consider the decade spanning 10-100 km,
107* 1
/ Slookm10_5ak_adk = 75’1001(“110_5 [1 — 101—a] R (22)
k=105 o — 1

where we assume that « > 1. Using equations (21) and (22) and the 100 km values presented
in Fig. 8, we can then compute the amount of energy in scales smaller than 100 km as a
percentage of energy across all scales. These values are presented in Table 3 and reveal
that as much as 25-50% of the surface geostrophic kinetic energy is contained in scales
smaller than 100 km. These scales are un(der)-resolved by pre-SWOT satellite products.
Our estimates are contingent on a persistent power-law scaling over small scales, but they
nevertheless illustrate how a substantial proportion of surface geostrophic energy may be
missed by coarse resolution.

Zonally-Averaged Coarse Energy In Figure 9 we plot the zonally-averaged kinetic
energy for selected length-scale bands. Scales larger than 103 km (blue plot in Fig. 9) have
a dominant contribution from latitudes [60°S, 40°S], which roughly corresponds with the
ACC. However, these latitudes are no longer dominant when considering the band of smaller
scales: 215 km < £ < 103 km. These scales (orange plot in Fig. 9) show a distinct signal at
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AVISO NEMO
NH SH NH SH
—3 | 24% [24%)] | 25% [25%] | 23% [23%)] | 25% [25%]

/3 | 43% [49%] | 44% [50%)] | 41% [A7T%) | 44% [50%]
Table 3. Extrapolated Small-scale Energy Percentage of total kinetic energy integrating

—

scales in the decade spanning 10-100 km. Values in brackets ([-]) arise from integrating all scales

smaller than 100 km assuming a constant power-law scaling of k™.

latitudes [30°N, 40°N], which roughly aligns with the Gulf Stream and Kuroshio. There is
also a weaker signal at latitudes [40°S, 35°S], which roughly aligns with the Agulhas and
the Brazil-Malvinas currents.
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Figure 9. Time- and zonally-averaged kinetic energy computed from AVISO within selected
length-scale bands (see in-set legend) as a function of latitude. We can see that the Antarctic
Circumpolar Current has significant energy at scales > 10® km, while the North has significant
energy within & 30°N-40°N where the Western Boundary Currents are located. Note that the
latitude axis is broken to exclude the band [15°S, 15°N].

4.4 Spatio-temporal decomposition

In this section, we present results from coarse-graining in both space and time to reveal
all the length-scales present in the time-averaged currents up to 9-year temporal mean.
Our analysis demonstrates a way for comparing data from satellite analysis (AVISO) and
numerical models (NEMO).

The approach consists of measuring the filtering spectrum of a temporally-smoothed
version of the original velocity field. The latter is obtained from a running window time
average,

1 t+7/2
(u),(x,t) = ;/t . u(x,t")dt, (23)

with 7 the size of the time window. Note that a running window time-average in equation
(23) is similar to spatial coarse-graining (equation (1)) since

(F)r)r # (F)r. (24)
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Combining equation (12) with equation (23) allows us to measure the filtering energy spec-
trum of the time-smoothed field

B, ) = <d% {% |<ﬁz>f|2}> = <d% {EZ,T}>, (25)

where we introduced 1
2
Eurx,t) = 5 (), 1 (26)

which is the cumulative spectrum of the temporally-smoothed field. As indicated, & - (x,t)
is a function of both the size of the time window, 7, and the spatial kernel, £.

Time-Averaged Spatial Maps We show the time-smoothed energy map, £—p -, in
Figure 10 from AVISO. Here, the two columns compare results from the North and the
South regions, while different rows compare results with different time windows, 7. From
these maps we can see that increasing 7 from one day to 1093 days reduces the energy
down to =~ 21% (= 25%) of the original total energy in the North (South). Hence, averaging
over three years brings the energy down to values comparable to those over the full nine
years obtained in the previous section by the Reynolds averaging decomposition, where we
found that M KE accounts for = 20% of the total energy in the extra-tropics. This result
indicates that temporal averaging converges quickly for the geostrophic kinetic energy, and
using longer time records does not significantly alter the partitioning between the temporal
mean and fluctuating components of the surface geostrophic ocean flow.

