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8 ABSTRACT: Pressure-induced phase transitions from the zircon e
9 structure-type (I4,/amd) to the scheelite structure type (I4,/a) are  as SO

10 known for many ternary oxides systems (ABO,). In this work, we present ~ >>F

the first high-pressure study on synthetic stetindite (CeSiO,) by a 2o}
12 combination of in situ high-pressure synchrotron powder X-ray ¥/
13 diffraction up to 36 GPa, implemented with and without dual sided <us
14 laser heating, and in situ high-pressure Raman spectroscopy up to 43 52°f
15 GPa. Two phase transitions were identified: zircon to a high-pressure s
16 low-symmetry (HPLS) phase at 15 GPa and then to a scheelite at 18 s}
17 GPa. The latter from HPLS scheelite phase was found irreversible; ie, ol
18 scheelite is fully quenchable at ambient conditions, as in other zircon-type 240 bt
19 phases. The bulk moduli (K;) of stetindite, HPLS, and high-pressure Pressure (GPa)

20 scheelite phases were determined respectively as 171(S), 105(4), and

221(40) GPa by fitting to a second-order Birch—Murnaghan equation of state The pressure derivatives of vibrational modes and
22 Griineisen parameters of the zircon-structured polymorph is similar to those of other orthosilicate minerals. Due to the larger ionic
23 radii of Ce*", with respect to Zr*', stetindite was found to possess a softer bulk modulus and undergo the phase transitions at a lower

24 pressure than zircon (ZrSiO,),;such observations are consistent with what were found with coffinite (USiO,).

—
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1. INTRODUCTION reported to occur between 20 and 25 GPa.”>*" This new high- 45
pressure polymorph has been referred to a high-pressure low- 46
symmetry (HPLS) phase (space group: [4,d), resulting from 47
slight rotation and twisting of the SiO, and MOy polyhedra in 48
the zircon structure (Figure 1).22’31 49

Studying high-pressure transitions of zircon-type materials so
also has important thermophysical implications for their s1
applications. Materials possessing the zircon structure tend to s2
have low chemical reactivity, low solubility, and good s3
resistance to radiation damage, which make them ideal s4
candidates for ceramic based waste hosts for the permanent ss
immobilization of actinides from nuclear wastes.”” > In s6
particular the use of zircon has been proposed for the disposal s7
of plutonium (Pu) associated with the defense program since ss

25 Pressure-induced phase transitions from the zircon structure-
26 type (space group: 14,/amd) to the scheelite structure-type
27 (space group: I4,/a) are known for many different ternary
28 oxides (ABO,)."”” These ABO, systems include orthosilicates
29 (ZrSiO,, HfSiO, and USiO,),””" heavy rare earth element
30 (HREE) orthophosphates (HREEPO,),'”"* and rare earth
31 element (REE) orthovanadates (REEVO,)."” ' The most
32 studied of these phases is the eponymous orthosilicate mineral,
33 zircon (ZrSiO,), which undergoes a phase transition between
34 20 and 30 GPa, depending on the composition of natural
35 samples used (i.e, concentrations of Hf, U, or REE) and
36 degree of metamictization.”***7** This high-pressure phase
37 of ZrSiO, has been identified in natural systems such as the
38 ejecta associated with meteorite impacts and was given a
39 mineral name, reidite (scheelite structure type; space group:
40 I4,/a).”” The pressure-induced phase transition from zircon to
41 reidite results in an approximately 10% increase in the overall
4 density, with the [001] channels of zircon being completely
fl 43 eliminated in reidite (Figure 1).7*° More recently, an
44 intermediate phase between zircon and reidite has been

—
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Stetindite (/4,/amd)

()

HPLS (/-42d)

Scheelite (/4,/a)

o (e)

Figure 1. Crystal structures of the low-pressure stetindite phase (I4,/amd), the intermediate-pressure HPLS phase (I4,d), and the high-pressure
scheelite phase (I4,/a). (a, c, e) Projected along the a-axis. (b, d, f) Projected along the c-axis..

59 the 1990s.” Studying the thermochemical and thermophysical
60 properties of ceramic waste hosts is paramount in order to
61 confidently model and predict their long-term behavior during
62 storage.”® *° However, synthesizing the PuSiO, phase is
63 difficult.*”*® Thus, examining Pu-surrogate silicate is a rational
64 approach to understand material behaviors and properties of
65 PuSiO,. Because the ionic radius of Ce** (0.97 A) is similar to
66 that of Pu** (0.96 A) in an 8-fold coordination environment,*’
67 equivalent to the MOy snub-disphenoid of the zircon structure-
68 type, Ce is an effective surrogate for approximating the solid
69 state behavior of Pu.>"~* Ce can be incorporated in the zircon
70 structure and form pure phase CeSiO,, with its natural
71 occurrence, stetindite, discovered in Norway in 2009.%*
72 However, no high-pressure (high-P) studies have been
73 reported for stetindite, partly because stetindite is also very
74 difficult to synthesize.”>”® The advent of synthetic stetindite
75 has allowed for several recent studies to investigate some of its
76 thermochemical’”*® and thermophysical properties.”” In this
77 work, we continue to study the thermophysical properties of
78 synthetic stetindite by examining its structural behavior under
79 high pressures as determined by a combination of in situ high-
80 pressure synchrotron powder X-ray diffraction up to 36 GPa,
81 implemented with and without dual sided laser heating, and in
82 situ high-pressure Raman spectroscopy up to 43 GPa.

