20
21
22
23
24
25
26
27
28
29
30
31

32

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3211781

Fast Computation of Neck-like Features

Hayam Abdelrahman,Yiying Tong, Member, IEEE

Abstract—Locating neck-like features, or locally narrow parts, of a surface is crucial in various applications such as segmentation,
shape analysis, path planning, and robotics. Topological methods are often utilized to find the set of shortest loops around handles and
tunnels. However, there are abundant neck-like features on genus-0 shapes without any handles. While 3D geometry-aware topological
approaches exist to find neck loops, their construction can be cumbersome and may even lead to geometrically wide loops. Thus we
propose a “topology-aware geometric approach” to compute the tightest loops around neck features on surfaces, including genus-0
surfaces. Our algorithm starts with a volumetric representation of an input surface and then calculates the distance function of mesh
points to the boundary surface as a Morse function. All neck features induce critical points of this Morse function where the Hessian
matrix has precisely one positive eigenvalue, i.e., type-2 saddles. As we focus on geometric neck features, we bypass a topological
construction such as the Morse-Smale complex or a lower-star filtration. Instead, we directly create a cutting plane through each neck
feature. Each resulting loop can then be tightened to form a closed geodesic representation of the neck feature. Moreover, we offer
criteria to measure the significance of a neck feature through the evolution of critical points when smoothing the distance function.
Furthermore, we speed up the detection process through mesh simplification without compromising the quality of the output loops.

Index Terms—Computer Graphics, Computational Geometry, and Object Modeling, Curve, Surface, Object Representations

1 INTRODUCTION

HEN we grab objects, we naturally reach for thin
W parts between thicker ends. This defines the concept
of “neck” as in [1], where such structures help a robot deter-
mine how to manipulate 3D shapes in its environment. “Las-
soing” around such neck features leads to closed geodesics,
which is helpful in a wide range of computer graphics
and geometric modeling applications, such as segmentation,
parameterization, shape analysis, topological filtering and
repair, structural weakness detection, wrapping 3D objects,
ete. (e.g., [2], [3], [4], [3], [6], [7], [8], [9D)

Many existing methods for calculating shortest loops are
based on the computation of a set of 2g noncontractible
loops that can cut a surface with genus-g into a topological
disk. These loops can be further cleaned and classified into
¢ handles (contractible through the interior volume) and ¢
tunnels (contractible through outside space). However, the
number of neck-like features does not only depend on g. For
example, as shown in Fig. 7, in the Kitten model with genus-
1, there are two detected handles, one is a handle around
the tail, and the other is a handle around the neck; the
latter cannot be detected using existing methods. Similarly,
in Fig. 1, there are many more neck loops in the genus-
4 Fertility model than the expected 4 handles; as for the
4-genus model, there should be 2g homology generators;
4 handles, and 4 tunnels. Moreover, all loops on genus-
0 models are contractible, but some such models contain
prominent neck features, as in the Bunny and Toy models in
Figure 8.

One recent method [10] proposed a topological algo-
rithm for computing all possible neck loops. It provided a
mathematical definition of such loops based on the lower-

e Hayam Abdelrahman and Yiying Tong are with the Department of
Computer Science and Engineering, Michigan State University, 428 S.
Shaw Lane Room 3115., East Lansing, MI 48824.

E-mail: ytong@msu.edu

star filtration of the distance to the surface. This method
uses persistent homology to measure the life span of each
noncontractible loop during the filtration process. However,
the construction is complex and can lead to features that do
not resemble a neck.

Instead, we propose using the critical points of a pro-
cessed distance function as a Morse function to find both
the location and evaluate the significance of a possible neck-
like feature. Critical points of a Morse function defined on a
volume provide rich topological and geometric information
about the structure of the shape. Thus, they are closely
related to the above lower-star filtration-based approach.
However, we take a shortcut based on the geometry and
directly construct planes that cut through the neck feature,
resulting in initial neck loops on surfaces. We further em-
ploy regularly used Laplacian smoothing to remove noise-
like features in addition to direct geometric criteria such as
loop size and distance to nearby loops.

We briefly discuss the most relevant work in Sec. 2, then
provide the mathematical background in Sec. 3 on Morse
functions (Sec. 3.1, (Sec. 3.2), and Laplacian smoothing
(Sec. 3.3). Finally, in Sec. 4, we explain our algorithm in
detail and show our results in Sec. 5 before concluding in
Sec. 6.

2 RELATED WORK

Many algorithms have been proposed for computing a
homology basis. Some methods use a tetrahedralization
of the interior/exterior volume to detect noncontractible
loops on surfaces automatically. Among these, the HanTun
algorithm [11] is the first volumetric method to compute
and categorize surface loops into either handles or tunnels
with geometric measurements taken into account for large
practical models. A more efficient extension to HanTun was
proposed in [12], which computes a basis for handle and
tunnel loops on a surface mesh based on Reeb graphs; the

Authorized licensed use limited to: Michigan State University. Downloaded on July 02,2023 at 22:50:20 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

57

58
59
60
61
62
63
64
65
66

67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9
91
92
93
94
95
%
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3211781

Correct 2-saddle Cutting plane
_—

Optimized loops
———

Critical points of
distance function

i

Fig. 1: Neck-like feature. Our pipeline starts with calculating the candidate neck feature locations as a specific type of
critical points (2-saddles) of the distance to the surface in the volume. The candidates that passed the selection criteria are
chosen as the centers of cutting planes that produce loops around the neck features, which are then tightened and cleaned

up further.

loops are further tightened for geometric relevance. For op-
timal codimension-1 cycles (including 1-cycles on surfaces)
in integer homology classes, [13] proved a surprising result,
namely that the problem can be calculated in polynomial
time, despite the NP-hard nature of Zy coefficients. These
methods aim to find only a set of noncontractible loops,
thus missing neck features like those on genus-0 shapes.

