

# Fast Computation of Neck-like Features

Hayam Abdelrahman, Yiying Tong, *Member, IEEE*

**Abstract**—Locating neck-like features, or locally narrow parts, of a surface is crucial in various applications such as segmentation, shape analysis, path planning, and robotics. Topological methods are often utilized to find the set of shortest loops around handles and tunnels. However, there are abundant neck-like features on genus-0 shapes without any handles. While 3D geometry-aware topological approaches exist to find neck loops, their construction can be cumbersome and may even lead to geometrically wide loops. Thus we propose a “topology-aware geometric approach” to compute the tightest loops around neck features on surfaces, including genus-0 surfaces. Our algorithm starts with a volumetric representation of an input surface and then calculates the distance function of mesh points to the boundary surface as a Morse function. All neck features induce critical points of this Morse function where the Hessian matrix has precisely one positive eigenvalue, i.e., type-2 saddles. As we focus on geometric neck features, we bypass a topological construction such as the Morse-Smale complex or a lower-star filtration. Instead, we directly create a cutting plane through each neck feature. Each resulting loop can then be tightened to form a closed geodesic representation of the neck feature. Moreover, we offer criteria to measure the significance of a neck feature through the evolution of critical points when smoothing the distance function. Furthermore, we speed up the detection process through mesh simplification without compromising the quality of the output loops.

**Index Terms**—Computer Graphics, Computational Geometry, and Object Modeling, Curve, Surface, Object Representations

## 1 INTRODUCTION

2 **W**HEN we grab objects, we naturally reach for thin  
3 parts between thicker ends. This defines the concept  
4 of “neck” as in [1], where such structures help a robot deter-  
5 mine how to manipulate 3D shapes in its environment. “Las-  
6 soing” around such neck features leads to closed geodesics,  
7 which is helpful in a wide range of computer graphics,  
8 and geometric modeling applications, such as segmentation,  
9 parameterization, shape analysis, topological filtering and  
10 repair, structural weakness detection, wrapping 3D objects,  
11 etc. (e.g., [2], [3], [4], [5], [6], [7], [8], [9]).

12 Many existing methods for calculating shortest loops are  
13 based on the computation of a set of  $2g$  noncontractible  
14 loops that can cut a surface with genus- $g$  into a topological  
15 disk. These loops can be further cleaned and classified into  
16  $g$  handles (contractible through the interior volume) and  $g$   
17 tunnels (contractible through outside space). However, the  
18 number of neck-like features does not only depend on  $g$ . For  
19 example, as shown in Fig. 7, in the Kitten model with genus-  
20 1, there are two detected handles, one is a handle around  
21 the tail, and the other is a handle around the neck; the  
22 latter cannot be detected using existing methods. Similarly,  
23 in Fig. 1, there are many more neck loops in the genus-  
24 4 Fertility model than the expected 4 handles; as for the  
25 4-genus model, there should be  $2g$  homology generators;  
26 4 handles, and 4 tunnels. Moreover, all loops on genus-  
27 0 models are contractible, but some such models contain  
28 prominent neck features, as in the Bunny and Toy models in  
29 Figure 8.

30 One recent method [10] proposed a topological algo-  
31 rithm for computing all possible neck loops. It provided a  
32 mathematical definition of such loops based on the lower-

33 star filtration of the distance to the surface. This method  
34 uses persistent homology to measure the life span of each  
35 noncontractible loop during the filtration process. However,  
36 the construction is complex and can lead to features that do  
37 not resemble a neck.

38 Instead, we propose using the critical points of a pro-  
39 cessed distance function as a Morse function to find both  
40 the location and evaluate the significance of a possible neck-  
41 like feature. Critical points of a Morse function defined on a  
42 volume provide rich topological and geometric information  
43 about the structure of the shape. Thus, they are closely  
44 related to the above lower-star filtration-based approach.  
45 However, we take a shortcut based on the geometry and  
46 directly construct planes that cut through the neck feature,  
47 resulting in initial neck loops on surfaces. We further em-  
48 ploy regularly used Laplacian smoothing to remove noise-  
49 like features in addition to direct geometric criteria such as  
50 loop size and distance to nearby loops.

51 We briefly discuss the most relevant work in Sec. 2, then  
52 provide the mathematical background in Sec. 3 on Morse  
53 functions (Sec. 3.1, (Sec. 3.2), and Laplacian smoothing  
54 (Sec. 3.3). Finally, in Sec. 4, we explain our algorithm in  
55 detail and show our results in Sec. 5 before concluding in  
56 Sec. 6.

## 2 RELATED WORK

57 Many algorithms have been proposed for computing a  
58 homology basis. Some methods use a tetrahedralization  
59 of the interior/exterior volume to detect noncontractible  
60 loops on surfaces automatically. Among these, the HanTun  
61 algorithm [11] is the first volumetric method to compute  
62 and categorize surface loops into either handles or tunnels  
63 with geometric measurements taken into account for large  
64 practical models. A more efficient extension to HanTun was  
65 proposed in [12], which computes a basis for handle and  
66 tunnel loops on a surface mesh based on Reeb graphs; the  
67

• Hayam Abdelrahman and Yiying Tong are with the Department of Computer Science and Engineering, Michigan State University, 428 S. Shaw Lane Room 3115, East Lansing, MI 48824.  
E-mail: ytong@msu.edu

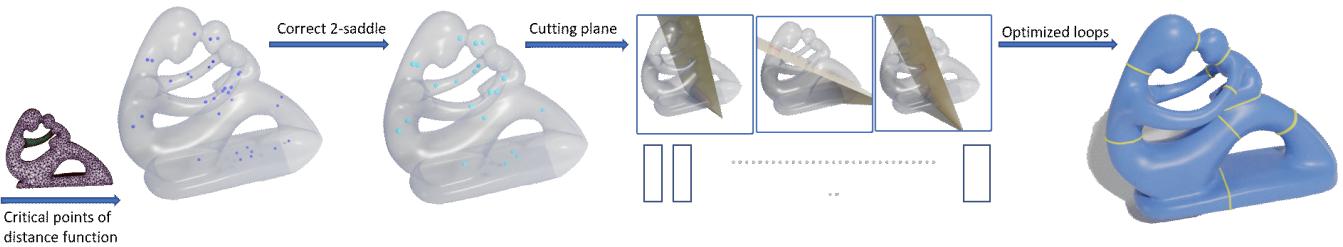


Fig. 1: **Neck-like feature.** Our pipeline starts with calculating the candidate neck feature locations as a specific type of critical points (2-saddles) of the distance to the surface in the volume. The candidates that passed the selection criteria are chosen as the centers of cutting planes that produce loops around the neck features, which are then tightened and cleaned up further.

loops are further tightened for geometric relevance. For optimal codimension-1 cycles (including 1-cycles on surfaces) in integer homology classes, [13] proved a surprising result, namely that the problem can be calculated in polynomial time, despite the NP-hard nature of  $\mathbb{Z}_2$  coefficients. These methods aim to find only a set of noncontractible loops, thus missing neck features like those on genus-0 shapes.

To evaluate a complete set of neck features, [10] proposed to use tetrahedral meshes to identify 3D choke points represented as triangle faces and turn them into homologous “choking loops” on surfaces. Their method provided a definition of choking loops around neck features as well as a measurement of their significance based on persistent homology. The specific topological construction they use is the lower-star filtration of a Morse function that evaluates the distance of a mesh vertex to the boundary surface. During the filtration, the surface thickness grows until the inside tunnel is blocked at some choke points. The importance of these points is measured by, roughly speaking, the size of the separate chambers created by these blockages. While a number of software packages exist for the calculation of the lower-star filtration [14], [15], [16], the construction is not efficient for large tet meshes. Our method skips this construction, although we also use volumetric distance fields to identify seed locations of neck features as in [10]. Our measurement criteria for neck features are more geometrically based. There are surface-based definitions of constriction loops [17] as closed nearly planar geodesics. While undoubtedly valuable for specific applications, such definitions are not as closely related to the topology of the volume as in [10].

