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ABSTRACT

Zircon-class ternary oxide compounds have an ideal chemical formula of ATO,, where A is com-
monly a lanthanide and an actinide, with T = As, P, Si, or V. Their structure (/4,/amd) accommodates
a diverse chemistry on both A- and T-sites, giving rise to more than 17 mineral end-members of five
different mineral groups, and in excess of 45 synthetic end-members. Because of their diverse chemical
and physical properties, the zircon structure-type materials are of interest to a wide variety of fields
and may be used as ceramic nuclear waste forms and as aeronautical environmental barrier coatings,
to name a couple. To support advancement of their applications, many studies have been dedicated to
the understanding of their structural and thermodynamic properties. The emphasis in this review will
be on recent advances in the structural and thermodynamic studies of zircon structure-type ceram-
ics, including pure end-members [e.g., zircon (ZrSiO,), xenotime (YPO,)] and solid solutions [e.g.,
Er,Th, (PO,)«(Si0,), «]. Specifically, we provide an overview on the crystal structure, its variations
and transformations in response to non-ambient stimuli (temperature, pressure, and radiation), and its
correlation to thermophysical and thermochemical properties.

Keywords: Zircon, thermodynamics, crystal chemistry, high pressure, high temperature, lanthanides,

actinides

INTRODUCTION

Ternary oxides with an ideal chemical formula of ATO, and
tetragonal symmetry (/4,/amd) are comprised of zircon structure
type compounds, as they share their crystal structure with the
eponymous zirconium orthosilicate mineral, zircon (ZrSiO,)
(Finch and Hanchar 2003). As a result of the structural flexibility
of'the zircon structure, the A-site can be occupied by large cations
(i.e., Ca*, Er*", U*, Ta’") charge balanced by cations (i.e., Cr*',
P>, Si**, B%) in the T-site. Ultimately, the structural flexibility
and diverse chemistry gives rise to more than 17 mineral end-
members of five different mineral groups (Berzelius 1829; Curtis
etal. 1954; Stieffet al. 1955, 1956; Mrose and Rose 1961; Miles
etal. 1971; Neves et al. 1974; Goldwin et al. 1976; Deliens and
Piret 1986; Bernhard et al. 1998; Buck et al. 1999; Demartin
et al. 2001; Finch and Hanchar 2003; Kolitsch and Holtstam
2004; Witzke et al. 2008; Schliiter et al. 2009; Moriyama et al.
2011; Baudracco-Gritti et al. 1987) and in excess of 45 synthetic
synthetic ceramic end-members (Chakoumakos et al. 1994; Ni et
al. 1995; Finch and Hanchar 2003; Kolitsch and Holtstam 2004).
As many of these compounds exhibit complete solid solutions
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in both A- and/or T-site (Graeser et al. 1973; Finch and Hanchar
2003; Kolitsch and Holtstam 2004), the number of synthetic com-
pounds through various chemical combinations on the two sites
creates limitless possibilities for unusual zircon-type ceramics.

In natural systems, zircon-type minerals are common as ac-
cessory phases, which occur in various sedimentary, igneous,
and metamorphic rocks. As a whole, zircon-type minerals are
extremely durable with affinity to incorporate actinides and
lanthanides (Weber et al. 1995). The durability of zircon-type
materials is demonstrated by their high insolubility under
various geochemical conditions (McMurdie and Hall 1947;
Subbarao et al. 1990; Grover and Tyagi 2005) (i.e., high P-T
environments and highly saline brines), even retaining these
properties of insolubility as it undergoes radiation-induced
amorphization (i.e., metamictization) (Ewing et al. 1995a;
Weber et al. 1995, 2019), and high physical toughness as the
mineral grains are shown to endure the abrasive nature of
weathering and erosional processes. This has led to the use
of several zircon-type minerals in geochronological studies,
including ZrSiO, and YPO,. The geochronological studies make
use of a few different isotopic systems, including U-Th-Pb and
Lu-Hf, with these two being used to derive the age of Earth
(4.543Ga) (White 2015). Outside of geochronological studies,
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the incorporation of lanthanides into the A-site of the zircon
structure has proven useful in both geothermometry (Rubatto
and Hermann 2007) and oxybarometry studies (Burnham and
Berry 2012), while Ti incorporation in the T-site has found
utility in zircon thermometry (Watson et al. 2006).

Because of the high loading of f-elements (lanthanides and
actinides), durability, and demonstrated long-term stability,
zircon-type materials have been proposed as potential ceramic-
based waste forms for the immobilization of actinides associated
with the nuclear fuel cycles (Boatner et al. 1980, 1984; Ewing
etal. 1995a, 1995b; Ewing 1999), which include actinides from
spent nuclear fuel discharged from reactors and plutonium from
dismantled nuclear weapons (Burns et al. 2012). Currently, many
countries are investigating ceramic waste forms to immobilize
actinides prior to final disposal (Orlova and Ojovan 2019). If a
zircon-type waste form is used, the immobilization step would be
accomplished by incorporating actinides into its crystal structure
and then storing the ceramic waste form in either a deep-mined
geologic repository or deep bore-hole (Weber et al. 2009, 2019;
Goel etal. 2019; Wegel et al. 2019). As zircon has been shown to
be a durable mineral able to immobilize Th and U over geologic
timescales that stretch well beyond hundreds of million years
(White 2015), it addresses the concerns for the long-term safety
associated with the integrity of a disposal system on timescales
that range from thousands to tens of hundreds of thousands of
years (Ewing 2015). These same thermophysical properties,
which support the durability of zircon under geologic condi-
tions, find applicability in applied material science. For instance,
zircon-type silicates have been proposed as environmental and
thermal barrier coatings (Hikichi and Nomura 1987; Gavrichev
et al. 2006, 2010b, 2012a, 2013a; Tyurin et al. 2020).

In summary, zircon and zircon-type materials are of inter-
est to a wide variety of fields. To support advancement of
their applications, many studies have been dedicated to the
understanding of their structural and thermodynamic proper-
ties. Several previous reviews have already presented basic
structural knowledge and chemistry of zircon materials in
the fields of geology, geochemistry, and mineralogy (Speer
1980a; Speer and Cooper 1982; Bowring and Schmitz 2003;
Cherniak and Watson 2003; Corfu et al. 2003; Davis et al.
2003; Ewing et al. 2003; Finch and Hanchar 2003; Hanchar
and Watson 2003; Hoskin and Schaltegger 2003; Ireland and
Williams 2003; Nasdala et al. 2003; Valley 2003; Kolitsch and
Holtstam 2004; Harley and Kelly 2007; Kohn et al. 2017),
along with complementary reports of their thermophysical and
thermodynamic properties (e.g., coefficient of thermal expan-
sion) (Bayer 1972; Subbarao et al. 1990). The focus of this
review will be devoted to recent advances in the structural and
thermodynamic understanding of zircon-type materials, which
include pure end-members [e.g., stetindite (CeSiO,), coffinite
(USi0,)] and solid solutions (e.g., U, Th,_SiO,). Specifically,
we provide an overview on the crystal structure, its derivation
due to chemical substitution and hydrostatic pressure, and cor-
relation to the material’s thermophysical and thermochemical
properties. This review aims to help researchers with this up-
to-date knowledge on zircon-type materials and to continue
promoting their applications, such as ceramic nuclear waste
hosts and aeronautical environmental barrier coating.
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STUDIES OF SYNTHETIC ZIRCON STRUCTURE COMPOUNDS

Preparation of pure zircon phase materials is critical for the
study of their structures and thermodynamics. Many early land-
mark studies on zircon and other zircon-types materials were
conducted on natural samples (Hazen and Finger 1979; Robie and
Hemingway 1995), as well as synthetic single crystals (Hazen and
Finger 1979; Begun etal. 1981; Milligan et al. 1982, 1983; Ellison
and Navrotsky 1992; Loong et al. 1993; Robie and Hemingway
1995; Mullica et al. 1996a, 1996b; Jellison et al. 2000; Guedes et
al. 2001; Ushakov et al. 2001a; Boatner 2002; Hirano et al. 2002a;
Hirano et al. 2002b; Finch and Hanchar 2003; Moura et al. 2004;
Mazeina et al. 2005; Dorogova et al. 2007; Santos et al. 2007).
Although single crystals are the ideal samples for the determina-
tion of crystal structure via single-crystal diffraction techniques
(Taylor and Ewing 1978; Chakoumakos et al. 1994; Ni etal. 1995),
the variety of compounds available for these characterizations is
limited by the chemical routes that allow their synthesis.