To evaluate a complete set of neck features, [10] pro-
posed to use tetrahedral meshes to identify 3D choke
points represented as triangle faces and turn them into
homologous “choking loops” on surfaces. Their method
provided a definition of choking loops around neck features
as well as a measurement of their significance based on
persistent homology. The specific topological construction
they use is the lower-star filtration of a Morse function that
evaluates the distance of a mesh vertex to the boundary
surface. During the filtration, the surface thickness grows
until the inside tunnel is blocked at some choke points.
The importance of these points is measured by, roughly
speaking, the size of the separate chambers created by these
blockages. While a number of software packages exist for
the calculation of the lower-star filtration [14], [15], [16], the
construction is not efficient for large tet meshes. Our method
skips this construction, although we also use volumetric
distance fields to identify seed locations of neck features as
in [10]. Our measurement criteria for neck features are more
geometrically based. There are surface-based definitions of
constriction loops [17] as closed nearly planar geodesics.
While undoubtedly valuable for specific applications, such
definitions are not as closely related to the topology of the
volume as in [10].

While our detection procedure differs from [10] in that
we use critical points of a Morse function instead of discrete
critical simplices in the lower-star filtration, they are, in fact,
linked, as pointed out in [18]. In addition, several studies
investigated the role of Morse theory in shape analysis to
explore the topological features of discretized spaces [18],
[19]. Several other applications in shape segmentation and
graph reconstruction used Morse complexes (see, e.g., [20],
[21]).

The final output of shortest loops on surfaces in many
methods (including [22], [23], [24]) is restricted to shortest
closed edge paths. Instead, we use the method proposed
in [25] to efficiently compute the shortest path inside a
triangle strip loop by updating the triangle strip iteratively.
The method has a time complexity of O(mk), where m is

the number of vertices in the original loop, and k is the
average number of edges the loop swept through during
the shortening process. A recent alternative proposed in [26]
computes exact geodesic paths by flipping edges to create a
shorter path within their local neighborhood, which may
run even faster. However, as we only have few geodesic
loops to evaluate, this post-processing step does not impact
the performance much. Another method proposed in [27]
computes the shrinking loops by tracking the evolution of a
diffusion from a single location on the surface.

3 MATHEMATICAL BACKGROUND

This section briefly reviews a few relevant concepts in Morse
theory, particularly the critical points of a Morse function.
Our algorithm relies on particular types of critical points
to locate neck features of 3D shapes. Then we describe
volumetric Laplacian smoothing, which provides a mea-
surement of the importance of these critical points and
a denoising preprocessing step. Implementation details of
these methods can be found in Sec. 4.

3.1

Morse functions form a dense subset of smooth functions
defined on a smooth manifold M. Such functions can often
be used to analyze the topological information of a manifold
and construct auxiliary structures. Specifically, a function
f M — R is a Morse function if and only if all critical
points of f are non-degenerate. Its discrete analogy defined
on simplicial meshes (triangle meshes in 2D and tetrahedral
meshes in 3D) are simply piecewise-linear (PL) functions
that evaluate to different values on different vertices, which
can always be achieved by symbolic perturbation [28].

The critical points of Morse functions, along with the
stable and unstable manifolds [28] of the gradient of Morse
functions, can reveal essential structures. One such structure
is the Morse-Smale complex, useful in, e.g., quadrangu-
lation [29]. An analog structure, called the quasi Morse-
Smale complex, can even be computed for piecewise-linear
(PL) functions defined on simplicial 3D meshes [30]. In our
algorithm, we take a shortcut to avoid the direct calculation
of these structures, but leverage the existence of such struc-
tures to directly use critical points as candidates for the neck
features that lead to corresponding neck loops.

Morse Function

Authorized licensed use limited to: Michigan State University. Downloaded on July 02,2023 at 22:50:20 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

114
115
116
117
118
119
120
121
122

128

124

125
126
127
128
129
130
131

132

133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154

155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174

175

176

177

178

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3211781

&

Minimum Maximum
@ -
1-Saddle 2-Saddle

Fig. 2: Different types of critical points. The middle sphere
represents a noncritical point with one connected upper part
(grey) and one connected lower part (blue). The sufficiently
small sphere around a critical point always indicates its type
through the component numbers of upper and lower parts;
a point with no connected lower part (minimum), a point
with no connected upper part (maximum), a point with
1 connected upper part and 2 connected lower parts (1-
saddle), and a point with 2 connected upper parts and 1
connected lower part (2-saddle)

3.2 Critical Points

For a smooth d-manifold M, the critical points of a smooth
function f : M — R are the locations where its differential
vanishes. In a local coordinate system (x1, 3,, Z4) , the
condition for z to be a critical point of f is given by

of of of

Fr (x) = Dg (x)=..= g (x) = 0.
For a Morse function f, the Hessian of f at a critical point is
nonsingular, ie., det VV? f # 0. Thus the critical points
can be classified by the signature of the Hessian. For a
3-manifold, there are four types of critical points, namely
minima with index 0 (Hessian signature [+, +, +]), saddles
with index 1 ([+, +, —]) or 2 ([+, —, —]), and maxima with
index 3 ([—, —, —]).

Each critical point can also be equivalently classified by
the topology of a sub-level set around it, as illustrated in
Fig. 2. The sphere around each type of point indicates the
boundary of a small neighborhood, with the sub-level set
shaded in blue. A critical point with no connected lower
part is a minimum, a critical point with no connected higher
part is a maximum, a critical point with 1 connected upper
part and 2 connected lower parts is a 1-saddle, and a critical
point with 2 connected upper parts and 1 connected lower
part is a 2-saddle. In contrast, any noncritical point has one
connected upper part and one connected lower part [28]. We
will use this formulation to detect and classify critical points
in our implementation.

3.3 Laplacian Smoothing

Laplacian smoothing is a typical tool for denoising func-
tions defined on polygonal meshes. When the function to

(a) unsmoothed

(b) smoothed

Fig. 3: Singularities before and after smoothing. The blue
points are the detected 2-saddles of the Kitten model.

smooth is the vertex positions of the polygonal mesh itself,
it serves as a denoising tool for the surface. We use the
volumetric cotangent-based Laplacian in [31]. Note that this
discretization of the Laplacian corresponds to | = —Af,
where A = V? is the continuous Laplacian.