While our detection procedure differs from [10] in that we use critical points of a Morse function instead of discrete critical simplices in the lower-star filtration, they are, in fact, linked, as pointed out in [18]. In addition, several studies investigated the role of Morse theory in shape analysis to explore the topological features of discretized spaces [18], [19]. Several other applications in shape segmentation and graph reconstruction used Morse complexes (see, e.g., [20], [21]).

The final output of shortest loops on surfaces in many methods (including [22], [23], [24]) is restricted to shortest closed edge paths. Instead, we use the method proposed in [25] to efficiently compute the shortest path inside a triangle strip loop by updating the triangle strip iteratively. The method has a time complexity of  $O(mk)$ , where  $m$  is

the number of vertices in the original loop, and  $k$  is the average number of edges the loop swept through during the shortening process. A recent alternative proposed in [26] computes exact geodesic paths by flipping edges to create a shorter path within their local neighborhood, which may run even faster. However, as we only have few geodesic loops to evaluate, this post-processing step does not impact the performance much. Another method proposed in [27] computes the shrinking loops by tracking the evolution of a diffusion from a single location on the surface.

### 3 MATHEMATICAL BACKGROUND

This section briefly reviews a few relevant concepts in Morse theory, particularly the critical points of a Morse function. Our algorithm relies on particular types of critical points to locate neck features of 3D shapes. Then we describe volumetric Laplacian smoothing, which provides a measurement of the importance of these critical points and a denoising preprocessing step. Implementation details of these methods can be found in Sec. 4.

#### 3.1 Morse Function

Morse functions form a dense subset of smooth functions defined on a smooth manifold  $M$ . Such functions can often be used to analyze the topological information of a manifold and construct auxiliary structures. Specifically, a function  $f : M \rightarrow \mathbb{R}$  is a Morse function if and only if all critical points of  $f$  are non-degenerate. Its discrete analogy defined on simplicial meshes (triangle meshes in 2D and tetrahedral meshes in 3D) are simply piecewise-linear (PL) functions that evaluate to different values on different vertices, which can always be achieved by symbolic perturbation [28].

The critical points of Morse functions, along with the stable and unstable manifolds [28] of the gradient of Morse functions, can reveal essential structures. One such structure is the Morse-Smale complex, useful in, e.g., quadrangulation [29]. An analog structure, called the quasi Morse-Smale complex, can even be computed for piecewise-linear (PL) functions defined on simplicial 3D meshes [30]. In our algorithm, we take a shortcut to avoid the direct calculation of these structures, but leverage the existence of such structures to directly use critical points as candidates for the neck features that lead to corresponding neck loops.

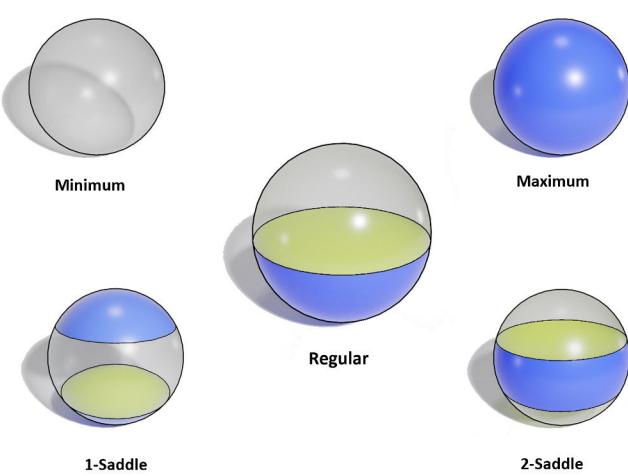


Fig. 2: Different types of critical points. The middle sphere represents a noncritical point with one connected upper part (grey) and one connected lower part (blue). The sufficiently small sphere around a critical point always indicates its type through the component numbers of upper and lower parts; a point with no connected lower part (minimum), a point with no connected upper part (maximum), a point with 1 connected upper part and 2 connected lower parts (1-saddle), and a point with 2 connected upper parts and 1 connected lower part (2-saddle)

### 3.2 Critical Points

For a smooth  $d$ -manifold  $M$ , the critical points of a smooth function  $f : M \rightarrow \mathbb{R}$  are the locations where its differential vanishes. In a local coordinate system  $(x_1, x_2, \dots, x_d)$ , the condition for  $x$  to be a critical point of  $f$  is given by

$$\frac{\partial f}{\partial x_1}(x) = \frac{\partial f}{\partial x_2}(x) = \dots = \frac{\partial f}{\partial x_d}(x) = 0.$$

For a Morse function  $f$ , the Hessian of  $f$  at a critical point is nonsingular, i.e.,  $\det \nabla \nabla^T f \neq 0$ . Thus the critical points can be classified by the signature of the Hessian. For a 3-manifold, there are four types of critical points, namely minima with index 0 (Hessian signature  $[+, +, +]$ ), saddles with index 1 ( $[+, +, -]$  or  $[+, -, -]$ ), and maxima with index 3 ( $[-, -, -]$ ).

Each critical point can also be equivalently classified by the topology of a sub-level set around it, as illustrated in Fig. 2. The sphere around each type of point indicates the boundary of a small neighborhood, with the sub-level set shaded in blue. A critical point with no connected lower part is a minimum, a critical point with no connected higher part is a maximum, a critical point with 1 connected upper part and 2 connected lower parts is a 1-saddle, and a critical point with 2 connected upper parts and 1 connected lower part is a 2-saddle. In contrast, any noncritical point has one connected upper part and one connected lower part [28]. We will use this formulation to detect and classify critical points in our implementation.

### 3.3 Laplacian Smoothing

Laplacian smoothing is a typical tool for denoising functions defined on polygonal meshes. When the function to

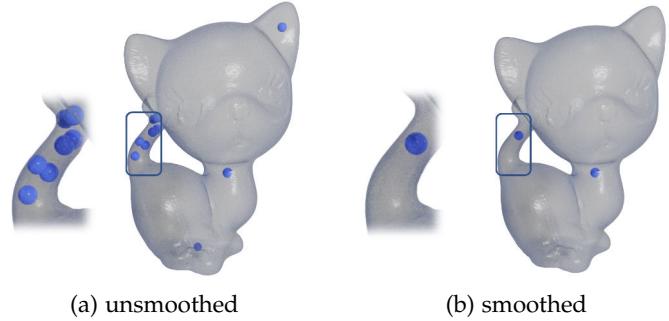


Fig. 3: Singularities before and after smoothing. The blue points are the detected 2-saddles of the Kitten model.

smooth is the vertex positions of the polygonal mesh itself, it serves as a denoising tool for the surface. We use the volumetric cotangent-based Laplacian in [31]. Note that this discretization of the Laplacian corresponds to  $l = -\Delta f$ , where  $\Delta = \nabla^2$  is the continuous Laplacian.

Instead of constructing a filtration of cell complexes as in persistent homology, we employ the notion of persistence under smoothing similar to the Laplace-Beltrami flow-based filtration in [32]. Such a filtering process mimics physical diffusion, described by the heat equation with fixed temperature on the boundary. As heat moves from locations with higher temperature to those with lower temperature, temperature changes at a rate proportional to its Laplacian:

$$\frac{\partial T(x, t)}{\partial t} = \lambda \Delta T(x, t),$$

where  $\lambda$  is the diffusivity. With temporal discretization through the implicit Euler method, we solve the heat equation in an iterative way as

$$T(x, t + h) \approx T(x, t) + \lambda h \Delta T(x, t + h),$$

where  $h$  is the time step size. Together with the spatial discretization of  $T(x, t)$ , the implicit Euler step results in a sparse symmetric linear system. Applying Laplacian smoothing to the distance function defined on all internal vertices of a tetrahedral mesh with a homogeneous Dirichlet boundary is essential in our method. This smoothed distance function provides a measurement of singularity importance and a valid Morse function for the straightforward detection of singularities and the evolution of singularities over the time period in  $nh$ , where  $n$  is the iteration number. Fig. 3 shows the detected 2-saddle points of the kitten model before and after applying the Laplacian smoothing process.