2. EXPERIMENTAL METHODS

83 2.1. Sample Synthesis. Two batches of synthetic
s+ stetindite (CeSiO,) were prepared in this study. Each batch
8s was synthesized hydrothermally, in accordance to the protocol
86 described by Estevenon et al,”® in which a Ce**-silicate solid
87 precursor (A-Ce,Si,0,) was used. A-Ce,Si,O, was synthesized
88 by solid state route, in which a stoichiometric mixture of CeO,
89 (Sigma-Aldrich; particle size < S ym) and SiO, (Sigma-
90 Aldrich, 10—20 nm) were mechanically milled (30 Hz, 1 h) in
91 a Retsch MM 200 vibration mill mixer using a tungsten carbide
92 milling vessel. The resulting mixture was pelletized by uniaxial
93 pressing under S MPa at room temperature and then heated at
94 1350 °C under a reducing atmosphere (Ar—4% H,) to
95 produce A-Ce,Si,0,. 200 mg of the Ce*'-silicate solid

precursor was then placed in contact with 4 mL of a 0.75 M 96
HNO; solution (prepared by dilution of ACS grade 70% 97
HNO;, Sigma-Aldrich). In the synthesis of the first batch of os
CeSiO, (later used in in situ high-pressure synchrotron XRD 99
with Ne as a pressure transmitting medium, PTM), the acidity 100
of the solution was adjusted to a pH of 7.0 + 0.1 with a freshly 101
prepared NaOH solution (from ACS grade NaOH pellets, 102
Sigma-Aldrich). In the second batch of CeSiO, (later used in 103
the in situ high-pressure laser-heated synchrotron XRD 104
experiment in which KCl was used as the PTM), the acidity 10s
of the solution was adjusted to a pH 6.5 + 0.1, again with a 106
freshly prepared NaOH solution (from ACS grade NaOH 107
pellets, Sigma-Aldrich). Moreover, in the second batch, an 10s
excess of 8 mol % Si was added to the mixture (8.8 mg of 109
Na,Si05-5H,0) to avoid the CeO, formation. In both batches,
the mixtures were then hydrothermally treated for 7 days at 111
150 °C under air atmosphere using a Parr autoclave. The final 112
products were separated from the supernatant solution by 113
centrifugation, washed twice with deionized water and once 114
with ethanol, and then finally dried overnight at 60 °C. The 115
final products of both synthetic routes lead to single phased 116
CeSiO, of high crystallinity.***”*’ 117

2.2. In Situ High-Pressure Synchrotron XRD. The 1s
pressure generated in this study was done through a Princeton- 119
type symmetric DAC. The sample was loaded in a laser-drilled 120
hole (150 ym diameter) at the center of a pre-indented (45 121
um thickness) steel gasket, which was encapsulated between 122
two diamonds (culet size: 300 pm). The gasket was drilled 123
using the High-Pressure Collaborative Access Team (HPCAT) 124
laser drilling system at the Advanced Photon Source (APS), 125
Argonne National Laboratory (ANL).”” Two ruby spheres 126
were placed into the sample cavity as the pressure calibrant. 127
Pressure was obtained by using the standard ruby pressure 128
scale based on a pressure-induced shift of the R; fluorescence 129
line of ruby, measured by an online fluorescence spectrometer 130
system, which employs a 532 nm laser.’"*> Ne gas was used as 131
the PTM and was loaded using the GeoSoilEnviroCARS 132
(GSECARS) gas loading system at APS, ANL to an initial 133
pressure of 4.0 + 0.2 GPa.”> The loaded DAC was then 134
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135 transferred to the HPCAT beamline 16-BM-D at APS, ANL,
136 where in situ high-pressure XRD measurements were
137 conducted. The X-ray wavelength used was 0.4133 A (30
138 keV), with a beam size of § X § um”. Two-dimensional (2D)
139 diffraction images were collected using a Mar 345 detector, and
140 the geometric parameters were calibrated using a CeO,
141 standard. The sample to detector distance was fixed at 299.5
142 mm. All collected two-dimensional images were calibrated,
143 masked, and integrated through the use of Dioptas.”* The
144 obtained XRD patterns of stetindite and high-pressure phases
145 were analyzed through Rietveld method using the General
146 Structure Analysis System software version II (GSAS-II).*®
147 The background was modeled by the Chebyshev function. The
148 structure reported in Strzelecki et al.>” for stetindite at room
149 temperature served as the starting structural model for the
150 refinements of phases under low pressures, the structure
151 reported by Stangarone et al.”> for HPLS zircon served as the
152 starting structural model for the refinements of the
153 intermediate-pressure phase, and the structure reported for
154 high-pressure phase of coffinite (USiO,) by Zhang et al.”
155 served as the starting model for the refinements for scheelite
156 phase.

157 2.3. In Situ High-Pressure Laser-Heated Synchrotron
158 XRD. The sample and a small piece of Pt powder were placed
159 between two KCI plates. Because KCI is hydroscopic, which
160 can alter the hydrostatic conditions of the experiment,® it was
161 dried at 723 K for 24 h prior to being loaded (and was stored
162 in a 373 K drying oven when not in use). KCI was used as the
163 PTM, thermal insulator, and internal pressure marker, and Pt
164 as a laser coupler and a secondary pressure maker. Such a
165 “sandwich” layered mixture was loaded into an electric
166 discharge machine (EDM) drilled hole (150 pm diameter)
167 at the center of a preiindented (35 ym thickness) Re gasket.
168 The loaded DAC was then transferred to the GSECARS
169 beamline 13-ID-D at APS, ANL, where in situ high-pressure
170 and high-temperature XRD measurements were conducted.
171 The pressure generated in this study was done through the
172 same Princeton-type symmetric DAC (culet size: 300 pm)
173 used in the high-pressure synchrotron XRD experiment
174 described above. High temperatures were generated by using
175 the on-site double-sided laser heating system.””® The laser
176 beam was aligned coaxially with the X-ray beam to measure
177 diffraction patterns on the heating spot. The typical beam
178 diameters for the laser heating spots were 10—20 ym. The
179 temperatures generated during the laser heating was
180 determined spectroradiometerically using the gray-body
181 approximation.””®” The X-rays had a wavelength of 0.3344 A
182 (37 keV), with a beam size of ~2.5 X 2.5 um. The beam
183 geometric parameters were calibrated using LaBg. The distance
184 from sample to detector was fixed at 236.7 mm. The two-
185 dimensional (2D) images were collected utilizing a Pilatus
186 CdTe area detector. All collected two-dimensional images were
187 calibrated, masked, and integrated through the use of
188 Dioptas.”* The Rietveld refinement on the obtained XRD
189 data were the same as the description in Section 2.2. Based on
190 the pressure—volume equation of state (EOS) of KCI-Bl
191 (space group: Fm3m) and KCI-B2 (space group: Pm3m)
192 reported by Dewaele et al,”’ and the pressure—volume EOS
193 for Pt (space group: Fm3m) reported by Zha et al,”’ the
194 pressure in the cell was reported by taking the average of the
195 two derived pressures with the error as two standard deviations
196 of the mean.

