Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain
System with Confidentiality Guarantees

Mohammad Javad Amiri
University of Pennsylvania
mjamiri@seas.upenn.edu

Divyakant Agrawal
University of California Santa Barbara
agrawal@cs.ucsb.edu

ABSTRACT

Today’s large-scale data management systems need to address dis-
tributed applications’ confidentiality and scalability requirements
among a set of collaborative enterprises. This paper presents Qanaat,
a scalable multi-enterprise permissioned blockchain system that
guarantees the confidentiality of enterprises in collaboration work-
flows. Qanaat presents data collections that enable any subset of
enterprises involved in a collaboration workflow to keep their col-
laboration private from other enterprises. A transaction ordering
scheme is also presented to enforce only the necessary and sufficient
constraints on transaction order to guarantee data consistency. Fur-
thermore, Qanaat supports data consistency across collaboration
workflows where an enterprise can participate in different collabor-
ation workflows with different sets of enterprises. Finally, Qanaat
presents a suite of consensus protocols to support intra-shard and
cross-shard transactions within or across enterprises.

PVLDB Reference Format:

Mohammad Javad Amiri, Boon Thau Loo, Divyakant Agrawal, and Amr El
Abbadi. Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain
System with Confidentiality Guarantees. PVLDB, 15(11): 2839 - 2852, 2022.
doi:10.14778/3551793.3551835

1 INTRODUCTION

Emerging multi-enterprise applications, e.g., supply chain manage-
ment [55], multi-platform crowdworking [9], and healthcare [15],
require extensive use of collaboration workflows where multiple mu-
tually distrustful distributed enterprises collaboratively process a
mix of public and private transactions. Despite years of research in
distributed transaction processing, data management systems today
have not yet achieved a good balance among the confidentiality and
scalability requirements of these applications.

One of the main requirements of multi-enterprise applications
is confidentiality with respect to data sharing and data leakage.
First, while public collaboration among all enterprises is visible
to everyone, specific subsets of the data may need to be shared
only with specific subsets of involved enterprises. For example, in
a product trading, the distributor may want to keep collaboration

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551835

2839

Boon Thau Loo

University of Pennsylvania
boonloo@seas.upenn.edu

Amr El Abbadi

University of California Santa Barbara
amr@cs.ucsb.edu

with a farmer and a shipper involving terms of the trades confid-
ential from the wholesaler and the retailer, so as not to expose the
premium they are charging [50]. Second, the enterprises must pre-
vent malicious nodes from leaking confidential data, e.g., requests,
replies, and stored data.

Multi-enterprise applications also need to scalably process a
large number of transactions within or across enterprises. Although
sharding has been used in single-enterprise applications to address
scalability, it is challenging to use sharding in multi-enterprise
applications where confidentiality of data is paramount.

The decentralized nature of blockchain and its unique features
such as provenance, immutability, and tamper-resistant, make it
appealing to a wide range of applications, e.g., supply chain man-
agement [31, 84], crowdsourcing [9, 48], contact tracing [70] and
federated learning [71].

In recent years, various permissioned blockchain systems have
been proposed to address the confidentiality and/or scalability of
multi-enterprise applications. Hyperledger Fabric [12] and its vari-
ants [44, 45, 75, 78] supports multi-enterprise applications and
provides scalability using channels [13] managed by subsets of en-
terprises. However, all transactions of a channel are sequentially
ordered, resulting in reduced performance. Fabric also uses private
data collections [50] to manage confidential collaboration among
a subset of enterprises. However, appending a hash of all private
transactions to a global ledger replicated on every enterprise in-
creases computational overhead and hence reduces throughput.
Furthermore, Fabric does not address confidential data leakage by
malicious nodes.

Caper [5] supports collaborative enterprises and provides con-
fidentiality by maintaining a partial view of the global ledger on
each enterprise. Caper, however, does not support: (1) confidential
collaboration among subsets of enterprises (i.e., it supports internal
or public transactions), (2) data consistency across collaboration
workflows that an enterprise is involved in, (3) data confidentiality
in the presence of malicious nodes, and (4) multi-shard enterprises.

Scalability has also been studied in the context of applications
that are used within a single enterprise, e.g., AHL [35], SharPer [8]
and ResilientDB [47]. However, since these systems are restricted
to single-enterprise applications, they do not address the confiden-
tiality requirement of multi-enterprise applications.

To address the above scalability and confidentiality challenges of
multi-enterprise applications, we present Qanaat!, a permissioned

!Qanaat is a scalable underground network consisting of private channels to transport
water from an aquifer to the surface (i.e., an underground aqueduct).

https://doi.org/10.14778/3551793.3551835
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551835

blockchain system that supports collaboration workflows across
enterprises. In Qanaat, each enterprise partitions its data into mul-
tiple shards to improve scalability. Each shard’s transactions are
then processed by a disjoint cluster of nodes.

To support confidential collaboration (i.e., data sharing), in ad-
dition to public transactions among all enterprises and internal
transactions within each enterprise, any subset of enterprises might
process transactions confidentially from other enterprises. As a res-
ult, Qanaat uses a novel hierarchical data model consisting of a
set of data collections where each transaction is executed on a data
collection. The root data collection consists of the public records
from executing public transactions replicated on all enterprises.
Each local data collection includes the private records of a single
enterprise. Intermediate data collections, which are optional and
are needed in case of confidential collaborations among subsets
of enterprises, maintain private records shared among subsets of
collaborating enterprises. Qanaat replicates such shared data col-
lections on the involved enterprises to facilitate the use of shared
data by enterprises in their internal transactions.

To support this collaborative yet confidential data model, Qanaat
proposes a transaction ordering scheme to preserve the data con-
sistency of transactions. In Qanaat, an enterprise might be involved
in multiple data collections. Hence, the traditional transaction or-
dering schemes used in fault-tolerant protocols where each cluster
orders transactions on a single data store do not work. In fact, while
ordering transactions, Qanaat needs to capture the state of all data
collections that might affect the execution of a transaction.

Finally, to prevent confidential data leakage despite the Byz-
antine failure of nodes, Qanaat utilizes the privacy firewall tech-
nique [39, 86] and (1) separates ordering nodes that agree on the
order of transactions from execution nodes that execute transac-
tions and maintain the ledger, and (2) uses a privacy firewall between
execution nodes and ordering nodes. The privacy firewall restricts
communication from execution nodes in order to filter out incorrect
messages, possibly including confidential data.

The main contributions of this paper are:

e An infrastructure consisting of ordering nodes, execution
nodes, and a privacy firewall and a data model consisting
of data collections to preserve confidentiality, followed by a
transaction ordering scheme that enforces only the necessary
and sufficient constraints to guarantee data consistency,

o A suite of consensus protocols to process transactions that
accesses single or multiple data shards within or across en-
terprises in a scalable manner, and

e Qanaat, a scalable multi-enterprise permissioned blockchain
system that guarantees confidentiality.

2 MOTIVATION

Qanaat is designed to support multi-enterprise applications such
as supply chain management [55], multi-platform crowdworking
[9], and healthcare [15] in a scalable and confidentiality-preserving
manner. To motivate Qanaat, we consider an example application
based on the COVID-19 vaccine supply chain, given that it is a
demanding application. The COVID-19 outbreak has demonstrated
diverse challenges that supply chains face [4]. While the vaccine
supply chain seems to work fine on the surface, it suffers from

2840

p=p-p-p

dyisirn

: Material rec. =
TM; Ingre;i/entm BH de d d
ﬁj Fgll'lrglﬂr?tlan Ty = T, Place Order _, did mstTHOL

\ =
7 Pﬁéﬂgg/ng Manufacturer—‘rz P[gce Order uppli

> 05’//1/ T,: Inform||Ts: Pick Order
7> "k Vog
- ey

PE—
— - "I ﬂ T,: Arrange Shipment Iﬁoglsgcs
Tg: Deliver Vaccines ﬂ «— rovider

=
d” -
o =
= 5
d S |d
st Owsim

= =
Hospitals Transportatlond;Endri = doi

Figure 1: A vaccine supply chain collaboration workflow

several crucial challenges. First, current vaccine supply chains are
subjected to different types of vulnerabilities, e.g., attacks on 44
companies involved in the COVID-19 vaccine distribution in 14
countries [69], rapidly growth of the black market for COVID-
19 vaccines [81], issuing fake vaccine cards [73], and loss of 400
millions of vaccine doses [24]. Moreover, while vaccines are well
distributed in most developed countries, getting them to developing
countries and accounting for them remains a challenge, e.g., fake
vaccines [1, 33] and falsified CoviShield vaccines [67]. Currently, the
COVID-19 vaccine supply chains have been over-stretched given
the global supply chain challenges and the possibility of abuse and
fraud stated above. At the same time, other supply chains are now
under unprecedented pressure [18, 76].

Multiple enterprises collaborate in a vaccine supply chain to get
vaccines from manufacturers to citizens. Enterprises involved in
the vaccine ecosystem need to collaborate and share data based on
agreed-upon service level agreements. Vaccines, on one hand, need
to be tracked and monitored throughout the process to ensure that
they are stable and not tampered with, and on the other hand, this
data should be accessible to the public to increase their trust in the
vaccines. While distributed databases can be used to address these
challenges, they lack mechanisms to first prevent any malicious
entity from altering data and second enable enterprises to verify
the data and the state of collaboration. Qanaat uses blockchains to
provide verifiability, provenance, transparency, and assurances to
end-users of the vaccines’ safety and efficacy. In particular, block-
chains enable pharmaceutical manufacturers to easily track on-time
shipment and delivery of vaccines, provide efficient delivery track-
ing for transportation companies, and help hospitals manage their
stocks and mitigate supply and demand constraints.

Figure 1 shows a simplified vaccine supply chain collaboration
workflow consisting of the pharmaceutical manufacturer (M), a
supplier (S), a logistics provider (L), a transportation company (T),
and hospitals (H). Using Qanaat, the public transactions of the
collaboration workflow (T; to Tg) are executed on data collection
dpspTy maintained by all enterprises.

In addition, the collaboration workflow includes the internal
transactions of each enterprise. Internal transactions are executed
on the enterprise’s private data collection and might reflect paten-
ted and copyrighted formulas and information. For example, the
pharmaceutical manufacturer executes its private transactions Ty
to T on its private data collection dyy.