## 4 NECK FEATURE EXTRACTION

Given a closed surface mesh, our algorithm produces a set of loops around 3D neck-like regions for the volume inside or outside the surface. Following the definition in [10], we compute the bottleneck region as the boundary loop of a small surface membrane that alters the connectivity of the inside (or outside) volume. These geometry-aware topologically defined loops can be computed based on seed faces that eliminate a first homology generator (loop) or create a second homology generator when the surface is offset towards the interior of the volume. Based on the

207 observation that the volume between the original surface  
208 and its offset corresponds to a lower-star filtration of dis-  
209 tance function from the surface, the seed face, in either case,  
210 must be incident to a 2-saddle point. Thus, we may bypass  
211 the potentially costly 3D persistent homology evaluation  
212 without missing a single candidate by examining all 2-  
213 saddle points. We select the significant features among the  
214 candidates by examining how the 2-saddles evolve under  
215 Laplacian smoothing instead of persistence in the lower-  
216 star filtration. After all, the diameter of the resulting loop  
217 provides a more straightforward criterion on how the region  
218 is neck-like than the difference in distance function values  
219 of paired simplices in the lower-star filtration. Smoothing  
220 of the distance function also more effectively reduces dupli-  
221 cated detected of neck regions.

222 In theory, our procedure based on 2-saddle detection  
223 guarantees to produce a superset of the seed faces before the  
224 distance function is smoothed. Moreover, according to the  
225 theory of the Laplace-Beltrami flow-based filtration [32], the  
226 smoothing time provides a persistence measure comparable  
227 to that of a Vietoris-Rips complex. Thus the set of 2-saddles  
228 surviving the smoothing process is close to the seed faces  
229 detected above a persistence threshold in [10].

230 **Overview.** Our pipeline starts with a preprocessing that  
231 constructs a tetrahedral mesh for the volume inside (or out-  
232 side) the surface mesh and evaluates the distance function  
233 on interior vertices. Using the distance function as a Morse  
234 function, we evaluate all the critical points with their types.  
235 Laplacian smoothing can be leveraged when determining  
236 critical points. In a typical calculation, we perform a few  
237 rounds of Laplacian smoothing during a preprocessing step,  
238 and then track the evolution of the critical points to select  
239 significant features among 2-saddles. Finally, we extract the  
240 surface loops surrounding all seed 2-saddle points. Those  
241 initial loops are shortened into the final output surface  
242 loops.

#### 243 4.1 Critical point identification

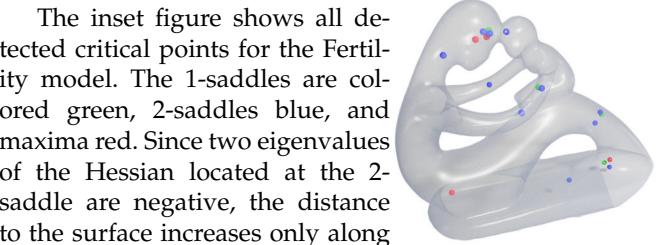
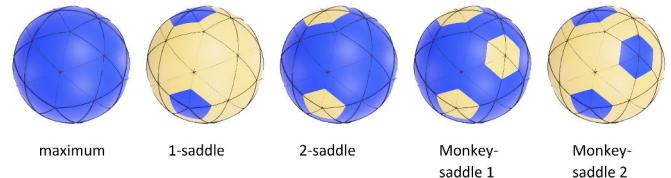
244 To use the distance function of points to the surface as our  
245 Morse function, we follow [10] in applying fast marching to  
246 compute the initial per-vertex values. We add a numerical  
247 perturbation if internal vertices share the same floating-  
248 point values as one of its neighbors. For each internal vertex  
249  $v_i$  with function value  $f(v_i)$ , its one-ring neighbors forms a  
250 topological sphere around the vertex. Next, all vertices are  
251 examined to detect all singularities and classify them. The  
252 procedure can be done in parallel since only the one-ring is  
253 necessary to classify each vertex.

254 We follow the usual discrete singularity type  
255 definitions [28]. We denote by  $N_i^{\text{low}}$  the lower link of  
256  $v_i$ , i.e., the set of all adjacent vertices with function values  
257 less than  $f_i$ . Similarly,  $N_i^{\text{up}}$  is the upper link, set of all the  
258 adjacent vertices with function values higher than  $f_i$ . The  
259 singularity type of each vertex can be defined by the Betti  
260 numbers of the lower link. We classify the vertex based on  
261 the following equivalent discrete definitions, which can be  
262 performed based on the numbers of connected components  
263 for both the lower and upper links:

| type of $v_i$ | #component of $N_i^{\text{up}}$ | #component of $N_i^{\text{low}}$ |
|---------------|---------------------------------|----------------------------------|
| maximum       | 0                               | 1                                |
| minimum       | 1                               | 0                                |
| noncritical   | 1                               | 1                                |
| 1-saddle      | 1                               | 2                                |
| 2-saddle      | 2                               | 1                                |
| monkey-saddle | otherwise                       |                                  |

264 Note that the minima of the distance function can only be  
265 on the surface, so in practice, we only need to evaluate the  
266 three types of critical points for interior vertices. Common  
267 examples of internal critical points are shown in Fig. 4.  
268 While other types of monkey-saddles exist, they rarely  
269 show up for distance functions. In fact, all monkey-saddles  
270 will generally disappear after smoothing. As a side note,  
271 while monkey-saddles do not influence the bottleneck  
272 calculation, since we use only 2-saddles, it is possible to  
273 eliminate them through smoothing combined with local  
274 mesh refinement.

277 The inset figure shows all de-  
278 tected critical points for the Fertil-  
279 ity model. The 1-saddles are col-  
280 colored green, 2-saddles blue, and  
281 maxima red. Since two eigenvalues  
282 of the Hessian located at the 2-  
283 saddle are negative, the distance  
284 to the surface increases only along  
285 one of the three eigenvectors. In the discretized mesh, it  
286 indicates a local minimum along a “skeleton” tangential  
287 to that eigenvector, and corresponds to a bottleneck, i.e.,  
288 a narrowing of the volume around it. Intuitively, we may  
289 interpret the neck loop as the extension of the ring-like lower  
290 link of the 2-saddle to the surface, forming a membrane  
291 separating the internal volume.



292 Fig. 4: Discrete critical points. The triangulated sphere rep-  
293 presents the one-ring neighbor around an internal vertex,  
294 with the lower link colored blue and the upper link colored  
295 yellow. Based on the connectivity of the two parts, all  
296 internal critical points are classified as a 1-saddle, 2-saddle,  
297 monkey-saddle, or maximum.

298 While the set of 2-saddles of the inside volume (or  
299 the volume between the surface and a bounding sphere)  
300 includes all the seed locations for handle-like (or tunnel-like)  
301 neck loops, they may potentially contain some points due  
302 to noise or locations corresponding to large loops. Since we  
303 skip the direct calculation for the 3D persistent homology,  
304 we found in our experiments that smoothing the distance  
305 function and analyzing the spatial relation among neighbor-  
306 ing singularities is sufficient for our task of selecting only the  
307 significant structures.