Instead of constructing a filtration of cell complexes as
in persistent homology, we employ the notion of persistence
under smoothing similar to the Laplace-Beltrami flow-based
filtration in [32]. Such a filtering process mimics physical
diffusion, described by the heat equation with fixed tem-
perature on the boundary. As heat moves from locations
with higher temperature to those with lower temperature,
temperature changes at a rate proportional to its Laplacian:

% = \AT (1),
where) is the diffusivity. With temporal discretization
through the implicit Euler method, we solve the heat equa-
tion in an iterative way as

T(x,t+h) = T(x,t) + AhAT (z,t + h),

where h is the time step size. Together with the spatial
discretization of T'(x,t), the implicit Euler step results
in a sparse symmetric linear system. Applying Laplacian
smoothing to the distance function defined on all internal
vertices of a tetrahedral mesh with a homogeneous Dirichlet
boundary is essential in our method. This smoothed dis-
tance function provides a measurement of singularity im-
portance and a valid Morse function for the straightforward
detection of singularities and the evolution of singularities
over the time period in nh, where n is the iteration number.
Fig. 3 shows the detected 2-saddle points of the kitten model
before and after applying the Laplacian smoothing process.

4 NECK FEATURE EXTRACTION

Given a closed surface mesh, our algorithm produces a set
of loops around 3D neck-like regions for the volume inside
or outside the surface. Following the definition in [10],
we compute the bottleneck region as the boundary loop
of a small surface membrane that alters the connectivity
of the inside (or outside) volume. These geometry-aware
topologically defined loops can be computed based on seed
faces that eliminate a first homology generator (loop) or
create a second homology generator when the surface is
offset towards the interior of the volume. Based on the

Authorized licensed use limited to: Michigan State University. Downloaded on July 02,2023 at 22:50:20 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

179
180
181
182

183

184
185
186
187
188
189
190
191
192
193
194

195

196

197

198

199

200

202
203
204
205

206

207
208
209
210
211
212
213
214
215
216
217
218
219
220

221

222

223

224

225

226

227

228

229

230

231

232

234
235
236
237
238
239
240
241

242

243

244
245
246
247
248

249

251

252

254
255
256
257
258
259
260
261
262

263

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3211781

observation that the volume between the original surface
and its offset corresponds to a lower-star filtration of dis-
tance function from the surface, the seed face, in either case,
must be incident to a 2-saddle point. Thus, we may bypass
the potentially costly 3D persistent homology evaluation
without missing a single candidate by examining all 2-
saddle points. We select the significant features among the
candidates by examining how the 2-saddles evolve under
Laplacian smoothing instead of per persistence in the lower-
star filtration. After all, the diameter of the resulting loop
provides a more straightforward criterion on how the region
is neck-like than the difference in distance function values
of paired simplices in the lower-star filtration. Smoothing
of the distance function also more effectively reduces dupli-
cated detected of neck regions.

In theory, our procedure based on 2-saddle detection
guarantees to produce a superset of the seed faces before the
distance function is smoothed. Moreover, according to the
theory of the Laplace-Beltrami flow-based filtration [32], the
smoothing time provides a persistence measure comparable
to that of a Vietoris-Rips complex. Thus the set of 2-saddles
surviving the smoothing process is close to the seed faces
detected above a persistence threshold in [10].

Overview. Our pipeline starts with a preprocessing that
constructs a tetrahedral mesh for the volume inside (or out-
side) the surface mesh and evaluates the distance function
on interior vertices. Using the distance function as a Morse
function, we evaluate all the critical points with their types.
Laplacian smoothing can be leveraged when determining
critical points. In a typical calculation, we perform a few
rounds of Laplacian smoothing during a preprocessing step,
and then track the evolution of the critical points to select
significant features among 2-saddles. Finally, we extract the
surface loops surrounding all seed 2-saddle points. Those
initial loops are shortened into the final output surface
loops.

4.1 Critical point identification

To use the distance function of points to the surface as our
Morse function, we follow [10] in applying fast marching to
compute the initial per-vertex values. We add a numerical
perturbation if internal vertices share the same floating-
point values as one of its neighbors. For each internal vertex
v; with function value f(v;), its one-ring neighbors forms a
topological sphere around the vertex. Next, all vertices are
examined to detect all singularities and classify them. The
procedure can be done in parallel since only the one-ring is
necessary to classify each vertex.

We follow the wusual discrete singularity type
definitions [28]. We denote by N,°“ the lower link of
v;, i.e., the set of all adjacent vertices with function values
less than f;. Similarly, N;"” is the upper link, set of all the
adjacent vertices with function values higher than f;. The
singularity type of each vertex can be defined by the Betti
numbers of the lower link. We classify the vertex based on
the following equivalent discrete definitions, which can be
performed based on the numbers of connected components
for both the lower and upper links:

4
type of v; #component of N;7 | #component of N;°%
maximum 0 1

minimum 1 0

noncritical 1 1

1-saddle 1 2

2-saddle 2 1

monkey-saddle | otherwise

64

65

Note that the minima of the distance function can only be
on the surface, so in practice, we only need to evaluate the
three types of critical points for interior vertices. Common
examples of internal critical points are shown in Fig. 4.
While other types of monkey-saddles exist, they rarely
show up for distance functions. In fact, all monkey-saddles
will generally disappear after smoothing. As a side note,
while monkey-saddles do not influence the bottleneck
calculation, since we use only 2-saddles, it is possible to
eliminate them through smoothing combined with local
mesh refinement.

