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Fast Computation of Neck-like Features

Hayam Abdelrahman,Yiying Tong, Member, IEEE

Abstract—Locating neck-like features, or locally narrow parts, of a surface is crucial in various applications such as segmentation,

shape analysis, path planning, and robotics. Topological methods are often utilized to find the set of shortest loops around handles and

tunnels. However, there are abundant neck-like features on genus-0 shapes without any handles. While 3D geometry-aware topological

approaches exist to find neck loops, their construction can be cumbersome and may even lead to geometrically wide loops. Thus we

propose a “topology-aware geometric approach” to compute the tightest loops around neck features on surfaces, including genus-0

surfaces. Our algorithm starts with a volumetric representation of an input surface and then calculates the distance function of mesh

points to the boundary surface as a Morse function. All neck features induce critical points of this Morse function where the Hessian

matrix has precisely one positive eigenvalue, i.e., type-2 saddles. As we focus on geometric neck features, we bypass a topological

construction such as the Morse-Smale complex or a lower-star filtration. Instead, we directly create a cutting plane through each neck

feature. Each resulting loop can then be tightened to form a closed geodesic representation of the neck feature. Moreover, we offer

criteria to measure the significance of a neck feature through the evolution of critical points when smoothing the distance function.

Furthermore, we speed up the detection process through mesh simplification without compromising the quality of the output loops.

Index Terms—Computer Graphics, Computational Geometry, and Object Modeling, Curve, Surface, Object Representations

✦

1 INTRODUCTION

1 WHEN we grab objects, we naturally reach for thin2

parts between thicker ends. This defines the concept3

of “neck” as in [1], where such structures help a robot deter-4

mine how to manipulate 3D shapes in its environment. “Las-5

soing” around such neck features leads to closed geodesics,6

which is helpful in a wide range of computer graphics7

and geometric modeling applications, such as segmentation,8

parameterization, shape analysis, topological filtering and9

repair, structural weakness detection, wrapping 3D objects,10

etc. (e.g., [2], [3], [4], [5], [6], [7], [8], [9]).11

Many existing methods for calculating shortest loops are12

based on the computation of a set of 2g noncontractible13

loops that can cut a surface with genus-g into a topological14

disk. These loops can be further cleaned and classified into15

g handles (contractible through the interior volume) and g16

tunnels (contractible through outside space). However, the17

number of neck-like features does not only depend on g. For18

example, as shown in Fig. 7, in the Kitten model with genus-19

1, there are two detected handles, one is a handle around20

the tail, and the other is a handle around the neck; the21

latter cannot be detected using existing methods. Similarly,22

in Fig. 1, there are many more neck loops in the genus-23

4 Fertility model than the expected 4 handles; as for the24

4-genus model, there should be 2g homology generators;25

4 handles, and 4 tunnels. Moreover, all loops on genus-26

0 models are contractible, but some such models contain27

prominent neck features, as in the Bunny and Toy models in28

Figure 8.29

One recent method [10] proposed a topological algo-30

rithm for computing all possible neck loops. It provided a31

mathematical definition of such loops based on the lower-32
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star filtration of the distance to the surface. This method 33

uses persistent homology to measure the life span of each 34

noncontractible loop during the filtration process. However, 35

the construction is complex and can lead to features that do 36

not resemble a neck. 37

Instead, we propose using the critical points of a pro- 38

cessed distance function as a Morse function to find both 39

the location and evaluate the significance of a possible neck- 40

like feature. Critical points of a Morse function defined on a 41

volume provide rich topological and geometric information 42

about the structure of the shape. Thus, they are closely 43

related to the above lower-star filtration-based approach. 44

However, we take a shortcut based on the geometry and 45

directly construct planes that cut through the neck feature, 46

resulting in initial neck loops on surfaces. We further em- 47

ploy regularly used Laplacian smoothing to remove noise- 48

like features in addition to direct geometric criteria such as 49

loop size and distance to nearby loops. 50

We briefly discuss the most relevant work in Sec. 2, then 51

provide the mathematical background in Sec. 3 on Morse 52

functions (Sec. 3.1, (Sec. 3.2), and Laplacian smoothing 53

(Sec. 3.3). Finally, in Sec. 4, we explain our algorithm in 54

detail and show our results in Sec. 5 before concluding in 55

Sec. 6. 56

2 RELATED WORK 57

Many algorithms have been proposed for computing a 58

homology basis. Some methods use a tetrahedralization 59

of the interior/exterior volume to detect noncontractible 60

loops on surfaces automatically. Among these, the HanTun 61

algorithm [11] is the first volumetric method to compute 62

and categorize surface loops into either handles or tunnels 63

with geometric measurements taken into account for large 64

practical models. A more efficient extension to HanTun was 65

proposed in [12], which computes a basis for handle and 66

tunnel loops on a surface mesh based on Reeb graphs; the 67
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Fig. 1: Neck-like feature. Our pipeline starts with calculating the candidate neck feature locations as a specific type of
critical points (2-saddles) of the distance to the surface in the volume. The candidates that passed the selection criteria are
chosen as the centers of cutting planes that produce loops around the neck features, which are then tightened and cleaned
up further.