A blockchain-enabled multi-enterprise application, e.g., vaccine
supply chain, needs to support the following requirements:

R1. Confidential collaborations across enterprises. Any sub-
set of enterprises involved in a collaboration workflow might want

to keep their collaboration private from other enterprises. For ex-
ample, the supplier might want to make private transactions with
the pharmaceutical manufacturer to keep some terms of trade
confidential from other enterprises, e.g., price quotation (Tass1)
transaction. Such private transactions need to be executed on a
data collection shared between only the involved enterprises, e.g.,
dps between the pharmaceutical manufacturer and the supplier.
R2. Consistency across collaboration workflows. An enter-
prise might be involved in multiple collaboration workflows with
different sets of enterprises. For example, a transportation com-
pany that distributes both Pfizer and Moderna vaccines needs to
assign trucks based on the total number of vaccine packages. In case
of data dependency among transactions that span collaboration
workflows, data integrity and consistency must be maintained.
R3. Confidential data leakage prevention. An enterprise needs
to ensure that even if its infrastructure includes malicious nodes
(i-e., an attacker manages to compromise some nodes), the mali-
cious nodes cannot leak any confidential data, e.g., requests, replies,
processed data and stored data.
R4. Scaling multi-shard enterprises. Every day, millions of people
get vaccinated, thousands of shipments take place and many other
transactions are executed. All these activities need to be imme-
diately processed by the system and specifically by all involved
enterprises. A transportation company that distributes vaccines
across the world might maintain its data in multiple data shards.
Existing blockchain solutions, however, are not able to meet all
requirements of multi-enterprise collaboration workflows. While
Caper [5] enables enterprises to keep their local data confidential,
it does not address any of the R1 to R4 requirements. Fabric [12]
addresses confidential collaboration using private data collection
(although with a high overhead) and scalability using channels.
However, Fabric does not support requirements R2 and R3. Several
variants of Fabric, such as Fast Fabric [45], Fabric++ [78], Fabric-
Sharp [75], and XOX Fabric [44], try to address the performance
shortcomings of Fabric, especially when dealing with contentious
workloads. However, these permissioned blockchain systems, sim-
ilar to Fabric, suffer from the overhead of confidential collaboration
and also do not support requirements R2 and R3.

3 QANAAT MODEL

Qanaat is a permissioned blockchain system designed to support
multi-enterprise applications. This section presents the Qanaat
model and demonstrates how it supports different requirements of
multi-enterprise applications.

3.1 Model Assumptions

Qanaat consists of a set of collaborative enterprises. Each enterprise
owns a set of nodes (i.e., servers) that are grouped into different
clusters. Each enterprise further partitions its data into multiple data
shards. Each cluster of nodes maintains a shard of the enterprise
data and processes transactions on that data shard.

Qanaat assumes the partially synchronous communication model.
In the partially synchrony model, there exists an unknown global
stabilization time (GST), after which all messages between correct
nodes are received within some unknown bound A. Qanaat inher-
its the standard assumptions of previous permissioned blockchain

2841

systems, including a strong computationally-bounded adversary
that can coordinate malicious nodes and delay communication to
compromise service, an unreliable network that connects nodes
and might drop, corrupt, or delay messages, and the existence of
pairwise authenticated communication channels, standard digital
signatures and public-key infrastructure (PKI). A message m signed
by node i is denoted as (m);. Qanaat further uses threshold signa-
tures where each node i holds a distinct private key that is used to
create a signature share o(m); for message m. A node can generate
a valid threshold signature o(m) for m given n — f signature shares
from distinct nodes. A collision-resistant hash function D(.) is also
used to map a message m to a constant-sized digest D(m).

We next present the data model (Section 3.2) and the blockchain
ledger (Section 3.3) of Qanaat, which together address collaboration
confidentiality (R1) and data consistency (R2) requirements and
then demonstrate the Qanaat infrastructure (Section 3.4) that ad-
dresses the confidential data leakage prevention requirement (R3).
For simplicity of presentation, we first consider single-shard enter-
prises and then show how the model and the ledger are extended
to support multi-shard enterprises (Section 3.5), which addresses
the scalability requirement (R4).

3.2 Data Model

Qanaat constructs a hierarchical data model consisting of a set of
data collections for each collaboration workflow. Each data collec-
tion is a separate datastore where the execution of transactions
updates its data. Each data collection further has its own (business)
logic to execute transactions. Public transactions of a collabora-
tion workflow, e.g., place order in the vaccine supply chain, are
executed on the root data collection. All enterprises maintain the
root data collection. This is needed because enterprises use the data
maintained in the root data collection in other transactions. For
example, the order data stored in the root data collection is used
by the supplier in its private transactions to provide raw materials.

Internal private transactions of each enterprise, on the other hand,
are executed on its local data collection. Internal transactions are
performed within an enterprise following the logic of the enterprise,
e.g., develop formulation, and package vaccines take place within
the pharmaceutical manufacturer.

Any subset of enterprises might also execute private transac-
tions among themselves and confidentially from other enterprises.
Such transactions are executed on a data collection shared among
and maintained by only the involved enterprises. For example, the
supplier executes private transactions with the pharmaceutical
company on the material demand on a data collection that is main-
tained only by the supplier and pharmaceutical company.

Figure 2(a) presents a data model for a collaboration workflow
with enterprises A, B, C, and D. At the top level, a public data col-
lection dgpcp is stored on all four enterprises. At the bottom level,
there are four private data collections d4, dp, dc, and dp stored on
the corresponding enterprises. The figure also includes all possible
private data collections with different subsets of enterprises, e.g.,
dap or dacp. When a subset of enterprises, e.g., A and B, creates a
data collection, e.g., d4B, to execute private transactions, the shared
data collection maintains the execution results of transactions that
are executed on the data collection. Such data records are different

dA}

dap|
dac |
dps |
N

(b)
Figure 2: (a) A data model for a 4-enterprise collaboration
workflow. Intermediate data collections are optional and
needed only if there is a collaboration among a specific sub-

set of enterprises, (b) data maintained by enterprise A, (c)
data models for 3-enterprise workflows.

from the records maintained in the data collection of each indi-
vidual enterprise, e.g., d4 and dp. In contrast to the root and the
local data collections that are needed in every collaboration work-
flow, intermediate data collections are optional and needed only if
there is a collaboration among a specific subset of enterprises.

Qanaat defines operational primitives necessarily to capture data
consistency and data dependency across data collections.

Write. The execution results of transactions executed on a data col-
lection are written on the records of the same data collection. This is
needed to guarantee collaboration confidentiality as (intermediate)
data collections are created for private collaboration, e.g., private
lobbying, among a subset of enterprises while preventing other en-
terprises from accessing the data. In particular, if enterprises A and
B make a confidential collaboration, the resulting data should not
be written on a data collection that is either shared with some other
enterprise C or not shared with one of the involved enterprises,
e.g., d4. Note that d4p is maintained by both enterprises A and B
and they have access to its record. This captures the confidential
collaborations in real-world cross-enterprise applications.

Read. When a transaction is being executed on a data collection
dx, it might read records of a data collection dy if enterprises shar-
ing dx are a subset of the enterprises sharing dy. For example, the
internal transactions of the supplier can read the records of all data
collections that the supplier is involved in with other enterprises.
This is needed because those records might affect the internal trans-
actions of the supplier, e.g., the number of vaccines that the supplier
supplies depends on the orders it receives from other enterprises.

More formally, given a data collection dx where X is the set of
enterprises sharing dy. For each data collection dy where X C Y,
we define dx as order-dependent of dy. We say transactions executed
on dx can read the records of dy if data collection dx is order-
dependent on dy. The dashed lines between data collections in
Figure 2(a) present order-dependency among data collections; the
transactions executed on the lower-level data collections can read
the records of the higher-level data collections, e.g., dap can read
dapc, dapp and dapcp.

In some applications, transactions that are executed on data
collection dx might also need to verify the records of another data
collection dy in a privacy-preserving manner (i.e., without reading
the exact records) if enterprises sharing dx are a superset of the
enterprises sharing dy, i.e., Y C X.

In particular, for intangible assets, e.g., cryptocurrencies, if enter-
prise A initiates a transaction in data collection d4g that consumes

2842

some coins, enterprise B needs to verify the existence of the coins
in data collection d4. In supply chain workflows, however, since
transactions are usually placed as a result of physical actions, verify-
ing the records of order-dependent data collections is unnecessary.
Qanaat can be extended to support privacy-preserving verifiability
using advanced cryptographic primitives like secure multiparty
computation [14, 40] and zero-knowledge proofs [42, 57, 61].

Every enterprise maintains all data collections that the enterprise
isinvolved in, i.e., the root, a local, and perhaps several intermediate
data collections. Qanaat replicates shared data collections on all
involved enterprises to facilitate the use of shared data by the trans-
actions on order-dependent data collections. Note that such shared
data collections can be maintained by a third party, e.g., a cloud
provider, trusted by all enterprises. However, this is a centralized
solution that contradicts the decentralized nature of blockchains.
Moreover, the data maintained in a shared data collection might be
used (i.e., read) in transactions on all order-dependent data collec-
tions. Hence, enterprises need to query the cloud for every simple
read operation to access the data.

As shown in Figure 2(b), enterprise A maintains local data col-
lection d4, root data collection d4gcp, and all intermediate data
collections (if exist), e.g., dag and dacp.

A data model represents data processed by each collaboration
workflow among a set of enterprises. However, an enterprise (or
a group of enterprises) might be involved in multiple collabora-
tion workflows (instances of Qanaat) with different sets of enter-
prises. The transactions of the same enterprise in different collabor-
ation workflows might be data-dependent. Creating an independent
data collection for each enterprise in each collaboration workflow
might result in data consistency issues. For example, a supplier that
provides raw materials for both Pfizer and Moderna vaccines in
two different supply chain collaboration workflows needs to know
the total number of the requested materials in order to provision
for them correctly. As a result, Qanaat creates a single data collec-
tion for each enterprise and if an enterprise is involved in multiple
possibly data-dependent collaboration workflows, the transactions
of the enterprise in different collaboration workflows are executed
on the same data collection. An enterprise might also collaborate
with enterprises outside Qanaat and require to access its data. Such
data operations can be performed on the enterprise’s local data col-
lection without violating data consistency enabling the enterprise
to use such data in its collaboration workflows within Qanaat.

Figure 2(c) presents two data models for two collaboration work-
flows where enterprises K, L, and M are involved in the first and
enterprises L, M, and N are involved in the second collaboration
workflow. Since L and M are involved in both workflows, the local
data collections dj and dj; and the intermediate data collection
dyppm are shared in both collaboration workflows.

3.3 Blockchain Ledger

The blockchain ledger is an append-only data structure to maintain
transaction records. When several enterprises execute transactions
across different data collections, maintaining consistency and pre-
serving confidentiality in a scalable manner is challenging. Before
describing the Qanaat ledger, we discuss three possible solutions
for ordering transactions in cross-enterprise collaborations.

1. A single, global ledger. One possibility is to construct a lin-
ear blockchain ledger for each collaboration workflow where all
transactions on all data collections are totally ordered and appen-
ded to a single global ledger. To preserve the confidentiality of
private transactions, the cryptographic hash of such transactions
(instead of the actual transaction) can be maintained in the block-
chain ledger. This technique, which has been used in Hyperledger
Fabric [12], suffers from two main shortcomings. First, forcing all
transactions into a single, sequential order unnecessarily degrades
performance, especially in the large-scale collaborations targeted
by Qanaat. To see this, note that while total ordering is needed
for data-dependent transactions, e.g., transactions executed on the
same data collection, to preserve data consistency, total ordering
among transactions of independent data collections, e.g., d4 and dp,
is clearly not needed. Second, since this solution requires a single,
global blockchain ledger to be maintained by every enterprise, each
enterprise needs to maintain (the hash of) transactions that the
enterprise was not involved in, e.g., internal transactions of other
enterprises, which increases bandwidth and storage costs.