Preparing polycrystalline samples by “soft” hydrothermal
synthesis (Estevenon et al. 2018, 2020a, 2020b, 2021a), can create
conditions that facilitate the crystallization of metastable phases,
such as USiO, (Pointeau et al. 2009; Costin et al. 2011; Labs et
al. 2014; Mesbah et al. 2015), CeSiO, (Estevenon et al. 2019b,
2019a), and PuSiO, (Estevenon et al. 2020b, 2021b). Obtaining
polycrystalline samples also facilitates thermodynamic measure-
ments (i.e., enthalpy of dissolution) (Guo et al. 2016a), and enables
the determination of thermodynamic parameters of the above
metastable phase for the first time (Guo et al. 2015; Szenknect et
al. 2016; Strzelecki et al. 2020b). The key point of this approach
is to ensure the overall purity of these synthetic polycrystalline
samples, which is a challenge (Estevenon et al. 2020b). While
many of the synthesis methods are inspired by those previously
used by Hoekstra and Fuchs (Hoekstra and Fuchs 1956; Fuchs and
Hoekstra 1959) or Keller (1963) in the 1950s to the 1960s, crucial
advances have recently been made in zircon-type silicate synthesis
under “soft” hydrothermal conditions (<523 K), rendering them
more accessible to thermochemical characterization (Estevenon et
al. 2018, 2019a, 2019b). The experimental approach considered is
defined by a strict framework of the parameters (e.g., precursors,
concentration, co-reactants, pH, temperature, pressure, synthesis
time), allowing the formation of the target compound. Contrary
to high-temperature synthesis routes, which generally have led to
thermodynamically stable products at the conditions considered,
hydrothermal syntheses might promote the formation of metastable
kinetic reaction products depending upon the initial conditions cho-
sen. Additionally, hydrothermal treatment generally promotes the
formation of relatively well-crystallized species, facilitating their
characterization. Moreover, when the selected chemical conditions
were insufficient to obtain a pure final phase, syntheses might be
complemented by chemical post-treatments, such as acidic and
alkaline washes for USiO, syntheses (respectively allowing UO,
and SiO, dissolution) (Mesbah et al. 2015).

CRYSTAL CHEMISTRY OF ZIRCON STRUCTURE
COMPOUNDS

Crystal structure

Zircon structure types possess a tetragonal symmetry (Fig. 1).
The space group according to the international notation, also
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known as Hermann-Mauguin, is /4,/amd, and the correspond-
ing Schonflies notation is Dy, The extended version of the
international notation would be 14,/a 2/m 2/d, where one can
see that these crystals are body-centered, possessing a fourfold
screw axis parallel to the g-axis, with a twofold axis of rota-
tion perpendicular to a mirror plane, and another twofold axis
of rotation perpendicular to a diamond glide plane. Within the
zircon structure, both the A-site and T-site cations occupy special
positions with the site symmetry 42m, including (0, %, %) for
A-site and (0, %, ¥s) for T-site. O atoms do not occupy a special
position, exhibiting a site symmetry of m, located at (0, Y, Z),
which is the only position that must be refined in diffraction
studies. Substances possessing the zircon structure are referred to
as “ortho-" and corresponding T-site anion (i.e., silicate, borate,
phosphate). For instance, ZrSiO, is an orthosilicate, meaning that
the silicate tetrahedra are not connected to one another, and YPO,
is an orthophosphate. Because the TO, tetrahedra are not con-
nected, the corners are joined at edges with an MOy dodecahedra.
The arrangement of TO, tetrahedra and MOy dodecahedra can
be depicted as two intersecting disphenoidal MO,: edge-sharing
MOl, alternating with TO, along the c-axis that has a longer
coordinated oxygen bond and thus referred to as the extended
tetrahedra, and shorter coordinated oxygen bonded compressed
tetrahedra MO2, corner-sharing with another MO2, tetrahedra
forming a zigzag chain along the a-axis (Fig. 1) (Speer 1980a;
Finch and Hanchar 2003; Marcial et al. 2021).

Owing to the arrangement of the metal polyhedra, the zircon
structure is comparatively open, in contrast to structural types,
such as scheelite (/4,/a) or monazite (P2,/n) (Clavier etal. 2011).
The zircon-type structure has both channels running parallel to

FI1GURE 1. Projections of the tetragonal zircon structure down to a
and c axes [prepared using the VESTA 3 software package (Momma and
Izumi 2011)]. In both a and b, the crimson dodecahedra are MO, the gray
tetrahedra are TO,, and the black spheres are oxygen. (a) Representation
of the structure along [100]. (b) Illustration of the structure along [001].
The figure is based on the structure reported by Robinson et al. (1971)
and Speer (1980b). (Color online.)

the [001] (Fig. 1b) and small voids existing between the TO, and
MO polyhedra, which can also be viewed as potential interstitial
sites for the incorporation of impurity elements. While impurities,
such as He, can reside in the interstitial sites, it is much more
common for impurities to be introduced through substitution of
cations in either the TO, (e.g., Ga**, Ti*, W®") or MO (e.g., Na’,
Sr?*, Zn?") sites (Speer 1980b). Additionally, water molecules can
also be incorporated to considerable levels, sometimes >0.5 mol
per formula unit (Guo et al. 2015; Shelyug et al. 2021; Strzelecki
et al. 2021, 2022). The water molecules are confined to the
[001] structural channels, as initially hypothesized by Janeczek
(1991) and Kijkowska (2003) and experimentally verified by
Strzelecki et al. (2021, 2022) on zircon-structured orthosilicates
and orthophosphates. Shelyug et al. (2021) also confirmed the
confined water in orthosilicates-orthophosphates solid solutions
Th,Er, (Si0,),(PO,), ,, again suggesting the commonality of
the channel water in zircon-type materials. Water molecules
confined in the [001] channel have significant effects on both
the dehydration and structural response on heating (Shelyug et
al. 2021; Strzelecki et al. 2021, 2022).

Element substitutions in zircon structure compounds

The atomic-scale structure, although topologically rigid, is
quite flexible in terms of the allowed chemistries. This is dem-
onstrated by the large number of natural minerals and synthetic
compounds that exhibit the zircon structure through variance
in either the A-site or T-site. There are 17 natural minerals
possessing the zircon structure. These include the orthosilicate
minerals: zircon, hafnon (HfSi0,), stetindite (CeSiO,), thorite
(ThSi0,), coffinite (USiO,), and uranothorite (U, Th, Si0O,);
the orthophosphate minerals: xenotime (YPO, and YbPO,) and
pretulite (ScPO,); the orthovanadate minerals: wakefieldite
(CeVO,, LavVO,, NdVO,, and YVO,) and dreyerite (BiVO,);
the orthoarsenate minerals, chernovite (YAsQO,); the orthoborate
minerals: behierite (TaBO,) and schiavinatoite (NbBO,); and the
orthochromate mineral, chromatite (CaCrO,) (Berzelius 1829;
Curtis et al. 1954; Stieffetal. 1955, 1956; Mrose and Rose 1961;
Miles etal. 1971; Neves et al. 1974; Goldwin et al. 1976; Deliens
and Piret 1986; Bernhard et al. 1998; Buck et al. 1999; Demartin
et al. 2001; Finch and Hanchar 2003; Kolitsch and Holtstam
2004; Witzke et al. 2008; Schliiter et al. 2009; Moriyama et al.
2011; Baudracco-Gritti et al. 1987). All these minerals exist as a
continuum of solid solutions in both the A- and T-sites. Several
of the end-members are strictly synthetic, in particular end-
members containing REE heavier than Nd (i.e., Sm-Lu), with
the notable exception of xenotime-(Yb). Additionally, there are
also a few common synthetic compounds that crystallize in the
zircon structure but have not yet been found to exist in nature,
which include Th orthogermanate (ThGeO,) and the REE ortho-
chromates (REECrO,).