loops are further tightened for geometric relevance. For op-68

timal codimension-1 cycles (including 1-cycles on surfaces)69

in integer homology classes, [13] proved a surprising result,70

namely that the problem can be calculated in polynomial71

time, despite the NP-hard nature of Z2 coefficients. These72

methods aim to find only a set of noncontractible loops,73

thus missing neck features like those on genus-0 shapes.74

To evaluate a complete set of neck features, [10] pro-75

posed to use tetrahedral meshes to identify 3D choke76

points represented as triangle faces and turn them into77

homologous “choking loops” on surfaces. Their method78

provided a definition of choking loops around neck features79

as well as a measurement of their significance based on80

persistent homology. The specific topological construction81

they use is the lower-star filtration of a Morse function that82

evaluates the distance of a mesh vertex to the boundary83

surface. During the filtration, the surface thickness grows84

until the inside tunnel is blocked at some choke points.85

The importance of these points is measured by, roughly86

speaking, the size of the separate chambers created by these87

blockages. While a number of software packages exist for88

the calculation of the lower-star filtration [14], [15], [16], the89

construction is not efficient for large tet meshes. Our method90

skips this construction, although we also use volumetric91

distance fields to identify seed locations of neck features as92

in [10]. Our measurement criteria for neck features are more93

geometrically based. There are surface-based definitions of94

constriction loops [17] as closed nearly planar geodesics.95

While undoubtedly valuable for specific applications, such96

definitions are not as closely related to the topology of the97

volume as in [10].98

While our detection procedure differs from [10] in that99

we use critical points of a Morse function instead of discrete100

critical simplices in the lower-star filtration, they are, in fact,101

linked, as pointed out in [18]. In addition, several studies102

investigated the role of Morse theory in shape analysis to103

explore the topological features of discretized spaces [18],104

[19]. Several other applications in shape segmentation and105

graph reconstruction used Morse complexes (see, e.g., [20],106

[21]).107

The final output of shortest loops on surfaces in many108

methods (including [22], [23], [24]) is restricted to shortest109

closed edge paths. Instead, we use the method proposed110

in [25] to efficiently compute the shortest path inside a111

triangle strip loop by updating the triangle strip iteratively.112

The method has a time complexity of O(mk), where m is113

the number of vertices in the original loop, and k is the 114

average number of edges the loop swept through during 115

the shortening process. A recent alternative proposed in [26] 116

computes exact geodesic paths by flipping edges to create a 117

shorter path within their local neighborhood, which may 118

run even faster. However, as we only have few geodesic 119

loops to evaluate, this post-processing step does not impact 120

the performance much. Another method proposed in [27] 121

computes the shrinking loops by tracking the evolution of a 122

diffusion from a single location on the surface. 123

3 MATHEMATICAL BACKGROUND 124

This section briefly reviews a few relevant concepts in Morse 125

theory, particularly the critical points of a Morse function. 126

Our algorithm relies on particular types of critical points 127

to locate neck features of 3D shapes. Then we describe 128

volumetric Laplacian smoothing, which provides a mea- 129

surement of the importance of these critical points and 130

a denoising preprocessing step. Implementation details of 131

these methods can be found in Sec. 4. 132

3.1 Morse Function 133

Morse functions form a dense subset of smooth functions 134

defined on a smooth manifold M . Such functions can often 135

be used to analyze the topological information of a manifold 136

and construct auxiliary structures. Specifically, a function 137

f : M → R is a Morse function if and only if all critical 138

points of f are non-degenerate. Its discrete analogy defined 139

on simplicial meshes (triangle meshes in 2D and tetrahedral 140

meshes in 3D) are simply piecewise-linear (PL) functions 141

that evaluate to different values on different vertices, which 142

can always be achieved by symbolic perturbation [28]. 143

The critical points of Morse functions, along with the 144

stable and unstable manifolds [28] of the gradient of Morse 145

functions, can reveal essential structures. One such structure 146

is the Morse-Smale complex, useful in, e.g., quadrangu- 147

lation [29]. An analog structure, called the quasi Morse- 148

Smale complex, can even be computed for piecewise-linear 149

(PL) functions defined on simplicial 3D meshes [30]. In our 150

algorithm, we take a shortcut to avoid the direct calculation 151

of these structures, but leverage the existence of such struc- 152

tures to directly use critical points as candidates for the neck 153

features that lead to corresponding neck loops. 154
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Fig. 2: Different types of critical points. The middle sphere
represents a noncritical point with one connected upper part
(grey) and one connected lower part (blue). The sufficiently
small sphere around a critical point always indicates its type
through the component numbers of upper and lower parts;
a point with no connected lower part (minimum), a point
with no connected upper part (maximum), a point with
1 connected upper part and 2 connected lower parts (1-
saddle), and a point with 2 connected upper parts and 1
connected lower part (2-saddle)

3.2 Critical Points155

For a smooth d-manifold M , the critical points of a smooth
function f : M → R are the locations where its differential
vanishes. In a local coordinate system (x1, x2, ....., xd) , the
condition for x to be a critical point of f is given by

∂f

∂x1

(x) =
∂f

∂x2

(x) = ... =
∂f

∂xd

(x) = 0.