100% KE

1 day

181 days

1093 days

Figure 10. The surface geostrophic kinetic energy from the temporally coarse-grained flow,
Ei=o0,r, in the North (left column) and South (right column) from AVISO. The top row shows the
original 1-day averaged flow. The middle and bottom rows show the kinetic energy from the flow
when averaged with a ~ 6 months time window and a ~ 3 years time window, respectively, with
the kinetic energy decreasing with an increasing time window. Each panel indicates the % of kinetic

energy remaining relative to the 1-day top row.

4.5 Spatio-temporal comparison of AVISO and NEMO

We now demonstrate using a spatio-temporal coarse-graining, which may complement
current efforts to disentangle balanced from unbalanced motions in SSH-derived flows. Fig-
ure 11 presents space-time 2-D spectra, —<%d;ze{gg’7—}>7 which decomposes the energy as
measured from AVISO and NEMO. In the left (right) column of Figure 11 we show the
isolevels of space-time spectra from NEMO (AVISO). Note that the NEMO spectra extend
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to smaller length scales due to having higher spatial resolution, but that the panels have
consistent spacing / aspect ratios. The most pronounced difference is that the AVISO iso-
contours are more circular, while NEMO isocontours or more elongated and tilted, hinting
at an ¢ — 7 relationship. In both datasets, energy peaks at approximately ¢ = 200 km and
7 =2 — 3 weeks.
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£ [100 km]
5 5
10
10.0
102
9%
o=,
2l e
10! I
IS
T
i‘p., N
1.0 g:
102 L
10° p 5|
w
ECAD
>~
UJC.O
102 | -
=|>
=S 0.1
=
3=
Al e
10! E
10°

102
=1 [km™1] =1 [km™1]

Figure 11. Combined spatio-temporal coarse-graining producing 2D spectra, —0;0k,&e,» from
[left] 1/12° NEMO and [right] AVISO, averaged over the [top] NH and [bottom] SH. Mesoscale
energy predominantly peaks on length-scales of 100-200 km and time-scales of 1-3 weeks. Green

diamonds indicate, for each ¢, the 7 at which spectral power is maximized (c. . Fig 13).

Time-averaging to Align Spectra Remember that for the entire analysis in this paper,
we are using 1-day averages of SSH to derive velocity from the NEMO data. While the
SSH from AVISO is also available daily, it is effectively averaged over longer periods of
time to produce gridded SSH maps from along-track altimeter data. We propose that
the difference between isocontours from AVISO and NEMO in Figure 11 comes from the
optimal interpolation used to produce the gridded AVISO product (Pujol et al., 2016), which
is necessary to construct the global maps from satellite altimeters’ along-track data. To
support this hypothesis, in Figure 12 we show the spectra as a function of 7 measured from
AVISO and NEMO. In this plot, we have repeated the analysis of the NEMO spectra after
passing the data through a 7-day running time average (green line), which reproduces the
time average over the satellite orbits. We can see that the green curve overlaps the AVISO
measurement (blue) very closely, supporting our hypothesis. This is similar to what was
observed in Biri et al. (2016); Chassignet and Xu (2017) who performed a similar exercise
on the AVISO altimeter spectrum and also in what was found in Arbic et al. (2014); Khatri
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et al. (2018); Renault et al. (2019) who compared the cascade of AVISO and model data and
determined that AVISO’s spectral fluxes can be reproduced from model data after filtering
the latter in both space and time.

