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Abstract18

We expand on a recent determination of the first global energy spectrum of the ocean’s19

surface geostrophic circulation (Storer et al., 2022) using a coarse-graining (CG) method.20

We compare spectra from CG to those from spherical harmonics by treating land in a21

manner consistent with the boundary conditions. While the two methods yield qualitatively22

consistent domain-averaged results, spherical harmonics spectra are too noisy at gyre-scales23

(> 1000 km). More importantly, spherical harmonics are inherently global and cannot24

provide local information connecting scales with currents geographically. CG shows that the25

extra-tropics mesoscales (100–500 km) have a root-mean-square (rms) velocity of ∼ 15 cm/s,26

which increases to ∼ 30–40 cm/s locally in the Gulf Stream and Kuroshio and to ∼ 16–27

28 cm/s in the ACC. There is notable hemispheric asymmetry in mesoscale energy-per-area,28

which is higher in the north due to continental boundaries. We estimate that ≈ 25–50% of29

total geostrophic energy is at scales smaller than 100 km, and is un(der)-resolved by pre-30

SWOT satellite products. Spectra of the time-mean circulation show that most of its energy31

(up to 70%) resides in stationary eddies with characteristic scales smaller than (< 500 km).32

This highlights the preponderance of ‘standing’ small-scale structures in the global ocean33

due to the temporally coherent forcing by boundaries. By coarse-graining in space and34

time, we compute the first spatio-temporal global spectrum of geostrophic circulation from35

AVISO and NEMO. These spectra show that every length-scale evolves over a wide range36

of time-scales with a consistent peak at ≈ 200 km and ≈ 2–3 weeks.37

Plain Language Summary38

Traditionally, ‘eddies’ are identified as time-varying features relative to a background39

time-mean flow. As such, ‘mean’ does not imply large length-scale. Standing eddies or40

meanders due to topography have little time-variation, but can have significant energy41

at small length-scales that are unresolved and need to be parameterized in coarse climate42

simulations. Similarly, ‘eddy’ or ‘time-varying’ do not imply small length-scale, such as large-43

scale motions from Rossby waves or fluctuations of the Kuroshio. Another common method44

is Fourier analysis in ‘representative’ ocean boxes that cannot capture the circulation’s45

planetary scales. We overcome these limitations thanks to recent advances: (i) a method46

for calculating spectra by coarse-graining, (ii) properly defining convolutions on the sphere,47

which ‘blur’ oceanic flow in a way that preserves its underlying symmetries, opening the door48

for global ‘wavelet’ analysis and, more generally, spatial coarse-graining, and (iii) FlowSieve:49

an efficient parallel code. We employ coarse-graining in space-time to gain new insights into50

the global oceanic circulation, including how much energy resides in its different spatial51

structures and how they vary in time.52

1 Introduction53

Ocean circulation emerges from a suite of linear and nonlinear dynamical processes54

that act over a broad range of spatial and temporal scales. The flow field is markedly55

inhomogeneous and characterized by waves, instabilities, and turbulent eddies, each of which56

are subject to a variety of energetic sources and sinks. The mesoscale defines a key band57

of spatial scales where ocean flows are largely geostrophic and where kinetic energy peaks58

(Wunsch, 2007; Storer et al., 2022). Correspondingly, it is widely recognized that flow at59

the ocean mesoscales, and its response to changes in atmospheric forcing, are fundamental60

to the large-scale circulation and central for regional and global transport of heat and61

biogeochemical tracers (Ferrari & Wunsch, 2009).62

However, significant gaps remain in our understanding of the mesoscale flows and their63

role in ocean circulation and climate. In particular, from a numerical modeling perspective,64

despite the ever-increasing ability to conduct simulations with mesoscale eddy-rich Ocean65

General Circulation Model (OGCM), accurately resolving these scales in routine climate-66

scale (order centuries and longer) simulations remains the exception rather than the norm67
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(e.g. see Griffies et al., 2015). We are thus confronted with the need for mesoscale eddy68

parameterizations for the foreseeable future (Pearson et al., 2017).69

A central question of physical oceanography, and in particular the eddy parameteriza-70

tion problem, concerns a characterization of flow features according to length-scale. This71

question motivates the goal of this paper, which is to provide a length-scale decomposi-72

tion of the global ocean geostrophic kinetic energy, and to study the seasonal variations of73

this decomposition. This goal has previously been out of reach due to limitations of the74

commonly used Fourier spectral methods, which are unsuited to global ocean analysis due75

to the complex geometry of ocean basins. We thus make use of a Coarse-Graining (CG)76

method that does not share the limitations of Fourier analysis. This paper serves to detail77

the use of coarse-graining for the purpose of decomposing ocean kinetic energy, and in so78

doing we uncover novel features of the ocean surface circulation as a function of length and79

time scales.80

1.1 Fourier methods for the ocean81

It is common to quantify the spectral distribution in scale of ocean kinetic energy82

via Fourier transforms computed either along transects or within regions (e.g., Fu and83

Smith (1996); Chen et al. (2015); Rocha et al. (2016); Khatri et al. (2018); Callies and Wu84

(2019)), as well as to perform time-decomposition of the flow into its frequency spectra (e.g.85

O’Rourke et al. (2018); Arbic et al. (2012)). This approach has rendered great insights into86

the length and time scales of oceanic motion and the cascade of energy through these scales87

(Scott & Wang, 2005; Scott & Arbic, 2007; Schlösser & Eden, 2007; Capet et al., 2008; Xu88

et al., 2011; Arbic et al., 2013, 2014). However, it has notable limitations for the ocean89

where the spatial domain is generally not periodic, thus necessitating adjustments to the90

data (e.g., by tapering) before applying Fourier transforms.91

Methods to produce an artificially periodic dataset can introduce spurious gradients,92

length-scales, and flow features not present in the original data (Sadek & Aluie, 2018). A93

related limitation concerns the chosen region size, with this size introducing an artificial94

upper length scale cutoff. In this manner, no scales are included that are larger than the95

region size even if larger structures exist in the ocean. Furthermore, the data is typically96

assumed to lie on a flat tangent plane to enable the use of Cartesian coordinates. However,97

if the region becomes large enough to sample the earth’s curvature, then that puts into98

question the use of the familiar Cartesian Fourier analysis of sines and cosines.99

We have previously compared coarse-graining methods with traditional Fourier meth-100

ods, and shown that where Fourier methods are valid, both methods agree (Storer et al.,101

2022). An important advantage of coarse-graining is that it is not limited to an ocean box102

and allows us to probe length-scales extending to the planet’s circumference. Moreover,103

unlike Fourier analysis in box regions, which cannot account for the global energy in the104

ocean, coarse-graining satisfies energy conservation (Sadek & Aluie, 2018) as we discuss105

more below.106

Spherical harmonics transforms are an extension of Fourier (spectral) methods to the107

full globe, and are often used in atmospheric modeling (Satoh, 2004). Spherical harmonics108

are basis functions that are defined over the entire sphere and are not restricted to the109

ocean domain. For this reason, oceanographic analysis tends to employ spherical harmonics110

less often than atmospheric science analysis, due to the presence of continental boundaries.111

Ocean tide models are a notable exception, with tide models using spherical harmonics in112

their computation of the self-attraction and loading effects (e.g. Hendershott (1972); Ray113

(1998)). Ocean tide models often set ocean quantities such as sea surface height (SSH)114

to zero over continents, which introduces some Gibbs ringing but this tends to be small115

because the higher-order spherical harmonics leading to the Gibbs effects are subdominant,116

weighted by small number (Arbic et al., 2004; Arbic, 2022). During early days of satellite117

altimetry, there were attempts at utilising spherical harmonics to characterize the frequency-118
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wavenumber spectrum of the ocean’s global circulation (Wunsch, 1991; Wunsch & Stammer,119

1995). These studies analyzed SSH anomalies and chose nominal SSH values over land.120

SSH over land was set to the time average of the zonal mean absolute sea surface height.121

However, the authors were aware that their choice for land treatment was somewhat ad hoc,122

without dynamical justification, as stated in Wunsch and Stammer (1995): “. . . we make123

no claim that we have made the best possible choice.” It seems that usage of spherical124

harmonics for analyzing the oceanic circulation was largely abandoned after these attempts125

during the early days of satellite altimetry. In this paper, we revisit spherical harmonics126

transform in section 3.5 and show that despite its important limitations, the method can127

yield meaningful results if land is treated in a manner that is consistent with boundary128

conditions of the ocean’s dynamics.129

1.2 Eddy and mean flow decomposition: Reynolds averages130

A traditional approach to extract ‘eddies’ from a flow uses time or ensemble averaging.131

This approach is relatively simple operationally and is in accord with the common practice132

in atmospheric and oceanic sciences of studying long-term climate means and fluctuations133

relative to that mean. As part of this decomposition for turbulent flow, we typically utilize134

the time averaging operator as a Reynolds averaging (RA) operator, whereby the average135

of a fluctuating quantity vanishes (Vallis, 2017). The choice of Reynolds decomposition by136

time averaging is largely based on practical considerations, with ensemble averages being137

unavailable for most applications (although see (Uchida et al., 2021) for a recent example138

with fine resolution regional ocean simulations).139

Within the traditional decomposition, time-mean or ensemble-mean do not necessarily140

imply a large length-scale flow as we shall discuss in this paper. For example, standing eddies141

or stationary meanders due to topography (Youngs et al., 2017) have little temporal or142

statistical fluctuations but can have spatial structure at length-scales O(100) km or smaller.143

Similarly, within a Reynolds decomposition, ‘eddy’ does not necessarily imply small length-144

scale. For example, a time averaging based decomposition would ascribe eddying motion145

to large-scale Rossby waves (Kessler, 1990) or variations in the Kuroshio Current’s path146