For a Morse function f , the Hessian of f at a critical point is156

nonsingular, i.e., det∇∇T f ̸= 0. Thus the critical points157

can be classified by the signature of the Hessian. For a158

3-manifold, there are four types of critical points, namely159

minima with index 0 (Hessian signature [+,+,+]), saddles160

with index 1 ([+,+,−]) or 2 ([+,−,−]), and maxima with161

index 3 ([−,−,−]).162

Each critical point can also be equivalently classified by163

the topology of a sub-level set around it, as illustrated in164

Fig. 2. The sphere around each type of point indicates the165

boundary of a small neighborhood, with the sub-level set166

shaded in blue. A critical point with no connected lower167

part is a minimum, a critical point with no connected higher168

part is a maximum, a critical point with 1 connected upper169

part and 2 connected lower parts is a 1-saddle, and a critical170

point with 2 connected upper parts and 1 connected lower171

part is a 2-saddle. In contrast, any noncritical point has one172

connected upper part and one connected lower part [28]. We173

will use this formulation to detect and classify critical points174

in our implementation.175

3.3 Laplacian Smoothing176

Laplacian smoothing is a typical tool for denoising func-177

tions defined on polygonal meshes. When the function to178

(a) unsmoothed (b) smoothed

Fig. 3: Singularities before and after smoothing. The blue
points are the detected 2-saddles of the Kitten model.

smooth is the vertex positions of the polygonal mesh itself, 179

it serves as a denoising tool for the surface. We use the 180

volumetric cotangent-based Laplacian in [31]. Note that this 181

discretization of the Laplacian corresponds to l = −∆f, 182

where ∆ = ∇2 is the continuous Laplacian. 183

Instead of constructing a filtration of cell complexes as
in persistent homology, we employ the notion of persistence
under smoothing similar to the Laplace-Beltrami flow-based
filtration in [32]. Such a filtering process mimics physical
diffusion, described by the heat equation with fixed tem-
perature on the boundary. As heat moves from locations
with higher temperature to those with lower temperature,
temperature changes at a rate proportional to its Laplacian:

∂T (x, t)

∂t
= λ∆T (x, t),

where λ is the diffusivity. With temporal discretization
through the implicit Euler method, we solve the heat equa-
tion in an iterative way as

T (x, t+ h) ≈ T (x, t) + λh∆T (x, t+ h),

where h is the time step size. Together with the spatial 184

discretization of T (x, t), the implicit Euler step results 185

in a sparse symmetric linear system. Applying Laplacian 186

smoothing to the distance function defined on all internal 187

vertices of a tetrahedral mesh with a homogeneous Dirichlet 188

boundary is essential in our method. This smoothed dis- 189

tance function provides a measurement of singularity im- 190

portance and a valid Morse function for the straightforward 191

detection of singularities and the evolution of singularities 192

over the time period in nh, where n is the iteration number. 193

Fig. 3 shows the detected 2-saddle points of the kitten model 194

before and after applying the Laplacian smoothing process. 195

4 NECK FEATURE EXTRACTION 196

Given a closed surface mesh, our algorithm produces a set 197

of loops around 3D neck-like regions for the volume inside 198

or outside the surface. Following the definition in [10], 199

we compute the bottleneck region as the boundary loop 200

of a small surface membrane that alters the connectivity 201

of the inside (or outside) volume. These geometry-aware 202

topologically defined loops can be computed based on seed 203

faces that eliminate a first homology generator (loop) or 204

create a second homology generator when the surface is 205

offset towards the interior of the volume. Based on the 206
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observation that the volume between the original surface207