—e— AVISO
T NEMO
sk —4— T7-day avg. NEMO

10° 10t 102 102
7 (days)

Figure 12. Evidence that the disagreement between AVISO and NEMO over time-scales
< 10 days is due to temporal averaging used in generating the gridded AVISO product. Here,
we show temporal spectra from AVISO (blue) and NEMO (red) in the North (solid lines) and
South (dashed lines), which disagree over 7 < 10 days as in Figure 11. However, the temporal
spectra from NEMO agree with those from AVISO after applying a 7-day temporal smoothing to
the original NEMO velocities (green). This result supports our hypothesis that AVISO is miss-
ing dynamical information at time-scales less than 10 days due to temporal smoothing over all

length-scales.

Possible Role of Unbalanced Motions What component of the flow could be yielding
the discrepancy between NEMO and AVISO? The most obvious possibility is unbalanced
motion present in the 1-day mean SSH fields of NEMO that is absent from AVISO due to
the effective weekly averaging required for gridding the satellite measurements. However,
unbalanced motion had been believed to be important mostly over length-scales < 100 km
and time-scales < 2 days (e.g. Richman et al. (2012); Qiu et al. (2018)). If our conjecture
is correct, it would imply that unbalanced motion is present at all scales between 200 km to
103 km, with significant differences even between 1-2 x 10% km and 7 ~ 1-10 days as shown
in Fig. 11, requiring averaging over a few days to be removed. Isolating balanced from
unbalanced motions (e.g. Biihler et al. (2014)) is an active research topic that is beyond
the scope of this work. Another possible explanation can be found in the time-smoothing
of balanced motions, which is inherent in the construction of the AVISO dataset. Indeed
in (Arbic et al., 2013, 2014) they removed high-frequency motions with a 3-day low-pass
filter before applying spectral analysis and they obtained similar results as the ones we
observed here.

4.5.1 Relating Time-scale to Length-scale

As discussed, Fig. 11 shows a clear mesoscale spectral structure centered roughly on
200 km and 14 days. In Figure 13 we present for each spatial scale ¢, the time-scale 7 for
which —0;0%,& » is maximized. We use cubic interpolation in the 7-dimension to compen-
sate for only having data points for an odd integer number of days. These results are broadly
similar between hemispheres, however, there are noticeable disagreements between NEMO
and AVISO. The two agree on the time scale of the largest mesoscales (400-500km), with
AVISO consistently yielding longer time scales than NEMO for smaller £. NEMO presents
7 ~ { over the mesoscale band, while AVISO gives 7 ~ 94,
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which the power spectrum (—0,0k,&,,) is maximized. While dashed lines show regression fits (see

legend for regression formulas), which express 7 [s] in terms of £ [m)].

4.5.2 Connection to Space-Time Spectra in the Literature

Figure 11 shows the importance of performing a combined spatio-temporal decomposi-
tion to access all information in the data. Our method is similar to frequency-wavenumber
analysis performed within Fourier boxes by several recent studies: Arbic et al. (2014) were
interested in mesoscale-driven intrinsic low-frequency variability, while Savage et al. (2017);
Qiu et al. (2018); Torres et al. (2018) were primarily motivated by isolating the unbalanced
motions from SSH-derived velocities. Our Figure 11 is analogous, for example, to Figure 4
in Arbic et al. (2014) and to Figure 3 in Torres et al. (2018), although the latter analyzed
higher frequencies than those that are available in the datasets that we study here. It is
important to stress that high-frequency forcing was not employed in the production of the
NEMO model data used in our work and high-frequency motions are not our current focus
of interest, while the latter works employed models with simultaneous atmospheric and tidal
forcing which entails the formation of an internal gravity wave continuum spectrum as first
described in (Muller & Bony, 2015; Rocha et al., 2016). However, as we mentioned in the
introduction, the coarse-graining approach gives us access to the global energy budget and,
moreover, frees us from the limitations of Fourier boxes and the required tapering and de-
trending. As such, the approach here complements previous frequency-wavenumber analysis
by allowing us to access much larger length-scales.