The 17 mineral end-members show that the MOg dodecahedra
of the A-site can be filed by aliovalent elements, from divalent
Ca?" to pentavalent Ta*", with corresponding charge balance
obtained at the T-site. The ratio of the radius of the A-site to
the T-site (rx/rr) ranges from 2.08 for hafnon to 6.73 for behi-
erite. The variation of the unit-cell parameters of all the above
compounds is represented as a function of r,/ry in Figure 2. All
lattice parameters used in Figure 2 are further tabulated in Online
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Materials' Table S1. There is a general clustering that emerges
such that most of the compounds with the zircon structure have
ary/rrvalue between 2 and 4. Two outliers are HREE orthophos-
phate (xenotime) and orthoborate (behierite and schiavinatoite).
In addition, LREE orthophosphates, which more commonly
adopt the monazite structure (P2,/n), also contribute to a very
narrow range in r,/ry because Gd, Tb, and Dy can also be crys-
tallized as xenotime (Ushakov et al. 2001a; Clavier et al. 2011,
2018). Likewise, when considering the alkali orthochromates,
MgCrO,, CaCrO,, SrCrO,, and BaCrQ,, it is worth noting that
the stability of the zircon-type structure is highly sensitive to
the r,/rr value as only CaCrO, (ry/rr - 4.31) crystallizes with
the zircon-structure (Weber and Range 1996). The other three
alkali orthochromates, i.e., MgCrO, (ro/rr=3.42), StCrO, (ra/rr
=4.85), and BaCrO, (r,/rr = 5.46), crystallize with the chromium
orthovanadate structure (Cmcm), the monazite structure, and the
barite structure (Pnma), respectively (Muller et al. 1969; Lentz
et al. 1986; Gleissner et al. 2016).

Besides the many end-member compounds, natural zircon-
structure minerals exist dominantly as solid solutions. Ionic
radii with approximately similar lengths for cations with the
same charge generally cause minor structural adjustments. Their
mixing along the join is usually close to ideal mixing, which can
be described by Vegard’s law. Vegard’s law is an approximate
empirical rule that states that the variation of lattice parameters
between two compositional isostructural end-members is linear
(Denton and Ashcroft 1991). An exception is when 5f-block
cations, Th* (1.19 A) and U*" (1.14 A), forming a complete
zircon-structure solid solution, results in strong nonideal mixing
behavior (Guo et al. 2016a; Marcial et al. 2021). From a structural
point of view, the cationic sublattice is very similar to that of the
zircon structure with randomized U and Th, but the coordinated
oxygen atoms deviate from their anionic lattice, which leads to
distorted MO1, and MO2,. Such polyhedral distortions originate
from the electron and bonding configurations of the metal cation
and the oxygen. U-O bonding shows more partial covalency
due to the 512 electrons of U** along the a-b plane, while Th-O
bonding is completely ionic. Hence, the relative size of MO1,
and MO2, in their end-member phases (coffinite vs. thorite) are

» FIGURE 2. Variations, as a function of the r,/r;, in the unit-cell
parameters (a) a, (b) ¢, and (¢) volume ¥ for various zircon-structure
materials (Hoekstra and Fuchs 1956; Stieff et al. 1956; Keller 1963;
Darnley et al. 1965; Miles et al. 1971; Robinson et al. 1971; Schafer
and Will 1971; Lohmiiller et al. 1973; Mulak 1977; Taylor and Ewing
1978; Hazen and Finger 1979; Schéfer et al. 1979; Kusaba et al. 1985;
Ennaciri et al. 1986; Fuhrmann and Pickardt 1986; Range et al. 1988,
1996; Knittle and Williams 1993; Chakoumakos et al. 1994; Ni et al.
1995; Mullica et al. 1996a; Weber and Range 1996; Jiménez et al. 2000;
Skakle et al. 2000; Demartin et al. 2001; Konno et al. 2001; Tezuka and
Hinatsu 2001; Ushakov et al. 2001a; Tezuka et al. 2002; Saez-Puche et
al. 2003; Ono et al. 2004a; Tange and Takahashi 2004; Van Westrenen
et al. 2004; Kang and Schleid 2005; Kang et al. 2005; Schmidt et al.
2005; Achary et al. 2007; Long et al. 2007; Climent et al. 2009; Golbs
et al. 2009; Pointeau et al. 2009; Saez Puche et al. 2009; Wang et al.
2010; Reynolds 2013; Labs et al. 2014; Guo et al. 2015; Mesbah et al.
2016; Szenknect et al. 2016; Ledderboge et al. 2018; Estevenon et al.
2019a, 2019b; Bandiello et al. 2020; Strzelecki et al. 2021; Ehlers et al.
2022). (Color online.)
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different (Marcial et al. 2021). Mixing of U and Th thus leads
to homogenization of the two metal tetrahedra that are distorted
as compared to the end-member structures.

Crystal chemistry of zircon-type structures under non-
ambient conditions

As zircon-type materials are of interest to applications in a
large variety of fields where extreme conditions are frequently
encountered, including the geosciences where elevated pressure
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(P) and temperature (7) environments are prevalent, the crystal
chemistry of these materials has been investigated as a function
of P and T. In addition to these two intensive thermodynamic
variables, the effects of radiation damage on the crystalline
structure have also been investigated.

Pressure. Under either static or dynamic compression, two
possible pressure-induced phase transitions can be observed for
zircon structure-type materials. The first one is a reconstruc-
tive transformation to the scheelite structure, which has been
observed in nearly all orthosilicates (ZrSiO,, HfSiO,, CeSiO,,
and USiO,) (Reid and Ringwood 1969; Hazen and Finger 1979;
Knittle and Williams 1993; Farnan et al. 2003; Gucsik et al. 2004;
Ono et al. 2004a, 2004b; Tange and Takahashi 2004; Manoun
et al. 2006; Luo and Ahuja 2008; Bose et al. 2009; Zhang et al.
2009; Bauer et al. 2014; Stangarone et al. 2019; Strzelecki et
al. 2023), a few orthophosphates (ScPO,, YbPO,, and LuPO,)
(Zhang et al. 2008a; Lacomba-Perales et al. 2010), the majority
of the orthovanadates (REEVO,, REE = Sc, Y, Sm-Lu) (Wang
et al. 2004; Errandonea et al. 2011, 2014; Huang et al. 2012b;
Garg and Errandonea 2015; Panchal et al. 2015; Ruiz-Fuertes et
al. 2018), and a single orthogermanate (B-ThGeO,) (Errandonea
et al. 2009a). Another possible transition is the transformation
to the monazite structure, which has been demonstrated for the
majority of the orthophosphates (REEPO,, REE =Y, Tb-Tm)
(Stavrou et al. 2008; Lacomba-Perales et al. 2010; Lopez-Solano
et al. 2010; Gomis et al. 2017) and for a few orthovanadates
(CeVO,, PrVO,, and NdVO,) (Errandonea et al. 2011; Panchal
et al. 2011b; Errandonea 2015).