st

—

—

—

—_

2.4. In Situ High-Pressure Raman Spectroscopy. 197
Raman spectroscopic measurements were performed using a 198
Horiba LabRAM HR Evolution Raman spectrometer/micro- 199
scope system of the Radiogeochemistry Team at Los Alamos 200
National Laboratory (LANL).”>”* A 532 nm laser was utilized 201
for the spectroscopic measurements, and an Olympus 20X 202
long-working-distance objective lens was used to visualize the 203
sample and focus the laser into the sample chamber. All spectra 204
were collected in the 100—1400 cm™' range. The maximum 205
laser output is 100 mW but is greatly attenuated before 206
interacting with the sample. The system is equipped with an 207
1800 gr/mm which yields an effective resolution of 0.33 cm™. 208
The collected spectra were corrected by subtracting the 209
background and were fitted using a Lorentz-type function. For 210
the in situ high-pressure Raman spectroscopic measurements, a 211
Princeton-style symmetric DAC with Type IIb, ultralow 212
fluorescence 300 um culet diamonds (Almax) were used to 213
generate high pressure. The sample was loaded in a drilled hole 214
(125 um diameter) at the center of a pre-indented (50 um 215
thickness) stainless-steel gasket. Two ruby microspheres were 216
placed into the sample cavity as the pressure calibrant. The 217
PTM used was a 4:1 methanol: ethanol mixture. The sample 218
was compressed from room pressure up to 43.3 + 2.2 GPa, and 219
Raman spectra were collected on both compression and 220
decompression. In addition, the sample recovered after the in 221
situ high P—T synchrotron XRD was also analyzed by Raman 222
spectroscopy after being removed from the DAC. This was 223
done by placing the recovered gasket onto a glass slide. 224

3. RESULTS

3.1. In Situ High-Pressure Synchrotron XRD. Powder 225
X-ray diffraction patterns at various pressures during 226
compression and decompression are shown in Supporting 227
Information Figure S1. Figure S2 shows representative fitted 228
patterns of CeSiO, at 4.0 + 0.2, 15.1 + 0.8, and 36.0 + 1.8 229
GPa. During compression at room temperature, stetindite was 230
stable up to 14.5 + 0.7 GPa, at which point it began to 231
transform to HPLS (Figure S1). The HPLS phase persisted 232
from 15.1 + 0.8 to 18.5 + 0.9 GPa, above which it began to 233
convert to scheelite. The phase transition to scheelite was 234
complete at 29.9 + 1.5 GPa, in which no more reflections 235
attributed to the HPLS structure could be found (Figure S1). 236
The scheelite structure was found to persist when the sample 237
was decompressed to the lowest pressure possibly achieved, 238
14.7 + 0.7 GPa. Refinements for stetindite from 4.0 = 0.2 to 239
145 + 0.7 GPa yielded RWP values between 0.895% and 240
0.997% (Table S1). Refinements performed on the HPLS 241
phase from 15.1 + 0.8 to 18.5 + 0.9 GPa yielded R,,, values 242
between 0.927% and 1.12% (Table S2). Refinements of high- 243
pressure phases from 33.0 + 1.7 to 36.0 = 1.8 GPa during 244
compression and all phases during decompression yielded Ry, 245
values between 1.25% and 1.41% (Table S3). Rietveld analyses 246
of the XRD patterns at high pressures were difficult because of 247
the broad diffraction peaks caused by the deviatoric stresses 248
(Figure S1).”* 249

In addition to the silicate phases, there was a presence of a 250
low diffuse peak around 8° (26), possibly attributing to the 251
(200) reflection of ice-(VI),”> shown in Figure S2a, which was 252
observed during the compression from 4.0 + 0.2 to 18.5 + 0.9 253
GPa. While the presence of ice-(VI) is not consistent with the 254
phase diagram of water,”””” it is the only likely phase which 2ss
would attribute a diffraction peak at the two-theta range it is 256
observed. Other phases that were considered, but did fit the 257
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Figure 2. Selected powder X-ray diffraction patterns of CeSiO, at high pressures. From bottom to top, the patterns were collected during the
increase of pressure up to 28.6 GPa. The cell was laser heated at a pressure of 17.0 GPa. The ticks above the x-axis indicate the positions of allowed

diffraction maxima.

Lattice Modes

Intensity (A.U.)

Lattice Modes

0.0 GPa -
S
.0 GPa @
7.3 GPa ® 8
s s
1acra | § £
z g
B~
2 -]
18.8 GPa =3
!\, 2056Pa | 8§
e 2
324GpPa | @
37.5GPa
A .3 GPa
= R
5 GPa
311 GPa
S
R
© 0
2486Pa | £ €
2196Pa | & 8 5
201 GPa ]
£ 3
s
M £
182G6Pa T 3 S
13.1 GPa §E
1GPa 38
b.2 GPa <
R
V. o GPa £
2 Vg V4’3 N
PEPEFEES EPSFEErSS BUEPETErSl BATErEr ErETErErES Ul ST BArErErS SrErSrara S By

100 200 300 400 500 600 700 800 900 1000 1100 1200

Wavenumber (cm™)

Figure 3. Raman spectra of CeSiO, at ambient conditions and in situ high pressures up to 43.3 GPa and then decompressed back to ambient
conditions. The spectrum presented at the top of the figure was collected on the sample recovered after being compressed and laser heated at

beamline 13-ID-D (APS).