and its offset corresponds to a lower-star filtration of dis-208

tance function from the surface, the seed face, in either case,209

must be incident to a 2-saddle point. Thus, we may bypass210

the potentially costly 3D persistent homology evaluation211

without missing a single candidate by examining all 2-212

saddle points. We select the significant features among the213

candidates by examining how the 2-saddles evolve under214

Laplacian smoothing instead of per persistence in the lower-215

star filtration. After all, the diameter of the resulting loop216

provides a more straightforward criterion on how the region217

is neck-like than the difference in distance function values218

of paired simplices in the lower-star filtration. Smoothing219

of the distance function also more effectively reduces dupli-220

cated detected of neck regions.221

In theory, our procedure based on 2-saddle detection222

guarantees to produce a superset of the seed faces before the223

distance function is smoothed. Moreover, according to the224

theory of the Laplace-Beltrami flow-based filtration [32], the225

smoothing time provides a persistence measure comparable226

to that of a Vietoris-Rips complex. Thus the set of 2-saddles227

surviving the smoothing process is close to the seed faces228

detected above a persistence threshold in [10].229

Overview. Our pipeline starts with a preprocessing that230

constructs a tetrahedral mesh for the volume inside (or out-231

side) the surface mesh and evaluates the distance function232

on interior vertices. Using the distance function as a Morse233

function, we evaluate all the critical points with their types.234

Laplacian smoothing can be leveraged when determining235

critical points. In a typical calculation, we perform a few236

rounds of Laplacian smoothing during a preprocessing step,237

and then track the evolution of the critical points to select238

significant features among 2-saddles. Finally, we extract the239

surface loops surrounding all seed 2-saddle points. Those240

initial loops are shortened into the final output surface241

loops.242

4.1 Critical point identification243

To use the distance function of points to the surface as our244

Morse function, we follow [10] in applying fast marching to245

compute the initial per-vertex values. We add a numerical246

perturbation if internal vertices share the same floating-247

point values as one of its neighbors. For each internal vertex248

vi with function value f(vi), its one-ring neighbors forms a249

topological sphere around the vertex. Next, all vertices are250

examined to detect all singularities and classify them. The251

procedure can be done in parallel since only the one-ring is252

necessary to classify each vertex.253

We follow the usual discrete singularity type254

definitions [28]. We denote by N low
i the lower link of255

vi, i.e., the set of all adjacent vertices with function values256

less than fi. Similarly, Nup
i is the upper link, set of all the257

adjacent vertices with function values higher than fi. The258

singularity type of each vertex can be defined by the Betti259

numbers of the lower link. We classify the vertex based on260

the following equivalent discrete definitions, which can be261

performed based on the numbers of connected components262

for both the lower and upper links:263

type of vi #component of Nup
i #component of N low

i

maximum 0 1
minimum 1 0
noncritical 1 1
1-saddle 1 2
2-saddle 2 1
monkey-saddle otherwise

264

265

Note that the minima of the distance function can only be 266

on the surface, so in practice, we only need to evaluate the 267

three types of critical points for interior vertices. Common 268

examples of internal critical points are shown in Fig. 4. 269

While other types of monkey-saddles exist, they rarely 270

show up for distance functions. In fact, all monkey-saddles 271

will generally disappear after smoothing. As a side note, 272

while monkey-saddles do not influence the bottleneck 273

calculation, since we use only 2-saddles, it is possible to 274

eliminate them through smoothing combined with local 275

mesh refinement. 276

The inset figure shows all de- 277

tected critical points for the Fertil- 278

ity model. The 1-saddles are col- 279

ored green, 2-saddles blue, and 280

maxima red. Since two eigenvalues 281

of the Hessian located at the 2- 282

saddle are negative, the distance 283

to the surface increases only along 284

one of the three eigenvectors. In the discretized mesh, it 285

indicates a local minimum along a “skeleton” tangential 286

to that eigenvector, and corresponds to a bottleneck, i.e., 287

a narrowing of the volume around it. Intuitively, we may 288

interpret the neck loop as the extension of the ring-like lower 289

link of the 2-saddle to the surface, forming a membrane 290

separating the internal volume. 291

Fig. 4: Discrete critical points. The triangulated sphere rep-
resents the one-ring neighbor around an internal vertex,
with the lower link colored blue and the upper link colored
yellow. Based on the connectivity of the two parts, all
internal critical points are classified as a 1-saddle, 2-saddle,
monkey-saddle, or maximum.

While the set of 2-saddles of the inside volume (or 292

the volume between the surface and a bounding sphere) 293

includes all the seed locations for handle-like (or tunnel-like) 294

neck loops, they may potentially contain some points due 295

to noise or locations corresponding to large loops. Since we 296

skip the direct calculation for the 3D persistent homology, 297

we found in our experiments that smoothing the distance 298

function and analyzing the spatial relation among neighbor- 299

ing singularities is sufficient for our task of selecting only the 300

significant structures. 301
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4.2 Smoothing-based critical point selection302