A common feature between our Figure 11 and those in previous studies is a slight
elongation of isocontours along the diagonal from small to large spatio-temporal scales in
the main panel of our Figure 11. Such elongation is most prominent in Figure 3 of Torres
et al. (2018), who were probing scales < 100 km and from roughly 3 hours to 40 days. The
diagonal elongation of isocontours represents a slight tendency for larger length-scales to
have longer time-scales.

However, we emphasize that unlike in Torres et al. (2018), such tendency is only slight
over the larger scales we analyze here. In fact, an important take-away from Figure 11
is that all length-scales evolve over a wide range of time-scales. Consider, for example,
£ ~ 500 km in the left column of Figure 11 at different 7 values. We see that the isoline is
almost vertical over 7 &~ 5 days to 7 &= 50 days, indicating that flow at 500 km has an equal
contribution from all these time-scales. We also see that both AVISO and NEMO isolines
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get flatter (stretched horizontally) as 7 increases, such that at 7 ~ 300 days, there is almost
equal energy at all scales between ~ 100 km and ~ 10 km.

5 Conclusions
5.1 Summary of the main results

In this paper we expanded on a recent calculation of the first global energy spectrum
of the ocean’s surface geostrophic circulation (Storer et al., 2022) using the coarse-graining
(CG) method. Our analysis here gives new insights into the oceanic circulation. The method
is implemented in an open-source software, FlowSieve (Storer & Aluie, 2023), that can be
accessed at https://github.com/husseinaluie/FlowSieve.

In this work, we compare quantitatively the CG and the spherical harmonics decom-
positions. While the two methods yield qualitatively consistent domain-averaged results,
spherical harmonics spectra are too noisy at gyre scales. More importantly, spherical har-
monics are inherently global and cannot provide local information connecting scales with
currents geographically.

We have estimated that the RMS velocity of the mesoscales is globally around 15cm/s,
but it increases up to 30-40 cm/s in the Kuroshio or the Gulf Stream and up to 16-28 cm/s
in the ACC. We find notable hemispheric asymmetry in mesoscale energy-per-area, which
is higher in the north, bringing to the fore the significance of domain geometry. Indeed,
mesoscales can arise from boundary forcing, which is coherent in time and is distinct from
the baroclinic instability often discussed as the main driver of mesoscales.

In this paper, we applied the coarse-graining approach to the Reynolds decomposed
fields, namely the time-mean and the time-varying terms of the ocean surface currents.
Results in this direction highlight that while the time-varying term is largely dominated
by the mesoscales, (= 98%), the time-mean component also has a majority (up to 70%)
contribution from the mesoscale circulation. This highlights the preponderance of ‘standing’
small-scale structures in the global ocean and the potentially significant role played by
forcing from the ocean boundaries, which is temporally coherent. It also shows that Reynolds
decomposition is an ineffective method for disentangling eddy structures from the flow.

By coarse-graining in both space and time, we have shown that every length-scale
evolves over a wide range of time-scales. This result makes us appreciate the significance
of temporally coherent (even stationary) forcing mechanisms acting on the mesoscales, such
as bottom topography and continental boundaries. An important new contribution of this
work is the spatio-temporal spectra of the geostrophic currents. These 2D spectra highlight
how the mesoscales while peaking at a2 (200 km, 2 weeks), are not only diffused over a range
of spatial scales, but also vary over a wide range of temporal scales. Further, we extract
the dominant time-scale, Tpeak for each filter scale in the mesoscale band, and find that
NEMO predicts 7 ~ £, which leads to a length scale-independent advective velocity of 0.15—
0.2 cm/s. In contrast, AVISO demonstrates consistently longer dominant time-scales, and
a shallower relationship of 7 ~ £94 both of which are likely results of the time averaging
needed to extract the AVISO velocity maps.