(Kawabe, 1995).147

By construction, a Reynolds decomposition into a mean and an ‘eddy’ limits our ability148

to analyze temporal variability, from intra-annual to inter-annual (Bryan et al., 2014; Griffies149

et al., 2015), of the multiscale coupling and evolution of different length-scales, including150

those that need to be resolved/predicted in global climate (coarse-grid) models. Therefore,151

it offers limited guidance for coarse-resolution models and no control over the specific phys-152

ical length which partitions oceanic flow into ‘large’ and ‘small’. In other words, the set of153

length-scales constituting the large-scale flow cannot be varied/controlled to be consistent154

with those length-scales resolved in a coarse climate simulation. In this sense, the tradi-155

tional mean-eddy decomposition cannot help with on-going efforts to develop ‘scale-aware’156

parameterizations (Ringler et al., 2013; Zanna et al., 2017; Pearson et al., 2017; Jansen et157

al., 2019), including those using data-driven or machine learning approaches (Ryzhov et al.,158

2020; Ross et al., 2023).159

1.3 Empirical Orthogonal Functions160

Empirical Orthogonal Functions (EOFs) offer yet another approach for decomposing161

the oceanic flow by projecting onto orthogonal basis functions or ‘empirical modes’ that are162

derived from the data itself. EOF is also known as Karhunen-Loeve decomposition, Principal163

Component Analysis (PCA) or Proper Orthogonal Decomposition (POD) in other fields164

(Kac & Siegert, 1947; Karhunen, 1947; Loeve, 1948), and was introduced to meteorology165

by Lorenz (1956).166
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EOF analysis is commonly used as a data reduction technique since it offers the most167

efficient statistical compression of the data field (Thomson & Emery, 2001). This is because168

the basis functions are derived from the statistical analysis of the data and do not necessarily169

correspond to true dynamical modes, although they have yielded valuable insight into the170

oceanic dynamics on climate scales (e.g. Trenberth, 1975; Di Lorenzo et al., 2008). The171

limitation of EOFs stems from our lack in understanding of the dynamics governing the172

basis functions. Moreover, it is difficult to associate EOFs with lengthscales or timescales173

since each empirical mode lumps together variations over all frequency and wavenumber174

bands. This approach muddles the interpretation of EOF spectra and their connection to175

spectral slopes predicted by theory (Uchida et al., 2021).176

1.4 Coarse-graining177

In order to understand the multiscale nature of oceanic flows, while simultaneously178

resolving them in space and in time, we use a ‘coarse-graining’ framework that is relatively179

new in physical oceanography (Aluie et al., 2018; Busecke & Abernathey, 2019; Srinivasan et180

al., 2019; Schubert et al., 2020; Rai et al., 2021; Barkan et al., 2021; Haigh et al., 2021; Khani181

& Dawson, 2023; Loose et al., 2023; Khatri et al., 2023; Contreras et al., 2023). It is a very182

general approach to decompose complex flows, with rigorous foundations initially developed183

to model (Germano, 1992; Meneveau, 1994) and analyze (Eyink, 1995, 2005) turbulence.184

Aluie (2017) provides a theoretical discussion of coarse-graining and its connection to other185

methods in physics. Wavelet analysis, which has been recently used by Uchida et al. (2023)186

to analyze quasigeostrophic turbulence, can be regarded as a special case of coarse-graining187

by choosing the convolution kernel to be a wavelet (Sadek & Aluie, 2018). The approach188

has been recently generalized to account for the spherical geometry of flow on Earth (Aluie,189

2019), and applied to study the nonlinear cascade in the North Atlantic from an eddying190

simulation (Aluie et al., 2018).191

The coarse-graining framework is very useful from the standpoint of ocean subgrid scale192

parameterizations (Fox-Kemper et al., 2011; Zanna et al., 2017; Khani et al., 2019; Jansen et193

al., 2019; Haigh et al., 2020; Stanley et al., 2020; Grooms et al., 2021). Namely, it provides194

a theoretical basis for constructing subgrid closures that faithfully reflect the dynamics at195

unresolved scales. A primary objective in ocean modeling is practical: an accurate subgrid196

parameterization that is numerically stable. Significant advances have been achieved in this197

regard in the fluid dynamics and turbulence community (Piomelli et al., 1991; Buzzicotti198

et al., 2018; Linkmann et al., 2018; Biferale et al., 2019; Di Leoni et al., 2020; Buzzicotti199

& Clark Di Leoni, 2020), and the field of large-eddy simulation (LES) is well-established200

(Meneveau & Katz, 2000).201

Our use of coarse-graining supports the needs of parameterization, but our primary202

objective is to characterize the fundamental dynamics of the flow at all length scales. Even203

within the wider fluid dynamics community, much less work has been done in this regard, i.e.204

using coarse-graining as a ‘probe’ of the fundamental scale-physics. For example, LES sub-205

grid parameterization studies are seldom concerned with using coarse-graining to probe the206

energy pathways across the entire range of scales, such as the cascade (Eyink, 1995; Eyink207

& Aluie, 2009; Kelley & Ouellette, 2011; Aluie et al., 2012; Rivera et al., 2014; Buzzicotti208

et al., 2018; Buzzicotti & Tauzin, 2021), forcing (Aluie, 2013; Rai et al., 2021; Zhao et al.,209

2022), dissipation (Zhao & Aluie, 2018), or the range of coupling between different scales210

(Eyink, 2005; Aluie & Eyink, 2009).211

As an important case in point, despite LES having become a well established field in212

fluid dynamics since the seminal works of Leonard (1974) and Germano (1992), the idea of213

using coarse-graining in physical space to extract the energy content at different scales; i.e.,214

the spectrum, was only recently established and demonstrated by Sadek and Aluie (2018).215

This method is central to our calculation here of the spectrum for the oceanic general216

circulation. A main advantage of coarse-graining is that it allows us to decompose different217
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length scales in a flow, at any geographic location and any instant of time, without relying218

on assumptions of homogeneity, isotropy or domain periodicity. This generality makes it219

ideally suited for studying oceanic flows with complex continental boundaries over the entire220

globe or in any particular regions of interest and at any time.221

1.5 Key results and outline of this paper222

In this paper we make use of the coarse-graining method on a satellite sea surface223

product and an OGCM simulation. To directly compare the two products, we focus on224

geostrophic components of the horizontal surface velocity as diagnosed from sea level. Here,225

we highlight key novel results from this analysis. First, we show that spectra from coarse-226

graining and spherical harmonics of the global circulation are consistent but the latter cannot227

yield spatially local information. We show that the typical velocity of mesoscales is of the228

order of 15 cm/s, but reaches 30–40 cm/s in western boundary currents (WBCs) and 16–229

28 cm/s in the ACC. We find notable hemispheric asymmetry in mesoscale energy-per-area,230

which is higher in the north. This asymmtery is compensated by the south having more231

energy-per-area at gyre-scales, such that across all (resolved) scales, the two hemispheres232

have comparable energy-per-area. From our spectra, we can estimate that ≈ 25–50% of233

total geostrophic energy is at scales smaller than 100 km, and is un(der)-resolved by pre-234

SWOT satellite products. Spectra of the time-mean velocity show that most (up to 70%)235

energy resides in ‘standing’ small-scale eddies < 500 km. This highlights the global preva-236

lence of stationary eddies arising from boundary forcing, which is coherent in time and is237

distinct from the baroclinic instability that is regarded as the main driver of mesoscales. By238

coarse-graining in space and time, we compute the first spatio-temporal global spectrum of239

geostrophic circulation from AVISO and NEMO. These spectra show that every length-scale240

evolves over a wide range of time-scales with a consistent peak at ≈ 200 km and ≈ 3 weeks.241

The paper is organized as follows. In Section 2, we present the data products used in242

our analysis. In Section 3 we give details on the coarse-graining and the Reynolds averag-243

ing methods used in this work and we present the comparison between CG and spherical244

harmonics energy spectra. In Section 4 we discuss the main results from the CG analysis;245

the 2D spatio-temporal energy spectrum of ocean surface circulation and spectra of the246

time-mean and fluctuating (or ‘eddy’) components from Reynolds averaging. At the end247

of Section 4 we compare the surface dynamics spatio-temporal decomposition from satellite248

and numerical model data. In Section 5 we present our conclusions. Appendix A discusses249

some technical choices we used when coarse-graining.250

2 Satellite and numerical model data251

We examine the horizontal geostrophic velocity of surface ocean currents from a global252

numerical model simulation and from an analysis of satellite sea surface altimetry, focusing253

on regions to the north and south of the tropics, [15◦N − 90◦N] and [15◦S − 90◦S]. We254

avoid the tropics since our interest is with the geostrophic flows in the higher latitudes, and255

only the surface geostrophic current is available from satellite altimetry. Details of the two256

products are given in the following paragraphs, and both were publicly accessed through the257

Copernicus Marine Environment Monitoring Service (CMEMS) webpage, https://marine258

.copernicus.eu/services-portfolio/access-to-products/.259

AVISO analysis of satellite altimetry Geostrophic currents are obtained from the260

AVISO+ analysis of multi-mission satellite altimetry measurements for sea surface height261

(SSH) (Pujol et al., 2016). We used the Level 4 (L4) post-processed dataset of daily-262

averaged geostrophic velocity, gridded at a resolution of 0.25◦ × 0.25◦ and spanning from263

January 2010 to October 2018. Post processing was performed by the Sea Level The-264

matic Center (SL TAC) data processing system, which processes data from eleven al-265

timeter missions. The product identifier of the AVISO dataset used in this work is266

“SEALEVEL GLO PHY L4 MY 008 047” (https://doi.org/10.48670/moi-00148).267
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Numerical simulation We analyze 1-day averaged surface geostrophic currents from268

the NEMO numerical modeling framework, which is coupled to the Met Office Unified269

Model atmosphere component, and the Los Alamos sea ice model (CICE). The NEMO270

dataset consists of weakly coupled ocean-atmosphere data assimilation and forecast sys-271

tem, with data then published on a uniform 1/12
◦

grid. We use daily-averaged data that272

spans the four years from 2016 to 2019. More details about the coupled data assimila-273

tion system used for the production of the NEMO dataset can be found in (Hewitt et al.,274

2011; Lea et al., 2015). The specific product identifier of the NEMO dataset used here is275