2. One ledger for each data collection. A second possibility is
to maintain a separate transaction ordering (i.e., linear blockchain
ledger) for each data collection. The blockchain ledger of each
enterprise then consists of multiple parallel linear ledgers (one per
each data collection that the enterprise is involved in). This solution,
however, does not consider dependencies across order-dependent
data collections where the execution of a transaction might require
reading records from other data collections. Such dependencies
need to be captured during the ordering phase to ensure that all
replicas read the same state in the execution phase. Note that the
read-set and write-set of transactions might not be known before
execution. As a result, writing the read values into the block is not
possible in the ordering phase.

For example, consider an internal transaction of the supplier that

reads the order record of the root data collection and based on that,
computes and stores the results. In the meantime (during the period
from the initiation to the execution of the transaction), the value of
the order record might change. As a result, if the state of the root
data collection has not been captured, different nodes (i.e., replicas)
of the supplier, might read different values (old or new) of the order
in the execution phase resulting in inconsistency.
3. One ledger for each enterprise. A third solution is to maintain
a total order among all transactions in which an enterprise is in-
volved. This solution, in contrast to the second solution, guarantees
data consistency. However, similar to the first solution, this solution
prevents order-independent transactions from being appended to
the ledger in parallel. For example, transactions on data collections
dap have no data dependency with transactions on dgc and can
append to the ledger of enterprise A in parallel.

Qanaat addresses the shortcomings of the existing solutions in
guaranteeing data consistency and preserving collaboration confid-
entiality while creating a ledger in an efficient and scalable manner.
In Qanaat, the blockchain ledger guarantees two main properties:

e Local consistency. A total order on the transactions of each
data collection is enforced due to data dependency among
transactions executed on a data collection, and

e Global consistency. The order of the transactions of data
collection dx with respect to the transactions of all data

2843

[8:3],0
*[Asc:gl,;a:cz:;,'sn:u [riec [zcscz ;,'Ac 1)

ABC:2], ABC:2], 1], ABC:2], _ [p3),
[[/\B(iD:IZ] HABC‘D:%] [Aat[i?)g,l}éb:ll [ABCD:A [/-\[B?)I:Z]
[ABCD:2],0 [ABCD:2],0 [ABCD:2],0 [ABCD:2],0

\ v v ‘

A2], BC:2 BC:2 Lo [p2);
[AD[:l A]C:l] l[B(i:l [IB(i:l [lIAD:il

AD:1], AC:1], 8 BC:1], AC:1], AD:1],
[/[\BCD:]l] [[Aac:h [ABlca:fslgﬁ:ll [AB[C:I sén:u HABC:%] [/[\BCDJII]
l{ABC:l], HABC:I], EBCD:I]' [[BCD:I], l{A 1], [[BCD:I],
ABED:I] ABCD:1) [ABCD:1] AB(iD:l] ABCD:1] AB&D:I]

M
[ABCD:1],0 [ABCD:1],0 [ABCD:1],9 ._‘ [ABCD:1],0
v v v v
— (A0 — [B:1]0 — [C1]0 L [D:1],0
+) + +
2 y) 1 2
(a) (b) (c) (d)

Figure 3: (a)-(d) The blockchain ledger for enterprises A, B,
C, and D in a collaboration workflow

collections that dy is order-dependent on, is determined
by capturing the state of such data collections. Moreover,
transactions are ordered across the enterprises consistently.

Qanaat constructs a single DAG-structured ledger for each en-
terprise consisting of transaction records of the data collections
that are maintained by the enterprise. The first rule guarantees data
consistency within each single data collection and the second rule
ensures global data consistency across all order-dependent data
collections maintained by an enterprise. Given the above rules, each
transaction t initiated on data collection dx has an identifier, ID =
{a,y), composed of a local part & and possibly a global part y where
the ID is assigned during the ordering phase. The local part « is
[X:n] where X is a label representing the involved enterprises in
dx and n is a sequence number representing the order of transaction
t on dy. In the global part y, for every data collection dy where dx
is order-dependent on dy, Y:m is added to the y of ¢ to capture the
state of data collection dy. Here, Y:m is the local part of the ID of
the last transaction that is committed on data collection dy. When
t is executed, it might read the state of a subset of data collections
that are captured in the global part of its ID.

Figure 3(a)-(d) shows the blockchain ledger of four enterprises
A, B, C, and D created in the Qanaat model (following Figure 2(a))
for a collaboration workflow. In this figure, ([A:1], @) is an internal
transaction on data collections d4 (with y = @ because no trans-
actions has been processed yet). ({ABCD:1], @) is a public trans-
action on dapcp (with y = @ because the root data collection is
not order-dependent on any data collections). As shown, two trans-
actions ([ABC:1], [ABCD:1]) (on dapc) and {[BCD:1], [ABCD:1])
(on dpcp) are appended to the ledger of enterprise B (as well as C)
in parallel because d4pc and dpcp are not order-dependent. Both
transactions include global part y = [ABCD:1] because both d4pc
and dpcp are order-dependent on dapcp.

3.4 Qanaat Infrastructure

In Qanaat, nodes follow either the crash failure model or the Byz-
antine failure model. To guarantee fault tolerance, clusters with
crash-only nodes include 2f+1 nodes. In the presence of Byzantine
nodes, 3f+1 nodes are needed to provide fault tolerance [22]. The
malicious nodes, however, can violate data confidentiality by leak-
ing requests, replies, and data stored and processed at the nodes.
To prevent confidential data leakage (known as intrusion tolerance

[54, 85]), Qanaat can use either of the following two techniques: (1)
restricting the data that nodes can access [19, 20, 62, 68, 85] using
secret sharing schemes, or (2) adding a privacy firewall between
the ordering nodes and the execution nodes [39, 86].

In the secret sharing scheme, clients encode data using an (f +
1, n)-threshold secret sharing scheme, where f + 1 shares out of
n total shares are needed to reconstruct the confidential data [54].
Secret sharing schemes only perform basic store and retrieve oper-
ations (Belisarius [68] also supports addition) and do not support
general transactions that require nodes to manipulate the contents
of stored data. As a result, this technique is not suitable for block-
chain systems that are supposed to support complex transactions.

In the privacy firewall mechanism [86], the infrastructure con-
sists of 3f + 1 ordering nodes (where f is the maximum number of
malicious ordering nodes) that run a BFT protocol to order client
requests, 2g + 1 execution nodes (where g is the maximum number
of malicious execution nodes) that maintain data and deterministic-
ally execute arbitrary transactions following the order assigned by
ordering nodes, and a privacy firewall consisting of a set of h + 1
rows of h + 1 filters (where h is the maximum number of malicious
filter nodes) between the ordering nodes and execution nodes. The
privacy firewall architecture assumes a network configuration that
physically restricts communication paths between ordering nodes,
filters, and execution nodes, i.e., clients can only communicate with
ordering (and not execution) nodes, and each filter has a physical
network connection only to all (filter) nodes in the rows above and
below. As a result, a malicious node can either access confidential
data (an execution node or a filter) or communicate freely with
clients (an ordering node) but not both. The h+1 rows of h+1 filters
guarantee that first, there is at least one path between execution
nodes and ordering nodes which only consists of non-faulty filters
(liveness) and second, since there are h + 1 rows and maximum h
malicious filters, there exist a row consisting of only non-faulty
filters that filters any malicious message (possibly including con-
fidential data). As a result, the rows below have no access to any
confidential data leaked by malicious execution nodes. Note that
if h < 3f, ordering nodes can be merged with the bottom row of
filters by placing a filter on each ordering node. In most applica-
tions, request and reply bodies must also be encrypted, thus, ordering
nodes cannot read them (while clients and execution nodes can).

By separating ordering nodes from execution nodes, a simple
majority of non-faulty nodes is sufficient to mask Byzantine failure
among execution nodes, i.e., 2g + 1 execution nodes can tolerate
g Byzantine faults. This is important because, compared to order-
ing, executing transactions, and maintaining the application logic
(e.g., smart contracts) and data require more powerful computation,
storage, and I/O resources. The overhead of the privacy firewall
mechanism can be reduced by adding h filters to each row while
providing a higher degree of confidentiality [39].

Separating ordering nodes from execution nodes and using a
privacy firewall comes with extra resource costs because ordering
nodes and execution nodes need to be physically separated. How-
ever, if a cluster is deployed in a cloud platform, ordering nodes
and execution nodes can match the control layer and computing
nodes, respectively. Similarly, tools such as internal authorization
services, node auditors, and load balancers deployed in existing
cloud platforms can be used as privacy firewalls [39].

2844

Qanaat prevents confidential data leakage despite Byzantine
failure using the privacy firewall mechanism presented in [86].

3.5 Multi-Shard Enterprises

We now show how the data model and the blockchain ledger can
be extended to support multi-shard enterprises. With single-shard
enterprises, every execution node of each enterprise maintains
all data collections that the enterprise is involved in. Enterprises,
however, partition their data into different shards. Each data shard
is then assigned to a cluster of nodes where ordering nodes of the
cluster order the transactions and execution nodes maintain the
data shard and execute transactions on the data shard.

We assume that enterprises use the same sharding schema for
each shared data collection to facilitate transaction processing
across different enterprises. The schema is agreed upon by all in-
volved enterprises when a data collection is created, i.e., the shard-
ing schema is part of the configuration metadata. Using the same
sharding schema leads to a more efficient ordering phase for cross-
enterprise transactions because there is no need for all involved
enterprises to run a consensus protocol to agree on the order of
every transaction. For each cross-enterprise transaction, one en-
terprise orders the transaction and other involved enterprises only
validate the order (details in Sections 4.3 and 4.4). Furthermore,
different data shards of an enterprise are processed by different
clusters. Using the same sharding schema, enterprises can easily
communicate with the right cluster that processes the data records
of transactions. If enterprises use different sharding schemas for a
shared data collection, Qanaat could still process cross-enterprise
transactions but with the overhead required to execute a consensus
protocol with every transaction on each cluster.

The blockchain ledger of a single-shard enterprise maintains all
transactions that are executed on the enterprise data. In a multi-
shard enterprise, the enterprise data is partitioned into different
shards where each shard is replicated on a cluster of execution
nodes. Since each cluster maintains a separate data shard, it executes
a different set of transactions. As a result, each cluster in a multi-
shard enterprise needs to maintain a different ledger. The ledger of
each cluster of a multi-shard enterprise, however, is constructed in
the same way as a single-shard enterprise. Moreover, the notion of
global consistency is extended to guarantee that each cross-shard
transaction is ordered across participating shards consistently.

4 TRANSACTION PROCESSING IN QANAAT

Processing transactions requires establishing consensus on a unique
order of requests. Fault-tolerant protocols use the State Machine
Replication (SMR) technique [59, 77] to assign each client request
an order in the global service history. In an SMR fault-tolerant
protocol, all non-faulty nodes execute the same requests in the
same order (safety) and all correct client requests are eventually
executed (liveness). Qanaat guarantees safety in an asynchronous
network, however, it considers a synchrony assumption to ensure
liveness (due to FLP results [41]).