5.2 Coarse-graining and the filtering spectrum

The coupling between different length- and time-scales and between different geographic
regions presents a major difficulty in understanding, modeling, and predicting oceanic cir-
culation and mixing. Indeed, the oceanic kinetic energy budget is estimated to suffer from
large uncertainties (Ferrari & Wunsch, 2009). A major reason behind these difficulties is
a lack of scale-analysis methods that are appropriate in the global ocean. In this paper,
we have demonstrated the versatility of coarse-graining in serving as a robust scale-analysis
method for the global ocean circulation that complements existing methods. The approach
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is very general, allows for probing the dynamics simultaneously in scale and in space, and
is not restricted by assumptions of homogeneity or isotropy commonly required for tradi-
tional methods such as Fourier or structure-function analysis. We note that coarse-graining
includes wavelet analysis (Uchida et al., 2023) as a special case with the proper choice of
convolution kernel, which disentangles the flow from a band of scales instead of partitioning
it into large-scales and small-scales (Sadek & Aluie, 2018). Coarse-graining offers a way to
probe and quantify the energy budget at different length-scales globally while maintaining
local information about the heterogeneous oceanic regions. We view this work as an im-
portant step toward constructing a scale-aware global Lorenz Energy Cycle for the ocean
circulation (Loose et al., 2023).

Appendix A Deforming the kernel around land

As outlined in section 3.1, filtering with a constant kernel while treating land as zero-
velocity water and including land cells (“Fixed Kernel w/ Land”) in the final tally is guar-
anteed to conserve 100% of the energy, while excluding land cells and integrating only over
water cells (“Fixed Kernel w/o Land”) leads to a loss of about 11% of the total kinetic en-
ergy at a filter scale of 2,000 km (see Figure 2). This result follows since some of the kinetic
energy ‘smears’ onto the land cells, which are then excluded from the spatial integrals.

An alternative approach is to deform the kernel around land (“Deforming Kernel”) so
that only water cells are incorporated in the filtering operation. This approach has the
advantage of not needing to treat land as water, yet we have shown in Figure 2 that this
choice still does not conserve 100% of the energy, sometimes even yielding larger values,
albeit still within 1% error. Here, we explain why a deforming a kernel cannot be expected
to yield 100% of the energy, unlike the “Fixed Kernel w/ Land.”

To illustrate how the loss of energy conservation can happen with the Deforming Kernel
method, consider a one-dimensional domain with five equally spaced points and a simple
kernel that has a weight of 2 at the target point, 1 at neighbouring points, and 0 otherwise.

If the domain were periodic then the filtering operation could be represented as the
matrix
o L 0 0 1/
g 1 1fs 0 O
G:=1| 0 Ya 12 14 0
0 0 s 1 14
Vs 0 0 a4 1/
such that KE = G - KE, where KE is a column vector. Note that the sum of each row of G is
1, a result of normalizing the kernel (assuming a grid spacing of 1 for simplicity). Domain in-
tegrating in this scenario is simply left-multiplying by the row vector S :=[1, 1,1, 1, 1], which
is equivalent to taking a column-wise sum. Since S-G =S5, S-KE=S -G -KE = S -KE,
and so the domain-integrated kinetic energy is conserved.

However, if the domain is non-periodic (such as if the edges were ‘land’), then the
deforming kernel that excludes anything outside the boundaries would be

2/3 1/ 0 0 O
Uy 1/ 1y 0 0
G:=1| 0 Ya 12 s 0
0 0 s 1 14
0 0 0 13 23
In this case, S -G = [11/12,13/12,1,13/12,11/13] # S, and so in general S - KE # S - KE.
Moreover, there is no guarantee that S - KE < § - KE, and so it may be that the total
filtered kinetic energy exceeds the total unfiltered kinetic energy.