“GLOBAL MULTIYEAR PHY 001 030” (https://doi.org/10.48670/moi-00021).276

3 Coarse-graining for the ocean277

In this section, we discuss the coarse-graining framework and how it is used to partition278

energy across length scales. We also discuss the traditional approach of decomposition279

in spherical harmonics and the temporal-based Reynolds averaging, in which the flow is280

decomposed into time-mean and fluctuating components.281

3.1 Basics of coarse-graining on the sphere282

For any scalar field, F (x), we can calculate its coarse-grained (or low-pass filtered)283

version, F `(x), by convolving F (x) with a normalized filter kernel G`(r),284

F `(x) = G` ∗ F (x) (1)285

where ∗, in the context of this work, is convolution on the sphere (Aluie, 2019), x is geo-286

graphic location on the globe, and the kernel G`(x) can be any non-negative function that287

is spatially localized (i.e. it goes to zero fairly rapidly as x→ ±∞). The parameter `288

is a length-scale related to the kernel’s ‘width’. We use the notation (· · · )` to denote a289

coarse-grained field. The kernel is area normalized for all `, so that290 ∫
G`(x) dS = 1, (2)291

where dS is the area element on the sphere. Correspondingly, the convolution (1) may292

be interpreted as an average of the function F within a region of diameter ` centered at293

location x. By construction, at each point in space, x, the coarse-grained field, F `(x),294

contains information about the scale `.295

The above formalism holds for coarse-graining scalar fields. To coarse-grain a vector296

field on a sphere generally requires more work (Aluie, 2019). However, since we are con-297

cerned only with the surface geostrophic velocity, u(x, t), in this work, it greatly simplifies298

our analysis. We assume the geostrophic velocity is non-divergent on the two-dimensional299

spherical surface, so that it is related to the geostrophic stream-function ψ via300

u = êr×∇ψ, (3)301

with êr the radial unit vector in spherical coordinates, ψ = η g/f , g is the gravitational302

acceleration, η the free sea surface height (SSH), and the Coriolis parameter, f = 2Ω sin(φ),303

is a function of latitude φ, where Ω is Earth’s spin rate.304

Aluie (2019) showed that for non-divergent vector fields such as in eq. (3), coarse-305

graining u is equivalent to coarse-graining each of its Cartesian components. We there-306

fore transform the vector from spherical (ur, uλ, uφ) to planetary Cartesian coordinates307

(ux, uy, uz) via:308

ux = ur cos(λ) cos(φ)− uλ sin(λ)− uφ cos(λ) sin(φ)309

uy = ur sin(λ) cos(φ) + uλ cos(λ)− uφ sin(λ) sin(φ) (4)310

uz = ur sin(φ) + uφ cos(φ)311
312
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êλ

êφ

êx êy

êz

x y

z

Spherical Cartesian

Figure 1. Illustration of [blue arrows] Cartesian velocity basis vectors and [red arrows]

spherical velocity basis vectors at selected latitude/longitude points. A basic property of spherical

coordinates is that the spherical basis vectors point in different directions at different locations,

unlike the Cartesian basis vectors, which always point in the same direction. When the velocity

field is laterally non-divergent (or toroidal) on the spherical surface, using a Cartesian representation

of the velocity field allows us to avoid complications from Christoffel symbols (Aluie, 2019). Note

that for general (toroidal + poloidal) velocity fields involving overturning, surface divergence, and

up/downwelling, the complete coarse-graining formalism of Aluie (2019) is necessary.

where λ, φ are longitude and latitude, respectively, and uλ, uφ are the zonal and meridional313

velocity components, respectively. The radial velocity component, ur = 0 for the geostrophic314

flow. The conversion to Cartesian velocity components is necessary since the basis vectors for315

spherical velocities depend on space, while the Cartesian velocity basis vectors are spatially316

independent. Figure 1 illustrates the spatial dependence of the velocity basis vectors. We317

apply the spherical convolution operation in eq. (1) to each of ux, uy, uz as scalar fields to318

obtain the corresponding coarse-grained fields ux, uy, uz, then retrieve the coarse-grained319

velocity, u` in spherical coordinates via320

coarse radial flow = ux cos(λ) cos(φ) + uy sin(λ) cos(φ) + uz sin(φ) = 0321

coarse zonal flow = −ux sin(λ) + uy cos(λ) (5)322

coarse meridional flow = −ux cos(λ) sin(φ)− uy sin(λ) sin(φ) + uz cos(φ).323
324

That the ‘coarse-grained radial flow’ (i.e. ‘vertical’ flow, parallel to gravity) vanishes is325

not obvious and was proved in Aluie (2019) and demonstrated numerically in Aluie and326

Teeraratkul (2023). We emphasize that the coarse-graining algorithm we just described is327

valid only for non-divergent vectors such as u in eq. (3). Significant errors can arise for a328

general flow field (Aluie & Teeraratkul, 2023), where the complete coarse-graining formalism329

of Aluie (2019) is necessary.330

We use the coarse-graining kernel331

G`(x) =
A

2

(
1− tanh

(
10

(
γ(x)

`/2
− 1

)))
, (6)332

which is essentially a top-hat kernel (Pope, 2001) with graded edges. We use geodesic dis-333

tance, γ(x), between any location x = (λ, φ) on Earth’s surface relative to location (λ0, φ0)334

where coarse-graining is being performed, which we calculate using335

γ(x) = REarth arccos
[

sin(φ) sin(φ0) + cos(φ) cos(φ0) cos(λ− λ0)
]
. (7)336

with REarth = 6371 km for Earth’s radius. In eq. (6), A is a normalization factor, evaluated337

numerically, to ensure G` area integrates to unity as per equation (2). In general, we are not338
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restricted to this choice of kernel; however, we use it because of its well-defined characteristic339

width `. Indeed, a convolution with G` in equation (6) is a spatial analogue to an `-day340

running time-average (e.g., see Section 4.4).341

3.1.1 Reflected hemispheres342

A basic complication that can arise when considering very large filter scales is that the343

filter may become incongruous with studying a smaller sub-domain. In this work, we are344

primarily concerned with the extra-tropical hemispheres: [−90◦N,−15◦N] and [15◦N, 90◦N].345

However, at very large length scales information from the equatorial band and opposing346

hemisphere can become introduced through an expanded filter kernel. To resolve this issue,347

a ‘reflected hemispheres’ approach is used, wherein one hemisphere is reflected and copied348

onto the other hemisphere, essentially producing a world with two north, or two south349

hemispheres. This is the same methodology used in our previous work (Storer et al., 2022).350

It is worth noting that the reflected hemispheres and equatorial masking would not be351

necessary in a context where non-geostrophic velocities are considered and a global power352

spectrum is desired. They are used here because we wish to disentangle the power spectra353

of the geostrophic flow in the North and South.354

3.2 Partitioning the geostrophic kinetic energy355

From the coarse-grained horizontal geostrophic velocity field, u`(x, t), following equa-356

tion (1) as prescribed in (Aluie, 2019), we partition kinetic energy (KE) into different sets357

of length-scales:358

E =
1

2
|u(x, t)|2 (bare KE) (8)359

E` =
1

2
|u`(x, t)|2 (coarse KE) (9)360

E<` =
1

2

(
|u(x, t)|2` − |u`(x, t)|2

)
(fine KE). (10)361

362

The “bare KE” in equation (8) is the KE per unit mass (m2/s2) of the original geostrophic363

flow that includes all scales; “coarse KE” in equation (9) represents energy of the coarse-364

grained geostrophic flow at length-scales larger than `; and “fine KE” in equation (10)365

accounts for geostrophic energy at scales smaller than `, which we discuss more in the366

following two paragraphs. Partitioning geostrophic energy across scales is not trivial since367

one needs to ensure that such quantities are physically valid in the sense described by368

Germano (1992) and Vreman et al. (1994). In particular, it is important to ensure that the369

partitioned kinetic energy is (i) positive semi-definite (≥ 0) at every x and every time, and370

(ii) that summing the partitions yields the total energy.371

While it is clear that E` ≥ 0 in equation (9), this property is not obvious for E<` in372

equation (10). Moreover, it may not be obvious why E<` should represent energy at scales373

smaller than `. Vreman et al. (1994) showed that E<` ≥ 0 if G` ≥ 0, whereas E<` can374

be negative if the coarse-graining kernel G` is not positive semi-definite. A proof using375

convexity of the square function, (. . . )2, illustrates why the first term |u(x, t)|2` in eq.376

(10) has an overbar rather than defining fine KE as (|u(x, t)|2 − |u`(x, t)|2)/2. The proof377

from Sadek and Aluie (2018) is as follows. When using G` ≥ 0, coarse-graining (. . . )`378

is a local averaging operation. From Jensen’s inequality (Lieb & Loss, 2001), we know379

that [F(u)]` ≥ F(u`) for any convex operation, F . Since F(u) = |u|2 is convex, we are380

guaranteed that |u(x, t)|2` ≥ |u`(x, t)|2 and, therefore, E<` ≥ 0 if the kernel G`(r) ≥ 0, which381

is the case for our study (see equation (6)).382

Regarding condition (ii) on the sum of energy partitions, Aluie (2019) proved that (for383

a normalized G`) the coarse-graining operation on the sphere in equation (1) preserves the384

spatial average of any field, {F `(x)} = {F (x)}, where {. . . } = (Area)−1
∫

dS(. . . ). There-385
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fore, we have
{
|u|2`

}
=
{
|u|2

}
. This property guarantees that the sum of coarse KE and386

fine KE yields the total kinetic energy after integrating in space and in the absence of land,387

{E} = {E`}+ {E<`} . (11)388

Eq. (11) justifies our interpretation of E<` as energy at scales smaller than `, since it is389

the difference between bare and coarse kinetic energy, on average, while also being positive390

locally.391

3.3 Treatment of land-sea boundaries392

In the above decomposition of energy, a choice has to be made in the presence of land.393