258 measured patterns, were CeO,, SiO, (a-quartz and coesite),
259 AL,O;, Fe, Ne, as well as ice-(VII). The presence of this extra
260 reflection was not related to the scheelite transition because its
261 occurrence was below transitions of any known zircon-
262 structured orthosilicate at ambient tempera.ture,z“é_9 while
263 also well within the hydrostatic limit of Ne, ruling out the
264 possibility of an early phase transition due to a steep pressure
265 gradient.”* Previously, our work has shown that stetindite can
266 retain significant amounts of water (~0.5 mol) as both
267 adsorbed surface water and confined water in the [001]

channels of the zircon structure.”””” Thus, it is possible that 26s
water crystallizes to ice-(VI) upon compression,”® which has 269
been widely seen in other minerals and materials, such as more 270
porous zeolites.”” Because the (200) reflections would 271
correspond to a d-spacing of 2.988(7) A, it is possible that 272
such ice-(VI) crystallized from the confined water within the 273
[001] channel. So, the existence of ice-(VI) is also possible by 274
that within the [001] channel the H,O experiences a lowered 275
pressure due to capillary pressure effect. The other possibility 276
is that the water—ice transition is still taking place within the 277
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channel and that really limits the possibility of forming the
disordered ice (VII),*” as confined ice will have different
thermodynamic equilibrium than that of bulk ice. However,
the extra reflection was excluded from the refinements by
means of the exclude function in GSAS-II*® and consequently
was not considered during the whole pattern refinements.

3.2. In Situ High-Pressure Laser-Heated Synchrotron
XRD. Powder X-ray diffraction patterns from high P—T XRD
are shown in Figure 2, with a representative fitting shown in
Figure S3. With KCI as the PTM, stetindite was stable up to
15.0 + 0.9 GPa (Figure 2). This was evident by the appearance
of peaks located at 6.654° corresponding to the (112)
diffraction plane of the scheelite-structured phase (Figure
S4). The sample was further compressed to 17.0 + 1.6 GPa
(after scheelite transition) and was then subjected to double-
sided laser heating (Figure 2). Laser heating provided energy
to overcome the kinetic hindrance of the zircon—scheelite
transformation and relax any accumulated stresses. This is
clearly observed by the sharpness in the diffraction peaks
(Figure 2), in contrast to those shown in Figure S2. Note that
laser heating was not done to map out the P—V-T EOS. The
maximum temperature achieved by the present laser heating
setup was estimated to be higher than 3000 K. The exact
temperature was not able to be determined as a large flash of
the laser saturated the detector. Upon laser quenching, well-
crystallized scheelite with minor amounts of CeO, were found.
CeO, may be resulted from thermal decomposition of CeSiO,,
which is not thermodynamically favorable with respect to its
binary oxides under the standard condition.”” The cell was
then compressed to maximum pressure of 28.6 + 1.3 GPa,
where no further phase transformations were observed (i.e.,
monazite or fergusonite).81 During decompression, pressure
was lowered to 4.1 + 1.3 GPa, and the scheelite structure
persisted (Figure 2). The resulting Rietveld refinements on the
collected patterns yielded R, values between 1.80% and 7.91%
(Tables S4 and SS).

3.3. In Situ High-Pressure Raman Spectroscopy.
Collected Raman spectra of CeSiO, during the compression
from ambient to 43.3 + 2.2 GPa and decompressed back to
ambient are displayed in Figure 3. At room temperature,
stetindite was stable up to 18.1 + 0.9 GPa, in agreement with
to the results obtained from XRD. The phase transition to
scheelite was completed above 24.8 + 1.2 GPa, above of which
no more vibration could be attributed to the zircon structure.
The scheelite phase was also fully quenchable upon
decompression to ambient conditions. Peaks above 31.1 +
1.6 GPa became very broad, with all but two of the vibrational
modes being easily distinguished. Upon decompression, the
broadness of vibrational modes diminished, indicating that the
broadness of them was likely due to the deviatoric stress as the
result of the 4:1 methanol: ethanol PTM reaching
hydrostatic limit”* and only partially due to amorphization.”

Theoretically, the I4,/amd space group has 17 Raman-active
vibrational modes belonging to the D, point group.®” %
Among these 17 modes, nine (I, = 2A1; + 2By + By, +
ZEg)82 % can be assigned to the internal v1brat10ns (gor normal
modes) of the SIO4 tetrahedron, and the remaining eight (T'uy
= 2B, + 3E )88 assigned to the external vibrations (lattice
modes) 82,8485 The vibrational modes labeled as vy, v,, V3, and
v, correspond to the internal vibrations, where v, (Alg) and v
(Byg) correspond to the symmetric and antisymmetric
stretchlng motions, respectively, and v, (A;,) and v, (By,)
correspond to the symmetric and antisymmetric bending

modes, respectively.*® The motion of the external modes can
be further be classified into rotational (E ) and translational
(B +E ) modes.*”*® At ambient condltlons, the three external
modes appear at 282, 197, and 150 cm™'. Using the
assignments of isostructural compounds reported in Syme et
al. for ThSiO, and ZrSiO,*” as well as the assignments
presented in Mihailova et al’' and Stangarone et al. for
Z1iSO,,”” the vibrational bands can be described by 282 cm™
(Eg), 197 cm™! (Eg), and 150 cm™ (Blg).()’n’31 To differentiate
between the two external modes, which have identical
Mulliken symbols, we adopted the notation of Stangarone et
al,*” so the Vl'brational band found at 197 cm™ is E, (1) and
that found at 282 cm™ is E, (2). The B; and E, (2) external
vibrational modes are translatlonal external modes whereas the
E, (1) external vibrational mode is a rotational external
mode *23! Due to the interaction of the SiO, tetrahedra with
the MOg dodecahedra in the unit cell, the SiO, tetrahedra
cannot be considered a strictly independent unit.”” As a result
of these interactions, there has yet to be a reporting of a
spectrum with all 17 of the Raman-active modes for zircon
structure-type materials.”> The peak vibrational positions for
stetindite under ambient pressure are displayed in Table 1