—28—



897

898

899

900

902

903

904

905

906

907

909

910

911

913

914

915

As observed, in general, the error arising from deforming the kernel will be much smaller
than that of treating land as zero-velocity water and only integrating over true water cells,
especially for large filter kernels. However, again, it is worth recognizing that deforming
the kernel does not guarantee energy conservation. To fully conserve energy and maintain
commutativity with differentiation, we choose the “Fixed Kernel w/ Land” option, which
treats land as zero-velocity water and includes land cells in spatial integrals to compute
total energy.

Appendix B Reynolds averaging spectra on AVISO dataset

Fig B1 reports the energy spectra for the time-mean and time-varying Reynolds av-
eraging components obtained from the 9-year AVISO dataset. Results are in very good
agreement with the spectra obtained from NEMO dataset, presented in Fig. 8. The values
obtained from the two datasets are nearly identical, with the AVISO dataset having less
small-scale energy owing to having a lower resolution.
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Figure B1l. Power Spectra Filtering spectra obtained following eq. (12) for the full (solid
lines), time mean (dashed times), and time-varying (dotted liens) ssh-derived geostrophic velocity
from the AVISO dataset. Note that both top and bottom panels show the same data, but using

lin-log and log-log scales respectively.

Appendix C Geographic Definitions for Current Regions

Equations (C2)—(C6) outline the geographic constraints used to define the various re-
gions used in Table 2. In each definition, A is longitude in degrees, ranging from —180 to
180, and ¢ is latitude in degrees, ranging from —90 to 90. Additionally, any overlap with
land is removed from the region definition, so that only water cells are included. The region
masks are presented in Figure C1.
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Energy Masking Following Rai et al. (2021), subsets of the regions defined in equa-
tions (C2)—(C6) are produced by further restricting to areas with sufficiently high “masking
KE”. For these purposes, a combination of time-mean and time-varying KE is used such
that

Masking KE = %pg (u)? + %po <(u - (u))2> . (C1)

016 Taking pg = 1025, a cut-off of Masking KE > 50 is applied to the Gulf Stream and Kuroshio,
017 and Masking KE > 30 to the ACC. The KE-masked regions are illustrated with dots in
o1 Figure C1.

North of Tropics : ¢ > 15° (C2)
Kuroshio : {120° < A < 170°}
and {17° < ¢ < 45°}
and {6 < (3/4)A — 60°)
and {not (¢ < 25° and A > 140°)}

and {not (A <140° and ¢ < (2/5)A —31°)} (C3)
Gulf Stream : {—80.75° < A < —=35°} and {|¢p — (2/5)\ —62°| <6°}  (C4)
South of Tropics : ¢ < —15° (C5)

ACC: {-70° < ¢ < —33°}
and {not (A < —72°) and ¢ > —(5/108)\ — 160/5°}
and {not (A >20°) and ¢ > —(3/10)A — 63/2°} (C6)

Kuroshio Gulf Stream ACC [ Tropics

—150 —100 —50 0 50 100 150

Figure C1. Illustration of the geographic region definitions (equations (C2)—(C6)), plotted over
a sample velocity field for reference. Note that ‘North of Tropics’ and ‘South of Tropics’ are not
included, but are simply the portions North and South of ‘Tropics’. For ‘Kuroshio’, ‘Gulf Stream’,
and ‘ACC’, the smaller contoured region with dots shows the region definition with an additional
KE mask.
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Open Research

This study has been conducted wusing E.U. Copernicus Marine Ser-
vice Information. The product identifier of the AVISO dataset wused in
this  work is “SEALEVEL_GLO_PHY_L4 REP_OBSERVATIONS_008.047”, and
can be downloaded at https://marine.copernicus.eu/services-portfolio/

access-to-products/. The product identifier of the NEMO dataset is
“GLOBAL_ANALYSISFORECAST_PHY_CPL_001_015”, and is  available  at
https://marine.copernicus.eu/services-portfolio/access-to-products/. The

source code for the coarse-graining software FlowSieve (Storer & Aluie, 2023) can be freely
downloaded from https://github.com/husseinaluie/FlowSieve.
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