We start with a tet mesh M and rescale it to a unit bound-303

ing box to avoid scale dependence. Assuming the discrete304

Laplacian is assembled into a matrix L, we then set the305

rows and columns corresponding to boundary vertices to 0,306

except the diagonal entry is set to 1, to enforce the boundary307

condition f |∂M = 0. Denote the discrete representation of f308

as a column vector F , then solve for (M+λhL)F t+h = MF t
309

in each iteration. Here M is the mass matrix, λ is the310

diffusivity, and h is a time step. Setting λh to a constant311

(0.01 in our experiments) allows us to use the iteration count312

to measure the amount of smoothing performed. Higher-313

order Laplacian operators (e.g., [33]) may be used, but lead314

to similar final results. Note that we are not smoothing the315

mesh itself, so the sparse matrix remains the same, and316

Cholesky pre-factorization can be used to speed up the317

repeated smoothing.318

In practice, we found the initial distance function from319

fast marching often noisy. Since we intend to ignore small-320

scale bottleneck structures, we perform a few (10 in our321

experiments) smoothing iterations before any critical point322

evaluation. We may then perform the critical point calcu-323

lation algorithm after any number of smoothing iterations.324

As a sanity check based on Morse theory, we compare the325

Euler characteristic χ = β0 − β1 + β2 − β3, the alternating326

sum of Betti numbers βi, with χ∂M − n1 + n2 − n3 , where327

χ∂M = 2 − 2g is the Euler characteristic of the boundary328

surface with genus g, n1 is the number of 1-saddles, n2 is329

the number of 2-saddles, and n3 is the number of maxima.330

In the rare cases of monkey-saddles, their contribution to331

the Euler characteristic can be evaluated by comparing the332

Euler characteristic of its lower-star and that of its lower-333

link.334

Smoothing the function values of all vertices helps elim-335

inate the transient 2-saddles and keep the persistent ones,336

as shown in Figure 3.337

Local approximation-based selection. One heuristic rule338

we found effective is to perform a local quadratic ap-339

proximation of the one-ring distance function values, and340

verify that the Hessian of the approximation has the correct341

signature of a 2-saddle, i.e., two negative eigenvalues, and342

one positive eigenvalue. Among all the detected 2-saddle343

points in any smoothing level, we may use this local heuris-344

tic to rule out some 2-saddles that do not correspond to345

reasonable bottleneck structures. Fig. 1 shows an example of346

excluded points in the Fertility model. All points in the left347

figure are classified as discrete 2-saddles, but only the points348

in the center figure will be further processed. Moreover, the349

positive eigenvector is reused in our initial loop construction350

step, as it represents the normal of the cutting plane.351

Evolution-based selection. If we choose to compute the352

critical points after each iteration of smoothing, we can track353

their continuous changes. The majority of critical points will354

remain at the same vertex or move to a nearby vertex. With355

any k-nearest neighbor algorithm, we can track down these356

changes. In some cases, new critical points are far from any357

critical points in the previous step, while other existing pairs358

of nearby critical points of index k and (k+1) cancel out.359

Fig 5 shows the evolution of the different critical points360

at increasing smoothing levels. We demonstrate the noisy361

(a) 20 iterations (b) 30 iterations

(c) 50 iterations (d) 100 iterations

(e)

Fig. 5: Critical points evolution. (a) to (d) show the detected
critical points of the downsampled Fertility model at 20, 30,
50, and 100 smoothing iterations, resp.

nature of the initial distance function values on a tet mesh 362

by skipping the initial smoothing. Normally, the number of 363

critical points after the initial smoothing is low, and can be 364

tracked efficiently with negligible time cost compared to the 365

smoothing step. We use blue dots to denote maxima, red 366

dots for 2-saddles, green dots for 1-saddles, and black dots 367

for the rare cases of monkey-saddles. Squares encase new 368

critical points, faded arrows represent moving points, and 369

blended colored lines denote pairwise cancellation. With 370

tracking, we can use the number of smoothing iterations 371

between the first appearance of any 2-saddle until its can- 372

cellation to measure persistence under smoothing for seed 373

point selection. 374

4.3 Surface loops 375

Any 2-saddle point that passes both selection criteria has the 376

eigenvector associated with the positive eigenvalue of the 377

local Hessian matrix stored. Using this eigenvector as the 378

normal and the seed point, we can compute a cutting plane 379

that intersects the boundary surface as shown in Fig. 1. 380

It may result in multiple intersection loops, and we keep 381

only the loop with the seed 2-saddle point inside it. All 382

three example cutting planes in Fig. 1 result in multiple 383

intersection loops. In the leftmost example, the cutting plane 384

of a 2-saddle is located in the base, and the red loop is 385

chosen as the initial loop. Another cutting plane for a seed 386

point located in the model’s right arm is shown in the 387

middle. The loop around the seed in the neck is shown on 388

the right. In our tests, using the eigenvector as the plane 389

normal produces the best guess for the initial loop. We may 390

optionally use the lower link variation to create multiple 391

normals for multiple candidate cutting planes and pick the 392

shortest initial loop. 393

Following [25], we perform a local shortest loop eval- 394

uation that moves continuously on the triangle surface 395

mesh, which improves the geometric shape of the computed 396

surface loops. The final shortest loops are discrete geodesic 397
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(a) (b) (c)