Storer et al. (2022) provides some discussion on the subject, while here we discuss three394

possibilities, along with their pros and cons, in more detail.395

Deformed kernel396

The ‘deformed kernel’ approach is realized by coarse-graining ocean points near land397

with a kernel that is deformed or masked to avoid overlapping with land points. Such a398

deformed kernel must be renormalized to yield an average over just ocean points rather than399

the whole sphere. The main advantage of this approach is that it treats land as a well-defined400

boundary that is separate from the ocean regardless of the coarse-graining length-scale. It401

is also familiar to ocean modelers who routinely mask values over land and do not include402

such masked values when performing area averages.403

However, the deformed kernel has disadvantages that motivate against its use for coarse-404

graining ocean flows. First, a kernel that is inhomogeneous (i.e. changes shape depending405

on geographic location) does not conserve domain averages, including the kinetic energy of406

the flow. The reason for this failed conservation is detailed in Appendix A and demonstrated407

in Figure 2 (blue plot). This figure shows how a kernel that is deformed (via masking) to408

exclude land does not yield 100% of the total energy, i.e., it does not satisfy equation (11).409

As a result, it can yield total energy that is either less than 100% (e.g., over scales larger410

than 500 km in Figure 2) or greater than 100% (e.g., between 100 km and 400 km in Figure411

2).412

For some purposes, the total energy values in Figure 2 are fairly close to 100% (devi-413

ations less than 1%) so one might argue that the deformed kernel is suitable in practice.414

Nonetheless, a more basic reason to avoid deformed kernels is that such inhomogeneous415

kernels (which also include averaging values at adjacent grid-cells or block-averaging on the416

sphere) do not commute with spatial derivatives. Consequently, the coarse-grained field417

resulting from a deformed kernel is not guaranteed to satisfy fundamental flow properties418

exhibited by the unaveraged flow, such as non-divergence, geostrophy, and the vorticity419

present at various scales. These considerations are further detailed in Aluie et al. (2018)420

and Aluie (2019).421

Fixed kernel422

The ‘fixed kernel’, also used in Figure 2, is homogeneous so that it preserves its shape423

at all locations. When coarse-graining ocean points near land such that the kernel overlaps424

land points, we treat land points in a manner consistent with the boundary conditions425

between land and ocean. For example, if we are coarse-graining the velocity, we treat land426

as water with zero velocity, which is consistent with the formulation of OGCM where land427

is often treated as a region of zero velocity. Furthermore, we include these zero land values428

as part of the coarse-graining operation.429

This choice may seem unnatural since we are including unphysical values within the430

coarse-graining operation. However, it is helpful to think of coarse-graining as an opera-431
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tion analogous to removing one’s eyeglasses, rendering an image fuzzy and boundaries less432

well-defined. When coarse-graining at a scale `, the precise boundary between land and433

ocean becomes blurred at that scale and its precise location becomes less certain. The434

coarse-grained velocity, u`, can be nonzero within a distance `/2 beyond the continental435

boundary over land. Forfeiting exact spatial localization in order to gain scale information436

is theoretically inevitable due to the uncertainty principle, which prevents the simultane-437

ous localization of data in physical-space and in scale-space (Stein & Weiss, 1971; Sogge,438

2008). The main advantage of the “Fixed Kernel” choice is ensuring that coarse-graining439

and spatial derivatives commute so that it preserves the fundamental physical properties440

(symmetries) of the flow. Further discussion of these issues can be found in Aluie et al.441

(2018) and Aluie (2019).442

Fixed kernel with or without land443

After coarse-graining the velocity field with a fixed kernel, we show in Figure 2 the level444

of energy conservation if we include or exclude land points from the final tally of kinetic445

energy. We call these, respectively, the ‘fixed kernel w/ land’ and ‘fixed kernel w/o land’.446

The latter (orange line) highlights how coarse-graining smears energy onto land (within `/2447

distance inland) such that if we exclude land from the final tally, we find some leakage of448

energy onto land, which increases as the coarse-graining scale ` increases. We find energy449

leakage of the order of 1% at coarse-graining scales < 100 km, ≈ 4% for scales . 500 km,450

and up to 12% at scales of order 2000 km. However, if we choose to include land in our final451

tally, we are guaranteed to conserve 100% of the energy by satisfying equation (11), thus452

ensuring that the energy budget is fully closed. After all, in an ocean model on a discrete453

grid, the land boundary is only expected to be accurate within a ∆x distance from any454

estimate of the truth, where ∆x is analogous to our coarse-graining scale `.455
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Figure 2. Percentage of total energy recovered by summing the fine and coarse KE terms

in equation (11) obtained by coarse-graining over the full ocean surface as a function of the filter

scale, k` = 1/`. The three lines correspond to the three approaches described in section 3.3, namely,

filtering with a fixed kernel shape and excluding/including land (orange/green lines) when tallying

the total energy. We also coarse-grain with a deformable filter kernel to exclude the filter overlapping

land regions (blue line).

What we use here456

While we have implemented all three approaches to coarse-graining, unless otherwise457

stated in this work, we choose the fixed kernel w/ land by including land regions that have458

non-zero velocity (again, as realized through leakage from nearby ocean values). Storer et459
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al. (2022) showed that deformed and fixed kernels yield qualitatively consistent results for460

spectra. We avoid coarse-graining with a deformed kernel to remain consistent with previous461

work (Aluie et al., 2018) and with forthcoming studies where we apply coarse-graining to462

the dynamical equations where commuting with spatial derivatives is essential.463

3.4 The filtering spectrum464

Sadek and Aluie (2018) showed how coarse-graining can be used to extract the energy465

content at different length scales. They do so by partitioning the velocity into discrete length466

scale bands rather than the two sets (coarse KE and fine KE) in equations (9) and (10). The467

resulting quantity is called the filtering spectrum. The filtering spectrum is distinct from468

the traditional Fourier spectrum, with coarse-graining offering a way to measure energy469

distributions without relying on a Fourier transform, thus avoiding the limitations noted in470

Section 1.1.471

The filtering spectrum is obtained by differentiating in scale the coarse KE472

E(k`) =
d

dk`
{E`} = −`2 d

d`
{E`} , (12)473

where k` = 1/` is the ‘filtering wavenumber’. Sadek and Aluie (2018) showed that the474

filtering spectrum satisfies energy conservation and that E(k`, t) ≥ 0 when using certain475

types of kernels (e.g., concave) of which the top-hat kernel is an example. Moreover, Sadek476

and Aluie (2018) identified the conditions on G` for E(k`, t) to be meaningful in the sense477

that its scaling agrees with that of the traditional Fourier spectrum (when a Fourier analysis478

is possible, such as in periodic domains). Below, we shall sometimes refer to E` as the479

‘cumulative spectrum’ following Sadek and Aluie (2018) since it accounts for all energy at480

scales larger than `. In contrast, E(k`, t), is the spectral energy density at a specific scale `.481

3.5 Comparison with Spherical Harmonics482

Our previous results on spectra using CG in Storer et al. (2022) provide justification for483

using spherical harmonics on the global ocean and a guide for treating land in a manner that484

is consistent with boundary conditions. For the ocean velocity, the boundary conditions are485

zero normal velocity (no flow through) and zero tangential velocity (no-slip). Therefore,486

when using spherical harmonics, we set land to have zero velocity values, similar to what487

we do with the CG method.488

Figure 3 compares spectra from CG to those from spherical harmonics. It uses a single489

daily average of the AVISO data with spherical harmonics, coarse-grained with a deforming490

kernel, and coarse-grained with a fixed kernel including land regions. The spherical harmonic491

analysis was performed using PySHTools (Wieczorek & Meschede, 2018) on the AVISO data492

with reflected hemispheres.493

The two CG methods yield qualitatively consistent domain-averaged results, such as the494

broad mesoscale peak, the NH gyre peak, and the ACC peak. Small deviations between the495

deformable and fixed kernels are only visible on the larger scales, where the deformable filter496

is not expected to conserve total energy. Given these results, we focus on the comparison497

between the fixed kernel CG and the spherical harmonic spectra. In this case, both spectra498

integrate to the same total energy. However, the spherical harmonics spectra are too noisy499

at gyre-scales (> 1000 km). At these large length-scales (low modes), spherical harmonics500

spectra have poor scale resolution because the eigenmodes are spaced far apart; in integer501

multiples of the fundamental mode. It is particularly noticeable around the ACC peak at502

` ≈ 104 km. This limitation is shared by Fourier methods in a Cartesian box. This is not a503

limitation for the CG method of computing spectra since it conserves energy without relying504

on the orthogonality structure of an eigenbasis in the strict sense (Sadek & Aluie, 2018).505
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Figure 3. Power Spectra with Spherical Harmonics and Coarse-Graining Power

spectra computed using spherical harmonics (solid lines), coarse-graining with a deforming kernel

(dashed lines), and coarse-graining with a fixed kernel with land (dotted lines). Reflected hemi-

spheres were used to obtain spectra for NH and SH separately. Note that these spectra were

obtained by masking out only a thin strip [2◦S, 2◦N] and integrating over the domain to allow

for the application of spherical harmonic transforms, unlike those of Figure 8 and (Storer et al.,

2022) that only integrated over latitudes outside of [15◦S, 15◦N], explaining the discrepancy in peak

locations.