The inset figure shows all de-

tected critical points for the Fertil- /. A
ity model. The 1-saddles are col- 3
ored green, 2-saddles blue, and P K

maxima red. Since two eigenvalues
of the Hessian located at the 2-
saddle are negative, the distance
to the surface increases only along
one of the three eigenvectors. In the discretized mesh, it
indicates a local minimum along a “skeleton” tangential
to that eigenvector, and corresponds to a bottleneck, i.e.,
a narrowing of the volume around it. Intuitively, we may
interpret the neck loop as the extension of the ring-like lower
link of the 2-saddle to the surface, forming a membrane
separating the internal volume.

1-saddle

maximum 2-saddle Monkey-

saddle 2

Monkey-
saddle 1

Fig. 4: Discrete critical points. The triangulated sphere rep-
resents the one-ring neighbor around an internal vertex,
with the lower link colored blue and the upper link colored
yellow. Based on the connectivity of the two parts, all
internal critical points are classified as a 1-saddle, 2-saddle,
monkey-saddle, or maximum.

While the set of 2-saddles of the inside volume (or
the volume between the surface and a bounding sphere)
includes all the seed locations for handle-like (or tunnel-like)
neck loops, they may potentially contain some points due
to noise or locations corresponding to large loops. Since we
skip the direct calculation for the 3D persistent homology,
we found in our experiments that smoothing the distance
function and analyzing the spatial relation among neighbor-
ing singularities is sufficient for our task of selecting only the
significant structures.

Authorized licensed use limited to: Michigan State University. Downloaded on July 02,2023 at 22:50:20 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

266
267
268
269
270
271
272
273
274
275

276

277
278
279
280
281
282
283
284
285
286
287
288
289
290

291

292
293
294
295
296
297
298
299
300

301

302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

361

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3211781

4.2 Smoothing-based critical point selection

We start with a tet mesh M and rescale it to a unit bound-
ing box to avoid scale dependence. Assuming the discrete
Laplacian is assembled into a matrix L, we then set the
rows and columns corresponding to boundary vertices to 0,
except the diagonal entry is set to 1, to enforce the boundary
condition f|aar = 0. Denote the discrete representation of f
as a column vector F, then solve for (M+ AhL)FtTh = MF*
in each iteration. Here M 1is the mass matrix, \ is the
diffusivity, and h is a time step. Setting Ah to a constant
(0.01 in our experiments) allows us to use the iteration count
to measure the amount of smoothing performed. Higher-
order Laplacian operators (e.g., [33]) may be used, but lead
to similar final results. Note that we are not smoothing the
mesh itself, so the sparse matrix remains the same, and
Cholesky pre-factorization can be used to speed up the
repeated smoothing.

In practice, we found the initial distance function from
fast marching often noisy. Since we intend to ignore small-
scale bottleneck structures, we perform a few (10 in our
experiments) smoothing iterations before any critical point
evaluation. We may then perform the critical point calcu-
lation algorithm after any number of smoothing iterations.
As a sanity check based on Morse theory, we compare the
Euler characteristic x = By — 81 + 2 — B3, the alternating
sum of Betti numbers (3;, with xgyr — n1 + ne — ng , where
Xom = 2 — 2g is the Euler characteristic of the boundary
surface with genus g, n; is the number of 1-saddles, ny is
the number of 2-saddles, and ns is the number of maxima.
In the rare cases of monkey-saddles, their contribution to
the Euler characteristic can be evaluated by comparing the
Euler characteristic of its lower-star and that of its lower-
link.

Smoothing the function values of all vertices helps elim-
inate the transient 2-saddles and keep the persistent ones,
as shown in Figure 3.

Local approximation-based selection. One heuristic rule
we found effective is to perform a local quadratic ap-
proximation of the one-ring distance function values, and
verify that the Hessian of the approximation has the correct
signature of a 2-saddle, i.e., two negative eigenvalues, and
one positive eigenvalue. Among all the detected 2-saddle
points in any smoothing level, we may use this local heuris-
tic to rule out some 2-saddles that do not correspond to
reasonable bottleneck structures. Fig. 1 shows an example of
excluded points in the Fertility model. All points in the left
figure are classified as discrete 2-saddles, but only the points
in the center figure will be further processed. Moreover, the
positive eigenvector is reused in our initial loop construction
step, as it represents the normal of the cutting plane.

Evolution-based selection. If we choose to compute the
critical points after each iteration of smoothing, we can track
their continuous changes. The majority of critical points will
remain at the same vertex or move to a nearby vertex. With
any k-nearest neighbor algorithm, we can track down these
changes. In some cases, new critical points are far from any
critical points in the previous step, while other existing pairs
of nearby critical points of index k and (k+1) cancel out.
Fig 5 shows the evolution of the different critical points
at increasing smoothing levels. We demonstrate the noisy

(a) 20 iterations (b) 30 iterations

(d) 100 iterations

(c) 50 iterations

New
= Moved

== = —
(e)

Fig. 5: Critical points evolution. (a) to (d) show the detected
critical points of the downsampled Fertility model at 20, 30,
50, and 100 smoothing iterations, resp.

s Cancelled

nature of the initial distance function values on a tet mesh
by skipping the initial smoothing. Normally, the number of
critical points after the initial smoothing is low, and can be
tracked efficiently with negligible time cost compared to the
smoothing step. We use blue dots to denote maxima, red
dots for 2-saddles, green dots for 1-saddles, and black dots
for the rare cases of monkey-saddles. Squares encase new
critical points, faded arrows represent moving points, and
blended colored lines denote pairwise cancellation. With
tracking, we can use the number of smoothing iterations
between the first appearance of any 2-saddle until its can-
cellation to measure persistence under smoothing for seed
point selection.

4.3 Surface loops

Any 2-saddle point that passes both selection criteria has the
eigenvector associated with the positive eigenvalue of the
local Hessian matrix stored. Using this eigenvector as the
normal and the seed point, we can compute a cutting plane
that intersects the boundary surface as shown in Fig. 1.
It may result in multiple intersection loops, and we keep
only the loop with the seed 2-saddle point inside it. All
three example cutting planes in Fig. 1 result in multiple
intersection loops. In the leftmost example, the cutting plane
of a 2-saddle is located in the base, and the red loop is
chosen as the initial loop. Another cutting plane for a seed
point located in the model’s right arm is shown in the
middle. The loop around the seed in the neck is shown on
the right. In our tests, using the eigenvector as the plane
normal produces the best guess for the initial loop. We may
optionally use the lower link variation to create multiple
normals for multiple candidate cutting planes and pick the
shortest initial loop.