(d) (e) (f)

Fig. 6: Computing the shortest loop from the initial loop as
in [25]. (a) is the initial loop with the attached triangles (b)
is the funnel, and (c) is the shorter loop. The second row
shows an example of finding the shortest loop (f) from the
initial one , the blue polyline (the shorter loop from a) (d),
with an intermediate loop (e).

loops, which are locally straight and only go through ver-398

tices with negative discrete Gaussian curvatures. In Fig. 6,399

the initial loop is shown as the red polyline around the400

Kitten’s neck, considered as part of the triangle strip in401

grey. The strip of faces on the surface can be unfolded after402

cutting along one edge, and the shortest path is computed in403

the next subfigure as the blue polyline. The blue polyline is404

restricted by a few vertices, which can be used to update405

the grey strip for further relaxation of the loop. In the406

bottom row of the figure, the evolution of the initial loop,407

through an intermediate stage, to the final loop is shown.408

Fig. 7 shows more examples of the initial and final loops409

on the Kitten (a sparsely sampled model) and the (densely410

sampled) Figure-Eight model.411

5 RESULTS AND DISCUSSION412

The resulting surface loops of our algorithm represent413

neck features akin to the choking loops in [10], which414

are geometry-aware topological features. These loops can415

populate a complete set of necks like handles, as well as416

those narrow regions of the outside space, i.e., tunnels. This417

differs from finding a shortest set of loops that span the first418

homology of the boundary surface, as this set may derive419

from second homology generators of the lower-star filtration420

of the distance function. Roughly speaking, they are the421

loops that bound membranes that separate the internal422

space into lower genus or more components. For instance,423

genus-0 models can have multiple handle-type neck features424

like the Bunny and the Toy model in Fig. 8, despite their425

sphere-like surface geometry.426

(a) (b)

Fig. 7: Initial and final loops; red(initial) , blue(final)

(a) (b)

Fig. 8: Neck loops of genus-0 models

Fig. 1 shows that for a nonzero genus model, the number 427

of handle-type neck features can be far more than twice its 428

genus. Here, the Fertility model is genus-4, but there are 429

more than double the number of neck features. 430

For some high genus models, such as the genus-31 Buck- 431

yball, the difference is even more significant; our algorithm 432

can generate all 96 handle-like loops, each of which is a 433

valid candidate for 1st homology generator of the surface, 434

as shown in Fig. 9. It also illustrates a similar structure for a 435

more complicated Protein model. 436

Fig. 10 shows the tunnel-like neck features computed by 437

our algorithm, which uses the volumetric mesh bounded by 438

the given surface and a bounding sphere. The outside neck 439

loops of the Kitten, Buckyball, Botijo, and EMD models are 440

shown on the surfaces, with some of the surfaces rendered 441

transparent to show the internal structure. Such structures 442

can potentially help evaluate the docking of drug molecules 443

on protein surfaces and the analysis of ion channels. For 444

example, in the EMD model, there are four wide tunnels 445

of the exterior surface, and another 2 tunnels of the double 446

torus shape inside. The 6 tunnels are all detected in addition 447

to another small one, and two narrow passages. 448

We first aim to generate a comprehensive set of neck 449

features automatically. Then we offer multiple heuristic 450
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(a) (b)

Fig. 9: Neck structures of high-genus models

(a) (b) (c)

(d) (e) (f)

Fig. 10: Tunnels. (a) one tunnel in the Kitten model (d) 32
tunnels in the Buckyball model (b,e) tunnels in the Botijo
model (c,f) exterior and interior tunnels of the EMD model

rules to select important ones automatically. The more im-451

portant selection rule is the smoothing level; we detect452

different numbers of critical points with varying amounts453

of smoothing. We offer a default value that works well for454

all the models shown in the paper, but the user can easily455

change the smoothing level and choose to include vanished456

2-saddles if they persist long enough during the smoothing457

process. For example, Fig. 11 shows the loops at different458

smoothing levels of the Fertility model. With 5 iterations of459

Laplacian smoothing, we can get almost all expected neck460

loops; by applying more smoothing iterations, some critical461

points vanish, and their corresponding loops are eliminated462

from the set of significant neck features.463

Comparison to Feng and Tong’s method [10]. The key464

to the efficiency of our algorithm is skipping the persistent465

homology computation, which was the bottleneck in their466

system. Our smoothing algorithm runs for a fixed number of467

iterations, each of which solves a Poisson equation in linear468

time with multigrid methods. In contrast, the persistent469

homology typically runs at O(n3) or O(nω), where n is the470

(a) (b)

(c) (d)