The zircon-to-scheelite phase transformation is a first-order
(Errandonea and Garg 2018) transition and thus is reconstructive
(Buerger 1961; West 2014). This is evident because the positions
and site symmetries of all atoms in the unit cell are rearranged.
Deformation studies on the zircon to scheelite transformation
imply the slip of planes, with the dominate slip occurring along
100{001}, but the slip does not result in a change in the coordina-
tion number of either the A-site or the T-site cations (Yue et al.
2016). This is shown by the scheelite structure, where both the
A-site and T-site cations occupy special positions, (0, Y4, &) and
(0, ¥, %), respectively, with a site symmetry of 4. O atoms do not
occupy a special position, exhibiting a site symmetry of 1, and
are located at the general position (X, Y, Z). The rearrangement
of the metal polyhedra from zircon to scheelite results ina ~10%
increase in the overall density, with the [001] channels of zircon
structure-type being completely closed in a scheelite structure-
type (Finch and Hanchar 2003; Du et al. 2012). An important
consequence of a reconstructive phase transition is that the high-
pressure phase is quenchable. Nature also provides an example
of the quenchable ZrSiO, scheelite phase, as it was found in the
ejecta associated with meteorite impacts; the approved name of
this high-pressure phase is reidite (Glass et al. 2002).

In addition to the zircon — scheelite phase transformation,
there is a newly discovered intermediate phase, namely the high-
pressure, low-symmetry (HPLS) phase (/42d) (Mihailova et al.
2019; Stangarone et al. 2019). The discovery of this intermediate
phase was first predicted by a computational study (Stangarone et
al. 2019) and then confirmed experimentally by Raman spectros-
copy (Mihailova et al. 2019) and synchrotron X-ray diffraction
(Strzelecki et al. 2023). This phase is a result of the slight rotation
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of'the SiO, tetrahedra due to a softening of B1, vibrational mode
to become an imaginary phonon mode at ~20 GPa (Stangarone
et al. 2019). The HPLS phase has a softer bulk modulus, which
may trigger a further transition to scheelite (Mihailova et al.
2019; Stangarone et al. 2019; Strzelecki et al. 2023). Moreover,
our unpublished density functional theory (DFT) work on Ce-
SiO, also discovered an imaginary phonon mode between 12
and 16 GPa, which further suggests that the phase transition to
HPLS is the result of an elastic instability (Strzelecki et al. 2023).
Further investigation on elastic constants is needed to determine
whether the phase transition is due to shear deformation or an
atomic distortion. Furthermore, additional phase transitions may
also exist beyond the scheelite transformation (Errandonea et al.
2011; Garg and Errandonea 2015; Errandonea and Garg 2018),
such as scheelite — fergusonite (/2/a) (Errandonea et al. 2011;
Garg and Errandonea 2015; Errandonea and Garg 2018). Such a
transition is a result of distortions of metal polyhedra and small
translations of cations off their special position (Errandonea and
Garg 2018). There is no change in the coordination number of
polyhedra during the scheelite to fergusonite transition. Lastly,
the KAIF, (P4/mmm) structure has been hypothesized as another
potential polymorph of ZrSiO, after the scheelite phase transi-
tion but has yet to be verified experimentally (Hazen and Finger
1979; Speer and Cooper 1982).

Another route for the high-pressure transition of zircon is
to monazite, which is also a first-order transition with metal
polyhedra reconstructively rearranged in the unit cell such that
it leads to an increase of the coordination number from eight
(MOg) to nine (MOy). In addition, the TO, units in the monazite
structure share edges with MO, units (Finch and Hanchar 2003;
Clavier et al. 2011). The site symmetry in the monazite structure
is greatly reduced to 1, and none of the atoms are located at
special positions. The phase transition process from the zircon
to monazite structure involves the rotation of the TO, units, a
sideways movement of the (100) plane of zircon (Errandonea
and Garg 2018), and a breaking of the <M-O> bond followed
by the formation of two additional <M-O> bonds in the equa-
torial plane (Clavier et al. 2011; Errandonea and Garg 2018),
leading to a decrease in compressibility. This is also reflected
in a monazite structure that is denser than the zircon structure,
as the [001] channels are eliminated in monazite. Furthermore,
an additional phase transformation beyond monazite has been
proposed as post-monazite, the identity of which is less well-
defined (Panchal et al. 2015) and arguably possesses the barite
structure (Pnma) (Lacomba-Perales et al. 2010; Errandonea et
al. 2011; Errandonea 2017; Errandonea and Garg 2018; Heuser
et al. 2018).

The divergence of the high-pressure phase transition of zircon
may also be interpreted from a crystal-chemical perspective. In
the zircon — scheelite transition, the ratio of 7,/ry is small (e.g.,
having a small A-site metal cation or a large T-site cation), allow-
ing the shifting of atoms to accommodate the increased repulsive
and steric stress upon compression, compared to a large 7,/rr ratio
that triggers a zircon — monazite transition. This hypothesis has
been supported by DFT calculations of orthovanadates (MVO,,
M =Y, Yb, Lu, Nd), where Panchal et al. (2015) computed the
electronic structures up to 20 GPa. They demonstrate that dur-
ing the zircon — scheelite transition, there is a collapse of the
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F1GURE 3. Bastide diagram for ATX, compounds. The coordination
number for the A-sites for the following structure-types are sixfold for the
wolframite structure-type; eightfold for the zircon, scheelite, fergusonite,
KAIF,, and anhydrite structure-types; ninefold for the monazite structure-
type; and 12-fold for the barite structure-type. The coordination number
for the T-sites for the following structure types are fourfold for monazite,
zircon, scheelite, barite, fergusonite, and anhydrite; and sixfold for
wolframite and KAIF,. The ionic radii of the A-site and T-site cations are
those reported in the literature for the appropriate coordination number
for the given structure-type (Shannon 1976). (Color online.)

electronic band structure that could introduce extra stabilization
energy with more electrons populating the lower energy states
(Panchal et al. 2011a). In the zircon — monazite transition, the
eight-coordinated polyhedra, MOg, become unstable and require
the breaking of a <M-O>bond followed by the formation of two
additional <M-O> bonds in the equatorial plane (Clavier et al.
2011; Errandonea and Garg 2018).

This can further be explained through Bastide’s rules of
chemical pressure (Bastide 1987). These rules state that the
intensive thermodynamic variable of pressure is equivalent
to that of the chemical pressure, the latter of which is usually
induced by, but limited to, chemical substitution, nanoparticle
surface modification, and epitaxial crystal growth (Hazen 1977,
Bastide 1987; Prieur et al. 2020; Lii et al. 2021; Dong et al.
2022). Previously, Bastide diagrams have been used as an effec-
tive approach for explaining observed pressure-induced phase
transitions (Manjon et al. 2006a, 2006b; Errandonea and Manjon
2008; Lopez-Solano et al. 2010; Errandonea 2017; Errandonea
and Garg 2018; Heuser et al. 2018). In Bastide diagrams (Fig. 3),
one plots the ionic radii of the A-site on the x-axis and the ionic
radii of the T-site on the y-axis, which creates stability landscapes
for different structures. In Figure 3, we have included other ter-
nary compounds (ATX,) that are related to the zircon structure.
These related structures include those of scheelite, fergusonite,
monazite, barite, wolframite (P2/c), anhydrite (4mma), and
KAIF,. The pressure-induced phase transitions that a ternary
oxide is likely to go through upon compression tend to be at the
top-right side of the diagram. Examples of this are shown in rare
carth orthovanadate and rare earth orthophosphate systems under
ambient conditions. There is a phase boundary that is defined
as a function of the ionic radii of the A-site metal cation for the
monazite structure compounds, including LaVO, and LREEPO,
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(LREE =La-Gd), as compared with those of the zircon structure
compounds, REEVO, (REE = Ce-Lu) and HREEPO, (HREE =
Sc, Y, and Tb-Lu). For the rare earth orthovanadates, the ionic
radii define a hard cut-off between LaVO, and CeVO,. This is
slightly different from that of the rare earth orthophosphates, as
GdPO,, TbPO,, and DyPO,, which all exist as polymorphs of
either monazite or xenotime (Ni et al. 1995; Ushakov etal. 2001a;
Clavier et al. 2018; Musselman et al. 2018), but this should be
viewed as a high-temperature phase transition from monazite to
xenotime, which is discussed in the following section.