302 **4.2 Smoothing-based critical point selection**

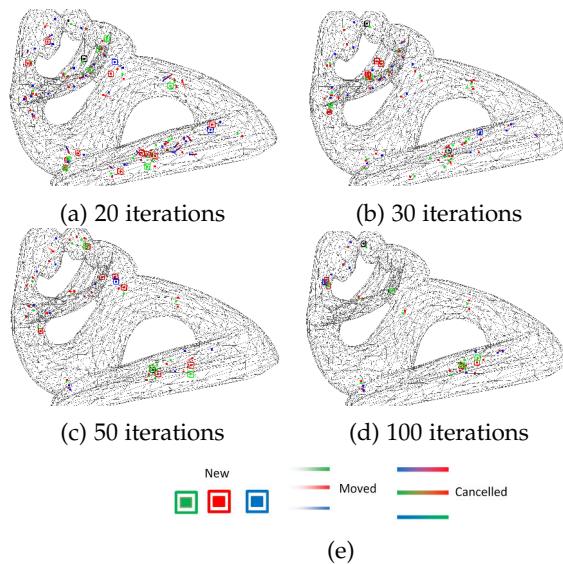
303 We start with a tet mesh  $M$  and rescale it to a unit bounding  
 304 box to avoid scale dependence. Assuming the discrete  
 305 Laplacian is assembled into a matrix  $L$ , we then set the  
 306 rows and columns corresponding to boundary vertices to 0,  
 307 except the diagonal entry is set to 1, to enforce the boundary  
 308 condition  $f|_{\partial M} = 0$ . Denote the discrete representation of  $f$   
 309 as a column vector  $F$ , then solve for  $(M + \lambda h L)F^{t+h} = MF^t$   
 310 in each iteration. Here  $M$  is the mass matrix,  $\lambda$  is the  
 311 diffusivity, and  $h$  is a time step. Setting  $\lambda h$  to a constant  
 312 (0.01 in our experiments) allows us to use the iteration count  
 313 to measure the amount of smoothing performed. Higher-  
 314 order Laplacian operators (e.g., [33]) may be used, but lead  
 315 to similar final results. Note that we are not smoothing the  
 316 mesh itself, so the sparse matrix remains the same, and  
 317 Cholesky pre-factorization can be used to speed up the  
 318 repeated smoothing.

319 In practice, we found the initial distance function from  
 320 fast marching often noisy. Since we intend to ignore small-  
 321 scale bottleneck structures, we perform a few (10 in our  
 322 experiments) smoothing iterations before any critical point  
 323 evaluation. We may then perform the critical point calcula-  
 324 tion algorithm after any number of smoothing iterations.  
 325 As a sanity check based on Morse theory, we compare the  
 326 Euler characteristic  $\chi = \beta_0 - \beta_1 + \beta_2 - \beta_3$ , the alternating  
 327 sum of Betti numbers  $\beta_i$ , with  $\chi_{\partial M} = n_1 + n_2 - n_3$ , where  
 328  $\chi_{\partial M} = 2 - 2g$  is the Euler characteristic of the boundary  
 329 surface with genus  $g$ ,  $n_1$  is the number of 1-saddles,  $n_2$  is  
 330 the number of 2-saddles, and  $n_3$  is the number of maxima.  
 331 In the rare cases of monkey-saddles, their contribution to  
 332 the Euler characteristic can be evaluated by comparing the  
 333 Euler characteristic of its lower-star and that of its lower-  
 334 link.

335 Smoothing the function values of all vertices helps elim-  
 336 inate the transient 2-saddles and keep the persistent ones,  
 337 as shown in Figure 3.

338 **Local approximation-based selection.** One heuristic rule  
 339 we found effective is to perform a local quadratic ap-  
 340 proximation of the one-ring distance function values, and  
 341 verify that the Hessian of the approximation has the correct  
 342 signature of a 2-saddle, i.e., two negative eigenvalues, and  
 343 one positive eigenvalue. Among all the detected 2-saddle  
 344 points in any smoothing level, we may use this local heur-  
 345 istic to rule out some 2-saddles that do not correspond to  
 346 reasonable bottleneck structures. Fig. 1 shows an example of  
 347 excluded points in the Fertility model. All points in the left  
 348 figure are classified as discrete 2-saddles, but only the points  
 349 in the center figure will be further processed. Moreover, the  
 350 positive eigenvector is reused in our initial loop construc-  
 351 tion step, as it represents the normal of the cutting plane.

352 **Evolution-based selection.** If we choose to compute the  
 353 critical points after each iteration of smoothing, we can track  
 354 their continuous changes. The majority of critical points will  
 355 remain at the same vertex or move to a nearby vertex. With  
 356 any k-nearest neighbor algorithm, we can track down these  
 357 changes. In some cases, new critical points are far from any  
 358 critical points in the previous step, while other existing pairs  
 359 of nearby critical points of index  $k$  and  $(k+1)$  cancel out.  
 360 Fig 5 shows the evolution of the different critical points  
 361 at increasing smoothing levels. We demonstrate the noisy



362 Fig. 5: Critical points evolution. (a) to (d) show the detected  
 363 critical points of the downsampled Fertility model at 20, 30,  
 364 50, and 100 smoothing iterations, resp.

365 nature of the initial distance function values on a tet mesh  
 366 by skipping the initial smoothing. Normally, the number of  
 367 critical points after the initial smoothing is low, and can be  
 368 tracked efficiently with negligible time cost compared to the  
 369 smoothing step. We use blue dots to denote maxima, red  
 370 dots for 2-saddles, green dots for 1-saddles, and black dots  
 371 for the rare cases of monkey-saddles. Squares encase new  
 372 critical points, faded arrows represent moving points, and  
 373 blended colored lines denote pairwise cancellation. With  
 374 tracking, we can use the number of smoothing iterations  
 375 between the first appearance of any 2-saddle until its can-  
 376 cellation to measure persistence under smoothing for seed  
 377 point selection.

378 **4.3 Surface loops**

379 Any 2-saddle point that passes both selection criteria has the  
 380 eigenvector associated with the positive eigenvalue of the  
 381 local Hessian matrix stored. Using this eigenvector as the  
 382 normal and the seed point, we can compute a cutting plane  
 383 that intersects the boundary surface as shown in Fig. 1.  
 384 It may result in multiple intersection loops, and we keep  
 385 only the loop with the seed 2-saddle point inside it. All  
 386 three example cutting planes in Fig. 1 result in multiple  
 387 intersection loops. In the leftmost example, the cutting plane  
 388 of a 2-saddle is located in the base, and the red loop is  
 389 chosen as the initial loop. Another cutting plane for a seed  
 390 point located in the model's right arm is shown in the  
 391 middle. The loop around the seed in the neck is shown on  
 392 the right. In our tests, using the eigenvector as the plane  
 393 normal produces the best guess for the initial loop. We may  
 394 optionally use the lower link variation to create multiple  
 395 normals for multiple candidate cutting planes and pick the  
 396 shortest initial loop.

397 Following [25], we perform a local shortest loop eval-  
 398 uation that moves continuously on the triangle surface  
 399 mesh, which improves the geometric shape of the computed  
 400 surface loops. The final shortest loops are discrete geodesic

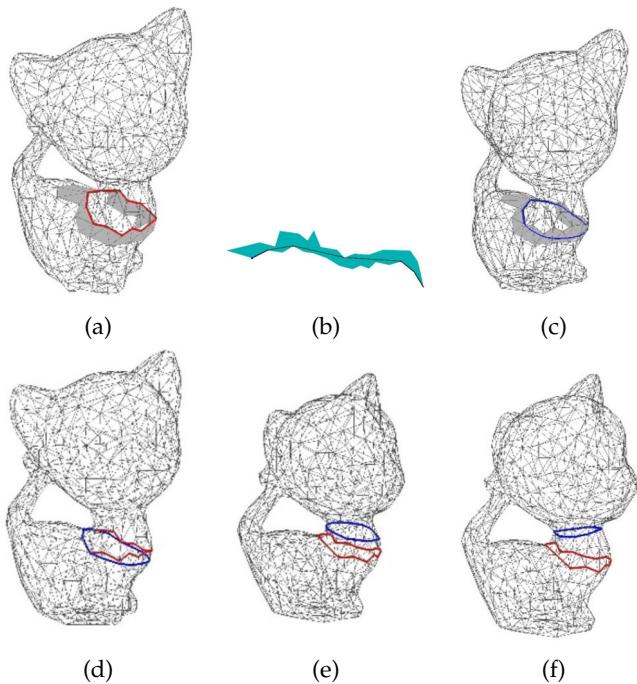


Fig. 6: Computing the shortest loop from the initial loop as in [25]. (a) is the initial loop with the attached triangles (b) is the funnel, and (c) is the shorter loop. The second row shows an example of finding the shortest loop (f) from the initial one , the blue polyline (the shorter loop from a) (d), with an intermediate loop (e).