Fig. 11: Detected loops at different smoothing levels (a) 5
iterations (b) 10 iterations (c) 20 iterations (d) 50 iterations

total number of simplices, and ω is the matrix multiplication 471

exponent ω < 2.4, according to [34]. We tested our method 472

on many models used in [10] , and the resulting loops on 473

Fertility, Bunny, Toy, Buckyball, Kitten, and two proteins are 474

shown in the respective result figures. Our method and the 475

method in [10] depend on parameters that enable the user 476

to choose the loop feature significance, including smoothing 477

level in our method, and persistence in their method. We 478

show that similar loops could be generated for the same 479

model with comparable parameter choices. More results 480

showing the robustness of our method can be found in 481

the supplemental material. All experiments show that our 482

method is comparable to their method in results, but with a 483

simpler structure and more efficient computation. 484

In Table 1, we list the computation time of Feng and 485

Tong’s method [10] and our method applied for different 486

models at different scales. We tested both methods on 487

Fertility, Kitten, Botijo, Bunny and Buckyball with numbers 488

of interior vertices 21k, 75k, 256k, 90k, and 163k, resp. All 489

results are in milliseconds. The time is broken down for 490

the different parts of both methods. For Feng and Tong’s 491

method, the results in the table show the computation 492

time of prepossessing, persistent homology, computing seed 493

faces, and contracting surface loops. For our method, the 494

computation time of prepossessing, Laplacian smoothing, 495

and critical point detection are listed. For both methods, 496

the input meshes are identical and tetrahedralized using 497

TetGen [35] with parameter “pfq1.2”. 498

Figure 12 shows a performance comparison between the 499

two methods on the same model with different internal seed 500

points. We applied both methods with varying densities of 501

sampling of the Botijo model (Figure 10 (b)), with 113k, 502

144k, 174k, 257k, and 341k internal vertices, resp. The graph 503

shows that our method is scalable in terms of mesh size. 504

Figure. 13 compares the initial loops generated by Feng 505
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Feng and Tong’s method [10] Our Method
Fertility #v21908, #t90973, #F195923

param del=10%, dist= 50% param sm=20 iterations
preprocessing 7928 preprocessing 5249
persistent H surf 1576 smoothing 1672
persistent H inside 52927 computing 2-saddles 1349
seed faces 46675
loop computation 2970 loop computation 821
total time (millisecond) 65,447 total time (millisecond) 8,270

kitten #v75500, #T360282, #F756360
param del=20%, dist= 50% param sm=20 iterations
preprocessing 24693 preprocessing 24645
persistent H surf 3410 smoothing 8455
persistent H inside 154146 computing 2-saddles 5764
seed faces 138
loop computation 4881 loop computation 267
total time (millisecond) 187,268 total time (millisecond) 39,131

Botijo #v265523, #t1224316, #F2586212
param del=20%, dist= 50% param sm=20 iterations
preprocessing 151993 preprocessing 146506
persistent H surf 19972 smoothing 22413
persistent H inside 2049428 computing 2-saddles 19351
seed faces 550
loop computation 55154 loop computation 1093
total time (millisecond) 2,277,097 total time (millisecond) 189,363

Bunny #v90819, #t431208, #F 906022
param del=10%, dist= 50% param sm=20 iterations
preprocessing 30582 preprocessing 31307
persistent H surf 4092 smoothing 10187
persistent H inside 309762 computing 2-saddles 6865
seed faces 552
loop computation 253728 loop computation 3787
total time (millisecond) 598716 total time (millisecond) 52146

Buckyball #v90819, #t431208, #F 906022
param del=20%, dist= 50% param sm=20 iterations
preprocessing 72288 preprocessing 70681
persistent H surf 10087 smoothing 19336
persistent H inside 318090 computing 2-saddles 12122
seed faces 321
loop computation 160107 loop computation 6542
total time (millisecond) 560893 total time (millisecond) 108681

TABLE 1: Performance statistics and comparison with Feng
and Tong [10] (all time measurements in milliseconds, with
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz).

Fig. 12: Computation time of two methods for different
scales of the Botijo model

and Tong’s method [10] (shown in red) and those generated506

by our method (in yellow). The yellow loops are generally507

smoother than the red loops (formed only by edges). While508

the 2-saddles may drift during the smoothing, they stay509

close to the corresponding seed faces. Thus, the shrunk red510

loops form a superset of the shrunk yellow loops.511

Computing the shortest loop on the surface as in [25] can512

be sensitive to the presence of negative Gaussian curvature513

points, which can trap the movement of the loop at a local514

minimum. We offer the option of smoothing the surface515

(a) (b) (c)

Fig. 13: Initial loops between Feng and Tong’s method [10]
(in red) and our method (in yellow) for the (a) Kitten (b) Toy,
and (c) Fertility models

(a) (b)