A transaction might be executed on a single shard or on multiple
shards of a data collection where the data collection belongs to a
single enterprise (i.e., a local data collection) or is shared among
multiple enterprises (i.e., a root or an intermediate data collection).

Table 1: Processing transactions in Qanaat

Transaction Type Example Consensus Protocol
Shard Enterprise| Clusters- Shards |Coordinator-based Flattened
intra intra A -d)y Pluggable Pluggable
intra cross Cs3, Ds - d?:D Fig. 4(a) Fig. 5(a)
Cross intra Ay, As - d124, di‘ Fig. 4(b) Fig. 5(b)
cross cross |B1,C1,B2,Co- di%c’déc Fig. 4(c) Fig. 5(c)

As a result, as shown in Table 1, Qanaat needs to support four

different types of transactions. In Table 1, the network consists of

four enterprises where each enterprise y€{A, B, C, D} owns three
i

clusters of nodes, e.g., ¥1, Y2 and ¢3 and processes shard dlﬁ by
nodes of cluster ;.

An intra-shard transaction is executed on the same shard of a
data collection either intra-enterprise, e.g., on shard di‘ of a local
data collection d4 by cluster A1, or cross-enterprise, e.g., on shard
déD of a shared data collection dcp by clusters C3 and D3. A cross-
shard transaction is executed on multiple shards of a data collection
either intra-enterprise, e.g., on shards di and d,34 of a data collection
da by clusters Ay, A3, or cross-enterprise, e.g., on shards déc and
dIZSC of a shared data collection dpc by clusters By, C1, Bz, and Ca.

In Qanaat, cross-shard intra-enterprise transactions and intra-
shard cross-enterprise transactions are handled differently. In a
cross-shard intra-enterprise transaction, different clusters maintain
separate data shards. As a result, each cluster needs to separately
reach agreement on the transaction order among transactions of
its shard. However, in an intra-shard cross-enterprise transaction,
since the involved enterprises use the same sharding schema for
each shared data collection, the cluster that initiates the transaction
and all the involved clusters process the transaction on the same
shard of data. Hence, the order of transactions on different clusters
is the same. As a result, it is sufficient that one (initiator) cluster
determines the order and other clusters only validate the suggested
order. Note that while the involved clusters belong to different dis-
trustful enterprises, all clusters can detect any malicious behavior of
the initiator cluster. We will discuss how Qanaat addresses all pos-
sible malicious behaviors, e.g., assigning invalid ID (order) or even
not sending the transaction to other clusters. In cross-enterprise
collaboration, enterprises cannot trust that the other enterprise
nodes might not be compromised. As a result, independent of the
declared failure model of nodes, Qanaat uses a BFT protocol to or-
der cross-enterprise transactions. For cross-shard intra-enterprise
transactions, on the other hand, the involved clusters belong to the
same enterprise and trust each other. As a result, if all nodes are
crash-only, cross-shard consensus can be achieved using a crash
fault-tolerant protocol.

To process transactions across clusters coordinator-based and
flattened approaches are used. In the coordinator-based approach,
inspired by existing permissioned blockchains such as AHL [35],
Saguaro [10], and Blockplane [65], a cluster coordinates transac-
tion ordering, whereas, in the flattened approach, transactions are
ordered across the clusters without requiring a coordinator.

Nodes in Qanaat follow different failure models, i.e., crash or
Byzantine. We mainly focus on two common scenarios. First, when
nodes follow the crash failure, a cluster contains 2f + 1 nodes that
perform both ordering and execution. Second, when nodes follow

2845

the Byzantine failure and each cluster includes 3f + 1 ordering
nodes, 2g + 1 execution nodes, and a privacy firewall consisting of
h+ 1 rows of h + 1 filters. The number of required matching votes
to ensure that a quorum of ordering nodes within a cluster agrees
with the order of a transaction is different in different settings. We
define local-majority as the number of required matching votes
from a cluster. For crash-only clusters, local-majority is f + 1 (from
2f + 1 nodes), and for clusters with Byzantine ordering nodes,
local-majority is 2f + 1 (from 3f + 1 ordering nodes).

4.1 Intra-Cluster Consensus

In the internal (intra-cluster) consensus protocol, ordering nodes
of a cluster, independently of other clusters, agree on the order of
a transaction. The internal consensus protocol is pluggable and
depending on the failure model of nodes of the cluster a crash
fault-tolerant (CFT) protocol, e.g., (Multi-)Paxos [60] or a Byzantine
fault-tolerant (BFT) protocol, e.g., PBFT [27], can be used. If nodes
follow the Byzantine failure model, as discussed before, Qanaat
separates ordering nodes from execution nodes and uses a privacy
firewall to prevent confidential data leakage.

The protocol is initiated by a pre-elected ordering node of the
cluster, called the primary. When the primary node 7 (P;) of cluster
P; receives a valid signed request message (REQUEST, 0p, f¢, ¢)g, from
an authorized client ¢ (with timestamp t.) to execute (encrypted)
operation op on local data collection dp,, it initiates the protocol by
multicasting a message, e.g., accept message in Multi-Paxos (assum-
ing the primary is elected) or pre-prepare message in PBFT, including
the request and its digest to other ordering nodes of the cluster.

To provide a total order among transaction blocks and preserve
data consistency, the primary also assigns an ID, as discussed in
Section 3.3, to the request. The ordering nodes of the cluster then
agree on the order of the transaction using the utilized protocol.

4.2 Transaction Execution Routine

The next step after ordering is to execute a transaction and inform
the client. If nodes follow the Byzantine failure model, ordering and
execution are performed by distinct sets of nodes that are separated
by a privacy firewall. Once a transaction is ordered, the ordering
nodes generate a commit certificate consisting of signatures from
2f +1 different nodes and multicast both the request and the commit
certificate to the bottom row of filters. The filters check the request
and the commit certificate to be valid and multicast them to the next
row above. Filters also track the requests that they have seen in a
commit or a reply certificate and their IDs.

Upon receiving both a valid request and a valid commit certific-
ate, execution nodes append the transaction and the corresponding
commit certificate to the ledger. Note that the execution nodes store
the last reply certificate sent to client ¢ to check if the current re-
quest is new (i.e., has a larger timestamp) that needs to be executed
and committed to the ledger or an old request (i.e., has the same or
smaller timestamp) where nodes re-send the reply messages. If all
transactions accessing on dp, with lower local sequence numbers
(< n) have been executed, nodes execute the transaction on data
collection dp, following its application logic. If, during the execu-
tion, the execution nodes need to read values from some other data
collection dx where dp, is order-dependent on dx (i.e., P; C X),

w w
Gy Dy A, A; c ?1 G B, G,

-C\ -C\ 5
® ® Jp
i '

£ Lt

LA‘ aa

(a) (b) ()

Prepared

3

>

>

v
Prepared

Cor

it

A aaa

Commit
Zonmt

A aaa

Figure 4: (a) intra-shard cross-enterprise, (b) cross-shard
intra-enterprise, and (c) cross-shard cross-enterprise
coordinator-based consensus protocols

the nodes check the public part of the transaction ID to ensure
that they read the correct state of dy. Data collections store data
in multi-versioned datastores to enable nodes to read the version
they need to. This ensures that all execution nodes execute requests
in the same order and on the same state. Execution nodes then
multicast a signed reply message including the (encrypted) results
to the top row of filters. When a filter node in the top row receives
g + 1 valid matching reply messages, it generates a reply certificate
authenticated by g + 1 signature shares from distinct execution
nodes and multicasts it to the row below. Each filter then multicasts
the reply certificate to the row of filter nodes or ordering nodes
below. Finally, client ¢ accepts the result once it receives a valid
reply certificate from ordering nodes.

If nodes follow the crash failure model, ordering and execution
are performed by the same set of nodes. In this case, nodes append
the transaction to the ledger and execute it as explained before and
then the primary node sends a reply message to client c.

4.3 Coordinator-based Consensus

The coordinator-based approach has been used in distributed data-
bases to process cross-shard transactions, e.g., two-phase commit.
Coordinator-based protocols have also been used in several per-
missioned blockchain systems, e.g., AHL [35], Blockplane [65], and
Saguaro [10]. This section briefly demonstrates how Qanaat can
leverage the coordinator-based approach to process cross-cluster
transactions. In contrast to the existing coordinator-based databases
and blockchains that address multi-shard single-enterprise con-
texts, Qanaat deals with multi-shard multi-enterprise environments.
Moreover, since each transaction might read data from multiple
data collections, ordering transactions is Qanaat is more complex.
Figure 4 presents the normal case operation of (a) intra-shard cross-
enterprise, (b) cross-shard intra-enterprise, and (c) cross-shard
cross-enterprise coordinator-based protocols. All three coordinator-
based protocols consist of prepare, prepared, and commit phases.

In the prepare phase and upon receiving a transaction, ordering
nodes of the coordinator cluster establish (intra-cluster) consensus
on the order of the transaction among the transactions of their
shard. The primary then sends a signed prepare message to the
ordering nodes of all involved clusters.

The prepared phase is handled differently in different protocols.
For intra-shard cross-enterprise transactions, all involved clusters,
e.g., C3 and D3 in Figure 4(a), maintain the same data shard. As

2846

w w
[G Dy & @ A, w As B2 G
N N

IR

Propose
5
7

Propose
e
S

Ueda waw,l PRREREEN

S S S e

Tt ol

75: allto all =) [=

communication 8
< N g‘[comar:;?\iigtian g [all to all communication]
£ allto all _ _
§|__communication E all to all E _—
© 5 A E all to all communication

3 communication 3
(a) (b) ()

Figure 5: (a) intra-shard cross-enterprise, (b) cross-shard
intra-enterprise, and (c) cross-shard cross-enterprise
flattened consensus protocols

a result, there is no need to run consensus in non-coordinator
clusters, e.g., D3. Upon receiving a prepare message from the primary
of the coordinator cluster, e.g., C3, each ordering node of a non-
coordinator cluster, e.g., D3, validates the order and sends a prepared
message to the primary of the coordinator cluster.

For cross-shard intra-enterprise transactions, involved clusters,
e.g., Ay and As, maintain different shards of a local data collection,
e.g., da. Upon receiving a prepare message from the coordinator
cluster, e.g., Az, each non-coordinator cluster separately establishes
consensus on the order of the transaction in its data shard. The
primary of each non-coordinator cluster, e.g., Az, then sends a
prepared message to the nodes of the coordinator cluster, e.g., As.

Finally, for cross-shard cross-enterprise transactions, involved
clusters of the initiator enterprise, e.g., By and By of enterprise
B, maintain different shards of a shared data collection, e.g., dpc,
while each shard is replicated on clusters of different enterprises,
e.g., d;SC is maintained by B and C;. Upon receiving a prepare
message from the coordinator cluster, e.g., By, if the cluster belongs
to the initiator enterprise, e.g., By, it establishes (internal) consensus
on the transaction order. Otherwise, the cluster waits for a message
from the cluster of the initiator enterprise that maintains the same
data shard as they do, e.g., C; waits for By and C, waits for Bj.
Each node then validates the received message and sends a prepared
message to the primary of the coordinator cluster.