A main disadvantage of spherical harmonics is that they are inherently global and can-506

not provide local information connecting scales with currents geographically. This becomes507

apparent in spatial maps, such as those in Figure 4. In coarse-graining, non-zero current508

velocities only intrude a distance of `/2 inland from the coast, as evidenced by the thin509

band of dark colours inside the yellow contour lines (coastlines). Moreover, the band within510

the yellow contour is dark, which reinforces that very little energy is distributed over land.511

Even at a 1000 km filter scale, the majority of land retains identically zero velocity, indi-512

cated by white. In contrast, even at a small filter scale, spherical harmonics generate beams513

of spectral ringing that extend deep into land regions, with non-trivial magnitudes. Worse514

still, at a 1000 km filter, the spherical harmonic filtering fills the global ocean with zonal515

bands, even in the more quiescent open oceans. These ringing features are not present under516

a coarse-graining approach with an appropriately chosen kernel.517

In addition, there are practical considerations in regards to comparing coarse-graining518

with spherical harmonics. Like traditional Fourier methods, spherical harmonics require the519

input data to conform to fairly strict structures: uniform lat/lon grids, specific resolution520

aspect ratios, etc. In contrast, coarse-graining is grid agnostic. That is, while the imple-521

mentation details are different, coarse-graining applies just as well to a uniform lat/lon grid522

as to a generalized non-uniform triangularization grid. While FlowSieve (Storer & Aluie,523

2023), the coarse-graining package used in this work, at present only accepts rectangular524

(but non-uniform) lat/lon grids, that is a limitation imposed by the current implementation,525

and not by the underlying methodology.526

3.6 Reynolds averaging527

We close this section by reviewing basic properties of Reynolds averaging (RA) as528

realized by time averages.529
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Figure 4. Filtering Maps with Spherical Harmonics and Coarse-Graining Speed

of the large-scale AVISO surface currents obtained by [left, AC] spherical harmonics and [right,

BD] coarse-graining. Velocity fields are filtered at [top, AB] 250 km and [bottom, CD] 1000 km.

Colour maps show velocity magnitude on a logarithmic scale, with white indicating identically

zero values. Yellow contours indicate land boundaries in the unfiltered data. Note how filtering

with spherical harmonics, even at 250 km, yields non-zero flow over all continents and prominent

ringing patterns. This is due to the inherently global nature of spherical harmonics, which makes

it challenging to infer spatially local information at different scales.
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Basics of Reynolds averaging530

Time averaging separates the flow into a time-average/‘mean’ and a fluctuating/‘eddy’531

as given by (Pope, 2001)532

〈u〉(x) =
1

T

∫ t0+T

t0

u(x, t)dt, (13)533

534

u′(x, t) = u(x, t)− 〈u〉(x), (14)535

where 〈u〉 is the mean component, u′ the eddy component, and T represents the entire time
record and not just a time window. Two key properties of the Reynolds decomposition are

〈〈u〉〉 = 〈u〉 and 〈u′〉 = 0, (15)

so that the mean of a mean returns the mean (idempotent property) while the mean of the536

eddy is zero. The resulting mean and eddy kinetic energy components are respectively given537

by538

MKE(x) =
1

2
|〈u〉|2(x), (16)539

540

EKE(x, t) =
1

2
|u′|2(x, t). (17)541

Notice that the sum of mean and eddy kinetic energy is not equal to the total kinetic energy.542

Rather, there is an extra cross term, u′ · 〈u〉, needed to close the budget. However, the cross543

term is not positive definite and it has a zero time average, 〈u′ · u〉 = 0. Following a RA544

decomposition, the total energy can be written as545

E(x, t) = EKE(x, t) +MKE(x) +
1

2
(u′ · 〈u〉) (x, t). (18)546

Key differences between Reynolds averaging and coarse-graining547

A key difference between coarse-graining and Reynolds-averaging is that within RA,548

applying the averaging operation twice on any field yields the same result whereas that549

property does not hold for coarse-graining with non-projector kernels, which produce dif-550

ferent filtering results when operating multiple times on the same field (Buzzicotti et al.,551

2018):552

〈〈F 〉〉 = 〈F 〉 whereas F 6= F , (19)553

where 〈·〉 denotes time (or Reynolds) averaging and · denotes coarse-graining. Another554

important difference is that a Reynolds average does not provide a control to adjust the555

partition between the ‘mean’ and ‘eddy’ components. That is, a Reynolds decomposition is556

not a scale decomposition and this point is illustrated in section 4.4. Consequently, the time-557

mean or ensemble-mean flow is not synonymous with large-scale flow, nor does a Reynolds558

eddy fluctuation directly correspond to a characteristic fine-scale.559

To help understand the above points, we emphasize the distinction between time-scale560

and decorrelation-time for a particular flow feature. While it is generally true that larger561

(smaller) scales have slower (faster) time-scale dynamics, it is not always true that their562

decorrelation-time follows this relation. As an example, consider stationary eddies, such as563

the Mann eddy in the North Atlantic. Such eddies have a small spatial-scale (relative to564

the gyre or basin) but are persistent in time. As a result, even if the timescale (∼ `/u) for a565

structure is small when it is associated with the relatively fast dynamics of eddying flows, it566

can be highly correlated (or even stationary) in time, so that its contribution to the MKE567

is not completely removed by a time-average. We show this behavior in sections 4.4 and568

4.5.569
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4 Analysis results570

In this section we present results of the coarse-graining analysis along with a comparison571

with Reynolds averaging based on time averages. In the second part of this section we572

present results from coarse-graining in both space and time as a means to characterize the573

time-scales associated with different length-scales.574

4.1 Coarse-graining the surface geostrophic flow from AVISO575

We split the geostrophic kinetic energy from AVISO into its fine and coarse-grained576

components following equations (9) and (10). For a qualitative appreciation of this de-577

composition, Figure 5 displays maps of the kinetic energy just over the Atlantic using two578

different filter scales, ` = 100 km in the top row and ` = 400 km in the bottom row. From579

left to right, panels in Figure 5 show the total kinetic energy, E , the coarse energy, E`, and580

the fine energy, E<`. The fine scale kinetic energy, E<`, represents kinetic energy at scales581

less than `, as represented (or projected) on a grid of resolution ∆x ∼ `. Notably, as seen in582

Figure 5, E<` does not have small scale features, which results since there is a filter applied583

to both terms in equation (10) defining E<`. This definition ensures that E<` is positive584

semi-definite at each point in space and time.585
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Figure 5. Maps of the coarse-grained decomposition of kinetic energy from a single day of the

AVISO analysis at two different filter scales, ` = 100 km (top) and ` = 400 km (bottom). Here

the bare KE, E(x, t), is compared with coarse KE, E`(x, t), and fine KE, E<`(x, t). The right-most

column shows the fine scale term defined by equation (20), which can yield negative values.

Visualization of fine kinetic energy, E<`, is still useful to identify the regions where586

structures smaller than the filter scale are dominant in the ocean. Even so, one may wish587
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to view the alternative quantity588

E − E` =
1

2

(
|u(x, t)|2 − |u`(x, t)|2

)
, (20)589

which is shown in the right-most column of Figure 5. This quantity reveals more fine scale590

features since only the second term on the right hand side is filtered. However, as discussed591

in Section 3.1, the energy difference, E − E`, can be negative locally in space, and so it does592

not serve our purposes for decomposing the energy into non-negative terms.593

4.2 Reynolds averaging decomposition594

Here, and in subsequent subsections, we show that the time-mean flow consists of an595

entire range of length scales with substantial contributions from the mesoscale. Figure 6596

shows the mean-fluctuation decomposition following the Reynolds averaging approach. The597

maps are focused on the Atlantic region to help reveal details and we show just those598

obtained from AVISO. The time mean is obtained by averaging the velocity over the whole
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Figure 6. Decomposition of geostrophic kinetic energy from AVISO for the Atlantic basin

from a time averaging (Reynolds) decomposition. Left panel: total energy, E(x, t) at a single

day. Left middle panel: 9-year time mean, MKE(x). Right middle panel: fluctuating eddy term,

EKE(x, t). Right panel: the cross term required to recover the total geostrophic energy as defined

in equation (18).

599

time series available, spanning nine years. From left to right we show the total energy at600

a single day, the time mean energy, MKE(x), the fluctuating eddy term, EKE(x, t), and601

the cross term, (u′ · 〈u〉)/2.602

Having used a relatively long time series for averaging, the mean energy in Figure 6 is603

rather depleted away from major current systems, so that the Gulf Stream and the Antarctic604

Circumpolar Current are quite pronounced relative to the gyre interiors. We appreciate605

from this figure that the mean flow retains a substantial contribution from structures with606

a variety of sizes. In the same way, the ‘eddy’ (or temporally fluctuating) flow in Figure 6607

contains most of the small scale fluctuations but also a substantial contribution from large-608

scale structures. The cross term shown on the right panel of Figure 6 has strong fluctuations609

around zero, which make its contribution almost (but not exactly) zero after a spatial-610

average. The blending of length scales revealed by these figures reflects the inability of time611

averaging to decompose the kinetic energy according to length-scales.612
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To further investigate the role of the three Reynolds average energy terms, Figure 7613

shows their temporal variability in both hemispheres. In the first row, we see that EKE
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Figure 7. Top panel: Time-series of total geostrophic kinetic energy, {E(x)} (t) (blue), and the

fluctuating component, {EKE(x)} (t) (orange), in the North (solid line) and South (dashed line)

from the AVISO analysis. Vertical grid lines indicate the start of each quarter-year (01Jan, 01Apr,

01Jul, 01Oct). Bottom panel: Time-series of the cross term (blue) and kinetic energy of the 9-year

mean, {MKE(x)} (orange), in the North (solid line) and South (dashed line). EKE constitutes

a substantial portion of the total energy and with an almost indistinguishable temporal variation.

Here, we show only 6.5 years of the full 9-year record. Plots shown use a 4-day sampling frequency,

but averages are based on a 1-day sampling of the 9-year record.