398 loops, which are locally straight and only go through vertices  
399 with negative discrete Gaussian curvatures. In Fig. 6,  
400 the initial loop is shown as the red polyline around the  
401 Kitten's neck, considered as part of the triangle strip in  
402 grey. The strip of faces on the surface can be unfolded after  
403 cutting along one edge, and the shortest path is computed in  
404 the next subfigure as the blue polyline. The blue polyline is  
405 restricted by a few vertices, which can be used to update  
406 the grey strip for further relaxation of the loop. In the  
407 bottom row of the figure, the evolution of the initial loop,  
408 through an intermediate stage, to the final loop is shown.  
409 Fig. 7 shows more examples of the initial and final loops  
410 on the Kitten (a sparsely sampled model) and the (densely  
411 sampled) Figure-Eight model.

## 5 RESULTS AND DISCUSSION

413 The resulting surface loops of our algorithm represent  
414 neck features akin to the choking loops in [10], which  
415 are geometry-aware topological features. These loops can  
416 populate a complete set of necks like handles, as well as  
417 those narrow regions of the outside space, i.e., tunnels. This  
418 differs from finding a shortest set of loops that span the first  
419 homology of the boundary surface, as this set may derive  
420 from second homology generators of the lower-star filtration  
421 of the distance function. Roughly speaking, they are the  
422 loops that bound membranes that separate the internal  
423 space into lower genus or more components. For instance,  
424 genus-0 models can have multiple handle-type neck features  
425 like the Bunny and the Toy model in Fig. 8, despite their  
426 sphere-like surface geometry.

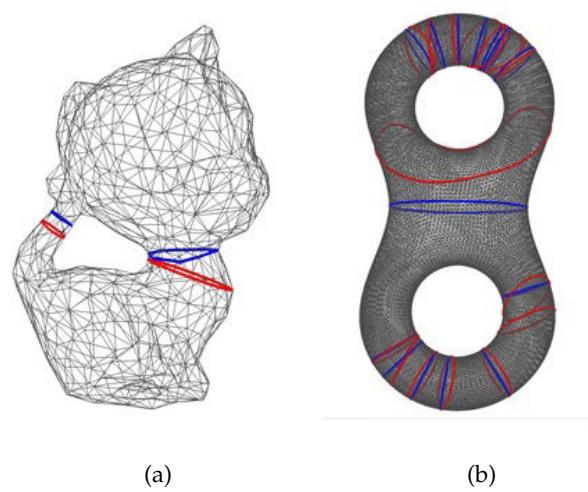


Fig. 7: Initial and final loops; red(initial) , blue(final)

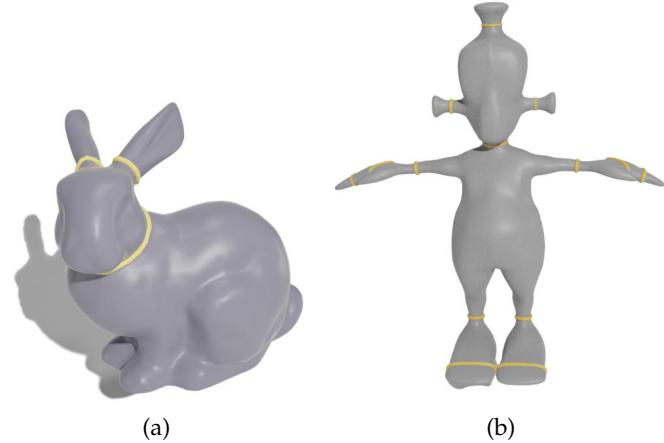


Fig. 8: Neck loops of genus-0 models

427 Fig. 1 shows that for a nonzero genus model, the number  
428 of handle-type neck features can be far more than twice its  
429 genus. Here, the Fertility model is genus-4, but there are  
430 more than double the number of neck features.

431 For some high genus models, such as the genus-31 Buck-  
432 yball, the difference is even more significant; our algorithm  
433 can generate all 96 handle-like loops, each of which is a  
434 valid candidate for 1st homology generator of the surface,  
435 as shown in Fig. 9. It also illustrates a similar structure for a  
436 more complicated Protein model.

437 Fig. 10 shows the tunnel-like neck features computed by  
438 our algorithm, which uses the volumetric mesh bounded by  
439 the given surface and a bounding sphere. The outside neck  
440 loops of the Kitten, Buckyball, Botijo, and EMD models are  
441 shown on the surfaces, with some of the surfaces rendered  
442 transparent to show the internal structure. Such structures  
443 can potentially help evaluate the docking of drug molecules  
444 on protein surfaces and the analysis of ion channels. For  
445 example, in the EMD model, there are four wide tunnels  
446 of the exterior surface, and another 2 tunnels of the double  
447 torus shape inside. The 6 tunnels are all detected in addition  
448 to another small one, and two narrow passages.

449 We first aim to generate a comprehensive set of neck  
450 features automatically. Then we offer multiple heuristic

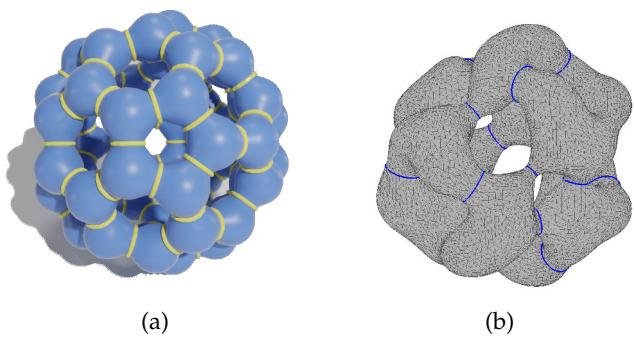


Fig. 9: Neck structures of high-genus models

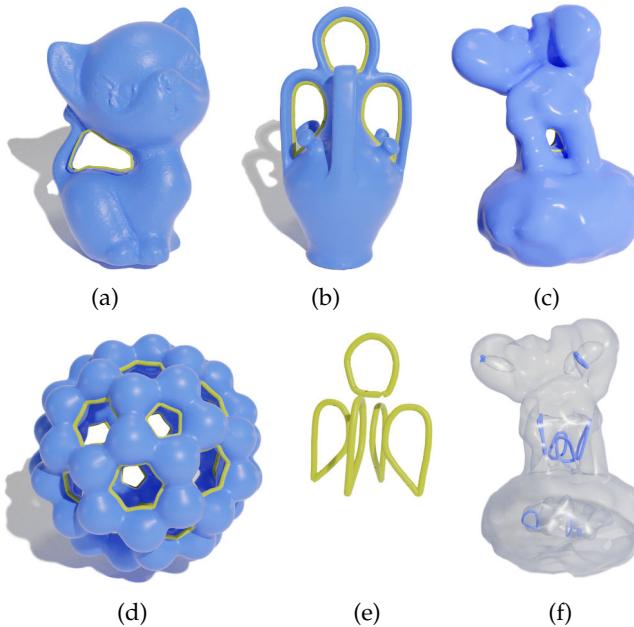


Fig. 10: Tunnels. (a) one tunnel in the Kitten model (d) 32 tunnels in the Buckyball model (b,e) tunnels in the Botijo model (c,f) exterior and interior tunnels of the EMD model

rules to select important ones automatically. The more important selection rule is the smoothing level; we detect different numbers of critical points with varying amounts of smoothing. We offer a default value that works well for all the models shown in the paper, but the user can easily change the smoothing level and choose to include vanished 2-saddles if they persist long enough during the smoothing process. For example, Fig. 11 shows the loops at different smoothing levels of the Fertility model. With 5 iterations of Laplacian smoothing, we can get almost all expected neck loops; by applying more smoothing iterations, some critical points vanish, and their corresponding loops are eliminated from the set of significant neck features.