Temperature. Temperature-induced phase transformations
of ternary oxides can be approximately viewed as the reverse
process of the pressure-induced phase transition (Hazen 1977)
because of thermal expansion. At high temperatures, there are
irreversible phase transitions from scheelite to zircon and from
monazite to zircon. Using the Bastide diagram (Fig. 3), the
path for the phase transition is toward the bottom-left across
the diagram. The scheelite to zircon phase transition has been
observed in ThGeO,, as it exhibits two polymorphic forms at
ambient pressure, a-ThGeO, (scheelite structure) and -ThGeO,
(zircon structure). The o — B transition occurs above 1473 K
(Achary et al. 2007; Errandonea et al. 2009a). The monazite to
zircon phase transition has been reported for three rare earth
orthophosphates, GdPO,, TbPO,, and DyPO, (Ni et al. 1995;
Ushakov etal. 2001a; Clavier et al. 2018; Musselman et al. 2018).
These three orthophosphates can exist as either the monazite or
xenotime structures, the latter of which is more stable for Gd,
Tb, and Dy at high temperatures (Ushakov et al. 2001a; Clavier
etal. 2018; Musselman et al. 2018). Once the zircon structure is
formed, most materials do not exhibit further phase transitions at
higher temperatures. Instead, they either thermally decompose
into a mixture of their binary oxides (Bayer 1972; Strzelecki
et al. 2021) or persist till melting (McMurdie and Hall 1947;
Angapova and Serebrennikov 1973; Hikichi and Nomura 1987,
Ushakov et al. 2001a; Kolitsch and Holtstam 2004; Shin et al.
2006; Rubatto and Hermann 2007; Wang et al. 2010; Ding et al.
2020; Ridley et al. 2022).

Thorite (ThSiO,) is one oddity among the zircon structure
materials. It undergoes a zircon — monazite transition at high
temperatures (and also at high pressures) to the naturally occur-
ring huttonite phase (Mumpton and Roy 1961; Finch et al. 1964;
Taylor and Ewing 1978; Seydoux and Montel 1997; Mazeina et
al. 2005; Shein et al. 2006; Harlov et al. 2007; Knyazev et al.
2017). According to work by Harlov et al. (2007), despite being
a high temperature-high pressure phase relative to thorite, the
monoclinic huttonite is demonstrated to be a lower temperature
metastable phase when it is associated with REE monazites. As
huttonite is ~7.8% denser than thorite, this thorite — huttonite
transition contradicts the general observation that high-temper-
ature polymorphs are the less dense phase (Taylor and Ewing
1978; Shein et al. 2006). The mechanism for such a transition has
not been well explained, nor can it be easily explained by typical
crystal-chemical arguments as noted above. Therefore, there is
still research to be done to understand the crystal chemistry of
thorium orthosilicates at elevated temperatures.

Response of zircon structure minerals to radiation. Many
of'the zircon structure-type minerals contain appreciable quanti-
ties of the naturally occurring radioactive elements U and Th.
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Moreover, there are several zircon structure-types that contain
essential radioactive elements (i.e., coffinite = USiO, and thorite
= ThSi0O,). Thus, these structures experience radiation damage
due to the accumulation of a-decay events over time (Anderson
et al. 2017, 2019, 2020b, 2020a). To study these effects, the
radiation dose can either be intrinsically created by doping the
structure with a radionuclide (i.e., 2**Pu) (Boatner et al. 1984;
Murakami et al. 1991; Weber 1993; Weber et al. 1994; Hanchar et
al. 2003), or externally, by means of ion-beam irradiation (Weber
et al. 1994; Meldrum et al. 1997b, 1999; Zhang et al. 2008b;
Rafiuddin and Grosvenor 2015; Rafiuddin et al. 2020). Zircon
structure-types under radiation may lose their long-range crystal-
linity and become aperiodic, the metamict state. The process of
metamictization is reversible through thermal annealing of the
long-range periodicity of the structure (Weber 1991; Geisler et
al. 2005), although the short-range order of the structure may not
be recovered, such as has been observed in irradiated pyrochlores
(Weber et al. 1998). Metamict zircon-type materials experience
softening in both elastic moduli and hardness and an increase
in dissolution rate (Ewing et al. 1982). Several review papers
have summarized the radiation effects on zircon structure-type
materials from the structural and energetic (Ellsworth et al. 1994;
Meldrum et al. 1997a, 2000; Ewing et al. 2003; Ewing 2007;
Geisler et al. 2007; Weber and Ewing 2013; Beirau et al. 2016,
2017, 2018, 2019, 2021; Weber et al. 2019).

While damage of the zircon crystal structure in response
to o-particle radiation is fairly well understood (Meldrum et
al. 1997a, 2000; Ewing et al. 2003; Ewing 2007; Geisler et al.
2007; Weber and Ewing 2013; Beirau et al. 2017, 2018; Weber
et al. 2019), incorporation of the Pb daughter product into the
crystal structure is the subject of much debate, which has major
implications on how geologic processes are dated (Watson et
al. 1997; Kramers et al. 2009; Tanaka et al. 2010; Kogawa et
al. 2012; Syverson et al. 2019). One of the major controversies
concerns the oxidation of Pb, which can take the form of either
Pb?* or Pb*" (Kramers et al. 2009; Tanaka et al. 2010; Kogawa et
al. 2012; Syverson et al. 2019). From a crystallographic point of
view, in an eightfold coordination environment, Pb* (0.94 A) is
similar in size to parent U** (1.00 A) and Th** (1.05 A), whereas
Pb** (1.29 A) is significantly larger (Shannon 1976). Additionally,
if Pb*" is the assumed oxidation state, then there is no need for
charge balance by vacancies and P** for Si*" substitution, which
would be needed for Pb*" (Kogawa et al. 2012; Syverson et al.
2019). However, the oxygen fugacity needed to allow for Pb* to
be the stable oxidation state would be so oxidizing that U** would
be oxidized to U*, making it unlikely to be incorporated into
the zircon crystallographic lattice (Watson et al. 1997). Despite
this observation, there are mixed results from X-ray absorption
spectroscopy (XAFS) studies where both X-ray absorption near
edge structure (XANES) and X-ray absorption fine structure
(EXAFS) data indicate the presence of Pb* (Syverson et al.
2019), Pb* (Kramers et al. 2009), and mixed-valence Pb (Tanaka
etal. 2010). Transmission electron microscopy also collaborates
that the incorporation of Pb?" in the crystal structure of zircon
can be enhanced in P-rich systems by the xenotime-type, charge-
coupled substitution (Zr*" + 2Si*" = Pb?* + 2P*") (Kogawa et al.
2012). In a P-free system, without the above charge-balance
reaction, most of the Pb is rejected from the zircon structure and

instead is found to cluster as micro- to nanoscale Pb>*O domains
residing preferentially in radiation-damaged areas of the zircon
(Kogawa et al. 2012; Syverson et al. 2019).