Following [25], we perform a local shortest loop eval-
uation that moves continuously on the triangle surface
mesh, which improves the geometric shape of the computed
surface loops. The final shortest loops are discrete geodesic

Authorized licensed use limited to: Michigan State University. Downloaded on July 02,2023 at 22:50:20 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

362
363
364
365
366
367
368
369
370
371
372
373

374

375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397

398
399

401
402
403
404
405
406
407
408
409
410

411

412

413
414
415
416
417
418
419
420
421
422
423
424
425

426

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3211781

(d) (e) (f)

Fig. 6: Computing the shortest loop from the initial loop as
in [25]. (a) is the initial loop with the attached triangles (b)
is the funnel, and (c) is the shorter loop. The second row
shows an example of finding the shortest loop (f) from the
initial one , the blue polyline (the shorter loop from a) (d),
with an intermediate loop (e).

loops, which are locally straight and only go through ver-
tices with negative discrete Gaussian curvatures. In Fig. 6,
the initial loop is shown as the red polyline around the
Kitten’s neck, considered as part of the triangle strip in
grey. The strip of faces on the surface can be unfolded after
cutting along one edge, and the shortest path is computed in
the next subfigure as the blue polyline. The blue polyline is
restricted by a few vertices, which can be used to update
the grey strip for further relaxation of the loop. In the
bottom row of the figure, the evolution of the initial loop,
through an intermediate stage, to the final loop is shown.
Fig. 7 shows more examples of the initial and final loops
on the Kitten (a sparsely sampled model) and the (densely
sampled) Figure-Eight model.

5 RESULTS AND DISCUSSION

The resulting surface loops of our algorithm represent
neck features akin to the choking loops in [10], which
are geometry-aware topological features. These loops can
populate a complete set of necks like handles, as well as
those narrow regions of the outside space, i.e., tunnels. This
differs from finding a shortest set of loops that span the first
homology of the boundary surface, as this set may derive
from second homology generators of the lower-star filtration
of the distance function. Roughly speaking, they are the
loops that bound membranes that separate the internal
space into lower genus or more components. For instance,
genus-0 models can have multiple handle-type neck features
like the Bunny and the Toy model in Fig. 8, despite their
sphere-like surface geometry.

(a) (b)
Fig. 7: Initial and final loops; red(initial) , blue(final)

(@) (b)
Fig. 8: Neck loops of genus-0 models

Fig. 1 shows that for a nonzero genus model, the number
of handle-type neck features can be far more than twice its
genus. Here, the Fertility model is genus-4, but there are
more than double the number of neck features.

For some high genus models, such as the genus-31 Buck-
yball, the difference is even more significant; our algorithm
can generate all 96 handle-like loops, each of which is a
valid candidate for 1st homology generator of the surface,
as shown in Fig. 9. It also illustrates a similar structure for a
more complicated Protein model.

Fig. 10 shows the tunnel-like neck features computed by
our algorithm, which uses the volumetric mesh bounded by
the given surface and a bounding sphere. The outside neck
loops of the Kitten, Buckyball, Botijo, and EMD models are
shown on the surfaces, with some of the surfaces rendered
transparent to show the internal structure. Such structures
can potentially help evaluate the docking of drug molecules
on protein surfaces and the analysis of ion channels. For
example, in the EMD model, there are four wide tunnels
of the exterior surface, and another 2 tunnels of the double
torus shape inside. The 6 tunnels are all detected in addition
to another small one, and two narrow passages.

We first aim to generate a comprehensive set of neck
features automatically. Then we offer multiple heuristic

Authorized licensed use limited to: Michigan State University. Downloaded on July 02,2023 at 22:50:20 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

470

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3211781

(@) (b)

Fig. 9: Neck structures of high-genus models

(d) (e) 6)

Fig. 10: Tunnels. (a) one tunnel in the Kitten model (d) 32
tunnels in the Buckyball model (b,e) tunnels in the Botijo
model (c,f) exterior and interior tunnels of the EMD model

rules to select important ones automatically. The more im-
portant selection rule is the smoothing level; we detect
different numbers of critical points with varying amounts
of smoothing. We offer a default value that works well for
all the models shown in the paper, but the user can easily
change the smoothing level and choose to include vanished
2-saddles if they persist long enough during the smoothing
process. For example, Fig. 11 shows the loops at different
smoothing levels of the Fertility model. With 5 iterations of
Laplacian smoothing, we can get almost all expected neck
loops; by applying more smoothing iterations, some critical
points vanish, and their corresponding loops are eliminated
from the set of significant neck features.

Comparison to Feng and Tong’s method [10]. The key
to the efficiency of our algorithm is skipping the persistent
homology computation, which was the bottleneck in their
system. Our smoothing algorithm runs for a fixed number of
iterations, each of which solves a Poisson equation in linear
time with multigrid methods. In contrast, the persistent
homology typically runs at O(n?) or O(n%), where n is the

(© (d)

Fig. 11: Detected loops at different smoothing levels (a) 5
iterations (b) 10 iterations (c) 20 iterations (d) 50 iterations

total number of simplices, and w is the matrix multiplication
exponent w < 2.4, according to [34]. We tested our method
on many models used in [10] , and the resulting loops on
Fertility, Bunny, Toy, Buckyball, Kitten, and two proteins are
shown in the respective result figures. Our method and the
method in [10] depend on parameters that enable the user
to choose the loop feature significance, including smoothing
level in our method, and persistence in their method. We
show that similar loops could be generated for the same
model with comparable parameter choices. More results
showing the robustness of our method can be found in
the supplemental material. All experiments show that our
method is comparable to their method in results, but with a
simpler structure and more efficient computation.