Table 1. Location of the Internal Vibration Modes of SiO,
Tetrahedron of Stetindite in cm™' and Comparison with
Those of Some Other Zircon Structure-Type Materials
under Ambient Pressures”>>%%7/828%85,878%,

Vl(Alg) Vz(Alg) Vs(Bzg) V4(Bzg) Ref
CeSiO, 902 417 920 594 This Study
CeSiO, 903 431 919 592 Estevenon et al.>®
CeSiO, 902 431 919 592 Estevenon et al.*°
CeSiO, 902 416 918 593 Strzelecki et al.>”
Z1Si0, 974 439 1008 608 Dawson et al.*>
HfSiO, 984 448 1018 620 Hoskins et al.*®
ThSiO, 894 439 920 593 Syme et al.”’
ThSiO, 887 438 914 592 Clavier et al.*®
Usio, 904 428 930 N.O. Geisler et al.*®
USio, 906 424 919 591 Clavier et al.*®
USio, 903 424 918 592 Strzelecki et al.*’

alongmde other zircon structure-type orthosili-
cates,> 3098283858788 The peak position and standard error
from each deconvolution are listed in Table S6. The I4,d space
group, which the HPLS structure belongs to, has 30 theoretical
active Raman vibrational modes (I" = 3A; + 5B, + 4B, + 9Eg) ,
based on the D,; point group. The authors recommend the
work by Mihailova et al. for a more in depth discussion on the
mode analysis of this space group.’' The I4,/a space group has
18 theoreticaly active Raman vibrational modes (I" = 3A, + SB,
+ SE,), based upon the C%,, point group.””’~"" Of these 18
actlve modes, nine ([}, = 2A, + 3B, + 2E ) can be assigned to
the internal vibrations of the SIO4 tetrahedron, while the
remaining nine (', = A, + 2B, + 3E,) can be assigned to the
external vibrations w1th1n the unit cell.*””® The vibrational
modes labeled v}, v,, 13, and v, correspond to the internal
vibrations. The symmetric and antisymmetric stretching
motions are represented by v; (A,) and v; (B + E,),
respectively, and the symmetric and antisymmetric bending
modes correspond to v, (A, + Bg) and v, (Bg + Eg),
respectively. The motion of the external modes can be further
be classified into rotational (A, + B,) and translational (2B, +
2E,) modes. 990 The peak posmon and standard error from
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385 each deconvolution are listed in Table S7. As with zircon
386 structure-type materials, not all of the vibrational modes are
387 present in the scheelite phase due to lattice interaction. Here
388 we used the peak assignments of Smirnov et al., Gucsik et al,,
389 Stangarone et al.,, Knittle and Williams, Gucsik et al,, Manoun
390 et al., Bauer et al.,, and Kaur and Sinha in order to assign the
391 peaks present in the scheelite-structured phase.””"**>7'=%3
392 The Raman spectra collected during decompression below
393 11.4 GPa, along with the recovered CeSiO, from the laser
394 heating experiment resemble that of scheelite (CaWO,),
395 stolzite (PbWO,), powellite (CaMoO,), wulfenite
396 (PbMo0OQ,), and other tungstate and molybdate minerals and
397 materials.””?%7*7%

4. DISCUSSION

398 4.1. Pressure—Volume Equations of State. Figure 4
399 shows the pressure dependence of the unit cell volumes of the

305 Zircon Structured (/M4,/amd)
300 k m NePTM
FEs ® KCIPTM
295 é’l ~ — 2™ Order BM EOS
[ o V, = 300.8(3) A
290 L .y K, = 171(5) GPa
285 -
— r *.Ii HPLS Structured (-42d)
% 280 - e ¢ NePTM
=~ 575 |k R 2" Order BM EOS
) [~ % V, = 309(1) A°
§ 270 | T T~ Kp=105(4) GPa
> 265 s &
260 R .
255 |- Scheelite Structured (14,/a) iﬂ
L @ KCIPTM ;@\ ®
250 |- - — 2" Order BM EOS % = 4_\§_<
245 [ Vo=276(3)A° el
[ K,=221(40) GPa R
240 L 1 1 1 1 1 1 1 S

0 5 10 15 20 25 30 35 40
Pressure (GPa)

Figure 4. Unit cell volume of CeSiO, as a function of pressure. Blue
symbols represent the low-pressure zircon-type (I4,/amd) phase;
orange symbols represent the intermediate-pressure HPLS-type
(I4,d) phase; red symbols represent the high-pressure scheelite-type
(I4,/a) phase; squares represent the data collected at beamline 16-
BM-D where Ne was used as the PTM; and circles represent the data
collected at beamline 13-ID-D where KCI was used as the PTM. The
dashed traces are the second-order Birch—Murnaghan EOS.”® For the
zircon-type structure, it was fitted from 0.2 to 14.5 GPa, using the data
collected with both PTM. For the HPLS structure, it was fitted from
15.1 to 18.5 GPa, using the data collected with Ne as the PTM. For
the scheelite-type structure, it was fitted from 4.1 to 28.6 GPa, using
data only collected with KCI as the PTM.