THERMOCHEMICAL PROPERTIES OF ZIRCON
STRUCTURE COMPOUNDS

The standard enthalpy of formation at 298 K (AH)) of many
compositional zircon-type material end-members has been
determined. These are tabulated in Online Materials' Table S2
(Ellison and Navrotsky 1992; Ushakov et al. 2001a; Navrotsky
and Ushakov 2005; Dorogova et al. 2007; Guo et al. 2015,
2016a; Strzelecki et al. 2020a). The values of AH, that have yet
to be determined are for the zircon-type end-members: behierite
(TaBO,), schiavinatoite (NbBQ,), rare earth orthochromates
(REECrO,), rare earth orthoarsenates (REEAsQ,), transuranium
orthosilicates (NpSiO,, PuSiO,, and AmSiQ,), and thorium ortho-
germanate (ThGeQ,). These gaps offer opportunities for future
thermodynamic research to be conducted on the determination
of these values. One challenge for conducting such research is
the availability of enough (approximately 10! to 10° mg) pure
compounds for calorimetric or solubility measurements. For
instance, all pure synthetic transuranium orthosilicates have
been rarely synthesized (Keller 1963; Estevenon et al. 2020b,
2021a). For this reason, computational and empirical studies
have been performed to fill the gaps in the experimental data,
thus providing a basis for understanding the thermodynamics
of some zircon-type materials. (Ferriss et al. 2010; Strzelecki
et al. 2020b). So far, the only pure phase of PuSiO, has been
synthesized by Keller (1963), and equally limited simulation
work has been done with PuSiO, due to the complexity of deal-
ing with 5f elements, in particular, the strong on-site Coulomb
repulsion interaction of Sf‘electrons and relativistic effects, such
as the scalar relativistic effect and spin-orbit coupling. Ferriss
et al. (2010) used density functional theory to compute AH, of
PuSiO, at 0 K to be —1889.1 kJ/mol. A dense sampling grid of
0.07 A" and a high cut-off energy value of 800 eV were applied
during the calculation to ensure precision and accuracy. However,
for simplicity, the correction of on-site f electron interaction and
relativistic effects were not considered in Ferriss et al. (2010).
Further investigation using more accurate DFT methods may be
needed, such as the DFT+U calculation with spin-orbit coupling
taken into consideration. Strzelecki et al. (2020b) used empiri-
cal methods to derive AH, at 298 K for PuSiO,, NpSiO,, and
AmSiO, to be —1930.1 £+ 4.1 kJ/mol, —1961.7 + 4.1 kJ/mol, and
—1802.0 £ 5.3 kJ/mol, respectively, which relied on the empiri-
cally determined relationship in isostructural ceramic materials
(Sverjensky and Molling 1992) between the enthalpy of forma-
tion from the oxides (AH;,,) and ionic radius of the metal cation
(Navrotsky 2001). This, and derivatives of the method that use
other parameters (i.e., ionic potentials or molar volumes), have
been used in the derivation of other thermodynamic variables
(Anderson and Anderson 1970; Sverjensky et al. 1997; Chen
et al. 1999; Navrotsky 2001, 2005; Helean et al. 2003, 2004;
Jenkins and Glasser 2003; Xu et al. 2010a; Qi et al. 2015; Guo
et al. 2016b; Strzelecki et al. 2023).

We have modified and updated the figure reported in
Strzelecki et al. (2020b), which shows variations in AH;,, of
zircon structure materials as a function of the r,/rr (Fig. 4),
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for which there is a negative linear correlation. From Figure 4,
the HREE orthophosphates (e.g., xenotime and pretulite) are
the most thermodynamically favored zircon structure-types
with respect to their binary oxides (PO, and HREEQ; ). It is
therefore reasonable to assume that the orthoborate minerals,
behierite (TaBO,) and schiavinatoite (NbBQO,), should be the
most energetically favorable zircon phases, with respect to the
binary oxides [BO, s and (Nb,Ta)O, ], as they exhibit the largest
values of r,/rr. However, such predictions do not fully justify
the natural rarity of behierite and schiavinatoite, as Nb, Ta,
and B are all incompatible elements that are enriched in felsic
magmas (Parker and Fleischer 1968; Leeman and Sisson 1996;
Schulz and Papp 2014). Instead, the rarity of these two phases
is more easily explained by the formation of Nb and Ta anionic
complexes in the melt. This leads to oxide minerals, such as
tantalite [(Fe,Mn)Ta,O] and columbite [(Fe,Mn)Nb,Og], which
may be more thermodynamically favorable than the behierite and
schiavinatoite counterparts (Parker and Fleischer 1968; Schulz
and Papp 2014).

Notably, all f~block orthosilicates (excluding zircon and
hafnon) are outliers in Figure 4, which do not follow the linear
trend of all other zircon-structure materials. From this perspec-
tive, it can be thought that f~-block orthosilicates, due to both the
relatively large A-site cations and T-site cation (Si), have no ideal
ratio of r,/ry for a stable zircon structure. Large MOy dodecahedra
may not be effectively compensated by smaller SiO, tetrahedra,
and overall this leads to the destabilization of the structure. Such
an argument is well reflected by their low endothermic enthalpies
of formation. This also suggests, using an empirical model, that
ionic interactions in the zircon structure may not be sufficient
to capture the energetic landscape of f~block zircon-structure
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FIGURE 4. Enthalpy of formation from binary oxides, obtained
for orthosilicates (ASiO,) (Langmuir 1978; Langmuir and Chatham
1980; Ellison and Navrotsky 1992; Grenthe et al. 1993; Mazeina et al.
2005; Navrotsky and Ushakov 2005; Szenknect et al. 2013; Guo et al.
2015, 2016a; Strzelecki et al. 2020b), orthochromates (ACrO,) (Lee
and Nassaralla 2006), orthovanadates (AVO,) (Dorogova et al. 2007),
and orthophosphates (APO,) (Marinova et al. 1973; Ushakov et al.
2001a; Strzelecki et al. 2022) that crystallize with the zircon structure
(14,/amd) as a function of r,/rr. The equation describing the gray dashed
line is AH; . (kJ/mol) = [-58.2(x1.4)-(rx/rr)] + [70.5(x6.4)], which has
an adjusted R? value of 0.99. The details describing the regression are
supplied in the main text. (Color online.)
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materials where partial covalency has been demonstrated (Vitova
et al. 2017; Su et al. 2020; Marcial et al. 2021).

The other outlier is CeVO, from the work of Dorogova et al.
(2007). The root reason for such an outlier was not discussed
in their study. Nevertheless, it is possible that this outlier value
may be due to the partial oxidation of Ce** to Ce*" before the
calorimetric measurements were made, which might have led to
a less exothermic enthalpy value (Helean and Navrotsky 2002;
Guo et al. 2014).

If one removes these outliers, a linear regression on the
remaining values results in the following linear relationship:

AH;(kJ/mol) = [-58.2(x1.4)(ra/rr)] + [70.5(£6.4)] 1

with an adjusted R2=0.99. This linear correlation between AH .
and r,/rr can be used as an empirical relation for predicting
the enthalpies of formation of other zircon-structure materi-
als, including behierite (TaBO,), schiavinatoite (NbBO,), rare
earth orthochromates (REECrQ,), and rare earth orthoarsenates
(REEAsO,). Lastly, the enthalpy value of binary oxides used
for deriving the AH;,, values were taken from: Chase (1998),
for TaO, s and NbO, 5; Konings et al. (2014) for all the lantha-
nide oxides (LnO, 5); Morss et al. (1993) for YO, 5; Ushakov et
al. (2001a) for ScO,s; and Robie and Hemingway (1995) for
AsO, 5, BO, 5, and CrO, 5. These values are tabulated in Online
Materials' Table S2.

Natural zircon-structure minerals dominantly exist as con-
tinuous solid solutions with substitutions occurring in both the
A- and T-sites. In comparison to the thermodynamics of the end-
members, there has been much less systematic work examining
the thermodynamics of mixing for various metal cations that can
be quantified by an enthalpy of mixing (AH,,;,). To date, there
are only limited measurements AH,;, values for zircon-structure
materials (Guo et al. 2016a; Marcial et al. 2021; Shelyug et al.
2021; Strzelecki et al. 2022) and computational studies (Mogi-
levsky 2007; Ji et al. 2019; Migdisov et al. 2019). The findings
suggest that ideal cation mixing in the zircon structure is not
always correct and can have significant impacts on phase sta-
bility. Here, we emphasize that non-ideal mixing in zircon can
be used to engineer more stable waste form ceramics or high-
temperature thermal barrier coating (TBC) materials. Thus, the
thermodynamics of mixing in the zircon structure deserves more
research. For instance, the uranothorite solid solution in which
U and Th occur is a system that exemplifies a strong nonideal
mixing effect (Guo et al. 2016a; Marcial et al. 2021). The work
of Marcial et al. (2021) suggests that the nonideal mixing effect
from U and Th in the cationic sublattice, characterized by a
subregular solution model: AH,;, = [wy,(1 — x) + wyx]x(1 —x),
where w), and w,, are the asymmetric interaction parameters and
x is the mole fraction of one of the constituents being mixed, can
create significantly extended stability fields, both in temperature
and oxygen fugacity, for forming uranothorite with high U con-
tents at conditions where pure coffinite is unstable. The authors
attributed the non-ideal mixing effect to a covalency-driven
electron transfer mechanism (Marcial et al. 2021), which may
also play a role in mixing other f-block elements (i.e., Pu) in
the zircon structure. Future experimental work on PuSiO, and
associated solid solutions may help to confirm this hypothesis.
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Stabilization from a possible negative enthalpy of mixing may
help the stabilization of Pu (or Am) in the zircon matrix for
long-term use as an actinide waste form (Marcial et al. 2021).
There are also future research opportunities to investigate the
mixing of multiple elements in the A- and T-sites, so that one can
evaluate entropic contributions in high entropy zircon ceramics
for potentially improved phase stability.