In the commit phase, upon receiving valid prepared messages
from every involved cluster, the primary of the coordinator cluster
establishes internal consensus within its cluster and multicasts a
signed commit message to ordering nodes of all involved clusters.

Each cluster then uses the transaction execution routine (Sec-
tion 4.2) to execute the transaction and send reply back to the client.

4.4 Flattened Consensus

The flattened consensus protocols of Qanaat, in contrast to the
flattened cross-shard consensus protocols, e.g., SharPer [8], which
are designed for single-enterprise environments, support multiple
multi-shard collaborative enterprises.

The flattened protocols of Qanaat enable clusters to commit a
transaction in a smaller number of communication phases. For in-
stance, a cross-shard intra-enterprise transaction can be committed
using the flattened protocol in 3 cross-cluster communication steps.
In contrast, using the coordinator-based protocol, the same trans-
action requires 3 cross-cluster and 9 intra-cluster communication
steps (3 runs of PBFT). It also reduces the load on the coordinator
cluster. We now discuss flattened consensus protocols in detail.

4.4.1 Intra-Shard Cross-Enterprise Consensus. In the intra-shard
cross-enterprise protocol, multiple clusters from different enter-
prises process a transaction on the same data shard of a shared data
collection, e.g., clusters C3 and D3 on shard dg D of shared data col-
lection dcp (Figure 5(a)). Upon receiving a valid request message m,
the primary ordering node 7 (P;) of the initiator cluster P; assigns
transaction ID (as discussed in Section 3.3) and multicasts a signed
propose message (PROPOSE, ID, d, m)gﬂ(Pi) to the ordering nodes of all
involved clusters where d = D(m) is the digest of request m. Upon
receiving a propose message, each node r validates the digest, signa-
ture and b, and multicasts a signed accept message (AccerT, b, d)g,
to all ordering nodes of every involved cluster. Each node r waits
for valid matching accept messages from a local-majority of every
involved cluster and then multicasts a commit message including the
transaction ID and its digest to every ordering node of all involved
clusters. The propose and accept phases of the protocol, similar to
pre-prepare and prepare phases of PBFT, guarantee that non-faulty
nodes agree on the transaction order. Finally, once an ordering
node receives valid commit messages from the local-majority of
all involved clusters that match its commit message, it generates a
commit certificate by merging messages from all involved clusters.
Each cluster uses the transaction execution routine to execute the
transaction and send reply back to the client.

4.4.2 Cross-Shard Intra-Enterprise Consensus. In the cross-shard
intra-enterprise consensus protocol, as shown in Figure 5(b), the in-
volved clusters, e.g., A2 and A3, maintain different shards of a local
data collection, e.g., d4. Upon receiving a valid request message m,
the primary 7 (P;) of the initiator cluster P; assigns ID; to the trans-
action and multicasts a propose message i = (PROPOSE, ID;, d, m)an(Pl_)
to all nodes of every involved cluster. Upon receiving a valid propose
message, each primary node 7 (Pj) of an involved cluster P; multic-
asts (ACCEPT, ID;, IDj, d, d,)an(},j) to the nodes of its cluster where ID;
represents the order of m on data shard of cluster P;. The digest of
the propose message, d;, = D(p), is added to link the accept message
with the corresponding propose message enabling nodes to detect
changes and alterations to any part of the message. The primary
of the initiator and all involved clusters process the request only
if there is no (concurrent) uncommitted request m’ where m and
m’ intersect in at least 2 shards. This is needed to ensure that re-
quests are committed in the same order in different shards (global
consistency) [8].

Each node r (including the primary) of an involved cluster P;
then multicasts a signed accept message (AccepT, p;, 1D}, d, 7)g, to
all ordering nodes of every involved cluster. Upon receiving valid
matching accept messages from the local-majority of all involved
clusters P;, Pj, ..., Py, node r multicasts (COMMIT, D, IDj, ..., IDg, d, I')g,
message to every ordering node of all involved clusters.

Upon receiving valid matching commit messages from the local-
majority of every involved cluster, the node generates a commit
certificate. The transaction execution routine then executes the
transaction and appends the transaction to the ledger.

In this protocol, since all clusters belong to the same enterprise,
if nodes of all involved clusters are crash-only, Qanaat processes
transactions more efficiently. In that case, nodes of each involved
cluster send the accept message to only the initiator primary and the

2847

initiator primary multicasts a commit message to all nodes (instead
of the two all to all communication phases).

4.4.3 Cross-Shard Cross-Enterprise Consensus. The cross-shard
cross-enterprise consensus protocol is needed when a transaction
is executed on different shards of a non-local data collection shared
between different enterprises, e.g., a transaction that is executed
on data shards dllac and dgc of shared data collection dgc where
d113C is maintained by B; and C; and dgc is maintained by By, and
C, (Figure 5(c)).

In this case, different clusters of each enterprise maintain dif-
ferent data shards, e.g., B and By maintain d113C and d123C’ however,
each data shard is processed by only one cluster of each involved
enterprise, e.g., dllsc is maintained by B; and Cj. In Qanaat, in order
to improve performance, only the clusters of the initiator enterprise,
e.g., By and By, establish consensus on the transaction order and
clusters of other enterprises, e.g., C1 and Cy, validate the order.

The primary node 7 (P;) of the initiator cluster P; multicasts a
signed propose message j = (PROPOSE, ID;, d, m>0n(1>,») to the nodes
of all involved clusters. Upon receiving a valid propose message,
each primary node 7 (Pj) of an involved cluster Pj belonging to the
initiator enterprise assigns an ID; to the transaction and multicasts
a signed (accepT, Ip;, D}, d, du}gﬂ(Pj) message to all the nodes of its
cluster and all other clusters that maintain the same data shard.
As before, primary nodes ensure consistency (i.e., no concurrent
request with more than one shared shard) before processing a
request. The accept and commit phases process the transaction in
the same way as cross-shard intra-enterprise protocol.

4.4.4 Primary Failure Handling. We use the retransmission routine
presented in [86] to handle unreliable communication between
ordering nodes and execution nodes. In this section, we focus on
the failure of the primary ordering node. If the timer of node r
expires before it receives a commit certificate, it suspects that the
primary might be faulty. When the primary node of a cluster fails,
the primary failure handling routine of the internal consensus
protocol, e.g., view-change in PBFT, is triggered by timeouts to
elect a new primary.

The timeout mechanism prevents the protocol from blocking and
waiting forever by ensuring that eventually (after GST), commu-
nication between non-faulty ordering nodes is timely and reliable.
Ordering nodes use different timers for intra-cluster and cross-
cluster transactions because processing transactions across clusters
usually takes more time. The timeout value mainly depends on the
network latency (within or across clusters). It must be long enough
to allow nodes to communicate with each other and establish con-
sensus, i.e., at least 3 times the WAN round-trip for cross-cluster
transactions to allow a view-change routine to complete without
replacing the primary node again. The timeouts are adjusted to
ensure that this period increases exponentially until some transac-
tion is committed, e.g., in case of consecutive primary failure, the
timeout is doubled as in PBFT [27].

While in the intra-shard cross-enterprise consensus, only the
failure of the initiator primary needs to be handled, in other pro-
tocols, the primary of any involved clusters that assign an ID, i.e.,
belongs to the initiator enterprise, might fail. In the intra-shard
cross-enterprise consensus, if the timer of node r in the initiator

cluster expires, it initiates the failure handling routine of the in-
ternal consensus protocol, e.g., view-change in PBFT. Otherwise, if
the node is in some other involved cluster, it multicasts a commit-
query message including the request ID and its digest to the nodes
of the initiator cluster. If nodes receive commit-query from the local-
majority of an involved cluster for a request, they suspect their
primary is faulty. Nodes also log the query messages to detect
denial-of-service attacks initiated by malicious nodes.

In the second and third protocols, each transaction needs to be
ordered by the initiator primary as well as the primary nodes of all
clusters belonging to the initiator enterprise (i.e., which maintain
different data shards). Suppose a malicious primary node (from the
initiator or an involved cluster) sends a request with inconsistent
ID to different nodes. In that case, nodes detect the failure in all to
all communication phases of the protocol triggering the primary
failure handling routine within the faulty primary cluster. Note that
since propose and accept messages need to be multicast to all nodes,
and all nodes of all involved clusters multicast accept and commit
messages to each other, even if a malicious primary decides not to
multicast a request to a group of nodes, it will be easily detected.

Finally, if a client does not receive a reply soon enough, it multic-
asts its request message to all ordering nodes of the cluster that it
has already sent its request. If an ordering node has both the commit
certificate (i.e., the request has already been ordered) and the reply
certificate (i.e., the request has already been executed), the node
simply sends the reply certificate to the client. If the node has not
received the reply certificate, it re-sends the commit certificate to the
filter nodes. Otherwise, if the node is not the primary, it relays the
request to the primary. If the nodes do not receive propose messages,
the primary will be suspected to be faulty.

We establish the safety (agreement, validity, and consistency) and
liveness properties of both the coordinator-based and the flattened
protocols in the extended version of the paper [11].

5 EXPERIMENTAL EVALUATION

Our evaluation has three goals: (1) comparing the performance of
the coordinator-based and flattened consensus protocols in differ-
ent workloads with different types of transactions; (2) demonstrat-
ing the overhead of using the privacy firewall mechanism [86] to
provide confidentiality despite Byzantine faults; (3) comparing the
performance of Qanaat with Hyperledger Fabric [12] and two of its
variants, FastFabric [46] and Fabric++ [78], to analyze the impact of
sharding and the performance trade-off between a higher number
of shards versus a higher percentage of cross-shard transactions.
We analyze the impact of (1) the failure model of nodes, (2) the
percentage of cross-enterprise transactions, (3) the percentage of
cross-shard transactions, (4) the geo-distribution of clusters, (5) the
number of involved enterprises, (6) the failure of nodes, and (7) the
degrees of contention on the performance of these protocols and
systems. Due to space restrictions, the experiment results for (5),
(6) and (7) are reported in the extended version of the paper [11].
We implemented a prototype of Qanaat and deployed a simple
asset management collaboration workflow. We use (modified) Small-
Bank benchmarks with write-heavy workloads. The key selection
distribution in each data collection is uniform with s-value = 0.

2848

[#-Crd-B~~Crd-B(PF) & FIt-B - FIt-B(PF) - Crd-C - Flt-C o Fabric - Fabric++ e FastFabric

300 600

%3
S

200 400

Latency [ms]

]
3

100 200

5 10 15 20 25
Throughput [Ktrans/sec]

0 10 20 30 40 50
Throughput [Ktrans/sec]

0 20 40 60 80 100

Throughput [ktrans/sec]

Figure 6: Workloads with (a) 10%, (b) 50%, (c) 90% intra-shard
cross-enterprise transactions

We consider an infrastructure with 4 enterprises. Each enterprise
partitions its data into 4 shards. Each crash-only clusters includes
2f + 1 nodes that order and execute transactions while each Byz-
antine cluster includes 3f +1 ordering nodes, 2g+1 execution nodes
and h+ 1 rows of h+ 1 filter nodes. To demonstrate the overhead of
the privacy firewall mechanism, we also measure the performance
of Byzantine clusters with only 3f + 1 nodes that order and execute
transactions. In all experiments f = g = h = 1. We use Paxos and
PBFT as the internal consensus protocols.