614

constitutes a substantial portion of the total energy E (80%) and their temporal evolution615

is almost indistinguishable. Both EKE and E tend to peak during the spring-summer. The616

bottom row of Figure 7 shows MKE, which is independent of time, and the cross term,617

which has a zero average. These two quantities are much less energetic, with the mean term618

≈ 20% of the total and the cross term fluctuates about its zero average without a clear619

seasonal signal.620

4.3 The filtering spectrum621

In Figure 8 we show the cumulative large-scale energy for the north and south hemi-622

spheres as obtained from equation (12) for AVISO and NEMO, as well as the filtering623

spectra for the Reynolds-decomposed components of NEMO: full time signal, E(x, t), time624

mean, MKE(x), and time varying, EKE(x, t). In the top panel we show the cumulative625

area-averaged energy spectra, E`, as a function of coarse-graining scale. In the centre and626

bottom panels, we show the filtering spectrum (c.f. equation (12)), in lin-log and log-log627

scale respectively.628

Cumulative Energy Spectra At the large k` (small `) end of the cumulative spectra, we629

see that all four datasets converge. That is, for both NEMO and AVISO, the area-averaged630

energy density is ≈ 2× 10−2m2/s2 (corresponding to an RMS velocity of ≈ 20 cm/s), for631

either hemisphere. At gyre-scales, SH has noticeably higher energy density than NH. This632

asymmetry is balanced by an opposing asymmetry over the mesoscales, where NH has633

higher KE density, which is more readily detectable in the filtering spectra. The NH-SH634

asymmetry can be attributed to basin geometry and continental boundaries. The NH ocean635

basins are land-constrained relative to the SH, which has more room for a larger-scale flow,636
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Figure 8. Power Spectra [Top]: Cumulative surface geostrophic kinetic energy spectra, E`,
as a function of scale `, obtained from both the AVISO and NEMO products in the North and

South. [Middle and bottom]: Filtering spectra obtained following eq. (12) for the full (solid

lines), time mean (dashed times), and time-varying (dotted liens) ssh-derived geostrophic velocity

from the NEMO dataset. Note that both middle and bottom panels show the same data, but using

lin-log and log-log scales respectively.
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namely the ACC, to develop and intensify. We shall see in Table 1 below that most of the637

hemispheric asymmetry resides in the stationary time-mean flow. The stronger (energy-per-638

area) mesoscale flow in the NH is stationary and is most probably due to the time-invariant639

forcing exerted by continental boundaries. This can explain our observation in Fig. 8 (middle640

panel) that NH mesoscales are more intense than in the SH.641

Filtering Spectra The full time filtering spectra in Fig. 8 have been previously reported642

in Storer et al. (2022). Here, we extend previous results by incorporating CG spectra of643

the time-mean and time-varying Reynolds averaging components. As might be expected,644

the time-mean velocity peaks spectrally at large scales (` > 103 km), while the time-varying645

component peaks over the mesoscales. This may misleadingly suggest that time-averaging646

produces a scale separation to a good approximation. However, as will be shown later in this647

subsection, the mesoscale energy (area under the spectrum plot) accounts for a majority of648

the time-mean energy. Therefore, as we are going to show, the time-mean flow is dominated649

by stationary small-scales structures < 500 km in size. The length-scale at which spectra of650

the time-varying and time-mean velocity cross is slightly larger than 500 km.651

Proportion of Energy in Mesoscales In Table 1 we present the kinetic energy of the652

Reynolds averaging components partitioned at 500 km for the NEMO dataset. There are653

three primary conclusions that can be drawn from Table 1. 1) While mesoscales are domi-654

nated by time-varying flow, the majority of the time-mean energy is also in the mesoscales.655

2) The geostrophic time-varying flow is nearly entirely mesoscale, with only a few percent-656

age points in larger scales. It is important to recall, however, that this analysis excludes657

ageostrophic motions, such as the Ekman flow. 3) While the full and time-varying velocities658

are generally consistent between hemispheres, the time-mean velocity shows strong asym-659

metry. Specifically, time-mean mesoscales are stronger in NH, while time-mean gyre-scales660

are stronger in SH. A likely contributor to the latter is the ACC. In the NH, there is stronger661

stationary forcing at the mesoscales relative to the SH due to more restrictive continental662

boundaries. Nearly identical results are found from the Reynolds averaging decomposition663

applied over the 9-year AVISO dataset, shown in Appendix B.664

Full Velocity Time-Mean Time-Varying

` < 500 km [10−2m2/s2]
NH 2.1 0.36 1.7

SH 2.0 0.25 1.8

` > 500 km [10−2m2/s2]
NH 0.20 0.15 0.06

SH 0.22 0.19 0.04

` < 500 km [% of Total]
NH 91 71 97

SH 90 57 98
Table 1. Mesoscale Energy for Reynolds’ Components The area-mean kinetic energy

partitioned at 500 km for each hemisphere (equivalent to the top panel of Fig. 8), for the three

Reynolds’ components: full E(x, t), time-mean MKE(x), and time-varying velocity EKE(x, t).

Presented values are the median (50th percentile) in time from the NEMO dataset. The percentages

in the bottom row are the amount of energy at scales smaller than 500 km with repsect to the total

energy in all scales, restricted to each hemisphere and time-component.

RMS Velocity in Major Currents By integrating the filtering spectrum over a scale665

band, we can obtain the total KE for the chosen scale band and, subsequently, the RMS666

velocity for that range of spatial scales. Table 2 presents these RMS velocity magnitudes667

from NEMO for a selection of geographic regions: NH, SH, ACC, Gulf Stream, and Kuroshio,668

both within the mesoscale (100–500 km) and gyre-scale (> 103 km) scale-bands. The region669
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definitions are included in Appendix C. Note that mesoscales are stronger in NH than SH,670

while gyre-scales are stronger in SH.671

Region
Mesoscales (100–500 km) Gyre-scales (> 103 km)

Block Region KE Masked Block Region KE Masked

South of Tropics 15.0 — 5.3 —

ACC 16.4 28.1 7.0 9.7

North of Tropics 15.5 — 4.3 —

Gulf Stream 32.7 42.2 7.8 8.7

Kuroshio 26.5 40.0 8.1 10.1
Table 2. RMS Current Speed [cm/s] in Select Regions The area-mean RMS velocity

magnitude [cm/s] for selected regions using both Block and KE-masked definitions, see Appendix

C. Note that there is no KE-masked variant of the NH and SH regions. Reported values are for the

time median (50th percentile). Presented values are from the NEMO dataset, and are all rounded

to one decimal point.

Extrapolating to Smaller Scales Both NEMO and AVISO datasets agree well on the672

spectral energy density of the mesoscales, down to ≈ 100 km, where resolution effects begin673

to cause deviations (Amores et al., 2018; Ballarotta et al., 2019).674

Knowing the energy contained at 100 km, we can analytically integrate the total en-675

ergy that would be contained below 100 km, assuming two different theoretically plausible676

slopes, namely k−3` and k
−5/3
` . These power-laws are interesting because they are the theo-677

retical predictions for the spectrum of an ideal turbulent flow in two and three dimensions678

respectively. Even though the ocean is far from being an ideal flow, this exercise can give679

a ‘back-of-the-envelope’ estimate of the energy content of the small scales. If we let S100km680

denote the spectral energy density for ` = 100 km, and assume a spectral scaling of k−α681

spanning all scales smaller than 100 km, then we can compute the total amount of energy682

in scales smaller than 100 km as683

lim
n→∞

∫ 10n

k`=10−5

S100km10−5αk−αdk =
1

α− 1
S100km10−5, (21)684

or, alternatively, to only consider the decade spanning 10–100 km,685 ∫ 10−4

k`=10−5

S100km10−5αk−αdk =
1

α− 1
S100km10−5

[
1− 101−α

]
, (22)686

where we assume that α > 1. Using equations (21) and (22) and the 100 km values presented687

in Fig. 8, we can then compute the amount of energy in scales smaller than 100 km as a688

percentage of energy across all scales. These values are presented in Table 3 and reveal689

that as much as 25–50% of the surface geostrophic kinetic energy is contained in scales690

smaller than 100 km. These scales are un(der)-resolved by pre-SWOT satellite products.691

Our estimates are contingent on a persistent power-law scaling over small scales, but they692

nevertheless illustrate how a substantial proportion of surface geostrophic energy may be693

missed by coarse resolution.694

Zonally-Averaged Coarse Energy In Figure 9 we plot the zonally-averaged kinetic695

energy for selected length-scale bands. Scales larger than 103 km (blue plot in Fig. 9) have696

a dominant contribution from latitudes [60◦S, 40◦S], which roughly corresponds with the697

ACC. However, these latitudes are no longer dominant when considering the band of smaller698

scales: 215 km < ` < 103 km. These scales (orange plot in Fig. 9) show a distinct signal at699
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−α AVISO NEMO

NH SH NH SH

−3 24% [24%] 25% [25%] 23% [23%] 25% [25%]

−5/3 43% [49%] 44% [50%] 41% [47%] 44% [50%]
Table 3. Extrapolated Small-scale Energy Percentage of total kinetic energy integrating

scales in the decade spanning 10–100 km. Values in brackets ([·]) arise from integrating all scales

smaller than 100 km assuming a constant power-law scaling of k−α.

latitudes [30◦N, 40◦N], which roughly aligns with the Gulf Stream and Kuroshio. There is700

also a weaker signal at latitudes [40◦S, 35◦S], which roughly aligns with the Agulhas and701

the Brazil-Malvinas currents.702
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Figure 9. Time- and zonally-averaged kinetic energy computed from AVISO within selected

length-scale bands (see in-set legend) as a function of latitude. We can see that the Antarctic

Circumpolar Current has significant energy at scales > 103 km, while the North has significant

energy within ≈ 30◦N-40◦N where the Western Boundary Currents are located. Note that the

latitude axis is broken to exclude the band [15◦S, 15◦N].