In Table 1, we list the computation time of Feng and
Tong’s method [10] and our method applied for different
models at different scales. We tested both methods on
Fertility, Kitten, Botijo, Bunny and Buckyball with numbers
of interior vertices 21k, 75k, 256k, 90k, and 163k, resp. All
results are in milliseconds. The time is broken down for
the different parts of both methods. For Feng and Tong’s
method, the results in the table show the computation
time of prepossessing, persistent homology, computing seed
faces, and contracting surface loops. For our method, the
computation time of prepossessing, Laplacian smoothing,
and critical point detection are listed. For both methods,
the input meshes are identical and tetrahedralized using
TetGen [35] with parameter “pfql.2”.

Figure 12 shows a performance comparison between the
two methods on the same model with different internal seed
points. We applied both methods with varying densities of
sampling of the Botijo model (Figure 10 (b)), with 113k,
144k, 174k, 257k, and 341k internal vertices, resp. The graph
shows that our method is scalable in terms of mesh size.

Figure. 13 compares the initial loops generated by Feng

Authorized licensed use limited to: Michigan State University. Downloaded on July 02,2023 at 22:50:20 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

471
472
473
474
475
476
477
478
479
480
481
482
483

484

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3211781

Feng and Tong’s method [10] I Our Method

Fertility #v21908, #t90973, #F195923

param del=10%, dist=50% | param sm=20 iterations
preprocessing 7928 | preprocessing 5249
persistent H surf 1576 | smoothing 1672
persistent H inside 52927 | computing 2-saddles 1349
seed faces 46675

loop computation 2970 | IToop computation 821
total time (millisecond) 65,447 | total time (millisecond) 8,270

kitten #v75500, #T360282, #F756360

param del=20%, dist= 50% [param sm=20 iterations
preprocessing 24693 | preprocessing 24645
persistent H surf 3410 | smoothing 8455
persistent H inside 154146 | computing 2-saddles 5764
seed faces 138

loop computation 4881 | Toop computation 267
total time (millisecond) 187,268 | total time (millisecond) 39,131

Botijo #v265523, #t1224316, #F2586212

param del=20%, dist= 50% | param sm=20 iterations
Ppreprocessing 151993 | preprocessing 146506
persistent H surf 19972 | smoothing 22413
persistent H inside 2049428 | computing 2-saddles 19351
seed faces 550

loop computation 55154 | loop computation 1093

total time (millisecond) 2,277,097 | total time (millisecond) 189,363

Bunny #v90819, #t431208, #F 906022

param del=10%, dist= 50% | param sm=20 iterations
preprocessing 30582 | preprocessing 31307
persistent H surf 4092 | smoothing 10187
persistent H inside 309762 | computing 2-saddles 6865
seed faces 552

loop computation 253728 | loop computation 3787
total time (millisecond) 598716 | total time (millisecond) 52146

Buckyball #v90819, #t431208, #F 906022

param del=20%, dist= 50% | param sm=20 iterations
preprocessing 72288 | preprocessing 70681
persistent H surf 10087 | smoothing 19336
persistent H inside 318090 | computing 2-saddles 12122
seed faces 321

loop computation 160107 | loop computation 6542
total time (millisecond) 560893 | total time (millisecond) 108681

TABLE 1: Performance statistics and comparison with Feng
and Tong [10] (all time measurements in milliseconds, with
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz).

3500 - Computation Time (Botijo)

—+— Xin's method
—+— Our method
3000 [

2500
2000 -

1500

Time in Seconds

1000

500 [

L L L

174k 257k 341k
Mesh Volumetric Size (#v)

113k 144k

Fig. 12: Computation time of two methods for different
scales of the Botijo model

and Tong’s method [10] (shown in red) and those generated
by our method (in yellow). The yellow loops are generally
smoother than the red loops (formed only by edges). While
the 2-saddles may drift during the smoothing, they stay
close to the corresponding seed faces. Thus, the shrunk red
loops form a superset of the shrunk yellow loops.
Computing the shortest loop on the surface as in [25] can
be sensitive to the presence of negative Gaussian curvature
points, which can trap the movement of the loop at a local
minimum. We offer the option of smoothing the surface

[
é

L

>

W

X

=
TS

™,

(@) (b)
Fig. 13: Initial loops between Feng and Tong’s method [10]

(in red) and our method (in yellow) for the (a) Kitten (b) Toy,
and (c) Fertility models

(@) (b)
Fig. 14: 1mag results loops

mesh before our procedure to produce loops closer to actual
neck locations. This would also allow duplicated nearby
loops to slide to the same neck locations (e.g., Fig. 15). We
offer the option to project the loop back onto the original
surface, which is always within a small chamfer distance
from the smoothed surface.

An additional speedup in the computation of the initial
loops can be achieved by using a simplified version of the
original mesh. As we search for significant features, the
results are always similar. With the mesh simplification, all
the procedures involved run faster. For instance, the cutting
plane will cut the surface in fewer edges, and shortening the
loop will also be more efficient than denser surface meshes.
The quality of the loop is no worse than directly running on
a dense mesh, as we map the loops back to the original
surface. Mapping the loops back to the original mesh is
performed by cutting the surface of the original mesh by the
cutting planes used on the simplified mesh for creating these
loops. Fig. 16 shows an example of using the simplified
mesh for computing the surface loops before mapping them
back. Some loops in Figure 16(a) are merged in 16(c) as
they correspond to the same neck features of the shape (left
arm and base).

Fig. 17 shows the final neck loops for some additional 0-
genus models. Neck loops computed on around 40 models
with various genus can be found in the supplemental
material.