We consider a single-channel Fabric deployment (v2.2) where
Raft [66] is its consensus protocol. We deploy 4 enterprises on the
channel where enterprises can form public or private collaboration.
Sharding was not possible in a single-channel Fabric deployment,
however, we defined four endorsers to execute transactions of en-
terprises in parallel. We use a similar setting for FastFabric and
Fabric++. FastFabric re-architects Fabric and provides efficient op-
timizations such as separating endorsers from storage nodes and
sending transaction hashes to orderers. Fabric++, on the other hand,
presents reordering and early abort mechanisms to improve the
performance of Fabric, especially in contentious workloads.

The experiments were conducted on the Amazon EC2 platform.
Other than the fourth set of experiments where clusters are distrib-
uted over 4 different AWS regions, clusters are placed in the same
data center (California) with < 1 ms ping latency in the first three
sets of experiments. Each VM is a c4.2xlarge instance with 8 vCPUs
and 15GB RAM, Intel Xeon E5-2666 v3 processor clocked at 3.50
GHz. The results reflect end-to-end measurements from the clients.
The reported results are the average of five runs.

5.1 Intra-Shard Cross-Enterprise Transactions

In the first set of experiments, we measure the performance of
all protocols with different percentages, i.e., 10%, 50%, and 90%,
of intra-shard cross-enterprise transactions. Each transaction is
randomly initiated on a single data shard of a data collection shared
among multiple enterprises. The number of involved enterprises
depends on the data collection. Figure 6(a) demonstrate the results
for the workload with 10% intra-shard cross-enterprise (and 90%
internal) transactions. In this scenario and with crash-only nodes,
Qanaat processes more than 110 ktps with 38 ms latency using the
flattened protocol (FIt-C) and 103 ktps with 36 ms latency using the
coordinator-based protocol (Crd-C).

Fabric processes only 9.7 ktps (8% of the throughput of Fit-C) with
37 ms latency. While different endorsers of different enterprises
execute their transactions in parallel, ordering the transactions of
all enterprises by a single set of orderers becomes a bottleneck. This

[+ Crd-B~Crd-B(PF) = FIt-B -# FIt-B(PF) - Crd-C - Flt-C o Fabric - Fabric++ e FastFabric

600

400

200

0 20 40 60 80 100 0 20 40 60 0 10 20 30
Throughput [ktrans/sec]

Figure 7: Workloads with (a) 10%, (b) 50%, (c) 90% cross-shard
intra-enterprise transactions

Throughput [Ktrans/sec]

Throughput [Ktrans/sec]

clearly demonstrates the impact of parallel ordering (due to shard-
ing) in Qanaat, where different clusters process their transactions
independently. Fabric++ demonstrates only 3% higher throughput
compared to Fabric with the same latency as it can reorder and
early abort invalidated transactions. FastFabric, however, demon-
strates 189% throughput improvement compared to Fabric due to
its optimized architecture. However, its throughput is still 26% of
the throughput of Flt-C with the same latency.

With Byzantine nodes, the performance of the flattened protocol
(FIt-B) and the coordinator-based protocol (Crd-B) is reduced, which
is expected due to the higher complexity of BFT protocols. Using the
privacy firewall mechanism results in 8% and 6% lower throughput
in the coordinator-based (Crd-B(PF)) and flattened (FIt-B(PF)) proto-
cols respectively. This slight throughput reduction is the result of
two infrastructural changes. On one hand, using the privacy firewall
mechanism, request and reply messages go through filters resulting
in lower performance. On the other hand, separating ordering from
execution reduces the performance overhead by decreasing the
load on ordering nodes. The privacy firewall mechanism also in-
creases the latency of transaction processing in different workloads
by a constant coefficient. This is expected because the increased
latency comes from sending messages through the filters, which
is separated from the consensus routine; the bottleneck in heavy
workloads. While this latency is considerable in light workloads, it
becomes much lower in heavy workloads, e.g., 166% vs. 25% higher
latency in Crd-B(PF) protocol.

Increasing the percentage of cross-enterprise transactions to
50%, as shown in Figure 6(b), reduces the throughput of all proto-
cols. This is expected because a higher percentage of transactions
requires cross-enterprise consensus. In this experiment, Flt-B pro-
cesses 52 ktps with 230 ms latency while Crd-B processes 43 ktps
(18% lower) with 130 ms latency (44% lower). This shows a trade-off
between the number of communication phases and the quorum
size. While the coordinator-based approach requires more phases
of message passing (resulting in lower throughput), the quorum
size of the flattened approach is larger, i.e., all nodes communicate
with each other (resulting in higher latency). Using the privacy
firewall mechanism, the throughput of Crd-B(PF) and FIt-B(PF) is
increased by 5% and 7% respectively and their latency is increased
by only 9% and 6% (compared to Crd-B and Flt-B) before the end-to-
end throughput is saturated. These results demonstrate that as the
ordering routine becomes heavily loaded, the overhead of using
the privacy firewall mechanism is alleviated.

The performance of Crd-C is significantly better than Crd-B (i.e.,
23% higher throughput, 39% lower latency) in this scenario. This
difference, however, is not remarkable in the flattened protocols.
The reason is that in the coordinator-based protocol, consensus

2849

[#+-Crd-B~~Crd-B(PF) & FIt-B - FIt-B(PF) - Crd-C - Flt-C o Fabric - Fabric++ - FastFabric

450 1,200
300

150

Latency [ms]

0 20 40 60 80 100 0 10 20 30 40 50 510 15 20
Throughput [ktrans/sec] Throughput [Ktrans/sec] Throughput [Ktrans/sec]

Figure 8: Workloads with (a) 10%, (b) 50%, (c) 90% cross-shard
cross-enterprise transactions

takes place within each cluster using the internal consensus pro-
tocols (Paxos in this case). However, in the flattened protocol, as
shown in Figure 5(a), there is no internal consensus within clusters
and a BFT protocol across enterprises establishes agreement.

The performance of Fabric is also affected by increasing the
percentage of cross-enterprise transactions due to (1) the overhead
of hashing techniques and (2) conflicting transactions [6, 44, 45, 78].
Interestingly, the throughput gap between Fabric and Fabric++ is
increased to 18% (from 3%) in this scenario due to early abort and
reordering mechanisms presented in Fabric++.

With 90% cross-enterprise transactions, as shown in Figure 6(c),
the latency of FIt-B becomes very high (680 ms) due to its O(n?)
message communication. The performance of Flt-C and Flt-B be-
comes close to each other since in both cases, a BFT protocol is
used for cross-enterprise consensus. In this experiment, FastFabric
demonstrates the lowest latency (35% lower than Crd-C with 18
ktps) as it does not need message communication across clusters.

5.2 Cross-Shard Intra-Enterprise Transactions

In the second set of experiments, we measure the performance of
coordinator-based and flattened cross-shard intra-enterprise proto-
cols. With Byzantine nodes and with 10% cross-shard transactions,
as shown in Figure 7(a), the performance of Crd-B is still close to
Flt-B. However, by increasing the percentage of cross-shard trans-
actions to 50%, Flt-B shows 20% higher throughput. In this set of
experiments, since all shards belong to a single enterprise, as ex-
plained in Section 4.4.2, Flt-C is implemented as a CFT protocol, and,
as shown in Figure 7(a)-(c), has the best performance in all three
workloads. Similar to the previous section, the overhead of using the
privacy firewall mechanism is alleviated when the ordering nodes
become highly loaded, e.g., the gap between the latency of Flt-B(PF)
and Flt-B is reduced from 25% to 4% by increasing the percentage of
cross-shard transactions from 10% to 90%. Since enterprises main-
tain their data on a single data shard, Fabric demonstrates the same
performance in all three workloads, which is significantly worse
than Qanaat. However, with 90% cross-shard transactions, similar to
cross-enterprise transactions, FastFabric shows the lowest latency.

5.3 Cross-Shard Cross-Enterprise Transactions

In workloads consisting of cross-shard cross-enterprise transac-
tions, as shown in Figure 8(a)-(c), the coordinator-based protocol
shows better performance, especially with a higher percentage
of cross-cluster transactions. In particular, with 90% cross-cluster
transactions, Flt-B demonstrates 24% lower throughput and 93%
higher latency compared to Crd-B due to its all to all communica-
tion phases across multiple clusters of multiple enterprises.

[#-Crd-B~ Crd-B(PF) = FIt-B & FIt-B(PF) - Crd-C = FIt-C

n}
90 90 | 150
60 / 100
-

30 30 50

Latency [ms]
o
3

0 20 40 60 0 20 40 60 80 0 20 40 60
Throughput [ktrans/sec]

Figure 9: Scalability over spatial domains with (a) 10% intra-
shard cross-enterprise, (b) 10% cross-shard intra-enterprise,
(c) 10% cross-shard cross-enterprise transactions

Throughput [ktrans/sec] Throughput [ktrans/sec]

5.4 Scalability Across Spatial Domains

In the next set of experiments, we measure the impact of network
distance on the performance of the protocols. Clusters of different
enterprises are distributed over four different AWS regions, i.e.,
Tokyo (TY), Seoul (SU), Virginia (VA), and California (CA) with the
average Round-Trip Time (RTT): TY = SU: 33 ms, TY = VA: 148
ms, TY = CA: 107 ms, SU= VA: 175 ms, SU<= CA: 135 ms, and VA
= CA: 62 ms.

We consider workloads with 90% internal transactions (the typ-
ical setting in partitioned databases [82]) and repeat the previous
experiments, i.e., intra-shard cross-enterprise transactions (Fig-
ure 6(a)), cross-shard intra-enterprise transactions (Figure 7(a)),
and cross-shard cross-enterprise transactions (Figure 8(a)).

Since in Fabric, Fabric++, and FastFabric, all transactions are
ordered by the same set of orderers, placing endorser nodes that
execute transactions of different enterprises and orderer nodes in
different locations far from each other is not plausible. Hence, we
do not perform this set of experiments for Fabric and its variants.

With 10% intra-shard cross-enterprise transactions (Figure 9(a)),
FIt-B demonstrates higher latency due to the message complexity
of the protocol that requires all nodes to multicast messages to
each other over a wide area network. With 10% cross-shard intra-
enterprise transactions (Figure 9(b)), Flt-C demonstrates the best
performance because clusters belong to the same enterprise and
Qanaat processes transactions using a CFT protocol.