HEAT CAPACITY (Cp), STANDARD ENTROPY (S°), AND
GiBBS FREE ENERGY (AG) OF ZIRCON STRUCTURE
COMPOUNDS

In comparison to the experimental studies devoted to deter-
mining the AH; of zircon structured materials, significantly less
work has been done in determining the isobaric heat capacity
(G»), standard entropy (S°), or free energy (AG) of these materi-
als. One reason for the lack of experimental derivations for S°, is
that the Cp must be determined below 10 K. Conventionally, this
has been done by means of adiabatic calorimetry, which requires
relatively large amounts of sample (1-10 g) and significant
amounts of time, which ultimately has led to the lack of these
measurements (Navrotsky 1994). Nonetheless, the values of S°
for rare earth orthophosphates and rare earth orthovanadates
are known from adiabatic calorimetric measurements, which
are tabulated in Online Materials' Table S3 (Gavrichev et al.
2006, 2010a, 2010b, 2010c, 2011, 2012a, 2012b, 2013b, 2014;
Ryumin et al. 2017; Tyurin et al. 2020). Besides experimental
approaches, the DFT method can be used to study heat capacity
and entropy by computing phonon normal modes with tun-
able external perturbations (e.g., temperature and pressure). In
the work of Marcial et al. (2021) a comparison of theoretical
heat capacity and empirical heat capacity values of USiO, and
ThSiO, was performed (Online Materials' Fig. S3). A discus-
sion of entropy values of USiO, was also given by Konings and
Plyasunov (2017).

On the other hand, S° may be derived from an empirical
relation with the molar volume (V,) of a compound (Jenkins
and Glasser 2003; Glasser 2011). The linear equations presented
by Jenkins and Glasser (2003) have been successfully used to
calculate various unknown Sgg¢ values (Guo and Xu 2017;
Strzelecki et al. 2020a, 2023; Goncharov et al. 2022). However,
recent work of Strzelecki et al. (2022) noticed large discrepancies
between the extrapolated Spgx values based the method of Jenkins
and Glasser (2003) for phosphate minerals and experimentally
determined values (Robie and Hemingway 1995; Navrotsky et
al. 2015; Gysi etal. 2016; Gysi and Harlov 2021; Migdisov et al.
2016; Van Hoozen et al. 2020). A new set of empirical S5ogx — V,,
linear equations was thus proposed by Strzelecki et al. (2022) to
include phosphate minerals and further extended to all miner-
als. Lastly, knowing both the AG; and AH; values for a given
material, an indirect method for determining the S° value is to
calculate AS; through rearrangement of the Gibbs free energy
equation (AG;= AH;— TAS;) and then to access the S° value for
a given compound.

Using the indirect method for determining S°, one is assuming
that both AG;and AH;are known. While this is a safe assumption
for AH, there are many gaps in our knowledge of experimental
measurements of AG;. Even so, solubility studies have been
conducted on nearly all zircon-structured orthosilicate minerals

(Schuiling et al. 1976; Newton et al. 2005; Szenknect et al. 2016)
and several of the compositional end-members of xenotime to
derive the AG; values (Gysi et al. 2015, 2016; Gysi and Harlov
2021). Adiabatic calorimetry papers (Gavrichev et al. 2006,
2010a,2010b,2010c, 2011,2012a,2012b,2013b, 2014; Ryumin
et al. 2017; Tyurin et al. 2020) also report AG; values, which
were calculated from the measured AH; values (Ushakov et al.
2001a; Dorogova et al. 2007) in conjunction with the values of
S°. We tabulated the values of AG; for zircon structure phases
in Online Materials' Table S4. As discussed above, it is useful
to study how mixing impacts the thermodynamics of zircon
structure-type materials. If the mixing is ideal, then the entropy
of mixing (AS,,) can be calculated by using the Boltzmann
entropy formula:

ASmix,cunﬁg =- R [(1 - x)ln(l - x) + x.ln(‘x)] (2)

Unlike AH,,;,, there have been no experimental studies of the free
energy of mixing (AG,,,) in the zircon structure.

THERMOPHYSICAL PARAMETERS OF ZIRCON
STRUCTURE COMPOUNDS

Thermal expansivity (o), also referred to as the coefficient
of thermal expansion (CTE), and isothermal compressibility ()
are important thermodynamic parameters for the equation of
states that describe how a given crystal structure will respond to
temperature or pressure. Thermal expansivity (o) and compress-
ibility (B) are defined by:

a=V'@V/oT)p. 3)
B=—V"'(8VIoP);. @)

The following equations demonstrate the volume expansion or
volume compressibility, which are important as they are also
linked to the isobaric (C5) and isochoric (C,) heat capacities, as
given in the following equation:

Cp— C, = TVo/B. )

However, one can also create a one-dimensional form of
expansivity or compressibility to derive either linear thermal
expansivity or linear compressibility (Xu et al. 2010a, 2010b).
Most zircon-type structure compounds respond to tem-
perature or pressure anisotropically in that the expansion or
contraction of the a- and c-axis are not equivalent. When a
zircon-structure material undergoes thermal expansion, the c-axis
tends to expand more than the a-axis (Bayer 1972; Subbarao et
al. 1990; Mursic et al. 1992; Varghese et al. 2015; Beirau et al.
2016; Knyazev et al. 2017; Ding et al. 2020). However, when a
zircon-type structure material is compressed, the c-axis contracts
less than the g-axis. The reason for the anisotropic behavior of
both thermal expansion and compressibility is largely the same
and can be explained by collective motions/distortions of TO,
tetrahedra and MOy dodecahedra (Fig. 1). MOy dodecahedra
provide more flexibility along the a-axis due to the higher free-
dom of corner-sharing MO2, tetrahedra. These latter can relax
the structure during expansion and result in a smaller change
along the g-axis compared to the c-axis. Consequently, due to
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the higher repulsion experienced by edge-sharing compared
to corner-sharing, the c-axis expands more than the a-axis. As
thermal expansion is the reverse of baric compression, the reason
for the c-axis contracting less than the a-axis can be explained
by the same process. Here, the zircon structure is more flexible
along the a-axis due to the higher freedom of corner-sharing
MO2, tetrahedra during compression, which results in a greater
change along the a-axis compared to the c-axis, along which
the TO, is more incompressible (Li et al. 2007; Marcial et al.
2021). Consequently, due to the higher repulsion arising from
the edge-sharing over corner-sharing, the c-axis contracts less
than the a-axis.