While we investigate all the internal vertices for critical
point classification in various smoothing levels, monkey-
saddles do appear in our computation. However, our exper-
iments show that those points quickly vanish after applying
adequate smoothing steps. Moreover, such monkey-saddles
can be easily eliminated with local refinements of the tet

Authorized licensed use limited to: Michigan State University. Downloaded on July 02,2023 at 22:50:20 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

548

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

567

568

569
570
571
572
573
574
575
576
577

578

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3211781

(a) (b)

Fig. 15: (a) Initial loops(red) of a protein model (b) Shortest
final loops(yellow)

(a) (b) (©

Fig. 16: Computing surface loops on simplified meshes. The
initial loops are computed on the original mesh(a), while
in (b), the loops are computed on the simplified mesh and
mapped back to the original mesh (c).

mesh and splitting the monkey-saddle into a few non-
monkey-saddle critical points.

Limitations. One limitation of our
algorithm is that using cutting planes
might not work for some complicated
examples. For example, the inset figure
shows the computed handles of the
torus knots model. Still, the tunnel of
this specific case would be a Seifert
surface, which cannot be computed with the plane-surface
intersection. However, arguably this tunnel does not corre-
spond to a neck feature.

Another type of feature our algo-
rithm is not intended to handle is the
closed geodesic loops as shown in the
star model, which are nevertheless also
candidates for grasping locations of the
object. Such loops can be computed by
surface-based methods like [17].

N

N

6 CONCLUSION AND FUTURE WORK

In this work, we introduce a fast method to compute all neck
feature loops using both the topological and geometrical
properties of the shape. Our key observation is that all
neck structures induce 2-saddles in the distance function.
One way to define the significance of these features is
through persistent homology. However, we found in our
experiments that direct smoothing of the distance function,
mimicking the heat diffusion procedure with a fixed tem-
perature at boundary method, led to similar but often more
reasonable candidate center locations for neck features. A

ii.f
(a) (b)

Fig. 17: More results of genus-0 models

possible explanation is the global and symmetric nature of
the smoothing procedure than the elder rule in persistence
calculation. Given that the neck features are where the shape
can be “lassoed”, we loosely fit an initial loop by a cutting
plane constructed based on the local Hessian eigenvectors,
and tighten it into a geodesic loop to represent the precise
location where the lasso will end up.

In addition to our basic procedure, we offer additional
selection rules based on the loop size and distance to nearby
loops to facilitate the automatic generation of a compact set
of neck features. If the application does not require small
features, we can further speed up the entire pipeline by
using a simplified surface mesh and/or simplified tet mesh
to find the neck feature loops before mapping them back
onto the original surface. The mesh simplification not only
reduces the element count, but also reduces the number of
smoothing iterations.

For future work, we wish to investigate further theo-
retical analysis on the diffusion-induced changes in Morse
functions, as well as other types of Morse functions like
diffusion distance. In certain scenarios, homology generator
loops that form knots may also be extracted as features,
which would require an extension from our cutting plane
strategy to a connectivity-based approach. Fast calculation
of membranes bounded by the neck feature loops can be
a relevant computational tool. We also intend to explore
alternative ways of defining neck structure through distance
functions on skeleton structures such as the medial axes.
Applications of neck features in segmentation, meshing, and
machine learning can also be explored. A related geometry-
aware topological feature to explore is the short line seg-
ments through persistent 1-saddles, as they correspond to
thin layers that are easy to punch through (interior) or
close surface locations with opposite normals that are nearly
touching (exterior). In terms of performance improvements,
while our work is performed on tet meshes, it can be
extended to implicit representations on a Cartesian grid. For
that purpose, an efficient smoothing algorithm of the signed
distance function with the 0-th level set fixed is required.

ACKNOWLEDGMENTS

The authors would like to thank Rundong Zhao for his help
in visualization, and Emily Ribando-Gros for proofreading
the paper. The authors also thank the anonymous referees

Authorized licensed use limited to: Michigan State University. Downloaded on July 02,2023 at 22:50:20 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

617

618

619
620

621

622

623

624

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3211781

for their valuable comments and helpful suggestions. The
work was supported in part by NSF grant IIS-1900473.

REFERENCES

[1] A. Varava, D. Kragic, and F. T. Pokorny, “Caging grasps of rigid
and partially deformable 3-d objects with double fork and neck
features,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1479-
1497, 2016.

[2] E. Zhang, K. Mischaikow, and G. Turk, “Feature-based surface
parameterization and texture mapping,” ACM Transactions on
Graphics (TOG), vol. 24, no. 1, pp. 1-27, 2005.

[3] D. Letscher and J. Fritts, “Image segmentation using topological
persistence,” in International Conference on Computer Analysis of
Images and Patterns. Springer, 2007, pp. 587-595.

[4] D. Boltcheva, D. Canino, S. M. Aceituno, J.-C. Léon, L. De Floriani,
and F. Hétroy, “An iterative algorithm for homology computation
on simplicial shapes,” Computer-Aided Design, vol. 43, no. 11, pp.
1457-1467, 2011.

[5] D. Zeng, E. Chambers, D. Letscher, and T. Ju, “To cut or to fill: a
global optimization approach to topological simplification,” ACM
Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1-18, 2020.

[6] J. Liu, S. Xin, X. Gao, K. Gao, K. Xu, B. Chen, and C. Tu,
“Computational object-wrapping rope nets,” ACM Transactions on
Graphics (TOG), vol. 41, no. 1, pp. 1-16, 2021.

[7] J.-M. Favreau and V. Barra, “Tiling surfaces with cylinders using
n-loops,” Computers & Graphics, vol. 35, no. 1, pp. 3542, 2011.

[8] E.C.D. Verdiere and F. Lazarus, “Optimal pants decompositions
and shortest homotopic cycles on an orientable surface,” Journal of
the ACM (JACM), vol. 54, no. 4, pp. 18-es, 2007.

[9] M. Hajij, T. Dey, and X. Li, “Segmenting a surface mesh into pants
using morse theory,” Graphical Models, vol. 88, pp. 12-21, 2016.

[10] X. Feng and Y. Tong, “Choking loops on surfaces,” IEEE transac-
tions on visualization and computer graphics, vol. 19, no. 8, pp. 1298—
1306, 2013.