Finally, With 10% cross-shard cross-enterprise transactions (Fig-
ure 9(c)), the coordinator-based protocols show better performance
because of the two all to all communication phases of the flattened
protocols that take place among distant clusters. Compared to the
single datacenter setting, the overhead of using the privacy firewall
mechanism is also reduced. With 10% intra-shard cross-enterprise
transactions, Crd-B(PF) shows 3% lower throughput and 10% higher
latency Compared to Crd-B while with the same workload and in
single datacenter setting, Crd-B(PF) demonstrates 6% lower through-
put and 20% higher latency.

6 RELATED WORK

A permissioned blockchain system [2, 12, 30, 44, 45, 51, 58, 64, 72, 75,
78] consists of a set of known, identified but possibly untrusted par-
ticipants (permissioned blockchains are analyzed in several surveys
and empirical studies [7, 26, 29, 37, 38, 74, 79, 79]). Several block-
chains support confidential transactions in both the permissioned
[28, 63] and permissionless [25, 49] settings. These systems, how-
ever, are not scalable and only support simple, financial transfers,
not more complex database updates.

2850

Hyperledger Fabric [12] stores confidential data in private data
collections [50] replicated on authorized enterprises. The hash of
all private transactions, however, is appended to the single global
ledger of every node resulting in low performance.

Several variants of Fabric, e.g., Fast Fabric [45], XOX Fabric
[44], Fabric++ [78], and FabricSharp [75], have been presented to
improve its performance. Such systems, however, do not address
the confidential data leakage and consistency challenges of Fabric.
Fabric can also be combined with secure multiparty computation
[17] but this does not address performance issues.

Caper [5] supports private internal and public global transac-
tions of collaborative enterprises. Caper, however, does not address
transactions among a subset of enterprises, consistency across col-
laboration workflows, confidential data leakage prevention, and
multi-shard enterprises.

The zero-knowledge proofs techniques have been used in dif-
ferent blockchain systems such as Hawk [56], Arbitrum [53], Zkay
[80], Ekiden [32], and zexe [21] to support confidential transac-
tions. These systems focus on the application layer and do not
attempt to address the consensus and data layers that are the focus
of Qanaat. Hence, these systems are complementary to Qanaat, and
some of these tools could be adapted to provide private contracting
capabilities on top of the Qanaat ledger.

Data sharding techniques are used in distributed databases [16,
23, 34, 36, 43, 52, 82, 83] with crash-only nodes and in permissioned
blockchain systems, e.g., AHL [35], Blockplane [65], chainspace [3],
SharPer [8], and Saguaro [10] with Byzantine nodes. Qanaat, in con-
trast to all these systems, supports multi-enterprise environments
and guarantees confidentiality.

7 CONCLUSION

In this paper, we proposed Qanaat, a permissioned blockchain sys-
tem to support the scalability and confidentiality requirements of
multi-enterprise applications. To guarantee collaboration confid-
entiality, Qanaat constructs a hierarchical data model consisting
of a set of data collections for each collaboration workflow. Every
subset of enterprises is able to form a confidential collaboration
private from other enterprises and execute transactions on a private
data collection shared between only the involved enterprises. To
prevent confidential data leakage, Qanaat utilizes the privacy fire-
wall mechanism [86]. To support scalability, each enterprise parti-
tions its data into different data shards. Qanaat further presents a
transaction ordering scheme that enforces only the necessary and
sufficient constraints to guarantee data consistency. Finally, a suite
of consensus protocols is presented to process different types of
intra-shard and cross-shard transactions within and across enter-
prises. Our experimental results clearly demonstrate the scalability
of Qanaat compared to Fabric and its variants. Moreover, while
coordinator-based protocols demonstrate better performance in
cross-enterprise transactions, flattened protocols show higher per-
formance in cross-shard transactions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful feedback
and suggestions. This work is funded by NSF grants CNS-1703560,
and CNS-2104882 and by ONR grant N00014-18-1-2021.

REFERENCES

[1] Abdullahi Tunde Aborode, Wireko Andrew Awuah, Suprateeka Talukder,

[10

(11

[12

[14

[15

[16

(7

[18

[19

[20

[21

[22

[23

=

]

]

]

]

]

]

Ajagbe Abayomi Oyeyemi, Esther Patience Nansubuga, Paciencia Machai,
Heather Tillewein, and Christian Inya Oko. 2022. Fake COVID-19 vaccinations
in Africa. Postgraduate medical journal 98, 1159 (2022), 317-318.

Rishav Raj Agarwal, Dhruv Kumar, Lukasz Golab, and Srinivasan Keshav. 2020.
Consentio: Managing consent to data access using permissioned blockchains. In
Int. Conf. on Blockchain and Cryptocurrency (ICBC). IEEE, 1-9.

Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George
Danezis. 2018. Chainspace: A sharded smart contracts platform. In Network and
Distributed System Security Symposium (NDSS).

Shahriar Tanvir Alam, Sayem Ahmed, Syed Mithun Ali, Sudipa Sarker, Golam
Kabir, et al. 2021. Challenges to COVID-19 vaccine supply chain: Implications
for sustainable development goals. International Journal of Production Economics
239 (2021), 108193.

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. CAPER:
a cross-application permissioned blockchain. Proc. of the VLDB Endowment 12,
11 (2019), 1385-1398.

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. ParBlock-
chain: Leveraging Transaction Parallelism in Permissioned Blockchain Systems.
In Int. Conf. on Distributed Computing Systems (ICDCS). IEEE, 1337-1347.
Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. Permis-
sioned Blockchains: Properties, Techniques and Applications. In SIGMOD Int.
Conf. on Management of Data. 2813-2820.

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. SharPer:
Sharding Permissioned Blockchains Over Network Clusters. In SIGMOD Int. Conf.
on Management of Data. ACM, 76-88.

Mohammad Javad Amiri, Joris Duguépéroux, Tristan Allard, Divyakant Agrawal,
and Amr El Abbadi. 2021. SEPAR: Separ: Towards Regulating Future of Work
Multi-Platform Crowdworking Environments with Privacy Guarantees. In Pro-
ceedings of The Web Conf. (WWW). 1891-1903.

Mohammad Javad Amiri, Ziliang Lai, Liana Patel, Boon Thau Loo, Eric Loo, and
Wenchao Zhou. 2021. Saguaro: Efficient Processing of Transactions in Wide
Area Networks using a Hierarchical Permissioned Blockchain. arXiv preprint
arXiv:2101.08819 (2021).

Mohammad Javad Amiri, Boon Thau Loo, Divyakant Agrawal, and Amr El Abbadi.
2021. Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain System with
Confidentiality Guarantees. arXiv preprint arXiv:2107.10836 (2021).

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, et al. 2018.
Hyperledger Fabric: a distributed operating system for permissioned blockchains.
In European Conf. on Computer Systems (EuroSys). ACM, 30.

Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-
Kogias. 2018. Channels: Horizontal scaling and confidentiality on permissioned
blockchains. In European Symposium on Research in Computer Security (ESORICS).
Springer, 111-131.

David W Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt Nielsen,
Jakob Illeborg Pagter, Nigel P Smart, and Rebecca N Wright. 2018. From keys to
databases—real-world applications of secure multi-party computation. Comput.
.61, 12 (2018), 1749-1771.

Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. 2016. Medrec:
Using blockchain for medical data access and permission management. In Int.
Conf. on Open and Big Data (OBD). IEEE, 25-30.

Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing scalable, highly available storage for interactive
services. In Conf. on Innovative Data Systems Research (CIDR).

Fabrice Benhamouda, Shai Halevi, and Tzipora Halevi. 2019. Supporting private
data on hyperledger fabric with secure multiparty computation. IBM Journal of
Research and Development 63, 2/3 (2019), 3-1.

Gianluca Benigno, Julian di Giovanni, Jan JJ. Groen, and Adam
Noble. 2022. Global Supply Chain Pressure Index: May 2022 Update.
https://libertystreeteconomics.newyorkfed.org/2022/05/global-supply-chain-
pressure-index-may-2022-update/.

Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo
Sousa. 2013. DepSky: dependable and secure storage in a cloud-of-clouds. Trans-
actions on Storage (TOS) 9, 4 (2013), 12.

Alysson Neves Bessani, Eduardo Pelison Alchieri, Miguel Correia, and Joni Silva
Fraga. 2008. DepSpace: a Byzantine fault-tolerant coordination service. In ACM
SIGOPS/EuroSys European Conference on Computer Systems. 163-176.

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra,
and Howard Wu. 2020. Zexe: Enabling decentralized private computation. In
Symposium on Security and Privacy (SP). IEEE, 947-964.

Gabriel Bracha and Sam Toueg. 1985. Asynchronous consensus and broadcast
protocols. Journal of the ACM (JACM) 32, 4 (1985), 824-840.

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.
TAO: Facebook’s Distributed Data Store for the Social Graph. In Annual Technical

2851

[24

[25

[26

[28

[29

& 'w
-0

[32

[33

[34

(35]

[36

W@
=

[38

[39

[40]

"~
&

[44

[45

=
&

[47

(48

Conf. (ATC). USENIX Association, 49-60.

Lucien Bruggeman and Sasha Pezenik. 2022. Emergent BioSolutions
discarded ingredients for 400 million COVID-19 vaccines, probe finds.
https://abcnews.go.com/US/emergent-biosolutions-discarded-ingredients-400-
million-covid-19/story?id=84604285.

Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:
Towards privacy in a smart contract world. In Int. Conf. on Financial Cryptography
and Data Security. Springer, 423-443.

Christian Cachin and Marko Vukoli¢. 2017. Blockchain Consensus Protocols in
the Wild. In Int. Symposium on Distributed Computing (DISC). 1-16.

Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance.
In Symposium on Operating systems design and implementation (OSDI), Vol. 99.
USENIX Association, 173-186.

Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine Shi. 2017.
Solidus: Confidential distributed ledger transactions via PVORM. In SIGSAC Conf.
on Computer and Communications Security. ACM, 701-717.

Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why Do My
Blockchain Transactions Fail? A Study of Hyperledger Fabric. In SIGMOD Int.
Conf. on Management of Data. ACM, 221-234.

JP Morgan Chase. 2016. Quorum white paper.

Jingjing Chen, Tiefeng Cai, Wenxiu He, Lei Chen, Gang Zhao, Weiwen Zou, and
Lingling Guo. 2020. A blockchain-driven supply chain finance application for
auto retail industry. Entropy 22, 1 (2020), 95.

Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A platform
for confidentiality-preserving, trustworthy, and performant smart contracts. In
European Symposium on Security and Privacy (EuroS&P). IEEE, 185-200.

Om Prakash Choudhary, Priyanka, Indraj Singh, Teroj A Mohammed, and Alf-
onso J Rodriguez-Morales. 2021. Fake COVID-19 vaccines: scams hampering
the vaccination drive in India and possibly other countries. Human Vaccines &
Immunotherapeutics (2021), 1-2.

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, et al. 2013. Spanner:
Google’s globally distributed database. Transactions on Computer Systems (TOCS)
31,3 (2013), 8.

Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding. In
SIGMOD Int. Conf. on Management of Data. ACM.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.
In Operating Systems Review (OSR), Vol. 41. ACM SIGOPS, 205-220.

Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and
Ji Wang. 2018. Untangling blockchain: A data processing view of blockchain
systems. IEEE transactions on knowledge and data engineering 30, 7 (2018), 1366~
1385.

Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-
Lee Tan. 2017. Blockbench: A framework for analyzing private blockchains. In
SIGMOD Int. Conf. on Management of Data. ACM, 1085-1100.

Sisi Duan and Haibin Zhang. 2016. Practical state machine replication with
confidentiality. In Symposium on Reliable Distributed Systems (SRDS). IEEE, 187—
196.

David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2017. A pragmatic intro-
duction to secure multi-party computation. Foundations and Trends® in Privacy
and Security 2, 2-3 (2017).

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility
of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374-382.

Ariel Gabizon and Zachary] Williamson. 2019. PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. IACR
ePrint 2019/953. (2019).

Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas An-
derson. 2011. Scalable consistency in Scatter. In Symposium on Operating Systems
Principles (SOSP). ACM, 15-28.

Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. 2020. XOX Fabric:
A hybrid approach to transaction execution. In Int. Conf. on Blockchain and
Cryptocurrency (ICBC). IEEE, 1-9.

Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019.
Fastfabric: Scaling hyperledger fabric to 20,000 transactions per second. In Int.
Conf. on Blockchain and Cryptocurrency (ICBC). IEEE, 455-463.

Christian Gorenflo, Stephen Lee, Lukasz Golab, and S. Keshav. 2019. FastFabric:
Scaling Hyperledger Fabric to 20,000 Transactions per Second. arXiv preprint
arXiv:1901.00910 (2019).

Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proceedings of the VLDB
Endowment 13, 6 (2020), 868—883.

Siyuan Han, Zihuan Xu, Yuxiang Zeng, and Lei Chen. 2019. Fluid: A blockchain
based framework for crowdsourcing. In SIGMOD Int. Conf. on Management of
Data. ACM, 1921-1924.

https://libertystreeteconomics.newyorkfed.org/2022/05/global-supply-chain-pressure-index-may-2022-update/
https://libertystreeteconomics.newyorkfed.org/2022/05/global-supply-chain-pressure-index-may-2022-update/
https://abcnews.go.com/US/emergent-biosolutions-discarded-ingredients-400-million-covid-19/story?id=84604285
https://abcnews.go.com/US/emergent-biosolutions-discarded-ingredients-400-million-covid-19/story?id=84604285

[49]

[50]

[51]

[52

[53

[54]

[55

[56]

[63]

[64

[65

[66]

[67

[68

[69]

Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash
protocol specification. GitHub: San Francisco, CA, USA (2016).

Hyperledger. [n.d.]. Private Data Collections: A High-Level Over-
view. https://www.hyperledger.org/blog/2018/10/23/private-data-collections-
a-high-level-overview.

Zsolt Istvan, Alessandro Sorniotti, and Marko Vukoli¢. 2018. StreamChain: Do
Blockchains Need Blocks?. In Workshop on Scalable and Resilient Infrastructures
for Distributed Ledgers (SERIAL). ACM, 1-6.

Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, et al. 2008. H-store: a high-performance, distributed main memory
transaction processing system. Proc. of the VLDB Endowment 1, 2 (2008), 1496~
1499.

Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Ed-
ward W Felten. 2018. Arbitrum: Scalable, private smart contracts. In USENIX
Security Symposium). 1353-1370.

Maher Khan and Amy Babay. 2021. Toward Intrusion Tolerance as a Service:
Confidentiality in Partially Cloud-Based BFT Systems. In Int. Conf. on Dependable
Systems and Networks (DSN). IEEE, 14-25.

K. Korpela, J. Hallikas, and T. Dahlberg. 2017. Digital supply chain transformation
toward blockchain integration. In Hawaii Int. Conf. on system sciences (HICSS).
Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papam-
anthou. 2016. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In Symposium on security and privacy (SP). IEEE,
839-858.

Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. 2018. xJsnark: A
framework for efficient verifiable computation. In 2018 IEEE Symposium on Se-
curity and Privacy (SP). IEEE, 944-961.

Jae Kwon. 2014. Tendermint: Consensus without mining. (2014).

Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (1978), 558-565.

Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18-25.
Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:
Zero-knowledge SNARKSs from linear-size universal and updatable structured
reference strings. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2111-2128.

Michael A Marsh and Fred B Schneider. 2004. CODEX: A robust and secure secret
distribution system. Transactions on Dependable and secure Computing 1, 1 (2004),
34-47.

Neha Narula, Willy Vasquez, and Madars Virza. 2018. zkledger: Privacy-
preserving auditing for distributed ledgers. In 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18). 65-80.

Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen
Jayachandran. 2019. Blockchain meets database: design and implementation of a
blockchain relational database. Proceedings of the VLDB Endowment 12, 11 (2019),
1539-1552.

Faisal Nawab and Mohammad Sadoghi. 2019. Blockplane: A global-scale byzant-
izing middleware. In 2019 IEEE 35th Int. Conf. on Data Engineering (ICDE). IEEE,
124-135.

Diego Ongaro and John K Ousterhout. 2014. In search of an understandable
consensus algorithm. In Annual Technical Conf. (ATC). USENIX Association,
305-319.

World Health Organization. 2021. Medical Product Alert N°5/2021: Falsified
COVISHIELD vaccine. https://www.who.int/news/item/31-08-2021-medical-
product-alert-n-5-2021-falsified- covishield-vaccine.

Ricardo Padilha and Fernando Pedone. 2011. Belisarius: BFT storage with confid-
entiality. In 2011 IEEE 10th International Symposium on Network Computing and
Applications. IEEE, 9-16.

Dan Patterson. 2021. Hackers are attacking the COVID-19 vaccine supply chain.
https://www.cbsnews.com/news/covid- 19-vaccine-hackers- supply-chain/.

2852

[70

[71

[72]

3
&

[74

[75

[76

[80

(81]

%0
&,

(83

[84]

(85]

(86]

Zhe Peng, Cheng Xu, Haixin Wang, Jinbin Huang, Jianliang Xu, and Xiaowen
Chu. 2021. P2B-Trace: Privacy-Preserving Blockchain-based Contact Tracing to
Combat Pandemics. In SIGMOD Int. Conf. on Management of Data. 2389-2393.
Zhe Peng, Jianliang Xu, Xiaowen Chu, Shang Gao, Yuan Yao, Rong Gu, and
Yuzhe Tang. 2021. Vfchain: Enabling verifiable and auditable federated learning
via blockchain systems. IEEE Transactions on Network Science and Engineering
(2021).

Ji Qi, Xusheng Chen, Yunpeng Jiang, Jianyu Jiang, Tianxiang Shen, Shixiong
Zhao, Sen Wang, Gong Zhang, Li Chen, Man Ho Au, et al. 2021. Bidl: A High-
throughput, Low-latency Permissioned Blockchain Framework for Datacenter
Networks. In Symposium on Operating Systems Principles (SOSP). ACM SIGOPS,
18-34.

Steve Reilly, Jason Paladino, Jonathan Lambert, and Matt Stiles. 2022.
Fake vaccine cards are everywhere. It’s a public health nightmare.
https://www.grid.news/story/science/2022/01/25/fake-vaccine-cards-are-
everywhere-its-a-public-health-nightmare/.

Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang

Chen, Qian Lin, and Beng Chin Ooi. 2021. Blockchains vs. Distributed Databases:
Dichotomy and Fusion. In SIGMOD Int. Conf. on Management of Data. 1504-1517.

Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-order-validate
Blockchains. In SIGMOD Int. Conf. on Management of Data. ACM, 543-557.
Sarah Schiffling and Nikolaos Valantasis Kanellos. 2022. Shanghai: world’s biggest
port is returning to normal, but supply chains will get worse before they get
better. https://theconversation.com/shanghai-worlds-biggest-port-is-returning-
to-normal-but-supply-chains-will-get-worse/before-they- get-better-182720.
Fred B Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: A tutorial. Computing Surveys (CSUR) 22, 4 (1990), 299-319.
Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the lines between blockchains and database systems: the case of
hyperledger fabric. In SIGMOD Int. Conf. on Management of Data. ACM, 105-122.
Man-Kit Sit, Manuel Bravo, and Zsolt Istvan. 2021. An experimental framework
for improving the performance of BFT consensus for future permissioned block-
chains. In Proceedings of the 15th ACM Int. Conf. on Distributed and Event-based
Systems. 55-65.

Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov,
and Martin Vechev. 2019. zkay: Specifying and enforcing data privacy in smart
contracts. In ACM SIGSAC Conf. on Computer and Communications Security (CCS).
1759-1776.

Judy Stone. 2021. How Counterfeit Covid-19 Vaccines And Vaccination Cards En-
danger Us All. https://www.forbes.com/sites/judystone/2021/03/31/how-
counterfeit-covid-19-vaccines-and-vaccination- cards-endanger-us-
all/?sh=eaddb0e36495.

Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: Fine-
grained elastic partitioning for distributed transaction processing systems. Proc.
of the VLDB Endowment 8, 3 (2014), 245-256.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J Abadi. 2012. Calvin: fast distributed transactions for partitioned
database systems. In SIGMOD Int. Conf. on Management of Data. ACM, 1-12.
Feng Tian. 2017. A supply chain traceability system for food safety based on
HACCP, blockchain & Internet of things. In Int. Conf. on service systems and
service management (ICSSSM). IEEE, 1-6.

Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson Bessani. 2022.
COBRA: Dynamic Proactive Secret Sharing for Confidential BFT Services. In
Symposium on Security and Privacy (SP). IEEE, 1528-1528.

Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike
Dahlin. 2003. Separating agreement from execution for byzantine fault tolerant
services. Operating Systems Review (OSR) 37, 5 (2003), 253-267.

https://www.who.int/news/item/31-08-2021-medical-product-alert-n-5-2021-falsified-covishield-vaccine
https://www.who.int/news/item/31-08-2021-medical-product-alert-n-5-2021-falsified-covishield-vaccine
https://www.cbsnews.com/news/covid-19-vaccine-hackers-supply-chain/
https://www.grid.news/story/science/2022/01/25/fake-vaccine-cards-are-everywhere-its-a-public-health-nightmare/
https://www.grid.news/story/science/2022/01/25/fake-vaccine-cards-are-everywhere-its-a-public-health-nightmare/
https://theconversation.com/shanghai-worlds-biggest-port-is-returning-to-normal-but-supply-chains-will-get-worse/before-they-get-better-182720
https://theconversation.com/shanghai-worlds-biggest-port-is-returning-to-normal-but-supply-chains-will-get-worse/before-they-get-better-182720
https://www.forbes.com/sites/judystone/2021/03/31/how-counterfeit-covid-19-vaccines-and-vaccination-cards-endanger-us-all/?sh=eaddb0e36495
https://www.forbes.com/sites/judystone/2021/03/31/how-counterfeit-covid-19-vaccines-and-vaccination-cards-endanger-us-all/?sh=eaddb0e36495
https://www.forbes.com/sites/judystone/2021/03/31/how-counterfeit-covid-19-vaccines-and-vaccination-cards-endanger-us-all/?sh=eaddb0e36495