400 different CeSiO, phases from the experiments and the fits of
401 the second-order Birch—Murnaghan EOS.”” The equation
402 describing the second-order Birch—Murnaghan EOS is the

403 following:
(V )7/3 (V )5/3
0 0
14 1% (1)

405 in which Vj is the zero-pressure unit cell volume, V is the cell
406 volume at a given pressure (P), and K, is bulk modulus.”” The
407 fits were performed with the EosFit7 software.”® The program
408 offers the possibility to use the uncertainties of the data points

3K,
p="2
2

404

to derive a weighting scheme for the fit. The errors associated 409
with both the measured pressure by ruby luminescence® and 410
the derived lattice parameters are from the Rietveld analyses. 411
While other studies on zircon-structured orthosilicates, such as 412
the work of Ehlers et al.,”” have used higher-ordered Birch— 413
Murnaghan EOS to fit their experimental data, it was not 414
needed in our work. When transforming the P—V data into 415
Eulerain strain (fg) and a normalized stress, also referred to as 416
normalized pressure (Fg), the data plots reasonably well along 417
a horizonal line (Figure S5)." This indicates that the data can 418
be fitted to a second-order Birch—Murnaghan EOS with 419
reasonable confidence. 420

The fits performed on the zircon-structured polymorph used 421
the data collected from 0.2 + 0.2 to 14.5 + 0.7 GPa and 422
applied the data collected from both sets of experiments 423
(Figure 4). The resulting fit to the second-order Birch— 424
Murnaghan EOS yielded a V, of 300.8(3) A’ and a K, of 42
171(5) GPa. The derived V, (300.8(3) A®) from the fitting 426
was in good agreement with the previously reported unit cell 427
volumes of the zircon-structured polymorph by Estevenon et 428
al. (299.53(1) A%),> Estevenon et al. (299.85(2) A3),°° and 429
Strzelecki et al. (300.47(4) A%).>" At higher pressures, we 430
applied second-order Birch—Murnaghan EOS fitting on 431
scheelite-structure polymorph, using the decompression data 432
collected between 28.6 and 4.1 GPa from only the in situ high- 433
pressure laser-heated experiments, from which we yielded a V; 434
of 276(3) A® and a K, of 221(40) GPa (Figure 4). 435

If the zircon structure was used between 15 and 19 GPa for 436
Rietveld analysis, it resulted in a deviation to lower-than- 437
expected volumes (Figure S6). This indicates that, at these 438
pressures, CeSiO, structure is undergoing a considerable 439
amount of softening. Such behavior is similar to what was 440
found by Van Western et al. when synthetically pure zircon was 441
compressed above 19.7 GPa.'”" Stangarone et al. argued that 442
the deviation to smaller volumes observed by Van Westrenen 443
et al. was a consequence of the displacive phase transition to 444
the HPLS phase.”” This is also the rational basis on which we 445
assumed that CeSiO, might have undergone the HPLS phase 446
transition in this pressure region and used the HPLS structure 447
(space group: I4,d) to analyze the XRD data collected between 44s
15 and 19 GPa (Figures 4 and S6). Applying a second-order 449
Birch—Murnaghan EOS fitting yielded a V, of 309(1) A* and a 4s0
K, of 105(4) GPa for the HPLS CeSiO,, reflecting a softer 4s1
bulk modulus than the zircon-structure phase at lower 452
pressures. This lattice softening may signify an intermediate 453
nature of the HPLS phase between zircon and scheelite and 454
sequentially trigger the transition to the latter. If one believes 4ss
the argument of Stangarone et al. and fits the P—V data of Van 4s6
Westrenen et al,'’" for zircon from 19.66 to 22.16 GPa to a 457
second-order Birch—Murnaghan EOS, it yields a V, of 288(17) 4ss
A% and a K, of 72(30) GPa, which again show a softening of 459
the bulk modulus for potentially a HPLS-structured material. 460

In order to further evaluate the validity of our derived K; 461
and V,, we employed two verification methods. The first 462
method of verification is based on fitting unit cell parameters a 463
and ¢ to a one-dimensional form of the Birch—Murnaghan 464
EOS (Figure S). This was accomplished by replacing the V 465 fs
term with a® or ¢® and V, with ay® or ¢,* in eq 1 to yield values 466
for ay, M,, c;, and M,. The variables, M, and M, are respectively 467
the axial linear moduli of the a and ¢ axes. The values derived 468
for M, and M, were used to further check the previously 469
derived K, and give confidence in these values through the 470
following relation: 471
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Figure S. Unit cell parameters of CeSiO, as a function of pressure. (a)
Variation in the a-axis and (b) variation in the c-axis for each of the
phases. Blue symbols represent the low-pressure zircon-type (I4,/
amd) phase; orange symbols represent the intermediate-pressure
HPLS-type (I4,d) phase; red symbols represent the high-pressure
scheelite-type (I4,/a) phase; squares represent the data collected at
beamline 16-BM-D where Ne was used as the PTM; and circles
represent the data collected at beamline 13-ID-D where KCI was used
as the PTM. The dashed traces are the second-order Birch—
Murnaghan EOS:”® for zircon type, this was fit from 0.2 to 10.1 GPa,
using the data collected with both PTM; for the HPLS, this was fit
from 15.1 to 18.5 GPa, using the data collected with Ne as the PTM;
and for the scheelite-type, it was fitted from 4.1 to 28.6 GPa, using
data only collected with KCI as the PTM.

2)

For stetindite, the one-dimensional form of the Birch—
Murnaghan EOS yielded a, = 6.960(3) A, M, = 145(4)
GPa, ¢y = 6.213(4) A, and M, = 237(17) GPa. Using the values
of a, and ¢y, Vy,, was calculated to be 300.8(3) A’ in good
agreement with the unit cell volume Vj, of 301.0(3) A® (Figure
4). Ky, was calculated by taking the derived values of M, and
M_ into eq 2 to be 166(4) GPa, again in good agreement with
K, of 171(S) GPa from the volumetric data. Applying the one-
dimensional Birch—Murnaghan EOS to data of HPLS phase
yielded the following values: a, = 7.053(10) A, M, = 81(3)
GPa, ¢, = 6.228(6) A, and M, = 193(9) GPa. V,, of HPLS

was calculated to be 309.8(9) A%, in agreement with V; of 4s4

309(1) A3. The derived Koy of HPLS, 101(3) GPa, also
agreed within error with K, of 105(4) GPa. Lastly, the
scheelite phase has the following values fitted from the one-
dimensional Birch—Murnaghan EOS: a, = 4.93(2) A, M, =
252(50) GPa, ¢, = 11.39(10) A, and M, = 145(43) GPa. Vy,,
of scheelite was evaluated to be 277(3) A%, which agreed with
V, of 276(3) A. The derived Ko of scheelite, 202(35) GPa,
also agreed within error with K of 221(40) GPa.