[11] T. K. Dey, K. Li, J. Sun, and D. Cohen-Steiner, “Computing

eometry-aware handle and tunnel loops in 3d models,” in ACM
SIGGRAPH 2008 papers, 2008, pp. 1-9.

[12] T.K. Dey, E Fan, and Y. Wang, “An efficient computation of handle
and tunnel loops via reeb graphs,” ACM Transactions on Graphics
(TOG), vol. 32, no. 4, pp. 1-10, 2013.

[13] T.K. Dey, A. N. Hirani, and B. Krishnamoorthy, “Optimal homolo-
gous cycles, total unimodularity, and linear programming,” SIAM
Journal on Computing, vol. 40, no. 4, pp. 1026-1044, 2011.

[14] D. Morozov, “Dionysus Software,” Retrieved December, vol. 24, p.
2018, 2012.

[15] U. Bauer, M. Kerber, and J. Reininghaus, “Dipha (a distributed
persistent homology algorithm),” Software available at https://github.
com/DIPHA/dipha, 2014.

[16] B.T. Fasy,]. Kim, F. Lecci, C. Maria, D. L. Millman, and M. J. Kim,
“Package ‘'TDA’,” 2019.

[17] E. Hétroy, “Constriction computation using surface curvature,” in
Eurographics (short paper), 2005, pp. 1-4.

[18] U. Fugacci, C. Landi, and H. Varly, “Critical sets of pl and discrete
morse theory: A correspondence,” Computers & Graphics, vol. 90,
pp- 43-50, 2020.

[19] X. Ni, M. Garland, and J. C. Hart, “Fair morse functions for
extracting the topological structure of a surface mesh,” ACM
Transactions on Graphics (TOG), vol. 23, no. 3, pp. 613-622, 2004.

[20] L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo, “Morse com-
plexes for shape segmentation and homological analysis: discrete
models and algorithms,” in Computer Graphics Forum, vol. 34, no. 2.
Wiley Online Library, 2015, pp. 761-785.

[21] T. K. Dey,]J. Wang, and Y. Wang, “Graph reconstruction by discrete
morse theory,” arXiv preprint arXiv:1803.05093, 2018.

[22] S. Cabello, E. Colin de Verdiére, and F. Lazarus, “Finding shortest
non-trivial cycles in directed graphs on surfaces,” in Proceedings of
the twenty-sixth annual symposium on Computational geometry, 2010,
pp- 156-165.

[23] E. C. De Verdiére and F. Lazarus, “Optimal system of loops on
an orientable surface,” Discrete & Computational Geometry, vol. 33,
no. 3, pp. 507-534, 2005.

[24] E Lazarus, M. Pocchiola, G. Vegter, and A. Verroust, “Computing a
canonical polygonal schema of an orientable triangulated surface,”
in Proceedings of the seventeenth annual symposium on Computational
geometry, 2001, pp. 80-89.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

10

S.-Q. Xin, Y. He, and C.-W. Fu, “Efficiently computing exact
geodesic loops within finite steps,” IEEE transactions on visualiza-
tion and computer graphics, vol. 18, no. 6, pp. 879-889, 2011.

N. Sharp and K. Crane, “You can find geodesic paths in triangle
meshes by just flipping edges,” ACM Transactions on Graphics
(TOG), vol. 39, no. 6, pp. 1-15, 2020.

A. Weinrauch, H.-P. Seidel, D. Mlakar, M. Steinberger, and R. Za-
yer, “A variational loop shrinking analogy for handle and tunnel
detection and reeb graph construction on surfaces,” arXiv preprint
arXiv:2105.13168, 2021.

H. Edelsbrunner and J. Harer, Computational topology: an introduc-
tion. American Mathematical Soc., 2010.

X. Fang, H. Bao, Y. Tong, M. Desbrun, and]. Huang, “Quadran-
gulation through morse-parameterization hybridization,” ACM
Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1-15, 2018.

H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Morse-
smale complexes for piecewise linear 3-manifolds,” in Proceedings
of the nineteenth annual symposium on Computational geometry, 2003,
pp. 361-370.

Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun, “Discrete
multiscale vector field decomposition,” ACM transactions on graph-
ics (TOG), vol. 22, no. 3, pp. 445-452, 2003.

B. Wang and G.-W. Wei, “Object-oriented persistent homology,”
Journal of Computational Physics, vol. 305, pp. 276-299, 2016.

R. Zhao, M. Desbrun, G.-W. Wei, and Y. Tong, “3d hodge decom-
positions of edge-and face-based vector fields,” ACM Transactions
on Graphics (TOG), vol. 38, no. 6, pp. 1-13, 2019.

N. Milosavljevi¢, D. Morozov, and P. Skraba, “Zigzag persistent
homology in matrix multiplication time,” in Proceedings of the
twenty-seventh Annual Symposium on Computational Geometry, 2011,
pp. 216-225.

S. Hang, “Tetgen, a delaunay-based quality tetrahedral mesh
generator,” ACM Trans. Math. Softw, vol. 41, no. 2, p. 11, 2015.

Yiying Tong is a professor at Michigan State
University. Prior to joining MSU, He worked as
a postdoctoral scholar at Caltech. He received
his Ph.D. degree from the University of Southern
California in 2004. His research interests include
discrete geometric modeling, physically-based
simulation/animation, and discrete differential
geometry/topology. He received the U.S. Na-
tional Science Foundation (NSF) Career Award
in 2010.

Hayam Abdelrahman is a Ph.D. student in the
Department of Computer Science and Engineer-
ing at Michigan State University. She received
her M.S. and B.S. degrees from Zagazig Univer-
sity, Egypt .Her research interests include com-
putational topology, shape analysis, and com-
puter graphics.

Authorized licensed use limited to: Michigan State University. Downloaded on July 02,2023 at 22:50:20 UTC from IEEE Xplore. Restrictions apply.
© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
71
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

729
730
731
732
733
734
735
736
737
738
739

740
741
742
743
744
745
746

747