**Comparison to Feng and Tong's method [10].** The key to the efficiency of our algorithm is skipping the persistent homology computation, which was the bottleneck in their system. Our smoothing algorithm runs for a fixed number of iterations, each of which solves a Poisson equation in linear time with multigrid methods. In contrast, the persistent homology typically runs at  $O(n^3)$  or  $O(n^\omega)$ , where  $n$  is the

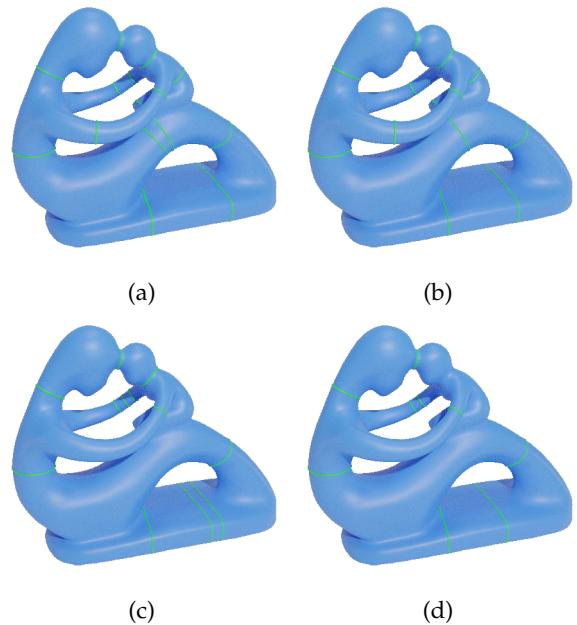


Fig. 11: Detected loops at different smoothing levels (a) 5 iterations (b) 10 iterations (c) 20 iterations (d) 50 iterations

total number of simplices, and  $\omega$  is the matrix multiplication exponent  $\omega < 2.4$ , according to [34]. We tested our method on many models used in [10], and the resulting loops on Fertility, Bunny, Toy, Buckyball, Kitten, and two proteins are shown in the respective result figures. Our method and the method in [10] depend on parameters that enable the user to choose the loop feature significance, including smoothing level in our method, and persistence in their method. We show that similar loops could be generated for the same model with comparable parameter choices. More results showing the robustness of our method can be found in the supplemental material. All experiments show that our method is comparable to their method in results, but with a simpler structure and more efficient computation.

In Table 1, we list the computation time of Feng and Tong's method [10] and our method applied for different models at different scales. We tested both methods on Fertility, Kitten, Botijo, Bunny and Buckyball with numbers of interior vertices 21k, 75k, 256k, 90k, and 163k, resp. All results are in milliseconds. The time is broken down for the different parts of both methods. For Feng and Tong's method, the results in the table show the computation time of prepossessing, persistent homology, computing seed faces, and contracting surface loops. For our method, the computation time of prepossessing, Laplacian smoothing, and critical point detection are listed. For both methods, the input meshes are identical and tetrahedralized using TetGen [35] with parameter "pfq1.2".

Figure 12 shows a performance comparison between the two methods on the same model with different internal seed points. We applied both methods with varying densities of sampling of the Botijo model (Figure 10 (b)), with 113k, 144k, 174k, 257k, and 341k internal vertices, resp. The graph shows that our method is scalable in terms of mesh size.

Figure 13 compares the initial loops generated by Feng

| Feng and Tong's method [10]            |                    | Our Method               |                  |
|----------------------------------------|--------------------|--------------------------|------------------|
| Fertility #v21908, #t90973, #F195923   |                    |                          |                  |
| param                                  | del=10%, dist= 50% | param                    | sm=20 iterations |
| preprocessing                          | 7928               | preprocessing            | 5249             |
| persistent H surf                      | 1576               | smoothing                | 1672             |
| persistent H inside                    | 52927              | computing 2-saddles      | 1349             |
| seed faces                             | 46675              |                          |                  |
| loop computation                       | 2970               | loop computation         | 821              |
| total time (millisecond)               | 65,447             | total time (millisecond) | 8,270            |
| kitten #v75500, #T360282, #F756360     |                    |                          |                  |
| param                                  | del=20%, dist= 50% | param                    | sm=20 iterations |
| preprocessing                          | 24693              | preprocessing            | 24645            |
| persistent H surf                      | 3410               | smoothing                | 8455             |
| persistent H inside                    | 154146             | computing 2-saddles      | 5764             |
| seed faces                             | 138                |                          |                  |
| loop computation                       | 4881               | loop computation         | 267              |
| total time (millisecond)               | 187,268            | total time (millisecond) | 39,131           |
| Botijo #v265523, #t1224316, #F2586212  |                    |                          |                  |
| param                                  | del=20%, dist= 50% | param                    | sm=20 iterations |
| preprocessing                          | 151993             | preprocessing            | 146506           |
| persistent H surf                      | 19972              | smoothing                | 22413            |
| persistent H inside                    | 2049428            | computing 2-saddles      | 19351            |
| seed faces                             | 550                |                          |                  |
| loop computation                       | 55154              | loop computation         | 1093             |
| total time (millisecond)               | 2,277,097          | total time (millisecond) | 189,363          |
| Bunny #v90819, #t431208, #F 906022     |                    |                          |                  |
| param                                  | del=10%, dist= 50% | param                    | sm=20 iterations |
| preprocessing                          | 30582              | preprocessing            | 31307            |
| persistent H surf                      | 4092               | smoothing                | 10187            |
| persistent H inside                    | 309762             | computing 2-saddles      | 6865             |
| seed faces                             | 552                |                          |                  |
| loop computation                       | 253728             | loop computation         | 3787             |
| total time (millisecond)               | 598716             | total time (millisecond) | 52146            |
| Buckyball #v90819, #t431208, #F 906022 |                    |                          |                  |
| param                                  | del=20%, dist= 50% | param                    | sm=20 iterations |
| preprocessing                          | 72288              | preprocessing            | 70681            |
| persistent H surf                      | 10087              | smoothing                | 19336            |
| persistent H inside                    | 318090             | computing 2-saddles      | 12122            |
| seed faces                             | 321                |                          |                  |
| loop computation                       | 160107             | loop computation         | 6542             |
| total time (millisecond)               | 560893             | total time (millisecond) | 108681           |

TABLE 1: Performance statistics and comparison with Feng and Tong [10] (all time measurements in milliseconds, with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz).

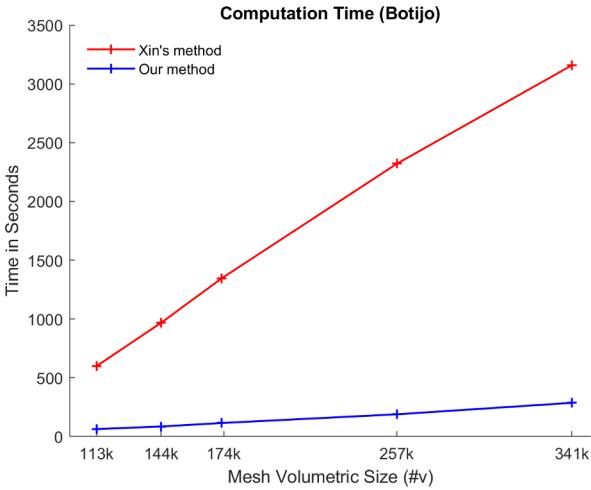


Fig. 12: Computation time of two methods for different scales of the Botijo model

and Tong's method [10] (shown in red) and those generated by our method (in yellow). The yellow loops are generally smoother than the red loops (formed only by edges). While the 2-saddles may drift during the smoothing, they stay close to the corresponding seed faces. Thus, the shrunk red loops form a superset of the shrunk yellow loops.

Computing the shortest loop on the surface as in [25] can be sensitive to the presence of negative Gaussian curvature points, which can trap the movement of the loop at a local minimum. We offer the option of smoothing the surface

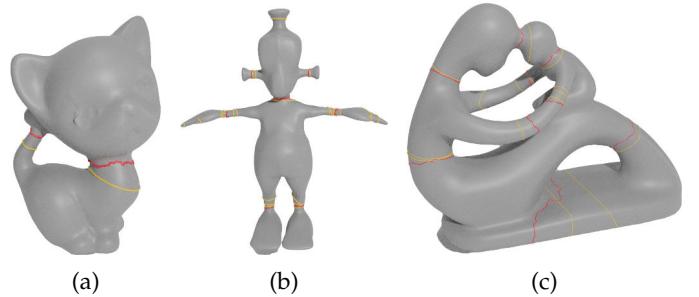


Fig. 13: Initial loops between Feng and Tong's method [10] (in red) and our method (in yellow) for the (a) Kitten (b) Toy, and (c) Fertility models



Fig. 14: 1mag results loops

mesh before our procedure to produce loops closer to actual neck locations. This would also allow duplicated nearby loops to slide to the same neck locations (e.g., Fig. 15). We offer the option to project the loop back onto the original surface, which is always within a small chamfer distance from the smoothed surface.