Through the first verification method, it was possible to gain
anisotropic insight into how the three polymorphs respond to
pressure. For the low-pressure zircon-structured polymorph,
the linear modulus along the c-axis (M= 237(17) GPa) is 1.63
+ 0.13 times that along the a-axis (M, = 145(4) GPa),
suggesting more compressibility along the a-axis. The

498

anisotropic behavior can be explained by the arrangement of 499

TO, tetrahedra and MO dodecahedra (Figure lab). The
MO dodecahedra can be depicted as two intersected
disphenoidal MO, forms: edge-sharing MOI, alternating
with TO, along the c-axis, and MO2, corner-sharing with
another MO2, tetrahedra forming a zigzagging chain along the
a-axis (Figure lab).>10%10% Higher freedom of corner-sharing
MO?2, tetrahedra makes the zircon structure more flexible
along the g-axis during compression, while the edge-sharing
rigid TO, arranging along the c-axis is less compressible.'**'**
Thus, due to the higher repulsion experienced due to the edge
sharing over corner sharing, the c-axis contracts at a slower rate
than that of the g-axis.

Because of the similarity in structure, the HPLS phase is also
more compressible along the g-axis than the c-axis, with the
degree of anisotropy further increased. This is evidenced by the
linear moduli of HPLS along the c-axis (M, = 193(9) GPa) is
2.38 times that along the a-axis (M, = 81(3) GPa). Such an
increase in anisotropic behavior can be explained by the
rotation of the SiO, tetrahedra around the c-axis. Due to this
symmetric operation with respect to the zircon structure, there
is an addition SiO,—MOg—SiO, edge-sharing chain that is
formed and the number of [001] channels increased from 2 to
4 per unit cell (Figure 1). As stated previously, for the zircon
structure these chains cause the anisotropic compressibility
behavior; therefore, an increase in the number of these
moieties in the unit cell would be expected to promote
anisotropy. Moreover, the increase in the degree of corner
sharing along the a-axis (Figure 1c,d) is the reason for the
dramatic decrease in the bulk moduli of the HPLS phase with
respect to stetindite.

After the second phase transformation, the high-pressure
scheelite-structured polymorph has an inverse anisotropic
behavior that is more compressible along the c-axis than the a-
axis, similar to the anisotropic behavior that was found for
synthetic reidite (M,/M, = ~1.5)."% This is shown by the
linear modulus along the a-axis (M, = 252(50) GPa) is 1.73 +
0.61 times than that along the c-axis (M, = 145(43) GPa). The
anisotropic behavior arises from the arrangement of the MOy
dodecahedra which form an edge-sharing chain that zigzags
along the a-axis.”'%° These chains are then cross-linked by the
TO, tetrahedra corner sharing with the MOg dodecahedra
parallel to the c-axis (Figure le,f).>'*° Subsequently, it is the
corner sharing parallel to the c-axis that gives rise to the
anisotropic compression. While such anisotropic behavior is
the inverse to what was found for both the zircon structured

500
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edge-sharing moieties in a specific crystallographic direction
being the root cause of anisotropy is the same.

The second verification method is based on the empirical
inverse relationship between bulk modulus and unit cell
volume of isostructural inorganic materials.'””'*® Considering
that the bulk modulus of a given material is dictated by the
bulk moduli of its constituent polyhedra and their arrange-
ment,'”” then the inverse relationship for isostructural
inorganic compounds (having the same polyhedra arrange-
ment) is only dictated by the bulk moduli of polyhedra. Then,
obviously, the bulk modulus of polyhedron is inversely
correlated with the ionic radius of its metal center as a result
of electrostatic interactions (i.e., repulsive forces).'*”'%~'!!
This has been demonstrated at length for simple (i.e., MgO
and Al,0,) and complex oxides (i.e., MgAIZO4).1O7’“0’“1 This
verification method could only be applied to the zircon and
scheelite structure polymorphs as there is no other study on
bulk moduli of comparable HPLS polymorphs. The derived
values for zircon are in good agreement with the empirically
derived trends of isostructural silicates (Figure

structured phase, the derived K, value 221(40) GPa agrees
with those of USiO, with its experimental values of 195(6)
GPa and computational values (density functional theory,
DFT) of 212(1) GPa reported by Bauer et al.” Because eight-
coordinated U** (1.00 A) and Ce* (0.97 A) are much closer
in terms of ionic radii than those of Hf*" (0.83 A) and Zr*
(0.84 A),* the solid state behavior of stetindite is expected to
be closer to coffinite than hafnon or zircon.

4.2. Griineisen Parameter. The Raman peak positions as
a function of pressure for CeSiO, up to 18.2 GPa are displayed
in Figures 7 and 8. Due to the relatively low intensities of the
antisymmetric deformation (v,), it was not able to be
discerned from the background (Figure 3) and thus is not
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scheelite-type orthosilicate minerals.
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Figure 7. Pressure dependence of the internal Raman modes of
stetindite from 0 to 18.2 GPa. (a) v; (A;,) SiO, symmetric stretching,
(b) v, (Alg) SiO, symmetric bending, and (c) v (Bzg) Sio,
antisymmetric stretching.
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Figure 8. Pressure dependence of the external Raman modes of
stetindite from 0 to 18.2 GPa.