Thermal expansivity (o) of zircon structure compounds

There are three main methods for deriving the coefficient
of thermal expansion. These methods include dilatometry,
interferometry, and in situ high-temperature X-ray and neutron
diffraction techniques (Newnham 2005). Many of the a values
of the compositional end-members for zircon structure materials
have been tabulated in the literature by means of one, or more,
of these three techniques (Online Materials' Table S5) (Bayer
1972; Subbarao et al. 1990; Strzelecki et al. 2021). It is of more
interest to be able to relate these parameters to the underlying
crystal chemistry of the materials to systematically predict struc-
ture and properties relationships (Navrotsky 1994). As stated
above, many thermodynamic variables of isostructural inorganic
materials are able to be studied through the existence of differ-
ent, empirically derived relationships (Anderson and Anderson
1970; Sverjensky et al. 1997; Chen et al. 1999; Navrotsky 2001,
2005; Helean et al. 2003, 2004; Xu et al. 2010a; Qi et al. 2015;
Guo et al. 2016b). These empirically derived relationships link
specific thermodynamic variables to the varying component of
the isostructural materials and allow for study of the periodicity
of a particular variable.

Megaw (1973) argues that a is inversely proportional to the
Pauling bond strength (PBS), which is defined as the cation
valence divided by its coordination number. Newnham (2005)
shows that bond strength is approximately proportional to o2,
Each of these arguments is based on strong interatomic forces,
which are commonly correlated with low thermal expansion,
whereas weak interatomic forces are commonly correlated with
high thermal expansion. If we apply this to zircon structure
materials by calculating the PBS for the A-site metal cations
(Fig. 5a), we see that there are two trends that emerge. The
first trend is that there is a proportionality between the PBS
of the A-site metal cation to o' across all zircon-structure
materials. This is validated by the fact that CaCrO, (PBS =
0.25) has the highest value of a (Bayer 1972), while TaBO,
(PBS = 0.625) has the lowest a value (Bayer 1972). Such an
observation demonstrates that CaCrO, has weaker interatomic
forces than TaBO,. The second trend is that when PBS is equal,
the trend will show which materials within a given zircon-
structure subgroup have the greatest interatomic forces. This
is supported by the observation that ThSiO, has the smallest
value of o (Subbarao et al. 1990; Knyazev et al. 2017), whereas
CeSiO, exhibits the highest one (Strzelecki et al. 2021). This
could also be due to their overall thermodynamic stabilities,
as discussed above.
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FIGURE 5. (a) Comparison of the negative cubed root of the thermal
expansion coefficient (a"?) of various zircon-type materials as a function
of the Pauling bond strength (PBS) of the A-site metal cation, where PBS
was calculated by taking the charge of the A-site metal cation divided
by its coordination number (CN = 8). (b) a of the various zircon-type
materials as a function of the sum of the mass of the A- and B-site cations
(Bayer 1972; Subbarao et al. 1990; Mursic et al. 1992; Varghese et al.
2015; Knyazev et al. 2017; Ding et al. 2020; Strzelecki et al. 2021).
(Color online.)

Furthermore, Subbarao et al. (1990) and Strzelecki et al.
(2021) studied CTEs of zircon-type phases by correlating them
to the sum of the atomic weights of the A-site and B-site cations
(Fig. 5b) (Bayer 1972; Subbarao et al. 1990; Mursic et al. 1992;
Varghese et al. 2015; Knyazev et al. 2017; Ding et al. 2020).
The CTEs of the M*T #Q, zircon-type phases decrease with an
increasing in the overall mass of the A and B site cations. While
a similar trend is also seen when using PBS, here Hooke’s law
is expressed as the heaviest combined masses expand at the
slowest rate.

Compressibility (B) of zircon structure compounds

There are several methods for studying the compressibility
of a given material, including resonant ultrasonic spectroscopy
(Balakirev et al. 2019; Goncharov et al. 2021), nanoindentation
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FIGURE 6. Comparison of bulk moduli vs. volume for all zircon-
type orthosilicates. Circle symbols denote those values derived by
experimental methods, while squares symbols denote computational
derived values (Armbruster 1976; Hazen and Finger 1979; Crocombette
and Ghaleb 1998; Yukiko Hirano et al. 2002; Ono et al. 2004a; Van
Westrenen et al. 2004; Wang et al. 2004; Li et al. 2006, 2009, 2011,
2014; Long et al. 2006; Mogilevsky et al. 2006; Bose et al. 2008, 2009;
Errandonea and Manjon 2008; Zhang et al. 2008a; Errandonea et al.
2009b, 2011, 2014; Garg et al. 2009, 2013, 2014; Zhang et al. 2009;
Lacomba-Perales et al. 2010; Lopez-Solano et al. 2010; Huang et al.
2012a; Bauer et al. 2014; Paszkowicz et al. 2014; Garg and Errandonea
2015; Popescu et al. 2016; Yue et al. 2016; Gomis et al. 2017; Errandonea
and Garg 2018; Mondal et al. 2020; Ehlers et al. 2022; Strzelecki et al.
2023). (Color online.)

(Beirau et al. 2021), and in situ high-pressure X-ray and neutron
diffraction techniques (Anderson 1984, 1995, 2007; Navrotsky
1994). Many of the 3 values for the compositional end-members
for zircon-structure materials have been tabulated in the literature
through at least one of these three techniques, if not a combina-
tion of several. However, these literature values are commonly
reported as the inverse of compressibility (1/B), which is referred
to as the bulk modulus (K). We have tabulated the values of K for
several zircon-structured materials in Online Materials' Table S6.
It is again interesting to examine broadly the structure-property
relationships of all zircon-structure materials to gain knowledge
of the underlying crystal chemistry and to systematically predict
relationships between structure and properties. Here, there is an
empirical relationship between K and its inverse proportionality
to zero-point pressure volumes (¥;) of isostructural inorganic
materials, in that larger unit-cell volumes are generally more
compressible and thus have a smaller bulk modulus (Anderson
and Anderson 1970; Xu et al. 2010a).

In Figure 6, K vs. Vj is plotted for all the available zircon-
structured materials (orthosilicates, orthophosphates, and
orthovanadate) (Armbruster 1976; Hazen and Finger 1979;
Crocombette and Ghaleb 1998; Hirano et al. 2002a; Ono et al.
2004a; Van Westrenen et al. 2004; Wang et al. 2004; Li et al.
2006, 2009,2011,2014; Long et al. 2006; Mogilevsky et al. 2006;
Bose et al. 2008, 2009; Errandonea and Manjon 2008; Zhang et
al. 2008a; Errandonea et al. 2009b, 2011, 2014; Garg et al. 2009,

2013, 2014; Zhang et al. 2009; Lacomba-Perales et al. 2010;
Lopez-Solano et al. 2010; Huang et al. 2012a; Bauer et al. 2014;
Paszkowicz et al. 2014; Garg and Errandonea 2015; Popescu et
al. 2016; Yue et al. 2016; Gomis et al. 2017; Errandonea and
Garg 2018; Mondal et al. 2020; Ehlers et al. 2022; Strzelecki et
al. 2023). It is worth noting that the two orthoborate minerals are
missing from this figure. When comparing the available data for
the three different zircon structure-types, the MOg unit is largely
unchanged from orthophosphate to orthovanadate, but rather, the
change is in the different TO, units from which these classes got
their names. Through this, one can see how incompressible the
silicate tetrahedron, with the highest of the bulk moduli, is even
when comparing similar overall unit-cell sizes (i.e., CeSiO,,
TbPO,, GAVO,).

IMPLICATIONS

In this review, we evaluated recent advances in the crystal
chemistry and thermodynamic properties of zircon structure-type
materials. We focused on empirically derived structure-property
relationships, which can be used to obtain thermodynamic func-
tions and support their potential applications in the design and
improvement of a compositionally diverse class of materials.
In addition, we have identified several key gaps in the thermo-
dynamics for several zircon structure-type minerals and critical
needs in the understanding of how cation mixing at the A- and/or
T-site affects thermodynamics parameters. These gaps can be
viewed as the starting point for future research in furthering our
understanding of the zircon-structure minerals and ceramics.
This up-to-date summary of knowledge of zircon-type materi-
als should help researchers continue developing a fundamental
understanding of their mineral chemistry. It should also help
to promote the use of zircon-type materials for applications in
industry, such as in actinide waste disposal and in aeronautical
engineering as environmental and thermal barrier coatings.
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