An additional speedup in the computation of the initial loops can be achieved by using a simplified version of the original mesh. As we search for significant features, the results are always similar. With the mesh simplification, all the procedures involved run faster. For instance, the cutting plane will cut the surface in fewer edges, and shortening the loop will also be more efficient than denser surface meshes. The quality of the loop is no worse than directly running on a dense mesh, as we map the loops back to the original surface. Mapping the loops back to the original mesh is performed by cutting the surface of the original mesh by the cutting planes used on the simplified mesh for creating these loops. Fig. 16 shows an example of using the simplified mesh for computing the surface loops before mapping them back. Some loops in Figure 16(a) are merged in 16(c) as they correspond to the same neck features of the shape (left arm and base).

Fig. 17 shows the final neck loops for some additional 0-genus models. Neck loops computed on around 40 models with various genus can be found in the **supplemental material**.

While we investigate all the internal vertices for critical point classification in various smoothing levels, monkey-saddles do appear in our computation. However, our experiments show that those points quickly vanish after applying adequate smoothing steps. Moreover, such monkey-saddles can be easily eliminated with local refinements of the tet

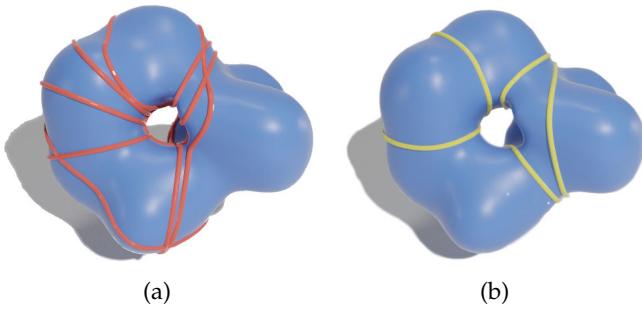


Fig. 15: (a) Initial loops(red) of a protein model (b) Shortest final loops(yellow)

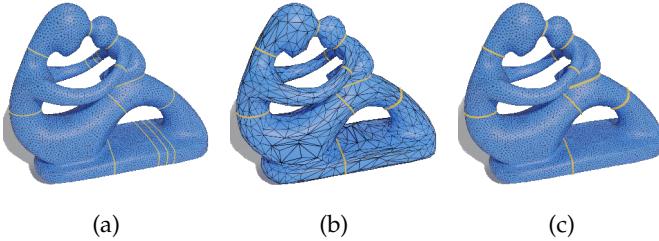
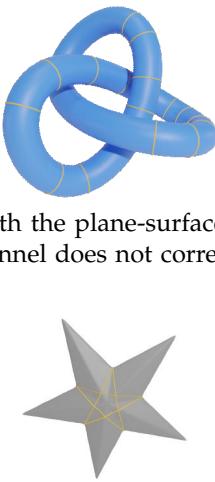


Fig. 16: Computing surface loops on simplified meshes. The initial loops are computed on the original mesh(a), while in (b), the loops are computed on the simplified mesh and mapped back to the original mesh (c).

549 mesh and splitting the monkey-saddle into a few non-  
550 monkey-saddle critical points.

551 **Limitations.** One limitation of our  
552 algorithm is that using cutting planes  
553 might not work for some complicated  
554 examples. For example, the inset figure  
555 shows the computed handles of the  
556 torus knots model. Still, the tunnel of  
557 this specific case would be a Seifert  
558 surface, which cannot be computed with the plane-surface  
559 intersection. However, arguably this tunnel does not cor-  
560 respond to a neck feature.

561 Another type of feature our algo-  
562 rithm is not intended to handle is the  
563 closed geodesic loops as shown in the  
564 star model, which are nevertheless also  
565 candidates for grasping locations of the  
566 object. Such loops can be computed by  
567 surface-based methods like [17].



## 6 CONCLUSION AND FUTURE WORK

568 In this work, we introduce a fast method to compute all neck  
569 feature loops using both the topological and geometrical  
570 properties of the shape. Our key observation is that all  
571 neck structures induce 2-saddles in the distance function.  
572 One way to define the significance of these features is  
573 through persistent homology. However, we found in our  
574 experiments that direct smoothing of the distance function,  
575 mimicking the heat diffusion procedure with a fixed tem-  
576 perature at boundary method, led to similar but often more  
577 reasonable candidate center locations for neck features. A

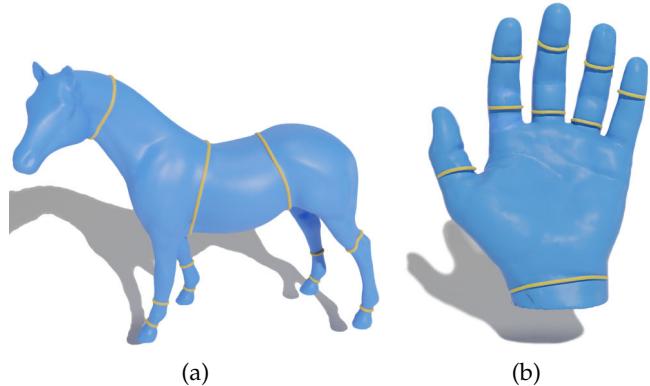


Fig. 17: More results of genus-0 models

579 possible explanation is the global and symmetric nature of  
580 the smoothing procedure than the elder rule in persistence  
581 calculation. Given that the neck features are where the shape  
582 can be “lassoed”, we loosely fit an initial loop by a cutting  
583 plane constructed based on the local Hessian eigenvectors,  
584 and tighten it into a geodesic loop to represent the precise  
585 location where the lasso will end up.

586 In addition to our basic procedure, we offer additional  
587 selection rules based on the loop size and distance to nearby  
588 loops to facilitate the automatic generation of a compact set  
589 of neck features. If the application does not require small  
590 features, we can further speed up the entire pipeline by  
591 using a simplified surface mesh and/or simplified tet mesh  
592 to find the neck feature loops before mapping them back  
593 onto the original surface. The mesh simplification not only  
594 reduces the element count, but also reduces the number of  
595 smoothing iterations.

596 For future work, we wish to investigate further theo-  
597 retical analysis on the diffusion-induced changes in Morse  
598 functions, as well as other types of Morse functions like  
599 diffusion distance. In certain scenarios, homology generator  
600 loops that form knots may also be extracted as features,  
601 which would require an extension from our cutting plane  
602 strategy to a connectivity-based approach. Fast calculation  
603 of membranes bounded by the neck feature loops can be  
604 a relevant computational tool. We also intend to explore  
605 alternative ways of defining neck structure through distance  
606 functions on skeleton structures such as the medial axes.  
607 Applications of neck features in segmentation, meshing, and  
608 machine learning can also be explored. A related geometry-  
609 aware topological feature to explore is the short line seg-  
610 ments through persistent 1-saddles, as they correspond to  
611 thin layers that are easy to punch through (interior) or  
612 close surface locations with opposite normals that are nearly  
613 touching (exterior). In terms of performance improvements,  
614 while our work is performed on tet meshes, it can be  
615 extended to implicit representations on a Cartesian grid. For  
616 that purpose, an efficient smoothing algorithm of the signed  
617 distance function with the 0-th level set fixed is required.

## ACKNOWLEDGMENTS

618 The authors would like to thank Rundong Zhao for his help  
619 in visualization, and Emily Ribando-Gros for proofreading  
620 the paper. The authors also thank the anonymous referees  
621

622 for their valuable comments and helpful suggestions. The  
623 work was supported in part by NSF grant IIS-1900473.