included in Figure 7. The pressure derivatives of the peak
positions (dv/dP) up to 18.2 GPa were computed by linear fits
and are listed in Table 2. It is evident that all of the internal
vibrational modes of the [SiO,4] tetrahedron show positive
pressure dependence on the peak position (Figure 7). This
positive pressure dependence of the peak position is consistent
with decreasing the Si—O bond distances in the SiO,
tetrahedron. This behavior contrast what was found in
previous high-temperature Raman studies on CeSiO,, where
a negative pressure derivative of the internal vibrational modes
due to an increasing of the Si—O bond distance of the SiO,
tetrahedron was found.”” Two of the external modes, E, (2)
and By, were also found to have positive pressure derivatives
(Figure 8). However, the E, (1) external mode exhibits a
negative pressure derivative until 15.1 GPa. The cause of this
negative pressure derivative is a result of the twisting of the
SiO, and CeOg polyhedra about the c-axis during the zircon to
HPLS phase transformation.”**" The E, (1) mode then begins
to demonstrate some hardening above 15.1 GPa, as it begins to
demonstrate a positive pressure derivative (Figure 8). The
inflection point of the E, (1) mode shifting from a negative
pressure derivative to a positive pressure derivative indicates
the transformation of the E, (1) mode of the zircon structure
to an E mode of the HPLS-structured phase.”’ This behavior
of this lattice mode is consistent with that predicted by
Stangarone et al. and observed by Mihailova et al. in the zircon
— HPLS phase transformation.””*! Overall, for stetindite, the
individual vibrational mode shifts (dz/dP) are comparable to

those of other isostructural orthosilicate minerals (zircon,
hafnon, and coffinite), which are listed in Table 2879

Using the obtained K|, value for stetindite (reported in the
previous section), in conjunction with vibrational mode shifts,
we have derived the mode Griineisen parameters (y;). y; were
derived through the following equation:

(Ko ]( dv]

A |

v, \dP (3)
The derived values for the y; for stetindite are reported in
Table 2. Both the value of vibrational mode shifts and the bulk
modulus values are comparable to the other zircon-structure-
type orthosilicates, so are the y,, When comparing to other
nonzircon-type orthosilicate minerals, such as olivine ((Mg,
Fe),Si0,)," >~ garnet ((Mg, Ca, Fe),ALSi;0,,)""®""” and
aluminum silicate (ALSiO),'”’, we found that the obtained
pressure derivatives for the stretching and deformation modes
of the silica tetrahedra are comparable. Yet, they deviate from
these of y;. The reason for such a deviation in the ¥, between
the different orthosilicates is because the zircon-structure-type
are significantly less compressible, possessing higher K, values
than those of olivine and garnet, thus resulting in higher
values.

A similar procedure was applied to the high-pressure
scheelite-structure phase. The pressure derivatives of the
peak positions (dv/dP) collected during the decompression
from 11.4 GPa to ambient were computed by linear fits. They
are listed in Table S8. It was found that all of the observable
vibrational modes show positive pressure derivatives. Using the
obtained K|, value for the scheelite-structure phase, reported in
the previous section, in conjunction with available vibrational
mode shifts, we have derived the available y; using eq 3. These
y, are tabulated in Table S8.

5. CONCLUSIONS

In this work, we present the first high-pressure study on
synthetic stetindite by a combination of in situ high-pressure
synchrotron powder X-ray diffraction up 36.0 + 1.8 GPa, in
situ high-pressure laser-heated synchrotron powder X-ray
diffraction up 28.6 + 1.3 GPa and temperature more than
3000 K, and in situ high-pressure Raman spectroscopy up to
43.0 + 2.2 GPa. High pressure in these experiments was
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645

achieved by diamond anvil cells (DACs), with a variety of 646

different pressure transmitting media. The transition of zircon
to the HPLS phase was observed to occur at 15.1 GPa,
evidenced by the softening of elastic moduli. It should be

Table 2. Pressure Derivatives (dv/dP) of the Vibrational Modes and Griineisen Parameters (¥;) of CeSiO, below 18.2 GPa and
Comparison with the Values of Some Other Isostructural Minerals

dv,/dP (cm™'/GPa) dv,/dP (cm™'/GPa)

CeSiO, 4.9 12 4.8
HfSiO, 4.1 1.1 4.6
ZrSiO, 4.1 1.1 4.8
USiO, 52 1.4 6.0
USio, 5.6 1.2 54
71 72 73
CeSiO, 0.95 0.50 0.90
ZrSiO, 1.0 0.57 1.1
USiO, 1.03 0.61 1.18
USio, 1.12 0.54 1.07

dv;/dP (cm™'/GPa)

dv,/dP (cm™'/GPa) Method Ref
N/A Experimental This Study
N/A Experimental Manoun et al.”
N/A Experimental Knittle and Williams®
32 Experimental Bauer et al.”
1.8 DFT Bauer et al.”
s Method Ref
N/A Experimental This Study
N/A Experimental Knittle and Williams®
0.99 Experimental Bauer et al.’”
0.57 DFT Bauer et al.”
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650 noted that the X-ray diffraction patterns of stetindite and
651 HPLS phase were nearly identical, due to only a minuscule
652 change in the symmetry between the I4,/amd and I4,d space
653 groups. Besides the evidence from the softening in bulk
6s4 moduli, the emergence of the HPLS phase is supported by the
6ss change in the pressure derivative of the E, (1) mode from
656 negative to positive at 15.1 GPa, indicating its shifting from the
657 Eg (1) mode of the zircon structure to an E mode of the HPLS
6s8 structure. The phase transition of HPLS to scheelite occurred
659 above 18.1 GPa. Scheelite is fully quenchable by means of
660 synchrotron powder X-ray diffraction and Raman spectrosco-
661 py. The bulk moduli of stetindite, the HPLS, and the scheelite
662 structure phases were determined by fitting to a second-
663 ordered Birch—Murnaghan EOS to be 171(S5), 105(4), and
664 221(40) GPa, respectively. The pressure derivatives of the
665 vibrational modes of stetindite were consistent with those
666 previously reported for other orthosilicate minerals, including
667 pyrope (Mg;Al, (SiO,),, forsterite (Mg,SiO,), zircon, hafnon,
668 and coffinite. The reported y; are in good agreement with those
669 reported for zircon, hafnon, and coffinite.
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