4.4 Spatio-temporal decomposition703

In this section, we present results from coarse-graining in both space and time to reveal704

all the length-scales present in the time-averaged currents up to 9-year temporal mean.705

Our analysis demonstrates a way for comparing data from satellite analysis (AVISO) and706

numerical models (NEMO).707

The approach consists of measuring the filtering spectrum of a temporally-smoothed708

version of the original velocity field. The latter is obtained from a running window time709

average,710

〈u〉τ (x, t) =
1

τ

∫ t+τ/2

t−τ/2
u(x, t′) dt′, (23)711

with τ the size of the time window. Note that a running window time-average in equation712

(23) is similar to spatial coarse-graining (equation (1)) since713

〈〈F 〉τ 〉τ 6= 〈F 〉τ . (24)714

–22–



manuscript submitted to JAMES Journal of Advances in Modeling Earth Systems

Combining equation (12) with equation (23) allows us to measure the filtering energy spec-715

trum of the time-smoothed field716

E(k`, τ) =

〈
d

dk`

{
1

2
|〈u`〉τ |2

}〉
=

〈
d

dk`
{E`,τ}

〉
, (25)717

where we introduced718

E`,τ (x, t) =
1

2
|〈u`〉τ |

2
, (26)719

which is the cumulative spectrum of the temporally-smoothed field. As indicated, E`,τ (x, t)720

is a function of both the size of the time window, τ , and the spatial kernel, `.721

Time-Averaged Spatial Maps We show the time-smoothed energy map, E`=0,τ , in722

Figure 10 from AVISO. Here, the two columns compare results from the North and the723

South regions, while different rows compare results with different time windows, τ . From724

these maps we can see that increasing τ from one day to 1093 days reduces the energy725

down to ≈ 21% (≈ 25%) of the original total energy in the North (South). Hence, averaging726

over three years brings the energy down to values comparable to those over the full nine727

years obtained in the previous section by the Reynolds averaging decomposition, where we728

found that MKE accounts for ≈ 20% of the total energy in the extra-tropics. This result729

indicates that temporal averaging converges quickly for the geostrophic kinetic energy, and730

using longer time records does not significantly alter the partitioning between the temporal731

mean and fluctuating components of the surface geostrophic ocean flow.
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Figure 10. The surface geostrophic kinetic energy from the temporally coarse-grained flow,

E`=0,τ , in the North (left column) and South (right column) from AVISO. The top row shows the

original 1-day averaged flow. The middle and bottom rows show the kinetic energy from the flow

when averaged with a ≈ 6 months time window and a ≈ 3 years time window, respectively, with

the kinetic energy decreasing with an increasing time window. Each panel indicates the % of kinetic

energy remaining relative to the 1-day top row.

732

4.5 Spatio-temporal comparison of AVISO and NEMO733

We now demonstrate using a spatio-temporal coarse-graining, which may complement734

current efforts to disentangle balanced from unbalanced motions in SSH-derived flows. Fig-735

ure 11 presents space-time 2-D spectra, −〈 ddτ d
dk`
{E`,τ}〉, which decomposes the energy as736

measured from AVISO and NEMO. In the left (right) column of Figure 11 we show the737

isolevels of space-time spectra from NEMO (AVISO). Note that the NEMO spectra extend738
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to smaller length scales due to having higher spatial resolution, but that the panels have739

consistent spacing / aspect ratios. The most pronounced difference is that the AVISO iso-740

contours are more circular, while NEMO isocontours or more elongated and tilted, hinting741

at an `− τ relationship. In both datasets, energy peaks at approximately ` = 200 km and742

τ = 2− 3 weeks.743
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Figure 11. Combined spatio-temporal coarse-graining producing 2D spectra, −∂τ∂k`E`,τ from

[left] 1/12◦ NEMO and [right] AVISO, averaged over the [top] NH and [bottom] SH. Mesoscale

energy predominantly peaks on length-scales of 100-200 km and time-scales of 1-3 weeks. Green

diamonds indicate, for each `, the τ at which spectral power is maximized (c. f. Fig 13).

Time-averaging to Align Spectra Remember that for the entire analysis in this paper,744

we are using 1-day averages of SSH to derive velocity from the NEMO data. While the745

SSH from AVISO is also available daily, it is effectively averaged over longer periods of746

time to produce gridded SSH maps from along-track altimeter data. We propose that747

the difference between isocontours from AVISO and NEMO in Figure 11 comes from the748

optimal interpolation used to produce the gridded AVISO product (Pujol et al., 2016), which749

is necessary to construct the global maps from satellite altimeters’ along-track data. To750

support this hypothesis, in Figure 12 we show the spectra as a function of τ measured from751

AVISO and NEMO. In this plot, we have repeated the analysis of the NEMO spectra after752

passing the data through a 7-day running time average (green line), which reproduces the753

time average over the satellite orbits. We can see that the green curve overlaps the AVISO754

measurement (blue) very closely, supporting our hypothesis. This is similar to what was755

observed in Biri et al. (2016); Chassignet and Xu (2017) who performed a similar exercise756

on the AVISO altimeter spectrum and also in what was found in Arbic et al. (2014); Khatri757
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et al. (2018); Renault et al. (2019) who compared the cascade of AVISO and model data and758

determined that AVISO’s spectral fluxes can be reproduced from model data after filtering759

the latter in both space and time.760
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Figure 12. Evidence that the disagreement between AVISO and NEMO over time-scales

. 10 days is due to temporal averaging used in generating the gridded AVISO product. Here,

we show temporal spectra from AVISO (blue) and NEMO (red) in the North (solid lines) and

South (dashed lines), which disagree over τ . 10 days as in Figure 11. However, the temporal

spectra from NEMO agree with those from AVISO after applying a 7-day temporal smoothing to

the original NEMO velocities (green). This result supports our hypothesis that AVISO is miss-

ing dynamical information at time-scales less than 10 days due to temporal smoothing over all

length-scales.

Possible Role of Unbalanced Motions What component of the flow could be yielding761

the discrepancy between NEMO and AVISO? The most obvious possibility is unbalanced762

motion present in the 1-day mean SSH fields of NEMO that is absent from AVISO due to763

the effective weekly averaging required for gridding the satellite measurements. However,764

unbalanced motion had been believed to be important mostly over length-scales . 100 km765

and time-scales . 2 days (e.g. Richman et al. (2012); Qiu et al. (2018)). If our conjecture766

is correct, it would imply that unbalanced motion is present at all scales between 200 km to767

103 km, with significant differences even between 1-2 × 103 km and τ ≈ 1-10 days as shown768

in Fig. 11, requiring averaging over a few days to be removed. Isolating balanced from769

unbalanced motions (e.g. Bühler et al. (2014)) is an active research topic that is beyond770

the scope of this work. Another possible explanation can be found in the time-smoothing771

of balanced motions, which is inherent in the construction of the AVISO dataset. Indeed772

in (Arbic et al., 2013, 2014) they removed high-frequency motions with a 3-day low-pass773

filter before applying spectral analysis and they obtained similar results as the ones we774

observed here.775

4.5.1 Relating Time-scale to Length-scale776

As discussed, Fig. 11 shows a clear mesoscale spectral structure centered roughly on777

200 km and 14 days. In Figure 13 we present for each spatial scale `, the time-scale τ for778

which −∂τ∂k`E`,τ is maximized. We use cubic interpolation in the τ -dimension to compen-779

sate for only having data points for an odd integer number of days. These results are broadly780

similar between hemispheres, however, there are noticeable disagreements between NEMO781

and AVISO. The two agree on the time scale of the largest mesoscales (400–500km), with782

AVISO consistently yielding longer time scales than NEMO for smaller `. NEMO presents783

τ ∼ ` over the mesoscale band, while AVISO gives τ ∼ `0.4.784
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4.5.2 Connection to Space-Time Spectra in the Literature785

Figure 11 shows the importance of performing a combined spatio-temporal decomposi-786

tion to access all information in the data. Our method is similar to frequency-wavenumber787

analysis performed within Fourier boxes by several recent studies: Arbic et al. (2014) were788

interested in mesoscale-driven intrinsic low-frequency variability, while Savage et al. (2017);789

Qiu et al. (2018); Torres et al. (2018) were primarily motivated by isolating the unbalanced790

motions from SSH-derived velocities. Our Figure 11 is analogous, for example, to Figure 4791

in Arbic et al. (2014) and to Figure 3 in Torres et al. (2018), although the latter analyzed792

higher frequencies than those that are available in the datasets that we study here. It is793

important to stress that high-frequency forcing was not employed in the production of the794

NEMO model data used in our work and high-frequency motions are not our current focus795

of interest, while the latter works employed models with simultaneous atmospheric and tidal796

forcing which entails the formation of an internal gravity wave continuum spectrum as first797

described in (Muller & Bony, 2015; Rocha et al., 2016). However, as we mentioned in the798

introduction, the coarse-graining approach gives us access to the global energy budget and,799

moreover, frees us from the limitations of Fourier boxes and the required tapering and de-800

trending. As such, the approach here complements previous frequency-wavenumber analysis801

by allowing us to access much larger length-scales.802

A common feature between our Figure 11 and those in previous studies is a slight803

elongation of isocontours along the diagonal from small to large spatio-temporal scales in804

the main panel of our Figure 11. Such elongation is most prominent in Figure 3 of Torres805

et al. (2018), who were probing scales < 100 km and from roughly 3 hours to 40 days. The806

diagonal elongation of isocontours represents a slight tendency for larger length-scales to807

have longer time-scales.808

However, we emphasize that unlike in Torres et al. (2018), such tendency is only slight809

over the larger scales we analyze here. In fact, an important take-away from Figure 11810

is that all length-scales evolve over a wide range of time-scales. Consider, for example,811

` ≈ 500 km in the left column of Figure 11 at different τ values. We see that the isoline is812

almost vertical over τ ≈ 5 days to τ ≈ 50 days, indicating that flow at 500 km has an equal813

contribution from all these time-scales. We also see that both AVISO and NEMO isolines814
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get flatter (stretched horizontally) as τ increases, such that at τ ≈ 300 days, there is almost815

equal energy at all scales between ≈ 100 km and ≈ 103 km.816

5 Conclusions817

5.1 Summary of the main results818

In this paper we expanded on a recent calculation of the first global energy spectrum819

of the ocean’s surface geostrophic circulation (Storer et al., 2022) using the coarse-graining820

(CG) method. Our analysis here gives new insights into the oceanic circulation. The method821

is implemented in an open-source software, FlowSieve (Storer & Aluie, 2023), that can be822

accessed at https://github.com/husseinaluie/FlowSieve.823

In this work, we compare quantitatively the CG and the spherical harmonics decom-824

positions. While the two methods yield qualitatively consistent domain-averaged results,825

spherical harmonics spectra are too noisy at gyre scales. More importantly, spherical har-826

monics are inherently global and cannot provide local information connecting scales with827

currents geographically.828

We have estimated that the RMS velocity of the mesoscales is globally around 15cm/s,829

but it increases up to 30–40 cm/s in the Kuroshio or the Gulf Stream and up to 16–28 cm/s830

in the ACC. We find notable hemispheric asymmetry in mesoscale energy-per-area, which831

is higher in the north, bringing to the fore the significance of domain geometry. Indeed,832

mesoscales can arise from boundary forcing, which is coherent in time and is distinct from833

the baroclinic instability often discussed as the main driver of mesoscales.834

In this paper, we applied the coarse-graining approach to the Reynolds decomposed835

fields, namely the time-mean and the time-varying terms of the ocean surface currents.836