Fig. 14: 1mag results loops

mesh before our procedure to produce loops closer to actual 516

neck locations. This would also allow duplicated nearby 517

loops to slide to the same neck locations (e.g., Fig. 15). We 518

offer the option to project the loop back onto the original 519

surface, which is always within a small chamfer distance 520

from the smoothed surface. 521

An additional speedup in the computation of the initial 522

loops can be achieved by using a simplified version of the 523

original mesh. As we search for significant features, the 524

results are always similar. With the mesh simplification, all 525

the procedures involved run faster. For instance, the cutting 526

plane will cut the surface in fewer edges, and shortening the 527

loop will also be more efficient than denser surface meshes. 528

The quality of the loop is no worse than directly running on 529

a dense mesh, as we map the loops back to the original 530

surface. Mapping the loops back to the original mesh is 531

performed by cutting the surface of the original mesh by the 532

cutting planes used on the simplified mesh for creating these 533

loops. Fig. 16 shows an example of using the simplified 534

mesh for computing the surface loops before mapping them 535

back. Some loops in Figure 16(a) are merged in 16(c) as 536

they correspond to the same neck features of the shape (left 537

arm and base). 538

Fig. 17 shows the final neck loops for some additional 0- 539

genus models. Neck loops computed on around 40 models 540

with various genus can be found in the supplemental 541

material. 542

While we investigate all the internal vertices for critical 543

point classification in various smoothing levels, monkey- 544

saddles do appear in our computation. However, our exper- 545

iments show that those points quickly vanish after applying 546

adequate smoothing steps. Moreover, such monkey-saddles 547

can be easily eliminated with local refinements of the tet 548
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(a) (b)

Fig. 15: (a) Initial loops(red) of a protein model (b) Shortest
final loops(yellow)

(a) (b) (c)

Fig. 16: Computing surface loops on simplified meshes. The
initial loops are computed on the original mesh(a), while
in (b), the loops are computed on the simplified mesh and
mapped back to the original mesh (c).

mesh and splitting the monkey-saddle into a few non-549

monkey-saddle critical points.550

Limitations. One limitation of our551

algorithm is that using cutting planes552

might not work for some complicated553

examples. For example, the inset figure554

shows the computed handles of the555

torus knots model. Still, the tunnel of556

this specific case would be a Seifert557

surface, which cannot be computed with the plane-surface558

intersection. However, arguably this tunnel does not corre-559

spond to a neck feature.560

Another type of feature our algo-561

rithm is not intended to handle is the562

closed geodesic loops as shown in the563

star model, which are nevertheless also564

candidates for grasping locations of the565

object. Such loops can be computed by566

surface-based methods like [17].567

6 CONCLUSION AND FUTURE WORK568

In this work, we introduce a fast method to compute all neck569

feature loops using both the topological and geometrical570

properties of the shape. Our key observation is that all571

neck structures induce 2-saddles in the distance function.572

One way to define the significance of these features is573

through persistent homology. However, we found in our574

experiments that direct smoothing of the distance function,575

mimicking the heat diffusion procedure with a fixed tem-576

perature at boundary method, led to similar but often more577

reasonable candidate center locations for neck features. A578

(a) (b)

Fig. 17: More results of genus-0 models

possible explanation is the global and symmetric nature of 579

the smoothing procedure than the elder rule in persistence 580

calculation. Given that the neck features are where the shape 581

can be “lassoed”, we loosely fit an initial loop by a cutting 582

plane constructed based on the local Hessian eigenvectors, 583

and tighten it into a geodesic loop to represent the precise 584

location where the lasso will end up. 585

In addition to our basic procedure, we offer additional 586

selection rules based on the loop size and distance to nearby 587

loops to facilitate the automatic generation of a compact set 588

of neck features. If the application does not require small 589

features, we can further speed up the entire pipeline by 590

using a simplified surface mesh and/or simplified tet mesh 591

to find the neck feature loops before mapping them back 592

onto the original surface. The mesh simplification not only 593

reduces the element count, but also reduces the number of 594

smoothing iterations. 595

For future work, we wish to investigate further theo- 596

retical analysis on the diffusion-induced changes in Morse 597

functions, as well as other types of Morse functions like 598

diffusion distance. In certain scenarios, homology generator 599

loops that form knots may also be extracted as features, 600

which would require an extension from our cutting plane 601

strategy to a connectivity-based approach. Fast calculation 602

of membranes bounded by the neck feature loops can be 603

a relevant computational tool. We also intend to explore 604

alternative ways of defining neck structure through distance 605

functions on skeleton structures such as the medial axes. 606

Applications of neck features in segmentation, meshing, and 607

machine learning can also be explored. A related geometry- 608

aware topological feature to explore is the short line seg- 609

ments through persistent 1-saddles, as they correspond to 610

thin layers that are easy to punch through (interior) or 611

close surface locations with opposite normals that are nearly 612

touching (exterior). In terms of performance improvements, 613

while our work is performed on tet meshes, it can be 614

extended to implicit representations on a Cartesian grid. For 615

that purpose, an efficient smoothing algorithm of the signed 616

distance function with the 0-th level set fixed is required. 617
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