## 624 REFERENCES

[1] A. Varava, D. Krivic, and F. T. Pokorny, "Caging grasps of rigid and partially deformable 3-d objects with double fork and neck features," *IEEE Transactions on Robotics*, vol. 32, no. 6, pp. 1479–1497, 2016.

[2] E. Zhang, K. Mischaikow, and G. Turk, "Feature-based surface parameterization and texture mapping," *ACM Transactions on Graphics (TOG)*, vol. 24, no. 1, pp. 1–27, 2005.

[3] D. Letscher and J. Fritts, "Image segmentation using topological persistence," in *International Conference on Computer Analysis of Images and Patterns*. Springer, 2007, pp. 587–595.

[4] D. Boltcheva, D. Canino, S. M. Aceituno, J.-C. Léon, L. De Floriani, and F. Hétry, "An iterative algorithm for homology computation on simplicial shapes," *Computer-Aided Design*, vol. 43, no. 11, pp. 1457–1467, 2011.

[5] D. Zeng, E. Chambers, D. Letscher, and T. Ju, "To cut or to fill: a global optimization approach to topological simplification," *ACM Transactions on Graphics (TOG)*, vol. 39, no. 6, pp. 1–18, 2020.

[6] J. Liu, S. Xin, X. Gao, K. Gao, K. Xu, B. Chen, and C. Tu, "Computational object-wrapping rope nets," *ACM Transactions on Graphics (TOG)*, vol. 41, no. 1, pp. 1–16, 2021.

[7] J.-M. Favreau and V. Barra, "Tiling surfaces with cylinders using n-loops," *Computers & Graphics*, vol. 35, no. 1, pp. 35–42, 2011.

[8] É. C. D. Verdier and F. Lazarus, "Optimal pants decompositions and shortest homotopic cycles on an orientable surface," *Journal of the ACM (JACM)*, vol. 54, no. 4, pp. 18–es, 2007.

[9] M. Hajij, T. Dey, and X. Li, "Segmenting a surface mesh into pants using morse theory," *Graphical Models*, vol. 88, pp. 12–21, 2016.

[10] X. Feng and Y. Tong, "Choking loops on surfaces," *IEEE transactions on visualization and computer graphics*, vol. 19, no. 8, pp. 1298–1306, 2013.

[11] T. K. Dey, K. Li, J. Sun, and D. Cohen-Steiner, "Computing geometry-aware handle and tunnel loops in 3d models," in *ACM SIGGRAPH 2008 papers*, 2008, pp. 1–9.

[12] T. K. Dey, F. Fan, and Y. Wang, "An efficient computation of handle and tunnel loops via reeb graphs," *ACM Transactions on Graphics (TOG)*, vol. 32, no. 4, pp. 1–10, 2013.

[13] T. K. Dey, A. N. Hirani, and B. Krishnamoorthy, "Optimal homologous cycles, total unimodularity, and linear programming," *SIAM Journal on Computing*, vol. 40, no. 4, pp. 1026–1044, 2011.

[14] D. Morozov, "Dionysus Software," Retrieved December, vol. 24, p. 2018, 2012.

[15] U. Bauer, M. Kerber, and J. Reininghaus, "Dipha (a distributed persistent homology algorithm)," *Software available at <https://github.com/DIPHA/dipha>*, 2014.

[16] B. T. Fasy, J. Kim, F. Lecci, C. Maria, D. L. Millman, and M. J. Kim, "Package 'TDA,'" 2019.

[17] F. Hétry, "Constriction computation using surface curvature," in *Eurographics (short paper)*, 2005, pp. 1–4.

[18] U. Fugacci, C. Landi, and H. Varli, "Critical sets of pl and discrete morse theory: A correspondence," *Computers & Graphics*, vol. 90, pp. 43–50, 2020.

[19] X. Ni, M. Garland, and J. C. Hart, "Fair morse functions for extracting the topological structure of a surface mesh," *ACM Transactions on Graphics (TOG)*, vol. 23, no. 3, pp. 613–622, 2004.

[20] L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo, "Morse complexes for shape segmentation and homological analysis: discrete models and algorithms," in *Computer Graphics Forum*, vol. 34, no. 2. Wiley Online Library, 2015, pp. 761–785.

[21] T. K. Dey, J. Wang, and Y. Wang, "Graph reconstruction by discrete morse theory," *arXiv preprint arXiv:1803.05093*, 2018.

[22] S. Cabello, É. Colin de Verdier, and F. Lazarus, "Finding shortest non-trivial cycles in directed graphs on surfaces," in *Proceedings of the twenty-sixth annual symposium on Computational geometry*, 2010, pp. 156–165.

[23] É. C. De Verdier and F. Lazarus, "Optimal system of loops on an orientable surface," *Discrete & Computational Geometry*, vol. 33, no. 3, pp. 507–534, 2005.

[24] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust, "Computing a canonical polygonal schema of an orientable triangulated surface," in *Proceedings of the seventeenth annual symposium on Computational geometry*, 2001, pp. 80–89.

[25] S.-Q. Xin, Y. He, and C.-W. Fu, "Efficiently computing exact geodesic loops within finite steps," *IEEE transactions on visualization and computer graphics*, vol. 18, no. 6, pp. 879–889, 2011.

[26] N. Sharp and K. Crane, "You can find geodesic paths in triangle meshes by just flipping edges," *ACM Transactions on Graphics (TOG)*, vol. 39, no. 6, pp. 1–15, 2020.

[27] A. Weinrauch, H.-P. Seidel, D. Mlakar, M. Steinberger, and R. Zayer, "A variational loop shrinking analogy for handle and tunnel detection and reeb graph construction on surfaces," *arXiv preprint arXiv:2105.13168*, 2021.

[28] H. Edelsbrunner and J. Harer, *Computational topology: an introduction*. American Mathematical Soc., 2010.

[29] X. Fang, H. Bao, Y. Tong, M. Desbrun, and J. Huang, "Quadrangulation through morse-parameterization hybridization," *ACM Transactions on Graphics (TOG)*, vol. 37, no. 4, pp. 1–15, 2018.

[30] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, "Morse-smale complexes for piecewise linear 3-manifolds," in *Proceedings of the nineteenth annual symposium on Computational geometry*, 2003, pp. 361–370.

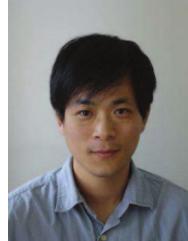
[31] Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun, "Discrete multiscale vector field decomposition," *ACM transactions on graphics (TOG)*, vol. 22, no. 3, pp. 445–452, 2003.

[32] B. Wang and G.-W. Wei, "Object-oriented persistent homology," *Journal of Computational Physics*, vol. 305, pp. 276–299, 2016.

[33] R. Zhao, M. Desbrun, G.-W. Wei, and Y. Tong, "3d hodge decompositions of edge-and face-based vector fields," *ACM Transactions on Graphics (TOG)*, vol. 38, no. 6, pp. 1–13, 2019.

[34] N. Milosavljević, D. Morozov, and P. Skraba, "Zigzag persistent homology in matrix multiplication time," in *Proceedings of the twenty-seventh Annual Symposium on Computational Geometry*, 2011, pp. 216–225.

[35] S. Hang, "Tetgen, a delaunay-based quality tetrahedral mesh generator," *ACM Trans. Math. Softw.*, vol. 41, no. 2, p. 11, 2015.



**Yiyang Tong** is a professor at Michigan State University. Prior to joining MSU, He worked as a postdoctoral scholar at Caltech. He received his Ph.D. degree from the University of Southern California in 2004. His research interests include discrete geometric modeling, physically-based simulation/animation, and discrete differential geometry/topology. He received the U.S. National Science Foundation (NSF) Career Award in 2010.



**Hayam Abdelrahman** is a Ph.D. student in the Department of Computer Science and Engineering at Michigan State University. She received her M.S. and B.S. degrees from Zagazig University, Egypt .Her research interests include computational topology, shape analysis, and computer graphics.