Results in this direction highlight that while the time-varying term is largely dominated837

by the mesoscales, (≈ 98%), the time-mean component also has a majority (up to 70%)838

contribution from the mesoscale circulation. This highlights the preponderance of ‘standing’839

small-scale structures in the global ocean and the potentially significant role played by840

forcing from the ocean boundaries, which is temporally coherent. It also shows that Reynolds841

decomposition is an ineffective method for disentangling eddy structures from the flow.842

By coarse-graining in both space and time, we have shown that every length-scale843

evolves over a wide range of time-scales. This result makes us appreciate the significance844

of temporally coherent (even stationary) forcing mechanisms acting on the mesoscales, such845

as bottom topography and continental boundaries. An important new contribution of this846

work is the spatio-temporal spectra of the geostrophic currents. These 2D spectra highlight847

how the mesoscales while peaking at ≈ (200 km, 2 weeks), are not only diffused over a range848

of spatial scales, but also vary over a wide range of temporal scales. Further, we extract849

the dominant time-scale, τpeak for each filter scale in the mesoscale band, and find that850

NEMO predicts τ ∼ `, which leads to a length scale-independent advective velocity of 0.15–851

0.2 cm/s. In contrast, AVISO demonstrates consistently longer dominant time-scales, and852

a shallower relationship of τ ∼ `0.4, both of which are likely results of the time averaging853

needed to extract the AVISO velocity maps.854

5.2 Coarse-graining and the filtering spectrum855

The coupling between different length- and time-scales and between different geographic856

regions presents a major difficulty in understanding, modeling, and predicting oceanic cir-857

culation and mixing. Indeed, the oceanic kinetic energy budget is estimated to suffer from858

large uncertainties (Ferrari & Wunsch, 2009). A major reason behind these difficulties is859

a lack of scale-analysis methods that are appropriate in the global ocean. In this paper,860

we have demonstrated the versatility of coarse-graining in serving as a robust scale-analysis861

method for the global ocean circulation that complements existing methods. The approach862
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is very general, allows for probing the dynamics simultaneously in scale and in space, and863

is not restricted by assumptions of homogeneity or isotropy commonly required for tradi-864

tional methods such as Fourier or structure-function analysis. We note that coarse-graining865

includes wavelet analysis (Uchida et al., 2023) as a special case with the proper choice of866

convolution kernel, which disentangles the flow from a band of scales instead of partitioning867

it into large-scales and small-scales (Sadek & Aluie, 2018). Coarse-graining offers a way to868

probe and quantify the energy budget at different length-scales globally while maintaining869

local information about the heterogeneous oceanic regions. We view this work as an im-870

portant step toward constructing a scale-aware global Lorenz Energy Cycle for the ocean871

circulation (Loose et al., 2023).872

Appendix A Deforming the kernel around land873

As outlined in section 3.1, filtering with a constant kernel while treating land as zero-874

velocity water and including land cells (“Fixed Kernel w/ Land”) in the final tally is guar-875

anteed to conserve 100% of the energy, while excluding land cells and integrating only over876

water cells (“Fixed Kernel w/o Land”) leads to a loss of about 11% of the total kinetic en-877

ergy at a filter scale of 2, 000 km (see Figure 2). This result follows since some of the kinetic878

energy ‘smears’ onto the land cells, which are then excluded from the spatial integrals.879

An alternative approach is to deform the kernel around land (“Deforming Kernel”) so880

that only water cells are incorporated in the filtering operation. This approach has the881

advantage of not needing to treat land as water, yet we have shown in Figure 2 that this882

choice still does not conserve 100% of the energy, sometimes even yielding larger values,883

albeit still within 1% error. Here, we explain why a deforming a kernel cannot be expected884

to yield 100% of the energy, unlike the “Fixed Kernel w/ Land.”885

To illustrate how the loss of energy conservation can happen with the Deforming Kernel886

method, consider a one-dimensional domain with five equally spaced points and a simple887

kernel that has a weight of 2 at the target point, 1 at neighbouring points, and 0 otherwise.888

If the domain were periodic then the filtering operation could be represented as the
matrix

G :=


1/2 1/4 0 0 1/4
1/4 1/2 1/4 0 0

0 1/4 1/2 1/4 0

0 0 1/4 1/2 1/4
1/4 0 0 1/4 1/2


such that KE = G ·KE, where KE is a column vector. Note that the sum of each row of G is889

1, a result of normalizing the kernel (assuming a grid spacing of 1 for simplicity). Domain in-890

tegrating in this scenario is simply left-multiplying by the row vector S := [1, 1, 1, 1, 1], which891

is equivalent to taking a column-wise sum. Since S ·G = S, S ·KE = S ·G ·KE = S ·KE,892

and so the domain-integrated kinetic energy is conserved.893

However, if the domain is non-periodic (such as if the edges were ‘land’), then the
deforming kernel that excludes anything outside the boundaries would be

G :=


2/3 1/3 0 0 0
1/4 1/2 1/4 0 0

0 1/4 1/2 1/4 0

0 0 1/4 1/2 1/4

0 0 0 1/3 2/3


In this case, S · G = [11/12, 13/12, 1, 13/12, 11/13] 6= S, and so in general S · KE 6= S · KE.894

Moreover, there is no guarantee that S · KE ≤ S · KE, and so it may be that the total895

filtered kinetic energy exceeds the total unfiltered kinetic energy.896
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As observed, in general, the error arising from deforming the kernel will be much smaller897

than that of treating land as zero-velocity water and only integrating over true water cells,898

especially for large filter kernels. However, again, it is worth recognizing that deforming899

the kernel does not guarantee energy conservation. To fully conserve energy and maintain900

commutativity with differentiation, we choose the “Fixed Kernel w/ Land” option, which901

treats land as zero-velocity water and includes land cells in spatial integrals to compute902

total energy.903

Appendix B Reynolds averaging spectra on AVISO dataset904

Fig B1 reports the energy spectra for the time-mean and time-varying Reynolds av-905

eraging components obtained from the 9-year AVISO dataset. Results are in very good906

agreement with the spectra obtained from NEMO dataset, presented in Fig. 8. The values907

obtained from the two datasets are nearly identical, with the AVISO dataset having less908

small-scale energy owing to having a lower resolution.909
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Figure B1. Power Spectra Filtering spectra obtained following eq. (12) for the full (solid

lines), time mean (dashed times), and time-varying (dotted liens) ssh-derived geostrophic velocity

from the AVISO dataset. Note that both top and bottom panels show the same data, but using

lin-log and log-log scales respectively.

Appendix C Geographic Definitions for Current Regions910

Equations (C2)–(C6) outline the geographic constraints used to define the various re-911

gions used in Table 2. In each definition, λ is longitude in degrees, ranging from −180 to912

180, and φ is latitude in degrees, ranging from −90 to 90. Additionally, any overlap with913

land is removed from the region definition, so that only water cells are included. The region914

masks are presented in Figure C1.915
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Energy Masking Following Rai et al. (2021), subsets of the regions defined in equa-
tions (C2)–(C6) are produced by further restricting to areas with sufficiently high “masking
KE”. For these purposes, a combination of time-mean and time-varying KE is used such
that

Masking KE =
1

2
ρ0 〈u〉2 +

1

2
ρ0

〈
(u− 〈u〉)2

〉
. (C1)

Taking ρ0 = 1025, a cut-off of Masking KE > 50 is applied to the Gulf Stream and Kuroshio,916

and Masking KE > 30 to the ACC. The KE-masked regions are illustrated with dots in917

Figure C1.918

North of Tropics : φ > 15◦ (C2)

Kuroshio : {120◦ < λ < 170◦}
and {17◦ < φ < 45◦}
and {φ ≤ (3/4)λ− 60◦}
and {not (φ < 25◦ and λ ≥ 140◦)}
and {not (λ ≤ 140◦ and φ < (2/5)λ− 31◦)} (C3)

Gulf Stream : {−80.75◦ < λ < −35◦} and {|φ− (2/5)λ− 62◦| ≤ 6◦} (C4)

South of Tropics : φ < −15◦ (C5)

ACC : {−70◦ < φ < −33◦}
and

{
not (λ < −72◦) and φ > −(5/108)λ− 160/3

◦}
and

{
not (λ > 20◦) and φ > −(3/40)λ− 63/2

◦}
(C6)

−150 −100 −50 0 50 100 150

−75
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0
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Figure C1. Illustration of the geographic region definitions (equations (C2)–(C6)), plotted over

a sample velocity field for reference. Note that ‘North of Tropics’ and ‘South of Tropics’ are not

included, but are simply the portions North and South of ‘Tropics’. For ‘Kuroshio’, ‘Gulf Stream’,

and ‘ACC’, the smaller contoured region with dots shows the region definition with an additional

KE mask.
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Open Research919

This study has been conducted using E.U. Copernicus Marine Ser-920

vice Information. The product identifier of the AVISO dataset used in921

this work is “SEALEVEL GLO PHY L4 REP OBSERVATIONS 008 047”, and922

can be downloaded at https://marine.copernicus.eu/services-portfolio/923

access-to-products/. The product identifier of the NEMO dataset is924

“GLOBAL ANALYSISFORECAST PHY CPL 001 015”, and is available at925

https://marine.copernicus.eu/services-portfolio/access-to-products/. The926

source code for the coarse-graining software FlowSieve (Storer & Aluie, 2023) can be freely927

downloaded from https://github.com/husseinaluie/FlowSieve.928
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